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Abstract. In contemporary aspect-oriented languages, pointcuts are
usually specified directly in terms of the structure of the source code. The
definition of such low-level pointcuts requires aspect developers to have
a profound understanding of the entire application’s implementation and
often leads to complex, fragile, and hard to maintain pointcut definitions.
To resolve these issues, we present an aspect-oriented programming sys-
tem that features a logic-based pointcut language that is open such that
it can be extended with application-specific pointcut predicates. These
predicates define an application-specific model that serves as a contract
that base-program developers provide and aspect developers can depend
upon. As a result, pointcuts can be specified in terms of this more high-
level model of the application which confines all intricate implementation
details that are otherwise exposed in the pointcut definitions themselves.

1 Introduction

Aspect-oriented Software Development (AOSD) is a recent, yet established de-
velopment paradigm that enhances existing development paradigms with ad-
vanced encapsulation and modularisation capabilities [1, 2]. In particular, aspect-
oriented programming languages provide a new kind of abstraction, called aspect,
that allows a developer to modularise the implementation of crosscutting con-
cerns such as synchronisation, transaction management, exception handling, etc.
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Such concerns are traditionally spread across various modules in the implemen-
tation, causing tangled and scattered code [3]. The improved modularity and
separation of concerns [4], that can be achieved using aspects, intends not only
to aid initial development, but also to allow developers to better manage software
complexity, evolution and reuse.

One of the most essential characteristics of an aspect-oriented programming
language is that aspects are not explicitly invoked but instead, are implicitly
invoked [5]. This has also been referred to as the ‘obliviousness’ property of
aspect orientation [6]. It means that the base program (i.e., the program without
the aspects) does not explicitly invoke the aspects because the aspects themselves
specify when and where they need to be invoked by means of a pointcut definition.
A pointcut essentially specifies a set of join points, which are specific points in
the base program where the aspect will be invoked implicitly. Such a pointcut
definition typically relies on structural and behavioural properties of the base
program to express the intended join points. For example, if an aspect must be
triggered at the instantiation of each new object of a particular class, its pointcut
must capture those join points whose properties correspond with the execution
of the constructor method. As a result, each time the constructor method is
executed (i.e. an instance is created), the aspect is invoked. In most aspect
languages, this corresponds to the execution of an advice, which is a sequence of
instructions executed before, after or around the execution of the join point.

Unfortunately, in many cases, defining and maintaining an appropriate point-
cut is a rather complex activity. First of all, an aspect developer must carefully
analyse and understand the structure of the entire application and the properties
shared by all intended join points in particular. Some of these properties can be
directly tied to abstractions that are available in the programming language but
other properties are based on programming conventions such as naming schemes.
‘Object instantiation’ join points, for example, can be identified as the execution
of constructor methods in languages such as Java. Accessing methods, however,
can be identified only if the developers adhere to a particular naming scheme,
such as through put- and get- prefixes in the method names. In contrast, a
language such as C# again facilitates the identification of such accessor method
join points because they are part of the language structure through the C#
‘properties’ language feature. In essence, we can say that the more structure is
available in the implementation, the more properties are available for the def-
inition of pointcuts, effectively facilitating their definition. However, structure
that originates from programming conventions rather than language structure
is usually not explicitly tied to a property that is available for use in a pointcut
definition. This is especially problematic in languages with very few structural
elements such as Smalltalk. In such languages, application development typically
relies heavily on the use of programming conventions for the implementation of
particular concepts such as accessors, constructors and many more application-
specific concepts. As a result, aspect developers are forced to explicitly encode
these conventions in pointcut expressions, often resulting in complex, fragile, and
hard to maintain pointcut expressions.
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The aspect-oriented programming language that is presented in this paper
features an open, logic-based pointcut mechanism that allows to tie structural
implementation conventions to explicit properties available for use in pointcut
definitions. Our approach builds upon previous work on logic-based pointcut
languages where we have described how the essential language features of a
logic language render it into an adequate pointcut definition language [7]. In
this paper, we further exploit the full power of the logic programming language
for the definition of application-specific properties. In particular, we present an
integration of the AspectS [8] and CARMA [9] aspect languages for Smalltalk.
The result is an aspect-oriented programming language in which pointcuts can
be defined in terms of an application-specific model that is asserted over the
program. The application-specific model captures the structural conventions that
are adhered to by the developers of the program and reifies them as explicit
properties available for use in pointcut expressions. The model as well as the
pointcuts are implemented using logic metaprograms in SOUL [10].

In the following section, we present AspectSOUL, the integration of the As-
pectS and CARMA aspect languages. Next, in section 3, we implement a number
of pointcuts that rely on typical structural conventions that are adhered to by ap-
plication developers in a Smalltalk environment. We explain how such pointcuts
are complex, fragile, and hard to maintain and, in section 4, we describe how our
AspectSOUL allows to tackle these issues through the definition of application-
specific pointcuts, expressed in terms of an application-specific model. Section 5
applies the approach to aspects that operate on the drag and drop infrastructure
of the UI framework and the refactoring browser in the Smalltalk environment.
We summarize related and future work in section 6 before concluding the paper.

2 AspectSOUL

AspectSOUL is an integration of the CARMA pointcut language [9] and As-
pectS [8], a Smalltalk extension for aspect-oriented programming. Unlike most
other approaches to aspect-oriented programming, AspectS does not extend the
Smalltalk programming language with new language constructs for writing down
aspects and advice expressions. Instead, AspectS is a framework approach to
AOP. Pointcuts are written as Smalltalk expressions that return a collection of
joinpoint descriptors. CARMA on the other hand, is a dedicated pointcut lan-
guage based on logic programming. Naturally, such a dedicated query language
offers advantages for writing pointcuts, as pointcuts are essentially queries over
a joinpoint database. The integration of this logic-based pointcut language with
AspectS further enforces the framework nature of AspectS by providing a full-
fledged query-based pointcut language that can be extended with application-
specific pointcut predicates. In essence, we combine the advantages of an extensi-
ble framework for defining advice expressions with the advantages of a dedicated
and extensible pointcut language. In the remainder of this section, we introduce
AspectS, CARMA, and their integration called AspectSOUL. In subsequent sec-
tions, we focus on how the open, logic-based pointcut language provides devel-
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opers with an adequate means to handle complex and hard-to-maintain pointcut
expressions.

2.1 AspectS

In the AspectS framework, aspects are implemented as subclasses of the class
AsAspect. Its advices can be implemented as methods whose name begins with
advice and which return an instance of AsAdvice. Two of the subclasses of
AsAdvice can be used to implement either an around advice or a before/after
advice. An instance can be created by calling a method which takes as its ar-
guments qualifiers, a block implementing the pointcut, and blocks to implement
the before, after or around effects of the advice.

An example advice method is shown in Figure 1. It specifies that any invo-
cation of an eventDoubleClick: method implemented by WindowSensor or any
of its subclasses should be logged. The effect of the advice is implemented in the
block passed to the beforeBlock: parameter. When one of the methods specified
by the pointcut needs to be executed, this block is executed right before the ex-
ecution of the method’s body. The block is passed a few arguments: the receiver
object in which the method is executed, the arguments passed to the method,
the aspect and the client. In this example, the block simply logs some of its
arguments to the transcript. Note that it calls a method on self, aspect classes
can implement regular methods besides advice methods as well. The pointcut is
implemented by the block passed to the pointcut: argument. It returns a col-
lection of AsJoinpointDescriptor instances. This collection is computed using
the Smalltalk meta-object protocol and collection enumeration messages: the
collection of WindowSensor and all of its subclasses is filtered to only those that
implement a method named eventDoubleClick:, an AsJoinpointDescriptor
is then collected for each of these.

adviceEventDoubleClick

^ AsBeforeAfterAdvice
qualifier: (AsAdviceQualifier attributes: #(receiverInstanceSpecific))
pointcut: [

WindowSensor withAllSubclasses
select: [:each |

each includesSelector: #eventDoubleClick:]
thenCollect: [:each |

AsJoinPointDescriptor targetClass: each targetSelector: #eventDoubleClick:]]
beforeBlock: [:receiver :arguments :aspect :client |

self showHeader: ’>>> EventDoubleClick >>>’
receiver: receiver
event: arguments first]

Fig. 1. Example advice definition in AspectS.

Advice qualifiers specify dynamic conditions that should hold if the advice
is to be executed. These conditions are implemented as activation blocks: blocks
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that take as arguments an aspect object and a stack frame. The framework de-
fines a number of activation blocks, that fall in two categories: checks done on the
top of the stack, or on lower levels of the stack. The former are used for example
to restrict advice execution to sender/receiver-specific activation: an advice on a
method is only executed if the method is executed in a specific receiver object,
or was invoked by a specific sender object, or is associated with a specific thread
of control. The latter are used for control-flow related restrictions, such as only
executing an advice on a method if the same method is not currently on the
stack. The activation blocks have names, which are specified in the attributes of
an AsAdviceQualifier. In the example advice, one activator block is specified:
receiverInstanceSpecific.

Aspects can be woven into the Smalltalk image by sending an explicit install
message to an aspect instance. The install method collects all advice objects
in the class and executes their pointcut blocks to get the collection of joinpoint
descriptors. The methods designated by these descriptors are then decorated by
wrappers [11], one for each advice affecting this particular method. The wrap-
pers check the activation blocks specified in their advice, passing them the aspect
and the top stack frame (accessed using the thisContext reflective feature of
Smalltalk [12]). If an activation condition does not hold, the wrapper simply
executes the next wrapper (if any), or the original method. If all activation
conditions hold, the wrapper executes the advice’s around, before, and/or after
block, and then proceeds to the next wrapper (if any) in the proper order, or
the original method.

2.2 CARMA

CARMA is a pointcut language based on logic meta programming for reasoning
about dynamic joinpoints. Unlike pointcuts in AspectS, CARMA pointcuts do
not express conditions on methods, its joinpoints are representations of dynamic
events in the execution of a Smalltalk program. CARMA defines a number of
logic predicates for expressing conditions on these joinpoints, and pointcuts are
written as logic queries using these predicates. It is possible to express conditions
on dynamic values associated with the joinpoints. Furthermore, logic predicates
are provided for querying the static structure of the Smalltalk program. These
predicates are taken from the LiCoR library of logic predicates for logic meta
programming [13]. The underlying language of this library and CARMA is the
SOUL logic language [13, 10].

The SOUL logic language is akin to Prolog [14], but has a few differences.
Some of these are just syntactical, such as that variables are notated with ques-
tion marks rather than capital letters, the “:-” symbol is written as if, and lists
are written between angular (<>) instead of square brackets ([]). More impor-
tantly, SOUL is in linguistic symbiosis with the underlying Smalltalk language,
allowing Smalltalk objects to be bound to logic variables and the execution of
Smalltalk expressions as part of the logic program [15]. The symbiosis mecha-
nism is what allows CARMA to express conditions on dynamic values associated
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with joinpoints which are actual Smalltalk objects, such as the arguments of a
message.

The advantage of building a pointcut language on the logic programming
paradigm lies in the declarative nature of this paradigm. No explicit control
structures for looping over a set of classes or methods are necessary in point-
cuts, as this is hidden in the logic language [16]. A pointcut simply states the
conditions that a joinpoint should meet in order to activate an advice, without
specifying how those joinpoints are computed. This makes declarative pointcuts,
given some basic knowledge of logic programming of course, easier to read. A
logic language also provides some advanced features such as unification that
make it easier to write advanced pointcuts. A full discussion is outside the scope
of this paper, but a more comprehensive analysis was given in earlier work [9]. In
the next sections, we will however show how some of these features – particularly
the ability to write multiple rules for the same predicate – are useful for writing
model-based pointcuts.

reification
class, methodInClass, 
superclassOf, 
parseTreeOfMethod

basic reasoning
classWithInstvarOfType, 
abstractMethod

design
visitor, factory,
badSmell

joinpoint type-based 
reception, send, 
reference, 
blockExecution

lexical extent
within, 
shadowOf

SOUL

CARMA

LiCoR

Fig. 2. Organization of, and example predicates in LiCoR and CARMA.

The predicates in CARMA and LiCoR are organized into categories, as shown
in Figure 2. The LiCoR predicates are organized hierarchically, with higher pred-
icates defined in terms of the lower ones. The predicates in the “reification” cat-
egory provide the fundamental access to the structure of a Smalltalk program:
these predicates can be used to query the classes and methods in the program,
and the fundamental relations between them such as which class is a superclass
of which other class. The “basic reasoning” predicates define predicates that can
be used to query more complex relations: which classes indirectly inherit from
another class, which methods are abstract, which types an instance variable can
possibly have etc. The “design” category contains predicates about design infor-
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mation in programs: there are for example predicates encoding design patterns
[17] and refactoring “bad smells”[18].

The CARMA predicates access the dynamic structure of a Smalltalk pro-
gram. There are two categories of predicates in CARMA, neither is defined in
terms of each other, nor in terms of the LiCoR predicates. Nevertheless, the pur-
pose of the “lexical extent” predicates is to link the dynamic and static structure,
so that reasoning about both can be mixed in a pointcut. The within predicate
for example can be used to express that a joinpoint is the result of executing
an expression in a certain method. The “type-based” joinpoint predicates are
the basic predicates of CARMA, they express conditions on certain types of
joinpoints and basic data associated with those. An example is the reception
predicate which is used to express that a joinpoint should be of the type “mes-
sage reception”, which means it represents the execution of a message to an
object. Besides the joinpoint, the predicate has parameters for the basic associ-
ated data: the selector of the message and its arguments. There are also a few
other predicates in CARMA (not shown in the figure), such as the inObject
predicate which links a joinpoint to the object in which it is executed. In the
case of a reception joinpoint, this is the receiver of the message.

A pointcut in CARMA is written as a logic query that results in joinpoints.
By convention, the variable to which these are bound is called “?jp”. The join-
point representations should only be manipulated through the predicates pro-
vided by CARMA. An example pointcut is given in the next section.

2.3 CARMA Pointcuts in AspectS

AspectSOUL, the integration of CARMA with AspectS, is realized by subclass-
ing the advice classes of AspectS so that a CARMA pointcut can be specified
instead of a Smalltalk expression. The signature of the instance creation mes-
sage for these subclasses is similar to the original. It takes as arguments a string
with a CARMA pointcut, qualifiers and an around or before and/or after block.
The message does a mapping to the instance creation message of the super-
class. This is not a direct 1-on-1 mapping however, because CARMA pointcuts
are about dynamic joinpoints, in contrast with the more static joinpoints of
AspectS. Also, because AspectS does not support aspects that intercept block
execution nor variable accesses or assignments, these features of CARMA are
not adopted in AspectSOUL.

An example of an AspectS advice with a CARMA pointcut is shown in
Figure 3. This is an around variant of the first example advice, with a pointcut
that has the same effect. The first condition in the pointcut specifies that ?jp
must be a message reception joinpoint, where the selector of the message is
eventDoubleClick:. The arguments of the message are bound to the variable
?args. However, ?args is not used any further in the pointcut which expresses
that no conditions are put on the argument list. The second condition expresses
that the joinpoint must occur lexically in a method with name ?selector in the
class ?class. For a message reception joinpoint, this is effectively the method
that is executed to handle the message. The final condition expresses that the
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adviceEventDoubleClick

^ AsCARMAAroundAdvice
qualifier: (AsAdviceQualifier attributes: #())
pointcutQuery: ’reception(?jp, #eventDoubleClick:, ?args),

within(?jp, ?class, ?selector),
classInHierarchyOf(?class, [WindowSensor])’

aroundBlock: [:receiver :arguments :aspect :client :clientMethod |
self showHeader: ’>>> EventDoubleClick >>>’

receiver: receiver
event: arguments first.

clientMethod valueWithReceiver: receiver arguments: arguments]

Fig. 3. Example AspectS advice definition with a CARMA pointcut.

reception(?jp, #eventDoubleClick:, <?event>),
objectTestHolds(?event, #isYellow)

Fig. 4. A CARMA pointcut with a condition on a dynamic value.

class ?class should be in the hierarchy of the class WindowSensor. The block
has the same effect as in the first example, except that here it explicitly calls
the next wrapper (if any) or original method.

Figure 4 gives an example of a CARMA pointcut which does express condi-
tions on the arguments of a message reception. The first condition expresses that
?jp must be a message reception joinpoint of the message eventDoubleClick:,
where the argument list unifies with the list <?event>. Thus the argument list
has to have one argument, which is bound to the variable ?event. The value
of ?event is the actual Smalltalk event object that is sent as the argument
of eventDoubleClick. The second condition uses the objectTestHolds predi-
cate, which uses the symbiosis mechanism of SOUL to express that the object
in ?event must respond true to the message isYellow. Thus, this pointcut
captures joinpoints when a message about a double click event of the yellow
mouse button is sent to some object. Expressing the same in AspectS can only
be done by defining an appropriate qualifier, or by including the dynamic condi-
tion in the around block of the advice. The CARMA approach means that what
conceptually should go into a pointcut can be better separated from the effect
of the advice: that we only want to intercept double click events of the yellow
mouse button is part of the “when” of the advice, not of the “what effect” it
has. All of the qualifiers of AspectS can be expressed in CARMA, except for the
control-flow qualifiers because CARMA does not currently support a construct
similar to the cflow pointcut of AspectJ [19].

Two-phased weaving: The mapping done in the AspectSOUL advice sub-
classes to the original advice classes of AspectS involves the two-phase weav-
ing model of CARMA. Because CARMA allows dynamic conditions and it is
a Turing-complete language, it requires some advanced techniques to optimize
weaving [9]. The mapping uses abstract interpretation [20] of the pointcuts
to determine the methods which may lead to joinpoints matching the point-
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cut. For the pointcut of Figure 4, it determines that only executions of meth-
ods named eventDoubleClick: may match the pointcut. For these methods,
AsJoinpointDescriptors are generated and passed to the advice superclass.
The effect block passed to the superclass is wrapped so that it at run-time exe-
cutes the pointcut to check if the joinpoint actually matches it, only then does
it execute the effect of the advice. As such, the mapping splits the static and
dynamic parts of the pointcut as one would normally do in AspectS by spec-
ifying dynamic conditions as part of the advice’s effect block. Currently, the
pointcut is fully re-executed at run-time, including the static conditions, except
if it doesn’t include any dynamic conditions. The use of more advanced partial
evaluation [20] to further optimize weaving has been demonstrated [21], but a
full discussion of two-phase weaving and the use of partial evaluation is beyond
the scope of this paper.

In the following sections, we discuss how pointcut definitions easily become
rather complex to implement and maintain, and how AspectSOUL provides de-
velopers with a means to manage this complexity.

3 Pointcuts based on Structural Conventions

In the development of an application, developers often agree on particular pro-
gramming conventions, design rules and patterns to structure their implementa-
tion. The intention of these structural implementation conventions is to render
particular concepts more explicit in the implementation. For example, if all de-
velopers adhere to the same naming convention for all ‘accessor’ methods, we
can more easily distinguish such accessors from any other method. More impor-
tantly, the implementation structure that is introduced by these conventions is
also often exploited in pointcut definitions. In this section, we demonstrate this
principle by studying the structural convention used to implement accessor and
mutator methods, a simple but often-used pattern in Smalltalk. Next, we take
a look at a couple of pointcuts which rely on these conventions to capture the
execution of accessor methods. We demonstrate how, by implicitly capturing
the notion of an accessor method using the coding conventions, the pointcut
becomes more complex and easily suffers from the fragile pointcut problem.

3.1 Accessors and Mutators

In Smalltalk, clients are not allowed to directly access the instance variables
of an object, and therefore they need to access them by means of dedicated
methods. For each instance variable, a developer specifies an accessor method
to retrieve the value of the variable, and a mutator method to change its value.
Although these are regular Smalltalk methods, accessors and mutators are easily
recognized since they are almost always implemented in an idiomatic way.

Most accessor and mutator methods are implemented according to the fol-
lowing structural convention:

– Both methods are classified in the accessing protocol;
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– The selector of the accessor method corresponds with the name of the in-
stance variable;

– The selector of the mutator method also corresponds with the name of the
variable, however, this method takes one input parameter, namely the value
to be assigned to the variable.

Moreover, the body of the accessor and mutator methods also follows a pro-
totypical implementation. For example, suppose we have a Person class with
an instance variable named name. The accessor and mutator methods for this
variable are:

Person>>name
^name

Person>>name: anObject
name := anObject

Since the join point models of current-day aspect languages do not explicitly
reify these accessor and mutator methods as a separate kind of join points,
aspect developers must exploit the structural conventions described above in
order to capture the concept in a pointcut. For example, to capture all calls to
accessor methods, the aspect developer can implement the following pointcut in
AspectSOUL:

1 class(?class),
2 methodWithNameInClass(?method,?accessor,?class),
3 instanceVariableInClassChain(?accessor,?class),
4 methodInProtocol(?method, accessing),
5 reception(?joinpoint,?accessor,?args),
6 withinClass(?joinpoint,?class)

The above pointcut makes the implicit assumption that accessor methods are rig-
orously implemented using the naming scheme in which the name of the method
corresponds with the name of the instance variable. Lines 1 to 4 of the pointcut
reflect the naming convention on which the pointcut is based. These lines se-
lect all messages corresponding to the name of an instance variable, and whose
method is also classified in the accessing protocol. Lines 5 and 6 will intercept
all messages which correspond to the naming convention.

As long as the developers of the base code adhere to the naming convention
on which the pointcut relies, it will correctly capture all accessors. However,
if a developer of the base program deviates from the naming convention, by
for instance renaming the instance variable without also renaming the selector
of the accessor, the pointcut no longer captures the correct set of join points.
Instead of relying on naming conventions, a pointcut developer can also exploit
the stereotypical implementation of accessor methods. This would result in the
following pointcut:

1 class(?class),
2 methodWithNameInClass(?method,?selector,?class),
3 instanceVariableInClassChain(?var,?class),
4 returnStatement(?method,variable(?var)),
5 reception(?joinpoint,?selector,?args),
6 withinClass(?joinpoint,?class)
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Lines 1 – 4 of the pointcut above select all methods which contain a return state-
ment that directly returns the value of an instance variable. As with the previ-
ous pointcut, lines 5 and 6 capture all occurrences of these methods. While this
pointcut is not fragile with respect to changes in the names of instance variables,
it still assumes that the base code developer rigorously followed the implemen-
tation idiom. However, often there exist slight variations on the programming
idioms on which a pointcut is based. Consider for instance the following accessor
method:
Person>>friends

^ friends isNil ifTrue:[friends := OrderedCollection new] ifFalse:[friends].

This method presents a variation on the often-used programming idiom for ac-
cessor methods. Instead of directly returning the value of the instance variable,
the method checks wether the variable has already been initialized, and if not,
will set its value to an empty OrderedCollection. It is clear that this lazy-
initialised version of accessor methods will not be captured by the pointcut
which assumes that the accessor is implemented using a return statement that
directly returns the value of the variable. In other words, the pattern that is
expressed in the previous pointcut does not apply to this method, although it is
an accessor method.

3.2 Complexity and Fragility

Although the example pointcuts described above rely on a rather simple struc-
tural implementation convention, their definition and maintenance is already a
rather complex activity. First of all, an aspect developer needs to know and un-
derstand the intricate implementation details of the structural convention and
implement a pointcut expression for it. The lazy-initialized accessor methods in
the example above illustrate that there often exist a number of variations to
the programming conventions used to implement a certain concept. Therefore,
any pointcut that needs to capture the execution of an accessor method needs
to capture all possible variations, which easily leads to complex and lengthy
pointcut expressions. This is especially the case because the part of the pointcut
which reasons about the join points and the part which expresses the structural
convention are not clearly separated. In our example above, the first four lines
of both pointcuts express the coding convention, while the last two lines per-
form the actual selection of join points which are associated with the accessor
methods. It is not instantly clear which part of the pointcut reflects the cod-
ing convention, further complicating the reuse and maintenance of the pointcut
expression.

Finally, the aspect developer must also carefully analyse the changes and ad-
ditions to the base program in subsequent evolutions, which are possibly made
by other developers. In essence, the definition of a pointcut that explicitly relies
on structural conventions to capture an application-specific concept easily suf-
fers from the fragile pointcut problem [22]. Due to the tight coupling between
the pointcut and the implementation, seemingly safe modifications to the imple-
mentation may result in the pointcut no longer capturing the correct set of join
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points. For example, if the base program developers do not adhere to the coding
conventions, or change the convention by for instance using the prefixes put-
and get- to indicate a mutator or an accessor method respectively, the pointcut
no longer captures the correct set of join points.

4 Application-specific Pointcuts and Models

We alleviate the problems associated with low-level pointcut definitions through
the definition of application-specific pointcuts that are expressed in terms of an
application-specific model. Such an application-specific model is implemented as
an extension to the pointcut mechanism and it identifies high-level, application-
specific properties in the implementation and makes them available for use
in pointcuts. Aspect developers can make use of these properties to define
application-specific pointcuts, i.e. pointcuts that are no longer defined in terms
of the low-level implementation details but, instead, are defined in terms of
application-specific properties defined by the model. As a result, the intricate
low-level details in the implementation remain confined to the implementation
of the application-specific model, which is also the responsibility of the base
program developers. The application-specific model effectively becomes an addi-
tional abstraction layer that is imposed over the implementation and it acts as
a contract between the base program developers and the aspect developers.

Application-specific pointcut 
(defined in terms of 

application-specific model)

Source code based 
pointcut 

(defined directly in terms 
of source code)

Operations

Operations

Attributes

Attributes

Class 

Name

Operations

Operations

Attributes

Attributes

Class 

Name

Operations

Operations

Attributes

Attributes

Class 

Name

Operations

Operations

Attributes

Attributes

Class 

Name

Operations

Operations

Attributes

Attributes

Class 

Name

Operations

Operations

Attributes

Attributes

Class 

Name

*

1

*

1
1

Source code

Application-specific model

Base program developer Aspect developer

Legend

specified in terms of

            application-specific property

Fig. 5. Application-specific pointcuts are defined in terms of an application-specific
model.
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Figure 5 illustrates how application-specific pointcuts, implemented by the
aspect developers, depend on the definition of the application-specific model that
is certified by the base program developers. The application-specific pointcuts
are defined in terms of the application-specific model which, in turn, is defined in
terms of the implementation. This decoupling of the pointcuts from the intricate
details of the implementation allows that base program developers define and
maintain the application-specific model. In other words, the tight coupling to the
implementation that is present in the source-code based pointcuts is effectively
transferred to a more appropriate location, i.e. the definition of the application-
specific model.

Both the application-specific pointcuts and the application-specific model
are implemented using SOUL logic metaprograms. In essence, the application-
specific model defines a set of logic predicates that reify application-specific
properties of the implementation, based on the conventions that are adhered
to by the developers. Because the application-specific model is built as an ex-
tension to the pointcut mechanism, aspect developers can straightforwardly use
these predicates in the definition of application-specific pointcuts to access the
application-specific properties. Furthermore, the essential features of a logic lan-
guage also facilitate the use and extension of the application-specific model.

In the following subsection, we define application-specific models for the ac-
cessors convention that was described in the previous section. Subsequently, we
use these models to redefine the pointcuts of the previous section into application-
specific pointcuts.

4.1 Application-specific Model

An application-specific model defines a set of logic predicates that are avail-
able for use in an (application-specific) pointcut. These logic predicates are im-
plemented using SOUL logic metaprograms. We illustrate the definition of an
application-specific model by means of the accessors and mutators example.

The model that defines the accessor and mutator method properties consists
of two predicates:
accessor(?class,?method,?var)
mutator(?class,?method,?var)

These predicates declare the accessor and mutator properties over methods
named ?method defined in ?class. Furthermore, they also extract the name
of the variable ?var that is accessed or modified. The implementation of these
predicates captures the coding convention that is followed by the developer of
the application. For example, the accessor predicate is implemented as follows:
accessor(?class,?varName,?varName) if

class(?class),
instanceVariableInClassChain(?varName,?class),
methodWithNameInClass(?method,?varName,?class),
methodInProtocol(?method, accessing),
accessorForm(?method,?varName).

accessorForm(?method,?var) if
returnStatement(?method,variable(?var))
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The logic program above consists of two rules that each implement a pred-
icate: accessor and accessorForm. The first predicate is defined in terms of
the second one and a variety of predicates that are available in LiCoR. The first
rule captures the naming convention of accessor methods as well as their clas-
sification in the ‘accessing’ protocol, as we described earlier. The verification of
the idiomatic implementation of the accessor method is located in the second
rule. This rule verifies if the method’s implementation consists of a single return
statement that consists of a single expression: the variable. As a consequence,
the above logic metaprogram classifies methods of the following form as accessor
methods:

Person>>name
^name

4.2 Application-specific Pointcuts

Once the application-specific model is defined by the base program developers,
the aspect developers can use it to define application-specific pointcuts. For
example, the application-specific pointcut that captures the execution of accessor
methods can now be written as follows:

reception(?joinpoint,?selector,?args),
accessor(?class,?selector,?var)

This application-specific pointcut no longer relies on a particular coding con-
vention for accessor methods, as opposed to source-code based pointcuts. In-
stead, it relies on the application-specific property of an accessor method that is
provided by the application-specific model. The base program developers ensure
that this model is maintained such that all accessor methods are correctly iden-
tified. Furthermore, because the pointcut definition now explicitly states that it
captures the execution of accessor methods, it is more readable and understand-
able to other developers. Of course, the above pointcut is a rather simple use of a
single application-specific property. However, a single application-specific prop-
erty does not correspond to a single pointcut. For example, consider the following
pointcut that is defined in terms of the accessor and mutator properties:

reception(?joinpoint,?selector,?args),
accessor(?class,?selector,?var),
mutator(?class,?otherSelector,?var)

This pointcut matches all accessor method execution join points for variables
for which there also exists a mutator method. It can, for example, be used in a
synchronisation aspect to execute a write lock advice.

4.3 Model Specialisation

A specific advantage of building the application-specific model using a logic
metalanguage is that we can easily extend the model through the definition
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of alternative logic rules for existing predicates. For example, the application-
specific model that we defined above does not classify all accessor methods cor-
rectly. There exist many more possible implementations of accessor methods,
such as the lazy-initialisation presented in section 3.1. Because the coding con-
vention is now explicitly defined in the application-specific model and because
the application-specific model is restricted to the coding conventions only, the
base program developers can easily extend it to accommodate additional acces-
sor forms. This is in contrast to when the coding convention is implicitly used
in a pointcut definition. More importantly, because the model is defined as a
logic metaprogram, additional accessor forms can be defined using alternative
definitions for the accessor predicate. For example, we can extend the defini-
tion of this property to include lazy-initialised accessor methods by including
the following logic rule:

accessorForm(?method,?var) if
returnStatement(?method,send(?nilCheck,[#’ifTrue:ifFalse:’ ],<?trueBlock,?falseBlock>)),
nilCheckStatement(?nilCheck,?var),
statementsOfBlock(<assign(?var,?varinit)>,?trueBlock),
statementsOfBlock(<?var>,?falseBlock)

The above logic metaprogram provides an alternative definition for the accessorForm
predicate. These alternatives are placed in a logical disjunction and, as a result,
our application-specific model also ties the accessor property to methods of the
following form:

Person>>friends
^ friends isNil ifTrue:[friends := OrderedCollection new] ifFalse:[friends].

However, the following accessor method does not correspond to the coding
convention:

Person>>phoneNumbers
^ phoneNumbers ifNil:[phoneNumbers := OrderedCollection new] ifNotNil:[phoneNumbers].

Therefore, we can again define an alternative logic rule that detects accessor
methods of the above form:

accessorForm(?method,?var) if
returnStatement(?method,send(?var,[#’ifNil:ifNotNil:’ ],<?nilBlock,?notNilBlock>)),
statementsOfBlock(<assign(?var,?varinit)>,?nilBlock),
statementsOfBlock(<?var>,?notNilBlock)

Such a model specialisation is particularly useful if different developers im-
plement different modules of the same base program. If all developers agree on
a single application-specific model (i.e. a set of properties implemented by pred-
icates), they can each follow their own programming convention to implement
each property. For example, one set of developers might even agree on the use
of put and get prefixes for all accessor methods while other developers can fol-
low the common Smalltalk convention that we just explained. The first group of
developers then needs to define an alternative logic rule that correctly detects
methods prefixed with put and get and implemented in their part of the base
program as accessor methods.
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4.4 Property Parameters and Unification

The definition of an application-specific model using a logic metalanguage does
not only allow developers to associate structural conventions to properties avail-
able for use in pointcuts. In addition, the properties can be parameterized and
expose values associated to the property. For example, the accessor predicate
does not only expose particular methods as accessor methods, it also exposes
the actual variable that is accessed by the method 5. More precisely, because a
logic language does not make a distinction between arguments and return values,
the variable that is accessed is also automatically a parameter of the accessor
predicate. This also holds for all other parameters of the accessor predicate: they
can act both as parameters as well as return values associated to the property.
In essence, the logic language feature of ‘unification’ allows that we can auto-
matically use the application-specific property that is defined by the accessor
predicate in multiple ways, i.e. any argument of the predicate can be bound or
unbound. A couple of examples are illustrated in the following code excerpt.
Each line represents a separate use of the accessor predicate.

1 accessor(?class,?selector,?var)
2 accessor([Array],#at:put:,?var)
3 accessor(?class,?selector,#name)

The first line will retrieve all accessor methods and expose their class, method-
name and accessed variable. The second line checks if the at:put: method in
the Array class is an accessor method and retrieves its accessed variable. Finally,
the use of the accessor predicate on the last line retrieves all accessor methods
that access a variable named name.

5 Application-specific Models in Practice

The accessors and mutators example is a valuable application-specific model but
relies on very simple coding conventions. In the development of a Smalltalk appli-
cation, there are many more conventions that can be used to expose application-
specific properties valuable for use in a pointcut definition. We illustrate the use
of two such conventions in the following subsections. In particular, we build a
model that exposes properties based on structural conventions used in the drag
and drop framework of the user-interface and the implementation of refactorings
in the refactoring browser in Visualworks Smalltalk.

5.1 Drag and Drop Application-specific Model

The drag and drop facilities in VisualWorks Smalltalk are implemented by means
of a lightweight framework. This framework identifies a number of hooks that
allow a developer to implement the drag and drop behaviour for his particular
application. These hooks are:
5 Mind that the method name can be different from the variable name, depending on

the actual coding convention.
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– Drag Ok: a predicate to check wether the current widget may initiate a
drag;

– Start Drag: actions which need to take place in order to start the drag (e.g.
creating a drag and drop context, . . . );

– Enter Drag/Exit Drag: these hooks are triggered whenever during a drag,
the mouse pointer enters/exists the boundaries of a certain widget;

– Over Drag: actions which are executed when the pointer is hovering over
a widget during a drag (e.g. change the cursor);

– Drop: actions which take place when an element is dropped on a widget.

A developer can add drag and drop functionality to an application by asso-
ciating methods with the hooks specified above. This is done by means of the
windowSpec system of the VisualWorks user interface framework. A windowSpec
is a declarative specification of the different widgets which make up the user in-
terface of an application. This specification is then used by the user interface
framework to construct the actual interface. In the windowSpec, the developer
can, for each widget, associate methods with the different hooks of the drag and
drop framework. In order to access the data which is being dragged, the origin of
the drag operation, etc. these methods pass around a DragDropManager object.

The structure of the framework described above can be used to define an
application-specific model that associates methods to an explicit drag and drop
property: i.e. for each of the hooks defined above, we define a separate predicate.
For example, we define the dragEnterMethod(?class,?sel,?comp) predicate
that classifies all methods that implement the ‘drag enter’ hook. Furthermore,
this predicate exposes the name of the visual component in the interface that
is dragged over. This predicate allows aspect developers to write application-
specific pointcuts that capture a drag event as the execution of such a method:

reception(?jp,?selector,?args),
dragEnterMethod(?class,?selector,?component)

Furthermore, we also define the draggedObject(?dragdropmanager,?object)
and dragSource(?dragdropmanager,?source) predicates that reify the object
being dragged and the source component from where it is being dragged re-
spectively. Both predicates extract this information from the DragDropManager
instance that is being passed as an argument to the drag and drop methods. We
can now further extend the pointcut such that it only captures drag events that
originate from a particular source or drags of a particular object. For example,
we complete the above pointcut with the following conditions to capture drags
originating from a FigureManager (lines 2–3) and dragging a Line object (lines
4–5). The first line merely extracts the only argument being passed to the ‘drag
enter’ method, which is the DragDropManager object.

1 equals(?args,<?dragdropmanager>),
2 dragSource(?dragdropmanager,?source),
3 instanceOf(?source,[FigureManager]),
4 draggedObject(?dragdropmanager,?object),
5 instanceOf(?object,Line)
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This pointcut is particularly useful for the definition of an aspect that renders
an icon in our user-interface depending on the element that is being dragged.
Without aspects, we would need to implement the visualisation of such an icon in
the ‘drag enter’ method of every application model in our user-interface, resulting
in duplicated and scattered code. Furthermore, the application-specific model
now also allows us to decouple the pointcut definition from the actual structural
conventions used in the user-interface framework and implement them in terms
of the explicit application-specific properties associated to a user-interface.

5.2 Refactorings

Refactorings are behaviour-preserving program transformations which can be
used to improve the structure of the application [18]. A number of these refac-
torings can be automated up to a certain degree, which has resulted in the
development of tool support for performing refactorings directly from the IDE.
In VisualWorks, such tool support is integrated with the Refactoring Browser.

The Refactoring Browser makes use of a framework implementing these
refactorings. In this framework, all refactorings are represented by a subclass of
the abstract Refactoring class. Each subclass must implement a preconditions
method, which specifies the preconditions that the source code to be refactored
needs to adhere to in order to perform the refactoring, and a transform method,
which performs the actual program transformation.

As an example of an aspect based on the refactoring framework, consider
a software engineering tool (for instance a versioning system) which, each time
a refactoring is initiated, needs to be notified of the program entities which
are possibly affected by the refactoring. Such information is hard to retrieve
from the source code of the framework. However, by creating an application-
specific model for the refactoring framework, we can explicitly document this
additional information. The following pointcut retrieves all affected entities for
the instantiation of a refactoring:

reception(?joinpoint,?message,?arguments),
inObject(?joinpoint,?receiver),
refactoringInstantiation(?receiver,?message,?arguments,?affectedentities)

The first two lines of the pointcut select all message receptions and their
receiver; the last line restricts these message receptions to the ones which in-
stantiate a refactoring. Also, the pointcut binds all affected entities, depending
on the input and the type of the refactoring to the variable ?affectedentities.

The refactoringInstantiation rule is defined as follows:
1 refactoringInstantiation(?refactoring,?message,?args,?affectedentity) if
2 refactoring(?refactoring),
3 methodWithNameInClass(?method,?message,?refactoring),
4 instanceCreationMethod(?method),
5 refactoringAffectedEntity(?refactoring,?refactoringclass,?args,?affectedentity)

The first line of this rule checks wether the receiver of the message is a refactoring
(i.e. wether it is a subclass of the class Refactoring). The second and third line
implement the selection of those messages (and their arguments) which create
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an instance of the refactoring. Finally, the last line calculates, based on the
arguments of the message, the program entities which can be affected by the
refactoring.

For each refactoring, the affected entities are explicitly documented by logic
rules.

refactoringAffectedEntity(?refactoring,[PushUpMethodRefactoring],?input,?affectedentity) if
originalClassOfPushUpMethod(?input,?affectedentity)

refactoringAffectedEntity(?refactoring,[PushUpMethodRefactoring],?input,?affectedentity) if
originalClassOfPushUpMethod(?input,?class),
superclassOf(?affectedentity,?class).

The above rules reflect this knowledge for the Method Push Up-refactoring. The
first line of both rules extracts the class of the method which will be pushed up
from the arguments of the message reception. For this refactoring, both the class
from which the refactoring is initiated (the first rule), as well as its superclass
are affected (the second rule).

6 Related and Future Work

In previous work [23], we have introduced the technique of model-based pointcuts
that allows to define pointcuts in a similar way as the application-specific point-
cuts presented in this paper. In fact, the approach presented in this paper is a
first step towards an improved integration of model-based pointcuts and logic-
based pointcut languages [7]. In essence, we further extended the technique of
model-based pointcuts to exploit the full power of the logic programming lan-
guage for the definition of application-specific properties. In [23], we merely
extended the pointcut language with a single predicate that allows to query a
conceptual model of the program, implemented using intensional views [24]. In
this paper, the model consists of full logic predicates, resulting in an improved
integration of the model and the pointcuts. In contrast, in [23], we have shown
how model-based pointcuts are less fragile with respect to changes in the base
program primarily due to tool support that enforces developers to adhere to the
correct conventions such that the model remains valid. In this paper, we have
focused on the adequate features of a logic language for the creation and exten-
sion of the model and we presented an improved integration of the model with
the pointcut mechanism itself. We are currently working on how to reconcile the
support for the detection of the fragile pointcut problem with the full power of
the application-specific models presented in this paper. Furthermore, there are
a number of related approaches or techniques that work towards the same goal:

6.1 Expressive Pointcut Languages

Some recent experimental aspect-oriented languages also propose more advanced
pointcut languages. The Alpha aspect language, for example, also uses a logic
programming language for the specification of pointcuts and enhances the ex-
pressiveness by providing diverse automatically-derived models of the program.
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These models and their associated predicates can, for example, reason over the
entire state and execution history [25]. In particular, Ostermann and Mezini
have also identified how to build user-defined pointcut predicates using a logic
language. EAOP [26] and JAsCo [27] offer event-based or stateful pointcuts that
allow to express the activation of an aspect based on a sequence of events during
the program’s execution.

6.2 Annotations

An alternative approach to application-specific pointcuts over application-specific
models is to define pointcuts in terms of explicit annotations in the code [28, 29].
Annotations classify source-code entities and thereby make explicit additional
semantics that would otherwise be expressed through implicit programming con-
ventions. This approach, however, does not benefit from the expressive power
that is provided by the logic metalanguage.

6.3 Design Rules and XPI

Yet another alternative approach is to explicitly include the pointcut descriptions
in the design and implementation of the software and to require developers to
adhere to this design. Sullivan et al. [30] propose such an approach by interfacing
base code and aspect code through design rules. These rules are documented in
interface specifications that base code designers are constrained to ‘implement’,
and that aspect designers are licensed to depend upon. Once the interfaces are
defined (and respected), aspect and base code become symmetrically oblivious
to each others’ design decisions. More recently, the interfaces that are defined by
the design rules can be implemented as Explicit Pointcut Interfaces (XPI’s) using
AspectJ [31]. Using XPIs, pointcuts are declared globally and some constraints
can be verified on these pointcuts using other pointcuts. Our approach is differ-
ent in the fact that we keep the pointcut description in the aspect, leaving more
flexibility to the aspect developer. While XPIs fix all pointcut interfaces before-
hand, our application-specific model only fixes the specific properties available
for use in pointcut definitions.

7 Conclusion

AspectSOUL is an extension of the AspectS language framework with the open-
ended logic-based pointcut language of CARMA. The resulting integrated aspect
language allows developers to extend the pointcut language with an application-
specific model. Such an application-specific model defines new pointcut predi-
cates that reify implicit structural implementation conventions as explicit prop-
erties available for use in pointcut definitions. These model-based pointcuts are
decoupled from the intricate structural implementation details of the base pro-
gram, effectively reducing their complexity. The definition of the application-
specific model confines all these technical details and serves as a contract be-
tween the base program developers and the aspect developers. Finally, the logic
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paradigm offers adequate language features for the definition and extension of
the application-specific model.
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