
Highly Dynamic Behaviour Adaptability through Prototypes with
Subjective Multimethods

Sebastián González
Département d’Ingénierie

Informatique
Université catholique de Louvain

1348 Louvain-la-Neuve
Belgium

s.gonzalez@uclouvain.be

Kim Mens
Département d’Ingénierie

Informatique
Université catholique de Louvain

1348 Louvain-la-Neuve
Belgium

kim.mens@uclouvain.be

Patrick Heymans
Faculté d’Informatique
University of Namur

5000 Namur
Belgium

phe@info.fundp.ac.be

Abstract
With the advent of ambient intelligence and advances in mo-
bile hardware technology, the next generation of software
systems will require the ability to gracefully and dynam-
ically adapt to changes in their surrounding environment.
Contemporary languages provide no dedicated support to
this end, thus requiring software developers to achieve this
run-time adaptability through the use of specific design pat-
terns and architectural solutions. As a consequence, all pos-
sible variability points of mobile systems need to be antici-
pated up front. Instead, we aim at solving the problem at the
language level. We propose a new programming language
called Ambience that provides dedicated language mecha-
nisms to manage changing contexts and deal with run-time
adaptation of mobile applications to those contexts. The lan-
guage abstractions we propose are based on a prototype-
based programming model that features multimethods and
subjective object behaviour. We illustrate and motivate our
approach by means of two running examples that were im-
plemented in our language.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Design, Languages

Keywords Context-oriented programming, subjective dis-
patch, multiple dispatch, prototype-based programming, am-
bient intelligence

c©ACM, (2007). This is the authors’ version of the work. It is posted here by permis-
sion of ACM for your personal use. Not for redistribution. The definitive version was
published in the Proceedings of the 2007 symposium on Dynamic languages, ISBN
978-1-59593-868-8, http://doi.acm.org/10.1145/1297081.1297094

1. Introduction
Our research starts from the premise that, due to the par-
ticular characteristics of mobile systems, contemporary pro-
gramming languages fall short in providing adequate ab-
stractions for programming such systems. We are therefore
conducting research on programming languages and models
that provide better support for building mobile systems, and
concentrate in particular on the ability of those systems to
dynamically adapt their behaviour to changing contexts.

Mobile systems are interactive systems in the large.
Thanks to their physical autonomy (own power source and
wireless connectivity), mobile computers can freely enter
and leave the open networks they encounter and engage in
communication with other fixed or mobile devices that are
part of the same network. Applications running on mobile
systems should be aware of their execution context1 and
should adapt dynamically to such context so that they can
provide a service that fulfils the user needs to the best ex-
tent possible. As mobile computing progresses towards this
vision, full dynamic software adaptation to the context be-
comes increasingly important: the capability of a program to
respond to changes that occur in its operating environment
through the dynamic transformation and reconfiguration of
its components and services.

Context-aware dynamic software variability is key to the
construction of applications that are smart with respect to
the user needs and adaptable to the current environment. We
call such applications ambient-oriented, a term derived from
Ambient Intelligence [13]. Ambient-oriented applications
question the underlying assumption that a single application
behaviour can be articulated and anticipated completely, and
replace it with the view that application behaviour should

1 Here context is used in a broad sense: people and objects in the vicinity,
environmental properties such as lighting and noise, device status such as
battery charge and network signal strength, available network peers and the
services they offer, and so on.

http://doi.acm.org/10.1145/1297081.1297094

be causally connected to its context and so flexible as to
gracefully accommodate the most varied circumstances [8].

Using current programming technologies, run-time adapt-
ability is often a design aspect derived from the software
architecture. For instance, the Factory design pattern [10]
allows the introduction of a certain degree of variability in
the composition of software, by letting third-party code be-
come an active part of an application. The State pattern al-
lows applications to change their behaviour at run-time by
reconfiguring the collaborations among their components
(objects). More involved mechanisms can be built on top
of these basic techniques, most notably the plug-in archi-
tectures of many large-scale applications. Unfortunately, in
all existing techniques variability points are fixed by design,
and little has been achieved regarding the interplay between
context-awareness and dynamic software variability.

Instead of investigating advanced software architectures
or intricate design patterns to enhance the dynamic adapt-
ability of mobile systems, we try to solve the problem at the
level of the programming language. More precisely, we in-
vestigate adequate programming language abstractions that
would render context-aware, self-adaptable mobile applica-
tions easier to develop. To test out our ideas we designed
and implemented a new language called Ambience, geared
towards ambient intelligence. This language is strongly in-
spired by other similar languages, but, given that we imple-
mented it ourselves, serves as our research vehicle in which
to experiment with novel language abstractions. In this pa-
per we focus on the notion of subjective multimethods to
achieve run-time behaviour adaptability of mobile systems
to changes in their surrounding context.

Rather than explaining the full language syntax and se-
mantics, in this paper we opted for a more example-driven
explanation.2 Section 2 starts with an example of a typical
ambient-oriented application and states the basic require-
ments of software adaptability and context-awareness that
we aim to tackle. Section 3 then introduces our basic be-
havioural adaptation mechanism, explaining how we reify
contextual information and illustrating how this information
can influence object behaviour. Section 4 presents an initial
set of techniques we have devised to manage this context in-
formation in a coherent way, avoiding errors that can arise
from the concurrent (real-time) modification of the reifica-
tion. Sections 5 discusses the qualities and rough edges of
our approach. Section 6 presents the existing language-based
approaches that are similar to ours. Finally, before conclud-
ing, Section 7 describes some research directions that require
further exploration.

2 A full description of the language and its features will be the subject of
a forthcoming paper. Nevertheless, all examples given in this paper have
actually been implemented in the current version of the language.

2. Ambient-oriented applications
The software that runs on modern mobile devices is hardly
able to cooperate with its environment in a service-oriented
fashion. Applications exhibit fixed functionality and fixed
communication patterns, for example an agenda running on
a smartphone that synchronises with a desktop computer on
demand, or the technical support service of a company that
schedules the visits of mobile technicians. Applications sel-
dom exploit service discovery, let alone adapt their services
to the context. For this reason, this section presents a sce-
nario that serves as motivation and illustrates the kind of ad-
vanced collaborations we wish to enable with our approach.
In Section 4 we will show how we implemented this example
in Ambience. After having explained the scenario, the set of
requirements we set forth for ambient-oriented applications
is given explicitly.

2.1 Scenario: smartphone and GPS integration
The following simple scenario illustrates the relevance of
dynamic context-aware behaviour adaptation in a typical
ambient-oriented application. Ambient-oriented program-
ming languages should be able to deal naturally with such a
scenario:

The CityMaps application for smartphones con-
tains static maps of cities, annotated with informa-
tion such as street names and special spots (hospi-
tals, hotels, public transportation stops), much like the
maps one could find in a tourist book or on Google
Maps.3 Although the CityMaps service is useful on
its own, modern users expect more dynamic features.
The ACME company has detected such expectation
and has developed a GPS hardware module for smart-
phones. Once connected, the module enhances the
functionality of CityMaps such that the map section
drawn on the screen is updated in real-time according
to the current location of the user, detected through
GPS. Additionally, the user’s avatar is drawn at the
right spot of the map. The net effect of connecting the
GPS module to the smartphone is that the CityMaps
application can be used in a more navigational fash-
ion. When the module is disconnected, the application
reverts to its default static behaviour.

Instead of a hardware module, an alternative scenario would
be that the GPS service were provided wirelessly by an on-
board GPS system in a car. The actual details concerning
how a service is acquired (e.g. from the network or by physi-
cally plugging it) are irrelevant to the point we want to make.
We consider all such scenarios equivalent. The important
point is that application behaviour can be improved or de-
graded dynamically according to the services found in the
environment.

3 See http://maps.google.com/

2.2 Key requirements of ambient applications
We now present a small list of characteristics we consider
essential for ambient-oriented applications. With this list we
wish to contribute to the notion of ambient-oriented pro-
gramming [6], so that it not only encompasses language fea-
tures that are useful in dealing with the hardware phenomena
observed in mobile computing (e.g. volatile connections, in-
herent concurrency, peer-to-peer communication), but also
language features that differentiate ambient-oriented appli-
cations from conventional distributed applications at the ap-
plication level. As stated previously, ambient-oriented appli-
cations should be “smart” with respect to the user needs and
the surrounding environment. To this end, context-awareness
and dynamic behaviour adaptability should be natural fea-
tures of ambient-oriented applications. This general goal is
expressed by the following requirements:

1. Applications should share vocabularies that permit their
interaction. Without a common understanding of a given
domain, communication, and therefore cooperation, are
impossible.

2. Application behaviour should be coherent with respect to
the current context. Coherency mainly amounts to accu-
racy and timeliness as follows:

(a) Context detection The detection of the changing real-
world context has to be timely and accurate, whether
such detection is performed by means of sensors, by
analysis of network information, or indirectly by in-
ference mechanisms based on perceived data.

(b) Context representation The computer representa-
tion of the context should facilitate rapid context up-
dates so that perceived changes are quickly incor-
porated into the representation (timeliness). Further-
more, such representation should be able to keep the
context information that is relevant to an application
(accuracy).

(c) Context effect The link between the context repre-
sentation and application behaviour should be so di-
rect that context changes effectively reflect on rele-
vant parts of application behaviour (accuracy), and do
so promptly (timeliness). On the other hand, context
changes should not affect unrelated parts of applica-
tions (again accuracy).

Failure to support the previous three requirements will
result in discrepancies between user expectations and the
behaviour actually exhibited by applications.

All requirements above are fulfilled by the approach pre-
sented in this paper, except for context detection (2a), which
we have left out of the scope of our research. We assume
in the remainder that environment changes are detected ac-
curately by some means, and are advertised timely to the
run-time system.

3. A subjective approach to context
adaptation

To meet the requirements of ambient-oriented applications
described in Section 2.2, we have developed a proof of con-
cept language called Ambience.4 Ambience is a dynamically
typed, prototype-based language with delegation-based mul-
tiple inheritance. Since every first-class program entity is an
object, and all interaction among objects takes place through
message passing, the model is purely object-based. As a
frame of reference, all these features are shared by the Self
language [18]. Additionally, Ambience features symmetric
multimethods [9] and subjective dispatch [16]. This section
starts by explaining these language features, which are core
to our approach; the remainder of the section explains the
way we exploit them to achieve dynamic behavioural adap-
tation to the context, illustrated by examples in Ambience.

3.1 Prototypes with Multiple Dispatch
Ambience borrows the Prototypes with Multiple Dispatch
computation model from Slate [16] and is also inspired by
the similar object system of Cecil [2]. Multiple dispatch de-
parts from the idea that messages are passed to a single dis-
tinct receiver. A more expressive form of message passing is
obtained where all arguments participate in method lookup.
A method that takes advantage of such a multiple dispatch
mechanism is called a multimethod.

The definition of a multimethod specifies the kind of ar-
guments for which the method is designed to work. To this
end, each formal argument declaration is annotated with
an argument specialiser. In Ambience, argument specialis-
ers are plain objects.5 Given a message with a selector and
list of actual arguments, a multimethod is said to be appli-
cable for that specific message if (1) the message selector
matches the method selector and (2) each argument spe-
cialiser can be found in the delegation graph of the cor-
responding message argument. As an example consider
two objects, one representing a prototypical mobile phone
(mobile-phone) and another representing a prototypical
phone call (phone-call). A method that handles incoming
calls can be defined this way:

receive: call (phone-call) on: phone (mobile-phone)
[activate: phone ringtone during: 20 seconds.
enqueue: call in: phone incoming-calls]

As can be observed, the syntax of Ambience is derived from
the syntax of Smalltalk [11], meant to resemble plain En-
glish. The method selector is receive:on:, the formal ar-
gument names are call and phone, and the phone-call
and mobile-phone prototypes are the argument specialis-

4 A prototype implementation of Ambience in Common Lisp is available at
http://www.info.ucl.ac.be/~sgm/ambience.html
5 In contrast with the multimethods of class-based languages such as Multi-
Java [3], which use classes as argument specialisers.

http://www.info.ucl.ac.be/~sgm/ambience.html

ers.6 The method implementation is written as a code block
between square brackets.

Multimethods in Ambience are said to be symmetric be-
cause all arguments share the same status in the interaction
described by the method [9]. There is no distinguished re-
ceiver object, and therefore also no special this or self
keywords; all participants have explicit names in the method
signature. In contrast with asymmetric methods which are
defined inside the class or object to which they belong, sym-
metric multimethods are defined outside objects, as illus-
trated by the previous example. Symmetric multimethods do
not belong to one single object; rather, they belong simulta-
neously to each specialiser [16].

Another consequence of symmetry is the natural sup-
port of “receiverless” methods and messages. These start
syntactically by a keyword instead of an argument. In the
previous example, receive:on: is one such method, and
activate:during: and enqueue:in: are two such mes-
sages. The syntactic support of receiverless methods and
messages is natural since the first argument does not play a
distinguished role in object interactions. Semantically there
is no distinction between “receiverless” and “receiverful”
methods. Therefore, these two appellations are not part of
Ambience’s parlance.

The syntactic symmetry of multimethods is orthogonal to
the symmetry of the multiple-dispatch semantics used to se-
lect these methods at run time. Multiple dispatch is called
symmetric if the rules for dynamic method lookup treat all
dispatched arguments identically, and asymmetric if a lin-
earisation or ordering is used — typically a lexicographic
one, with earlier arguments having priority over later argu-
ments in the selection between equally specific methods [3].
Ambience multimethods are symmetric, but the multiple-
dispatch semantics is asymmetric, as in Slate and CLOS.

To continue with the example, suppose now that a particu-
lar phone bobs-phone delegates to the mobile-phone pro-
totype, and that an incoming call alices-call delegates to
the phone-call prototype; then the following message will
trigger the execution of the receive:on: method defined
previously:

receive: alices-call on: bobs-phone

If alices-call did not delegate (directly or indirectly) to
phone-call, or if bobs-phone did not delegate (idem) to
mobile-phone, then the method would not be applicable,
and the message would not be understood.

To illustrate method overriding, consider a version of the
method receive:on: that is specialised on smartphones
rather than on regular mobile phones:

6 Maintaining the resemblance to plain English, argument specialisers have
the form of parenthetical expressions that clarify the kind of arguments the
method is about.

receive: call (phone-call) on: phone (smartphone)
[show: phone ring-animation on: phone display.
resend]

This method will be invoked if the device receiving the
phone call delegates to the smartphone prototype. The
method displays an animation on the screen and invokes
the overridden method behaviour by means of a resend call,
analogous to resend in Self [18], to call-next-method in
CLOS or to a super call in Java and Smalltalk. The resend
message results in the invocation of the next most-specific
method that is applicable for the actual arguments passed
to the current method. Supposing that smartphone dele-
gates to mobile-phone, the method invoked by the resend
message will be the version of receive:on: specialised on
regular mobile phones (shown previously), which will make
the phone ring and handle the call.

3.2 Subjects for context-aware adaptation
Our approach to context-aware behaviour adaptation can be
regarded as an instance of context-oriented programming [4]
combined with the notion of subjective objects [17]. The
main idea is that object behaviour, exhibited in response
to a message send, does not only depend on the message
arguments, but also on the message sender [12]. That is, the
“point of view” of the caller affects behaviour selection.

The dependency on the caller’s perspective is realised in
Ambience by means of subjective dispatch, a mechanism
originally found in the Slate programming language [16],
which in turn draws inspiration from Smith and Ungar’s
notion of subjective objects. Technically, the point of view
of the caller is reified as a plain object. Whereas related
approaches call such object a subject or layer, we call it a
context. The nature of this context object is explained next.

3.2.1 Context structuring
Context objects, as any normal object, can delegate part of
their behaviour to other objects. These delegate objects can
be seen as representing domain-specific subcontexts of the
original context. Subcontext objects can delegate further to
finer-grained subcontexts as needed. Figure 1 shows a hy-
pothetical context configuration for ambient-oriented com-
puting. Even though this sample graph is a tree, most of-
ten it will not be the case.7 The display, speakers and
2d-input (mouse) objects in the figure are not reifiers of the
corresponding hardware parts. These context objects rather
represent the presence or availability of such hardware re-
sources in the current context. Similarly, office does not
reify the physical room where the device is located: it repre-
sents the fact that the device is inside an office. In general,
context objects signal properties of the context.

Note that Figure 1 shows only the behavioural part of the
context, that is, the delegation links. That does not mean
that the context is limited to storing delegation informa-

7 An example of a non-simplified context graph is given in Figure 2.

context

environment

lighting

weather

acoustics

rain

warm

indoors

noisy

user

location

activities

resources

power

memory

network display

speakers

low power

battery

DC connection

sleeping

working

driving

quiet

dark

sunlight

home

office

bus stop

meeting

programming

lamplight

2D input

low memory

enough memory

normal

Figure 1. Context organisation example. The main context
delegates to different domain-specific subcontext objects.
Dotted arrows show alternative delegation possibilities.

tion exclusively. Context objects comprised in the graph can
also contain plain slots with arbitrary contextual informa-
tion needed by applications. Such slots account for the data-
oriented part of the context. Having said that, our research
focuses on the behavioural part of the context.

3.2.2 Influence of context on object behaviour
The object labelled context in Figure 1 serves as a handle
to all subcontext objects. It constitutes the current context of
the system, and is part of the state of the interpreter. In Am-
bience, the current context is passed implicitly as the first
argument of every message.8 Correspondingly, an extra for-
mal argument is added implicitly to every method definition,
using the current context as implicit argument specialiser.
Methods are thus specialised on their context of definition.
Therefore —following the multiple dispatch semantics ex-
plained in Section 3.1— a method is applicable only when its
(sub)context of definition can be found in the current context

8 Acually, it is the current method activation record that is passed, but the
activation record delegates directly to the current context object.

graph, starting from the root context object. This implicit ar-
gument and the interplay with the multiple dispatch seman-
tics constitute the core of subjective dispatch. Note that the
Prototypes with Multiple Dispatch model needs no modi-
fications in order to support subjective dispatch, other than
the addition of an implicit context argument. The model thus
keeps its original simplicity.

As an example of the subjective dispatch mechanism just
described, consider again the method receive:on: intro-
duced earlier in this section. The method could be defined to
behave differently depending on whether the acoustics
subcontext illustrated in Figure 1 delegates to a quiet,
normal or noisy context. The first version, which avoids
making noise, can be used in places such as libraries and
situations such as meetings:

in-context: quiet do:
[receive: call (phone-call) on: phone (mobile-phone)
[activate: phone vibrator during: 10 seconds.
enqueue: call in: phone incoming-calls]]

The in-context:do: call switches the current context
to quiet and evaluates the passed code block within that
context. Since the code block contains the receive:on:
method definition, the defined method will be specialised on
the quiet context. The second version can be used in noisy
places:

in-context: noisy do:
[receive: call (phone-call) on: phone (mobile-phone)
[activate: phone lound-ringtone during: 20 seconds.
activate: phone vibrator during: 20 seconds.
enqueue: call in: phone incoming-calls]]

This version of the receive:on: method will be specialised
on the noisy context. If the acoustics context happens to
delegate to quiet, then the first version will be applicable.
However, if the delegation is switched from quiet to noisy,
then the second version of the method will come in force. As
Salzman and Aldrich point out [16], “prototypes naturally
support composition of subjects by delegation, allowing for
a sort of dynamic scoping of methods by merely linking
contexts together with dynamic extent.”

Whenever a subcontext object is reachable from the cur-
rent context object, the subcontext is said to be active. The
dotted arrows in Figure 1 show possible alternative subcon-
texts that can be activated or deactivated in real-time accord-
ing to changes detected in the environment. The manipula-
tion of delegation links at run-time gives rise to what we call
dynamic context switching.

3.3 Dynamic context switching
The context graph topology is an instantaneous represen-
tation of the current real-world context. For instance, Fig-
ure 1 shows a situation in which the user, at that pre-
cise moment, is programming at her office (indoors, with
lamplight, in a quiet environment), with the usual peripher-
als (mouse, screen, speakers) and abundant resources (DC

power, enough memory, large network bandwidth). Such
context can change anytime. For example, if the user leaves
the building, the delegation link going from lighting to
lamplight will be switched to sunlight. Dynamic inher-
itance is thus exploited to adapt the context graph such that
it reflects the current real-world context as timely and ac-
curately as possible. More precisely, context changes in the
domain system are reflected in the computational system by
delegation slot changes. We call each of these changes a
context switch. A seemingly simple or unitary action such
as moving from one room to another can give rise to many
context switches in the context graph, each one reflecting a
change at a different domain-specific level, such as varia-
tions in illumination and expected room noise. Furthermore,
these changes can take place in the middle of the execu-
tion of applications. Such issues related to our particular
representation of context and the way that representation is
managed at run time are the topic of the next section.

4. Context management
The foundations of our approach to dynamic context-aware
behaviour adaptation have been laid in the previous section.
We model the context as an object graph that guides be-
haviour selection. Managing this object graph correctly is
vital for behaviour coherence. This section shows the tech-
niques we have built on top of the subjective approach to
context adaptation described so far. These techniques aim at
easing context management and maintainging behaviour co-
herence.

Let us revisit the scenario from Section 2.1 to illustrate
some practical issues in managing the context and our pro-
posed solutions. In doing so we also provide a second more
advanced example of the approach introduced in Section 3.
Recall that the CityMaps application from the scenario is
about showing maps to the user. To draw the maps on the
screen, the application has the following methods:

in-context: city-maps do:
[draw: map (map-section) on: display (canvas)

[”proceed from the background to the foreground”
draw: map background on: display.
draw: map buildings on: display.
draw: map streets on: display.
draw: map highlights on: display.
draw: map labels on: display].

draw: elements (collection) on: display (canvas)
[elements do: [element | draw: element on: display]].

draw: street (avenue) on: display (canvas)
[code to draw an avenue].

draw: street (highway) on: display (canvas)
[code to draw a highway].

. . .]

Here the city-maps context represents a situation where
the CityMaps application is available. The methods defined
in this context provide the basic functionality of CityMaps.

4.1 Framework contexts
In the scenario, the availability of a GPS service in the en-
vironment renders the CityMaps application more naviga-
tional. We thus need extension code that accounts for situa-
tions where CityMaps and a GPS are both active simultane-
ously. The code should change the behaviour of CityMaps
such that the current geographical location is taken into ac-
count when the map is displayed.

First of all, we need a GPS framework that allows appli-
cations to cooperate irrespective of the particular GPS ser-
vice provider. We define a prototypical gps context that con-
tains a gps-locator prototype and three unary methods un-
derstood by the locator:

in-context: gps do:
[define: #gps-locator as: object clone

(gps-locator) latitude
[0 ”return Equator latitude”].

(gps-locator) longitude
[0 ”return Greenwich meridian longitude”].

(gps-locator) coordinates
[latitude paired-with: longitude].

These three method definitions illustrate the syntactic form
of unary methods in Ambience. However, these methods are
special in that they have anonymous arguments. When an
argument is not used in the method body, its name can be
omitted from the header. The gps-locator prototype is the
argument specialiser of the three methods. The latitude
and longitude methods return a default value,9 since ac-
tual geographical data can be determined only by imple-
menters of the framework. The gps context is analogous
to the display context of Figure 1: it signals the pres-
ence of a hardware resource in the environment. If gps is
active (i.e. if it is present in the current context graph), it
means that the GPS service of some provider is currently
available. The gps-locator prototype and the longitude,
latitude and coordinates methods of the framework
conform a common vocabulary for applications dealing with
GPS. This framework illustrates the way requirement 1 of
Section 2.2 can be addressed.

ACME, the vendor that develops GPS modules for smart-
phones, provides an instance of the framework that is spe-
cific to their particular hardware:

define: #acme-gps as: gps extension.

9 As in Slate, the value returned by a method is that of the last evaluated
expression. Hence the methods do not use the return operator (ˆ).

in-context: acme-gps do:
[(gps-locator) latitude

[read latitude from hardware].

(gps-locator) longitude
[read longitude from hardware]]

The vendor-specific acme-gps context delegates to the
more general gps framework context. The latitude and
longitudemethods are overridden, while the coordinates
method is inherited by delegation. When ACME’s hardware
module is connected to the smartphone, its detection will
trigger the activation of the acme-gps context. As a con-
sequence of the delegation link, also the gps context will
become active. Note that the generic gps context will never
be activated on its own. Doing so would render the generic
latitude and longitude methods applicable, but these
methods do not provide real GPS information. Framework
contexts are always delegates of some concrete context in
the current context graph.

4.2 Context combinations
We have shown the independent code of CityMaps on the
one hand and of a generic GPS framework and ACME’s
customisation of that framework on the other hand. Both
parts have been conceived separately. Now we need glue
code that prescribes their interaction. Such interaction is
not specific to the CityMaps application alone (i.e. to the
city-maps context), nor is it to GPS alone (i.e. to the gps
or acme-gps contexts). A combined context is needed, in
which to define the cooperation:

1 in-context: { city-maps, gps } do:
2 [draw: map (map-section) on: display (canvas)
3 [map center-on: gps-locator coordinates.
4 resend.
5 user coordinates: gps-locator coordinates.
6 draw: user avatar on: display]].

When the in-context:do: method receives the list of con-
texts { city-maps, gps }, it creates a new context object
that delegates both to city-maps and to gps. The new con-
text represents the combination of the two original contexts.
The code block containing the definition of the draw:on:
method will be evaluated in the newly combined context.
Therefore, this version of draw:on: will be specific to that
particular combination.

The coordinates message sent to gps-locator on
line 3 reads the current geographical location from the hard-
ware. Note that the coordinates method is implemented
within gps, yet the method will not invoke the versions of
latitude and longitude implemented in gps. The rea-
son is that prototype-based delegation does not suffer from
the “self problem” [14]. Regardless of the delegated meth-
ods that are invoked, the implicit context argument remains
bound to the value that was passed initially: the current con-
text root. The acme-gps context will be found before the

less specific gps context in the current context graph. There-
fore, ACME’s version of latitude and longitude will be
invoked, querying the hardware.

Once the map section has been relocated according to the
GPS coordinates just read, the resend message on line 4 in-
vokes the next most-specific draw:on: method, which im-
plements the default map-drawing behaviour. The last two
lines draw the graphical representation of the user at her
current location. The net effect is that, when the combined
{ city-maps, gps } context is in effect, the location of the
map will correspond to the current geographical location,
and the user will be represented graphically at the centre
and on top of streets, buildings, and other map elements.
CityMaps will thus have become navigational, as was in-
tended in the scenario.

4.2.1 Uniqueness of context combinations
At all times, there is at most one context object representing
the combination of a given set of component subcontexts.
For instance, the combination of { city-maps, gps } al-
ways results in the same combined context object that dele-
gates to city-maps and to gps. If it were not the case, that
is, if a new context object delegating to city-maps and to
gps were created each time it were needed, then the methods
that were specialised on the first instance of the context com-
bination would not be visible (applicable) on the second or
any new subsequent instances that would be created, despite
the fact that they conceptually represent the same combi-
nation. Conceptually there is only one { city-maps, gps }
combination, and computationally this must also be the case.
Furthermore, the order in which contexts are combined is ir-
relevant.

In summary, there is a one-to-one correspondence be-
tween sets of component subcontexts {c1, . . . , cn} and the
context object that represents the combination. On a practi-
cal level, this uniqueness property implies that created com-
bination objects need to be stored by the context manage-
ment system of Ambience, so that these same objects can be
retrieved when required.

4.2.2 Implicit combination of contexts
The invocations of in-context:do: that pass a literal list
such as { city-maps, gps } are not the only points at
which contexts are combined. Actually, this kind of explicit
combination —the only kind shown so far— is scarce. Most
context combinations are performed implicitly by the sys-
tem and on the fly, as environment changes are detected. To
this end, the current-context object delegates to the combina-
tion of all contexts that have been switched on dynamically.
Whenever a new context is switched on, it is combined with
the active contexts that make up the current combination.
For example, if the current combination is { sunlight,
city-maps, noisy } (e.g. the user is using the CityMaps
application on the street) and acme-gps is activated (e.g. the
user plugs in the GPS hardware module), then the system

will create a new combination { sunlight, city-maps,
noisy, acme-gps }, and such combination will be acti-
vated.

4.2.3 Delegation among combined contexts
Combined contexts that are more specific than other existing
combinations must delegate to those combinations. In the
previous example, the { sunlight, city-maps, noisy,
acme-gps } combination context should have a delegation
link to the { sunlight, city-maps, noisy } combina-
tion context, since the former corresponds to a superset of
the latter. The delegation link makes sense conceptually be-
cause supercombinations, as we call them, are more specific
(contain more information about the context) than subcom-
binations. The least-specific combinations are those of only
one subcontext. In these cases, a new object that represents
the combination is not created; rather, the sole subcontext
is taken as representation of the combination. For exam-
ple, the combination of the set { city-maps } is the context
city-maps itself. If two combinations are not comparable
(neither is more specific), then no delegation link is estab-
lished between them.

In determining the specificity of a combination (whether
it is a supercombination or a subcombination of another
one) it is not sufficient to examine its delegation links shal-
lowly. Suppose that the current combination is { sunlight,
city-maps, noisy, acme-gps }. That is, the CityMaps
application with the GPS module is being used on the
street. This combination should delegate to the combina-
tion of { city-maps, gps }; if it did not, the specialised
draw:on: method (see the beginning of Section 4.2) would
not take effect, and the user would not see any difference
with respect to the plain CityMaps behaviour. The dele-
gation link is thus needed. However, the set { sunlight,
city-maps, noisy, acme-gps } is not a superset of
{ city-maps, gps }, since the former lacks element gps.
However, by going one step further in the delegation hier-
archy, we observe that acme-gps delegates to the missing
gps. Thus, the first combination actually is more specific
than the second. Hence, a delegation link should be estab-
lished between them.

The description of our approach finishes by showing the
way concurrent context updates can be managed.

4.3 Concurrent context manipulation
Context switches take place dynamically, as changes are de-
tected in the surrounding environment. As a consequence,
context switches occur concurrently, at the same time ap-
plications run on the device. Not all points in execution are
safe to perform those context switches without affecting the
behavioural consistency of the system. Consider again the
draw:on: method specialised on the { city-maps, gps }
combination from Section 4.2. Suppose that at a given mo-
ment line 4 is being executed, that is, the default map ele-
ments are being drawn by the original version of draw:on:.

At this point the user decides to remove the GPS module
from the smartphone.10 The acme-gps context will thus be
switched off, and as a consequence, also the delegate gps
context will be deactivated. The smartphone is henceforth
unaware of GPS. When control returns from the resend
method and reaches line 5, the coordinates message will
not be understood, since the coordinates method is spe-
cialised on the gps context that is no longer active. The prob-
lem, stated generally, is that a context has been switched off
in the middle of the execution of a method that depends on
that context to work correctly, invalidating the remainder of
the computation of the method.

Brittle code that depends on unreliable resources such
as network connections and removable peripherals could
be surrounded by try/catch blocks. However, this solution
would result in tangled, less readable code. Our solution is
of another nature. Instead of passing directly from having
a context to the absence of the context, we go through a
series of intermediate contexts that allow us to gracefully
degrade the system. Each stage can have specialised meth-
ods that deal with the situation and exhibit context-adapted
behaviour. For our running example, we define one inter-
mediate degraded-acme-gps context. The evolution of the
context can be depicted as a chain of available services:

. . . → acme-gps→ degraded-acme-gps→ ∅

The disconnection of the GPS module will result in the de-
activation of the acme-gps context, and in the activation
of the degraded-acme-gps context. Note that the latter
must also comply with the GPS framework contract (re-
call Section 4.1), so that the ongoing execution of meth-
ods that depend on the GPS service is not disrupted when
degraded-acme-gps is switched on. We therefore have:

define: #degraded-acme-gps as: gps extension.

in-context: degraded-acme-gps do:
[(gps-locator) latitude
[return extrapolated latitude].

(gps-locator) longitude
[return extrapolated longitude]]

After a predefined timeout of (for instance) 10 seconds,
if the connection with the GPS service has not been re-
gained, the degraded-acme-gps context can be deacti-
vated. However, the previous methods are still insufficient
for tackling our problem. When the system is running in
degraded-GPS mode, the draw:on: method specialised
on the { city-maps, gps } combination is still applica-
ble, as explained next. The current combination contains
city-maps and degraded-acme-gps, and the latter del-
egates to gps, so together these constitute a supercombi-

10 In a similar scenario in which the GPS service were provided by a
network peer, removing the hardware module would be analogous to losing
the connection with the peer.

nation of { city-maps, gps }. In other words, there will
be a delegation link that leads to the { city-maps, gps }
combination. Since the draw:on: method is still applicable
in degraded mode, it can be that the decision of remov-
ing degraded-acme-gps from the context is made at the
wrong moment, precisely in the middle of the execution of
draw:on:. This will raise exactly the same problem de-
scribed previously for the deactivation of acme-gps. The
solution is to define a degraded version of draw:on: that
does not rely on GPS-specific functionality (i.e. that refrains
from invoking methods from gps):

in-context: { city-maps, degraded-gps } do:
[draw: map (map-section) on: display (canvas)

[resend.
draw: disconnection-icon on: display notification-area]].

This method first invokes the plain map-drawing behaviour
and then draws a notification icon telling the user about
the loss of GPS signal. We use a new degraded-gps
context instead of degraded-acme-gps, so that the de-
graded draw:on: method can be used with any vendor. The
degraded-gps context extends the GPS framework.

city-maps draw: map-section on: canvas
[draw map background.
 draw map streets.
 draw map labels]

draw: map-section on: canvas
[resend (invoke overridden behaviour).
 show disconnection icon]

degraded-gps

{ city-maps,
gps }

gps-locator latitude
[read latitude from hardware]

gps-locator longitude
[read longitude from hardware]

gps-locator latitude
[return extrapolated latitude]

gps-locator longitude
[return extrapolated longitude]

draw: map-section on: canvas
[read GPS latitude and longitude.
 resend (invoke overridden behaviour).
 draw user persona on display]

degraded-acme-gpsacme-gps

gps

{ city-maps,
degraded-gps }

Figure 2. Delegation relationships among context objects
(arrows), and pseudo-code of methods specialised on those
contexts (dotted lines).

A birds-eye view of the context configuration described
so far is given in Figure 2. The net effect is that, instead of

abruptly passing from the navigational CityMaps to the static
CityMaps application, which would be disconcerting for the
user, the degraded versions of the draw:on:, latitude and
longitude methods will maintain the behavioural coher-
ence of the application, ensuring a smooth context transi-
tion. After a given timeout, the degraded-acme-gps con-
text will be switched off. The notification icon will no longer
be shown and the map will be static again. The GPS service
will have been completely —and gracefully— removed from
the system.

5. Discussion
The computation model we have chosen is highly dynamic.
It features dynamic typing, dynamic inheritance and dy-
namic dispatch (multimethods). The combination of these
last two features and the implicit context parameter give
rise to subjective behaviour, which adds yet one more de-
gree of dynamicity: observed method behaviour depends on
the changing domain context. Our first experiments sug-
gest that such dynamic model —prototypes with subjective
multimethods— eases the development of ambient-oriented
applications.

We take full advantage of the particular qualities of the
model for ambient-oriented programming. The concreteness
and malleability of the context representation is due to the
use of prototypes. Known properties of prototype-based pro-
gramming [15] are used at their best: the objects in the con-
text graph have idiosyncratic behaviour that is adapted to
the particular context they represent (e.g. acme-gps); fur-
thermore, these context objects can delegate their behaviour
to more general, prototypical contexts (e.g. gps) without
incurring the well-known “self problem” as explained in
section 4.2; finally, dynamic inheritance is used constantly
to adjust system behaviour in correspondence to context
changes.

5.1 Meeting the requirements of applications
The model meets the requirements of ambient-oriented ap-
plications put forward in Section 2.2 as follows:

Shared vocabularies (Req. 1) Prototypical objects are a
natural choice for constituting shared vocabularies that al-
low applications to interoperate. Framework contexts such
as gps or noisy are particular cases of prototypical ob-
jects, that settle a common basis on which programmers can
describe specialised behaviour that is reusable in specific
(prototypical) situations.

Context representation (Req. 2b) The context represen-
tation we have chosen allows timely updates since these
amount to changing the value of delegation slots in the con-
text graph, which are very lightweight operations. Regarding
accuracy, we noted in Section 3.2.1 that the context can be
divided into finer-grained subcontexts to any desired level
of detail. Furthermore, we noted that the context graph is
not limited to holding behaviour-oriented information; rele-

vant context information that is not behavioural can also be
maintained in the form of plain data slots for each domain-
specific subcontext object.

Context effect (Req. 2c) The effect of the context represen-
tation on object behaviour could not be more direct and
timely: changes in the context graph reflect immediately on
the methods that are chosen for any subsequent message dis-
patch. Whereas the timeliness of context effects is guaran-
teed by our approach, the accuracy depends on the partic-
ular multiple-dispatch semantics of the language. As dis-
cussed next, the particular method linearisation or disam-
biguation technique (in asymmetric or symmetric dispatch
respectively) can affect directly the behavioural coherence
of the system.

5.2 Multiple dispatch and ambiguities
In a language with symmetric multiple-dispatch, the pro-
grammer must disambiguate methods explicitly. Symmet-
ric dispatch is seen as more intuitive and less error-prone,
since possible ambiguities are reported, rather than being
silently resolved in potentially unexpected ways by the run-
time system [3]. However, the high interaction level that
is characteristic of ambient computing makes it very diffi-
cult —if not impossible— to foresee the ambiguities that
could happen in practise, since methods can be exchanged in
unanticipated ways between devices. Furthermore, the sim-
ple modification of a delegation link —a very common ac-
tion in our approach— can render a set of methods ambigu-
ous, if the newly inherited methods have the same selector
than methods that were already visible with compatible spe-
cialisers. Clearly, compile-time detection of ambiguities as
implemented in Cecil [2] is impossible in ambient-oriented
languages. Even so, symmetric dispatch needs not be ruled
out: it rather needs to resort to domain-specific disambigua-
tors that are as transparent to the user as possible.

Asymmetric dispatch, on the other hand, never results in
ambiguities because the set of applicable methods is ordered
by some means, but it can lead to selection of behaviour
that is inappropriate for a given situation [16]. The decision
of which method is most appropriate for a given situation
cannot always be taken automatically. We still need to carry
out a full assessment of symmetric and asymmetric multiple-
dispatch techniques for mobile systems. Hence, the choice of
asymmetric dispatch in Ambience is not final. In Section 7
we suggest a line of future work that could provide us with
an answer.

6. Related work
Context-oriented programming and subjective multimethods
have been investigated to a relatively limited extent so far.
However, the emergence of a few new object-oriented lan-
guages that bear subjective-like features (at least three: Slate,
ContextL and Ambience) indicates that researchers are turn-
ing their attention to subjectivity again.

6.1 Slate
Ambience is inspired by the Slate programming language
and its underlying Prototypes with Multiple Dispatch Model
(PMD) [16]. The object system of Ambience uses PMD as
its kernel: classless objects, multimethods, and the roles that
bind them together. Slate adds many features on top of PMD
that Ambience does not incorporate such as optional typ-
ing and optional method arguments. Starting from the ba-
sic PMD model, Ambience has evolved in its own direction,
driven by the needs of ambient-oriented applications. The
main driving force has been the one described in this pa-
per, namely subjective multimethods for dynamic behaviour
adaptation. Even though Slate does include a subjective dis-
patch mechanism similar to ours, and the authors of Slate
are well aware of the potential of subjective dispatch, the
mechanism has been relegated to a second plane. Currently,
subjective dispatch is a disabled feature in the implementa-
tion of Slate, and we know of only one example of its appli-
cation [16]. Ambience incorporates subjective dispatch and
boosts it to a point that it becomes as fundamental to the
programming model as prototypes and multimethods.

6.2 ContextL
ContextL —an extension of CLOS [1]— not only shares the
similar goal of having behaviour depend on the context, but
also a similar approach. ContextL provides means to asso-
ciate partial class and method definitions with layers —the
analogues of contexts in Ambience— and to activate and
deactivate such layers in the control flow of a running pro-
gram [4]. In ContextL the representation of the currently ac-
tive layers is analogous to the current-combination object of
Ambience. This representation is passed implicitly among
methods, and serves as a parameter of an auxiliary multi-
method that provides the layering semantics of ContextL.
This basic mechanism bears close resemblance to subjec-
tive dispatch in Ambience. However, the layer argument has
the least precedence in the argument precedence order of the
auxiliary multimethod,11 whereas in Ambience the context
argument has priority over the other arguments.

ContextL offers a with-active-layers construct for
activation of layers with dynamic scope that is similar to
Ambience’s in-context:do:. An important difference is
that ContextL is enterely based on this construct for layer ac-
tivation —that is, activation and deactivation is tied up with
dynamic scoping. The consequence is that context changes
are necessarily visible in the program text as occurrences of
with-active-layers and with-inactive-layers. In
Ambience, context-switching code is seldom seen inside a
method implementation (calls to in-context:do: can be
used, but the idea is that application code should not be clut-
tered this way). The most frequent —practically exclusive—

11 This is the default behaviour, but CLOS provides means to change the
argument precedence order, and by extension so does ContextL.

use of explicit in-context:do: calls is to define context-
specific methods, as has been seen in the examples.

Next to the in-context:do: method for dynamic scop-
ing, there are two methods switch-context-on: and
switch-context-off: in Ambience that can perform ac-
tivation and deactivation of contexts irrespective of dynamic
scoping, in a more imperative fashion that contrasts with
the functional flavour of in-context:do:.12 Furthermore,
these methods can be invoked from another (monitoring)
thread, yet affect the thread that runs the base code. In
ContextL, on the contrary, one thread cannot change the
active layers of another thread.13 Whereas thread locality
ensures non-interference with other threads, such interfer-
ence is sometimes desired. For example, if the user is on
the street —where it is noisy and there is sunlight—
and then enters a building —where it is quiet and dark—
which thread should be notified of the context changes? In
ContextL, devices have as many current contexts (layer ac-
tivation representations) as running threads. Conceptually
however, the (real-world) context is only one. One solution
in ContextL would be to replicate the context changes among
the layer combinations of the different threads. Even then,
these changes would take effect at the top-level only. Meth-
ods that would be already running would not see the change
(which goes against the coherence requirements explained
in Section 2.2). In Ambience, there is only one context graph
that is shared by all threads, and context switches are per-
formed concurrently with the base running programs. Appli-
cation behaviour is adapted on the fly. However, concurrent
context switching, whereas needed, brings its own problems
as discussed in Section 4.3. Furthermore there might be sit-
uations in which it is desirable to affect the context of one
running application (thread), and let the others be oblivious
of the change. We believe that the approaches of ContextL
and of Ambience can be complementary, and that some com-
bined approach may be worth investigating.

7. Future work
The first assessment of Ambience presented in this paper
leads us to believe that the programming model is viable
and well suited to the task of ambient-oriented application
programming. However, much work remains.

An important area in which we need to carry further re-
search is the treatment of ambiguities in messages, risen
by multiple inheritance and multiple dispatch. As discussed
in section 5.2, automatic linearisation mechanisms such as
lexicographic orderings are not always desirable, and user-
defined mechanisms on the other hand require good engi-
neering insight. We are considering the adoption of con-

12 The methods switch-context-on: and switch-context-off: can
be regarded as performing destructive assignments in the context graph,
whereas in-context:do: follows a non-destructive, stack-like discipline.
13 This design decision is an inherited one: Common Lisp implementations
follow the practise of creating dynamic bindings on a per-thread basis.

text conditions and composition rules [7], which use a logic
reasoning engine to tackle the problems of interactions that
arise in the composition of context-dependent adaptations.

Although research on Ambience concentrates on be-
haviour adaptability and on context awareness, ambient-
oriented applications pose technological challenges at many
different levels, including the problems of dealing with con-
nection volatility, peer-to-peer communication and decen-
tralised coordination of activities. Issues like these have
been addressed by the AmbientTalk language [6], but not
yet by Ambience. While deciding on the feature set of Am-
bience, we have been mindful of AmbientTalk’s provisions
for ambient-oriented programming, in the hope that the inte-
gration of those provisions will not be hampered by incom-
patible features of Ambience. For example, we would like
to extend the model of Ambience with reified mailboxes [5]
(queues of incoming, outgoing, received and sent messages).
However, AmbientTalk and all other existing Actor-based
languages rely strongly on asymmetric, singly-dispatched
methods where there is a distinguished receiver object to
which message queues are associated. The assignment of
messages to the incoming and outgoing queues of objects
is no longer clear in a language with symmetric multimeth-
ods, since all message participants are on a same footing.
We believe that the freedom of choosing the participant that
will process a given message can be exploited to implement
(for example) load-balancing mechanisms, where methods
are executed by participants residing in the more resourceful
machines.

Our main short-term goal is to validate the approach more
thoroughly and gain further experience by writing and test-
ing additional ambient-oriented scenarios. At the same time,
we will be able to distill a first programming methodology
that will guide programmers in designing the structure and
behaviour of contexts, and more generally, in programming
with dynamicity and behaviour variability in mind.

8. Conclusion
The advent of mobile technology has raised expectations
on the kinds of applications that can be built for the new
platforms. The new applications are expected to be smart
with respect to the changing environment that surrounds
them and to the user needs. It follows that the behaviour of
this kind of applications should be adaptable in a context-
aware fashion. A first contribution of this paper is to present
a highly dynamic object-based computation model —based
on prototypes with subjective multimethods— that helps to
achieve such dynamic context-aware adaptability of object
behaviour. The solution is validated by implementing a real–
life-like scenario in Ambience, a new language we have
developed for this purpose.

The second contribution of this paper is to propose a con-
crete, malleable representation of context that can be up-
dated efficiently, as context changes are detected in the en-

vironment. Furthermore, the changes in the representation
have an immediate effect on object behaviour. As no inher-
ent latencies are introduced, environmental changes reflect
timely on observed application behaviour. Also, the repre-
sentation allows the modularisation of context in domain-
specific subcontexts, to any desired level of granularity. Be-
haviour can thus be tweaked and adapted accurately with re-
spect to the application domain.

We have proposed a context combination mechanism that
helps aggregating all the domain-specific properties of the
changing environment on the fly, as applications execute.
In coming up with this mechanism we have found that our
solution permits a form of graceful service degradation, by
supporting smooth progressions of intermediate contexts,
rather than have radical or abrupt context changes take place.

Further research is needed to devise a way to deal with
ambiguities, when more than one method is applicable for
a given message in the current context. These ambiguities
are not necessarily programming errors: it can be that more
than one behaviour is correct for a given situation, even
though some behaviours might be more adequate than oth-
ers. Furthermore, we need to integrate language abstractions
for concurrency and distribution that have been proposed by
other approaches, in such a way that they are compatible
with the characteristics of our approach, particularly with
symmetric multimethods.

9. Acknowledgments
This research has been supported by the Fund for Research
Training in Industry and Agriculture (FRIA, Belgium) and
by the Interuniversity Attraction Poles Programme of the
Belgian Science Policy (Belgian State).

References
[1] D. Bobrow, L. DeMichiel, R. Gabriel, S. Keene, G. Kicsales,

and D. Moon. Common lisp object system specification. Lisp
and Symbolic Computation, 1(3/4):245–394, 1989.

[2] C. Chambers. Object-oriented multi-methods in cecil. In
O. L. Madsen, editor, Proceedings of the 6th European
Conference on Object-Oriented Programming (ECOOP),
volume 615, pages 33–56. Springer-Verlag, 1992.

[3] C. Clifton, T. Millstein, G. T. Leavens, and C. Chambers.
MultiJava: Design rationale, compiler implementation, and
applications. Transactions on Programming Languages and
Systems (TOPLAS), 28(3), May 2006.

[4] P. Costanza and R. Hirschfeld. Language constructs for
context-oriented programming: an overview of contextl. In
Dynamic Languages Symposium (DLS), pages 1–10. ACM
Press, Oct. 2005. Co-located with OOPSLA’05.

[5] J. Dedecker and W. V. Belle. Actors for mobile ad-hoc
networks. In L. Yang, M. Guo, J. Gao, and N. Jha, editors,
Embedded and Ubiquitous Computing, volume LNCS 3207
of Lecture Notes in Computer Science, pages 482–494.
Springer-Verlag, Aug. 2004.

[6] J. Dedecker, T. V. Cutsem, S. Mostinckx, T. D’Hondt,
and W. D. Meuter. Ambient-oriented programming. In
Companion to the annual ACM SIGPLAN conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 31–40. ACM Press, 2005.

[7] B. Desmet, J. Vallejos, P. Costanza, and R. Hirschfeld. Lay-
ered design approach for context-aware systems. In Proceed-
ings of 1st International Workshop on Variability Modelling
of Software-intensive Systems (VaMoS 2007), pages 157–165.
Technical Report at Irish Software Engineering Research
Centre (Lero), Jan. 2007.

[8] S. Dobson and P. Nixon. More principled design of pervasive
computing systems. In Engineering for Human-Computer
Interaction and Design, volume 3425 of Lecture Notes in
Computer Science, pages 292–305. Springer-Verlag, 2005.

[9] B. Foote, R. E. Johnson, and J. Noble. Efficient multimethods
in a single dispatch language. In A. P. Black, editor,
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), LNCS 3586, pages 337–361.
Springer-Verlag, 2005.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Professional Computing Series. Addison-Wesley, 1995.

[11] A. Goldberg and D. Robson. Smalltalk-80: The Language.
Addison-Wesley Longman Publishing Co., Inc., 1989.

[12] W. H. Harrison and H. Ossher. Subject-oriented programming
(a critique of pure objects). In Proceedings of the ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), pages 411–428.
ACM Press, 1993.

[13] ISTAG. Ambient intelligence: from vision to reality.
Technical report, Information Society Technologies Advisory
Group of the European Commission, 2003. Available at
http://www.cordis.lu/ist/istag-reports.htm.

[14] H. Lieberman. Using prototypical objects to implement
shared behavior in object-oriented systems. In N. Meyrowitz,
editor, Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA), volume 21, pages 214–223. ACM Press,
1986.

[15] J. Noble, A. Taivalsaari, and I. Moore, editors. Prototype-
Based Programming: Concepts, Languages and Applications.
Springer-Verlag, 1999.

[16] L. Salzman and J. Aldrich. Prototypes with multiple dispatch:
An expressive and dynamic object model. In A. P. Black,
editor, Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), LNCS 3586, pages 312–
336. Springer-Verlag, 2005.

[17] R. B. Smith and D. Ungar. A simple and unifying approach
to subjective objects. Theory and Practice of Object Systems
(TAPOS), 2(3):161–178, 1996.

[18] D. Ungar and R. B. Smith. Self: The power of simplicity. In
Proceedings of the ACM Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA),
pages 227–242. ACM Press, 1987.

	Introduction
	Ambient-oriented applications
	Scenario: smartphone and GPS integration
	Key requirements of ambient applications

	A subjective approach to context adaptation
	Prototypes with Multiple Dispatch
	Subjects for context-aware adaptation
	Context structuring
	Influence of context on object behaviour

	Dynamic context switching

	Context management
	Framework contexts
	Context combinations
	Uniqueness of context combinations
	Implicit combination of contexts
	Delegation among combined contexts

	Concurrent context manipulation

	Discussion
	Meeting the requirements of applications
	Multiple dispatch and ambiguities

	Related work
	Slate
	ContextL

	Future work
	Conclusion
	Acknowledgments

