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Abstract. In spite of the more advanced modularisation mechanisms,
aspect-oriented programs still suffer from evolution problems. Due to the
fragile pointcut problem, seemingly safe modifications to the base code
of an aspect-oriented program can have an unexpected impact on the
semantics of the pointcuts defined in that program. This can lead to
broken aspect functionality due to accidental join point misses and un-
intended join point captures. We tackle this problem by declaring point-
cuts in terms of a conceptual model of the base program, rather than
defining them directly in terms of how the base program is structured.
As such, we achieve an effective decoupling of the pointcuts from the
base program’s structure. In addition, the conceptual model provides a
means to verify where and why potential fragile pointcut conflicts oc-
cur, by imposing structural and semantic constraints on the conceptual
model, that can be verified when the base program evolves. To validate
our approach we implemented a model-based pointcut mechanism, which
we used to define some aspects on SmallWiki, a medium-sized applica-
tion, and subsequently detected and resolved occurrences of the fragile
pointcut problem when this application evolved.

1 Introduction

Ever since its inception almost ten years ago, aspect-oriented software devel-
opment (AOSD) has been promoted as a powerful development technique that
extends the modularisation capabilities of existing programming paradigms such
as object orientation [1]. To this extent, aspect-oriented programming languages
provide a new kind of modules, called aspects, that allow one to modularise the
implementation of crosscutting concerns which would otherwise be spread across
various modules. The resulting improved modularity and separation of concerns
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intends not only to aid initial development, but also to allow developers to better
manage software complexity, evolution and reuse [2]. Given the fact that main-
tenance and evolution of software applications account for the largest part of the
software development process [3], the introduction and use of AOSD techniques
looks promising.

Paradoxically, the essential techniques that AOSD proposes to improve soft-
ware modularity seem to restrict the evolvability of that software. AOSD puts
forward that aspects are not explicitly invoked but instead, are implicitly in-
voked [4]. This has also been referred to as the ‘obliviousness’ property of aspect
orientation [5]. It means that the developer of the base program (i.e., the program
without the aspects) does not need to explicitly invoke the aspects because the
aspects themselves specify when and where they need to be invoked, by means
of a pointcut definition. As a consequence, these pointcut definitions typically
rely heavily on the structure of the base program.

This tight coupling of the pointcut definitions to the base program’s structure
and behaviour can hamper the evolvability of the software [6]: it implies that all
pointcuts of each aspect need to be checked and possibly revised whenever the
base program evolves. Indeed, due to changes to the base program, the pointcuts
may unanticipatedly capture join points that were not supposed to be captured,
or may no longer capture join points that should have been affected by the
aspect. This problem has been coined the fragile pointcut problem [7, 8].

We address the fragile pointcut problem by replacing the intimate depen-
dency of pointcut definitions on the base program by a more stable dependency
on a conceptual model of the program. These model-based pointcut definitions
are less likely to break upon evolution, because they are no longer defined in
terms of how the program happens to be structured at a certain point in time.

Because model-based pointcut definitions are decoupled from the actual struc-
ture of the base program, the fragile pointcut problem is thus transferred to a
more conceptual level. Whereas traditional pointcut definitions may cause unan-
ticipated captures and accidental misses of program entities upon evolution of
the base program, model-based pointcut entities may lead to mismatches be-
tween the conceptual model of the program and the program entities to which
the model is mapped. Hence, the fragile pointcut problem is transformed into
the problem of keeping a conceptual model of the program synchronised with
that program, when the program evolves.

To solve this derived problem, we rely on previous research that enables
documenting the program structure and behaviour at a more conceptual level,
where appropriate support is provided for keeping the ‘conceptual model doc-
umentation’ consistent with the source code when the program evolves. More
specifically, we implement our particular solution to the fragile pointcut prob-
lem through an extension of the CARMA aspect language [9] combined with the
formalism of intensional views [10]. The resulting approach tightly integrates the
intensional views development tool with an aspect-oriented language. In essence,
the pointcuts defined in the aspect language rely on the model that is built using
the development tool. We validate our solution on SmallWiki, a medium-sized



Smalltalk application, where we illustrate how fragile pointcuts are detected
and resolved more easily using model-based pointcuts, as opposed to using more
traditional pointcuts.

2 The Fragile Pointcut Problem

In this section, we define the fragile pointcut problem, provide an analysis of
possible causes of fragility of pointcut definitions, and illustrate each of them
through a running example. We then study the fundamental causes underlying
the problem, which will lead to our solution of model-based pointcuts.

2.1 Definitions

According to Stoerzer et al. [7, 8], pointcuts are fragile because their semantics
may change ‘silently’ when changes are made to the base program, even though
the pointcut definition itself remains unaltered. The semantics of a pointcut
change if the set of join points that is captured by that pointcut changes. Several
other authors have observed symptoms of the fragile pointcut problem [6, 11].
Before elaborating on these observations, we define the fragile pointcut problem:

The fragile pointcut problem occurs in aspect-oriented systems when point-
cuts unintentionally capture or miss particular join points as a consequence of
their fragility with respect to seemingly safe modifications to the base program.

Therefore, in an aspect-oriented program, one cannot tell whether a change to
the base code is safe simply by examining the base program in isolation. All
pointcuts referring to the base program need to be examined as well.

Intuitively, because pointcuts capture a set of join points based on some
structural or behavioural property shared by those join points, any change to the
structure or behaviour of the base program can impact the set of join points that
is captured by the pointcut definitions. If, upon evolution of the base program,
source-code entities are altered which accidentally leads to the capture of a join
point related to these source-code entities, we say that we have an unintended
join point capture. Conversely, when the base program is changed in such a
way that one of the join points that was originally captured by the pointcut is
no longer captured, even though it was still supposed to be captured, we say we
have an accidental join point miss. We define the join point mismatches
(w.r.t. a given pointcut) as the union of the unintended join point captures and
the accidental join point misses.

In literature, we find some interesting observations that confirm the exis-
tence of the fragile pointcut problem. Kiczales and Mezini [11] identified that
aspects ‘cut new interfaces’ through the modules of a system and state that, in
the presence of aspects, the complete interface of such a module can only be de-
termined once the complete configuration of all modules in the system is known.
Sullivan et al. [6] observed that the criterion of obliviousness in AOSD, comes
at a considerable cost to aspect designers. They describe how aspect designers



are confronted with complex pointcut definitions and extreme sensitivity of the
validity of pointcuts to changes in the base program.

The fragile pointcut problem can be considered as the aspect-oriented equiv-
alent of the fragile base class problem [12] found in object-oriented software
development. In the fragile base class problem, one cannot tell whether a change
to a base class is safe simply by examining the base class’ methods in isolation;
instead, one should examine all subclasses of that base class as well [13]. Analo-
gously, in the fragile pointcut problem, one cannot tell whether a change to any
part of the base program is safe without examining all pointcut definitions and
determining the impact of that local change on each pointcut definition.

2.2 Examples

To understand the fundamental causes underlying the fragile pointcut problem,
we study its various instantiations, and analyse how different kinds of pointcut
definitions are fragile with respect to evolution of the base program. We observe
that fragility of a pointcut depends on three fundamental properties of a pointcut
definition:

1. The technique used to define the pointcut (e.g., enumeration of join points,
pattern-based matching, . . . );

2. The expressiveness of the pointcut language (i.e., the structural and be-
havioural properties available to capture join points);

3. The join point model, more particularly, the kinds of join points that can be
captured by a pointcut (method executions, method calls, variable assign-
ments, . . . )

We illustrate the impact of these properties on the fragility of pointcuts, using
a simple example: the Java implementation of a buffer object with a synchroni-
sation aspect:

class Buffer {
private Object content[];
private int index = 0;
...
public Object get() {

... return content[index] ... };
public void set(Object el) {

... content[index] := el ... };
...

}

The implementation of a synchronisation aspect for this buffer contains a
pointcut that captures all calls to the get() and set() accessor methods. De-
pending on the technique used to define it, the pointcut is fragile w.r.t. different
modifications of the base program.



Enumeration pointcut The simplest definition for this ‘accessors’ pointcut
merely enumerates all join points that need to captured, by their exact signature:

pointcut accessors()
call(void Buffer.set(Object)) || call(Object Buffer.get());

This pointcut definition is particularly fragile to accidental join point misses.
Any change to the signature of the accessor methods requires a revision of the
pointcut definition. Furthermore, consider an evolution of the buffer implemen-
tation where additional accessors are defined: e.g., the addition of setAll and
getAll methods that get or set multiple objects at once in the buffer. Such
an evolution requires revising the pointcut definition to explicitly add all new
accessor methods to it. Otherwise, the pointcut would exhibit accidental misses
of the call join points to these new accessor methods, and the synchronisation
aspect would fail.

Pattern-based pointcut In a pattern-based pointcut, we capture the desired
join points by specifying a pattern, for example using wildcards over the sig-
nature. The following pattern captures all calls to methods of which the name
starts with set or get:

pointcut accessors()
call(* set*(..) ) || call(* get*(..) );

This pointcut is also fragile w.r.t. evolution of the base program. New methods
can be added and existing ones can be removed such that they are captured by
the pointcut definition, as long as they follow the naming convention encoded in
the pattern. In addition, consider an evolution of the base code where a method
named setting is added. A call to this method is unintendedly captured by the
pointcut because its name happens to start with set.

Structural property-based pointcuts In more advanced pointcut languages
that allow to extract fine-grained structural properties of program elements to
describe the join points, we can declare accessor methods as those methods that
either assign to or return an instance variable directly. The following pointcut
uses an AspectJ-like syntax4 to illustrate a property-based pointcut that can,
for example, be expressed in the CARMA pointcut language [9]. In CARMA,
variables in pointcut definitions are prefixed with ?. The first pointcut expres-
sion captures all calls to methods that assign to an instance variable and the
second pointcut expression captures all calls to ‘getter’ methods. The assigns
and returnsVariable predicates reifiy the structural property of which vari-
ables that are assigned to or returned by the method5. The instanceVariable
predicate refies the instance variables defined in a class.
4 We use this hypothetical AspectJ-like syntax to avoid having to explain the details

of the CARMA syntax here.
5 The predicates also consider indexing in arrays for variable accesses and assignments.



pointcut setters()
call(?class.?method(..) ) &&
assigns(?class.?method,?iv) &&
instanceVariable(?iv,?class);

pointcut getters()
call(?class.?method(..) ) &&
returnsVariable(?class.?method,?iv) &&
instanceVariable(?iv,?class);

Although these pointcuts are no longer fragile w.r.t. changes in the name of the
methods, they are still fragile because they capture only methods that respect
the structural convention codified by the pointcut. Consider, for example, the
following ‘getter’ method that does not directly return the instance variable in
a return statement but returns another (temporary) variable:

Object get() {
Object temp := content[index];
..
return temp;

}

Although the variable temp contains the actual value of the instance variable, a
call join point to this method would be missed by our previous pointcut defini-
tion. Hence, once again, the pointcut is fragile to changes in the base program’s
source code.

Behavioural property-based pointcuts Behavioural properties that can be
used in pointcut definitions mostly concern an application’s execution history
or runtime values during that history. A well-known behavioural property to
qualify pointcuts is determined by the cflow predicate. Using cflow, we can
specify join points that lie in the control flow of other join points. For example,
the following pointcut captures only those join points that are ‘getter’ join points
(as defined previously) but do not lie in the flow of control of other ‘getter’ join
points. Using this optimisedGetter pointcut, we can prevent the execution of
the synchronisation aspect if the running thread is already in the control flow of
the synchronisation aspect (i.e., if the buffer is already synchronised).

pointcut optimisedGetter() :
getters() &&
! cflow(getters());

However, even behavioural property-based pointcuts are fragile to evolution of
the source code, because they also need to refer to the source-code entities of
which they want to characterise the behaviour. In this particular example, the
pointcut is defined in terms of the getters pointcut. Because that latter point-
cut is fragile, the optimisedGetter pointcut is equally fragile. Mind that this
fragility also holds for many pointcuts that use dynamic values (of e.g. instance
variables) because they often need to refer to the actual instance variables, of
which they use the values, by name.



Uncapturable join points While the previous examples illustrated the fragility
of the pointcut due to the definition technique or the provided expressiveness
of the pointcut language, another major reason for fragility lies in the fact that
some intended join points simply cannot be captured because:

– The join point model is too restrictive and the code to be advised by the
aspect is not confined to a join point. For example, most aspect languages
today do not allow to advice pieces of method bodies. In our buffer example,
this would mean that we must structure the possible critical sections in
the buffer implementation as complete methods. Otherwise, they cannot be
advised by the synchronisation aspect.

– The pointcut cannot be described because the join points do not share suf-
ficient structural or behavioural properties to allow them to be qualified in
a pointcut definition. As a consequence, developers are forced to use fragile
enumeration-based pointcuts.

2.3 Problem Analysis

In all of the examples above, pointcuts are fragile because their definitions are
tightly coupled to a particular structure or behaviour of the base program. Sim-
ilar to how most programming paradigms rely on symbolic referencing (e.g.
function calls by name), aspect-orientation relies on referencing more intricate
structural and behavioural properties of the program as well. More precisely,
pointcuts impose ‘design rules’ that developers of the base program must adhere
to in order to prevent unintended join point captures or accidental join point
misses (also see [6]). These rules originate from the fact that pointcuts try to de-
fine intended conceptual properties about the base program, based on structural
and behavioural properties of the program. For example, the ‘accessors’ point-
cut tries to define the conceptual property of an ‘accessor method’ by relying
on coding conventions used to implement that method. Therefore, in general,
base program developers need to adhere to such rules when implementing the
base program, so that the pointcut definition can be expressed in terms of those
rules. Because the rules themselves are not enforced by any mechanism, not only
do the developers need to be aware of these rules, they also need to manually
ensure not to break them when evolving the base program. This requires very
disciplined developers that have a good understanding of the actual rules that
the pointcut definitions depend on. Consequently, in practice these rules are
likely to be violated upon evolution.

While the design rules imposed by enumeration-based pointcuts are very
restrictive (i.e., only the explicitly enumerated join points can be advised), be-
havioural property-based pointcuts allow for more (structural) diversity in the
base program but are also more complex to understand, write and verify. For
example, we could define the ‘accessors’ pointcut by relying on the behavioural
property that the method returns an instance variable value. However, this be-
havioural property cannot be statically verified upon program evolution in all
cases. Moreover, although there are ‘behavioural’ design rules (that can be ex-
pressed using advanced pointcut languages [9, 14, 15]) that do not need to refer



to structural properties in the program’s source code, such structural properties
are still required in many cases.

To the best of our knowledge, none of the proposed solutions that exist today
(pointcut delta analysis [7], expressive pointcut languages [9, 14, 15], source-code
annotations [16, 17], design rules [6]) address both the too tight coupling of point-
cuts to the structure of the program, and the brittleness of the imposed design
rules upon program evolution. In the next section, we introduce a novel technique
to define pointcuts, that achieves low coupling and provides a means to detect
violations of the imposed rules. This technique is orthogonal to the techniques
mentioned above, which are described in section 7.

3 Model-based Pointcuts

We tackle the fragile pointcut problem with model-based pointcuts. This new
pointcut definition mechanism achieves a low coupling of the pointcut definition
with the source code, while at the same time providing a means of documenting
and verifying the design rules on which the pointcut definitions rely.

Model-based pointcut definitions are defined in terms of a conceptual model
of the base program, rather than referring directly to the implementation struc-
ture of that base program. Figure 1 illustrates this difference between model-
based and traditional source-code based pointcuts. On the left-hand side, a tra-
ditional source-code based pointcut is defined directly in terms of the source code
structure. On the right-hand side, a model-based pointcut is defined in terms
of a conceptual model of the base program. This conceptual model provides an
abstraction over the structure of the source code and classifies base program en-
tities according to the concepts that they implement. As a result, model-based
pointcuts capture join points based on conceptual properties instead of structural
properties of the base program entities. In addition to decoupling the pointcut
definitions from the base program’s implementation structure, the classifications
in the conceptual model are specifically conceived to provide support for detect-
ing evolution conflicts between the conceptual model and the base program.

For example, assuming that the conceptual model contains a classification
of all accessor methods in the buffer implementation, the model-based pointcut
that captures all call join points to these accessor methods could be defined as:

pointcut accessors():
classifiedAs(?methSignature,AccessorMethods) &&
call(?methSignature);

where the expression classifiedAs(?methSignature,AccessorMethods) mat-
ches all methods that are classified as accessor methods in the conceptual model
of the buffer program and the variable ?methSignature is bound to the method
signature of such a method. This pointcut definition explicitly refers to the con-
cept of an accessor method rather than trying to capture that concept by relying
on implicit rules about the base program’s implementation structure. Conse-
quently, this pointcut does not need to be verified or changed upon evolution of



Aspect using traditional 
pointcuts

Source-code
pointcut 
definition

Aspect using
model-based pointcuts

Class 
Name

Attributes
Attributes
Operations
Operations

Class 
Name

Attributes
Attributes
Operations
Operations

Class 
Name

Attributes
Attributes
Operations
Operations

Class 
Name

Attributes
Attributes
Operations
Operations

Class 
Name

Attributes
Attributes
Operations
Operations

Class 
Name

Attributes
Attributes
Operations
Operations

1

*

1

*

1

*

Pointcut in terms of 
source code

Classifications and constraints

Pointcut in terms of 
conceptual model

Model-based 
pointcut 
definition

Source code

Conceptual model

Join point model

Legend

specified in terms of

captured join point

uncaptured join point

Fig. 1. Traditional pointcuts versus model-based pointcuts

the base program: if the conceptual model correctly classifies all accessor meth-
ods, this pointcut remains correct. In a certain sense, model-based pointcuts are
similar to Kiczales and Mezini’s annotation-call and annotation-property point-
cuts [17]. Indeed, the classifications of source-code entities in the conceptual
model could be constructed using annotations in the source code.

By defining pointcuts in terms of a conceptual model, the fragile pointcut
problem has now been translated into the problem of keeping the classifications
of the conceptual model consistent with the base program. To detect incorrectly
classified source entities, the conceptual model goes beyond mere classification or
annotation and defines extra constraints over the classifications that need to be
respected by the source-code entities, for the model to be consistent. Formally,
we distinguish two cases, defined below and illustrated by figure 2:

1. We define the set of possible unintended captures for a concept A as those
entities that are classified as belonging to A but that do not satisfy some of
the constraints defined on A:

UnintendedCapturesA =
⋃

C∈CA

(A− ext(C))

where CA is defined as the set of all constraints on A and ext(C) denotes the
set of all source-code entities satisfying constraint C. The intuition behind
this definition is that if an entity belongs to A but does not satisfy the
constraints defined on A then maybe the entity is misclassified.



2. We define the set of possible accidental misses as those entities that do not
belong to A, but do satisfy at least one of the constraints C defined on A:

AccidentalMissesA =
⋃

C∈CA

(ext(C)−A)

The intuition behind this definition is that if an entity does not belong to A
but does satisfy some of the constraints defined on A, then maybe the entity
should have been classified as belonging to A. To avoid having an overly
restrictive definition (yet at the risk of having a too liberal one), we do not
require the missed entity to satisfy all constraints defined on A. As soon as
it satisfies one constraint, we flag it as a potential accidental miss.

A ext(C)
1. accidental

miss

2. unintended 

capture
Unintended
Captures A

Accidental
Misses A

Fig. 2. Detecting potential unintended captures and accidental misses

The set of all potential unintended captures and accidental misses that can be
detected is then defined as

MismatchesA =
⋃

C∈CA

(A ∆ ext(C))

where ∆ denotes symmetric difference. Whenever there is an unintended capture
(resp. accidental miss) this can have one of 3 possible causes :

1. Either a source-code entity was misclassified and should be removed from
(resp. added to) A;

2. Either a constraint C no longer applies and thus needs to be modified or
removed;

3. Either a source-code entity accidentally satisfies (resp. invalidates) a con-
straint C and should be adapted.

In summary, model-based pointcuts provide support for detecting and re-
solving occurrences of the fragile pointcut problem because:

– Model-based pointcut definitions are decoupled from the source-code struc-
ture of the base program. They explicitly refer to a conceptual model of the
program that classifies base program entities according to concepts that are
of interest to define pointcuts.



– Although the conceptual model still classifies base program entities based
on their implementation structure, the model does include constraints that
allow verification of the consistency of the program’s source code with respect
to the classifications, when the source code evolves.

In practice, model-based pointcuts offer aspect developers a means to extract
the structural dependencies from the pointcut definition and move these depen-
dencies to the conceptual model specification, where they can be more easily
enforced and checked. Upon evolution of the base program, the ‘design rules’
that govern these structural dependencies are automatically verified and the
developer is notified of possible conflicts of the source code w.r.t. those rules.

4 View-based Pointcuts

As a particular instantiation of model-based pointcuts, we introduce view-based
pointcuts, which:

1. use the formalism of intensional views [10], and its associated tool suite
IntensiVE6, to express a conceptual model of a program and to keep it
synchronised with the source code of that program;

2. specify pointcuts in terms of this conceptual model, using an extension to
the aspect-oriented language CARMA.

We briefly present the formalism of intensional views and how it can be used to
define a conceptual model of a program. Next, we introduce the CARMA aspect
language and its extension to define aspects over intensional views. Throughout
this section we use examples taken from the SmallWiki system. Section 5 explains
this case in more detail.

4.1 Intensional Views

In earlier work [10], we presented the formalism of intensional views as a tech-
nique for describing a conceptual model of a program’s structure and verifying
consistency of that model with respect to the program. For the sake of com-
pleteness, we briefly repeat the formalism here, with a particular focus on those
features that enable it to detect interesting evolution conflicts.

Intensional views describe concepts of interest to a programmer by group-
ing program entities (classes, methods, . . . ) that share some structural prop-
erty. These sets of program entities are specified intensionally, using the logic
metaprogramming language Soul [18]. (The intension — with an ‘s’ — of a set
is its description or defining properties, i.e., what is true about the members of
the set. The extension of a set is its members or contents.)

For example, to model the concept of “all actions on Wiki pages” (save,
login,. . . ) in SmallWiki, we specify an intensional view named Wiki Actions,
which groups all methods of which the name starts with execute, based on the
observation that all action methods indeed respect that naming convention :
6 Available for download on http://www.intensional.be



classInNamespace(?class,[SmallWiki]),
methodWithNameInClass(?entity,?name,?class),
[’execute*’ match: ?name asString]

Without explaining all details of the Soul syntax and semantics, upon evaluation
the above query accumulates all solutions for the logic variable ?entity, such
that ?entity is a method, implemented by a class in the SmallWiki namespace,
whose name starts with execute. This query is the intension of the view.

Since the declared intension is sometimes too broad or too restrictive with
respect to the actual program code, intensional views provide means to deal
with deviations to a view, allowing to explicitly ‘include’ or ‘exclude’ specific
program entities from a view. For example, if the SmallWiki implementation
would contain a method that starts with execute but does not perform an
action, we would put that method in the excludes set of the Wiki Actions view.

Upon evolution of the program, a simple view such as the one defined above
can capture or miss particular program entities accidentally, which is similar
to the fragile pointcut problem. Therefore, a set of constraints on and between
views (as defined in Section 3) is at the heart of the intensional views formalism.
This set of constraints can be validated with respect to the program code and
allows keeping an intensional view model synchronized with the program. We
highlight two different types of constraints that can be defined on intensional
views: alternative intensions and intensional relations.

Alternative Intensions. Often, the same set of program entities can be spec-
ified in different ways, e.g. when they share multiple naming or coding conven-
tions. A first kind of constraints that can be declared on an intensional view is
through the definition of multiple alternative intensions for that view. Each of
these alternatives is required to be extensionally consistent, meaning that they
need to describe exactly the same set of program entities. For example, all meth-
ods performing actions on Wiki pages do not only have a name that starts with
execute, but are also implemented in a method protocol7 called action. We can
therefore define the Wiki Actions view in an alternative way, using a logic query
that accumulates all SmallWiki methods implemented in that protocol. Since
both alternatives are supposed to define the same concept (i.e. Wiki actions),
we require both alternatives to capture the same set of methods.

Intensional Relations. Whereas alternative intensions declare an equality re-
lation between the different alternatives of a view, a second means of specifying
constraints is through intensional relations, which are binary relations between
intensional views, of the canonical form:

Q1 x ∈ V iew1 : Q2 y ∈ V iew2 : x R y

where Qi are logic quantifiers (∀, ∃, ∃! or @), V iewi are intensional views, and
R is a verifiable binary relation over the source-code entities (denoted by x and
7 In Smalltalk, the methods of a class are organised in logical groups called protocols.



y) contained in those views. An example of such a constraint in SmallWiki is
that all Wiki Actions should be implemented by Action Handlers. Assuming we
have defined an Action Handlers view (a set of classes implementing actions),
we express this dependency as:

∀ x ∈ WikiActions : ∃ y ∈ ActionHandlers : x isImplementedBy y

where isImplementedBy is a binary predicate which verifies that a given method
x is implemented by a given class y. Like for intensional views, explicit deviations
can be declared on intensional relations.

As for checking extensional consistency, the IntensiVE tool suite can be used
to verify the validity of the constraints imposed by intensional relations with
respect to the program code. As explained in Section 3, invalidations of these
constraints either indicate unintended captures or accidental misses, or maybe
the constraint itself is simply no longer valid and should be modified or removed.

4.2 View-based Pointcuts in CARMA

Having chosen the formalism in which to express the conceptual model of the
base program, we still need a pointcut language that permits us to define point-
cuts in terms of such a conceptual model. Given that both the formalism of
intensional views and the aspect-oriented programming language CARMA rely
on the logic metaprogramming language Soul, to specify intensions and point-
cuts, respectively, we extended CARMA with the ability to define view-based
pointcuts.

– reception(?joinpoint, ?message, ?arguments)
Expresses that ?joinpoint is a message reception join point, where the message
with name ?message is received with the arguments in the list ?arguments.

– send(?joinpoint, ?message, ?arguments)
The join point ?joinpoint is a message send join point where the message with
name ?message is sent and passed the arguments in the list ?arguments.

– within(?joinpoint, ?class, ?method)
The join point ?joinpoint is lexically associated to the method named ?method
in class ?class. This means the join point was raised because of an expression in
the body of that method or because of the execution of that method itself.

– withinClass(?joinpoint, ?class)
The join point ?joinpoint is lexically associated to the class ?class. This means
the join point was raised because of an execution of a method defined on that
class or because of an expression in the body of a method of that class.

Fig. 3. Some basic predicates provided by CARMA for capturing join points

CARMA is very similar to the AspectJ language but features a logic point-
cut language, and is an aspect-oriented extension to Smalltalk instead of Java.
Pointcuts in CARMA are logic queries that can express structural as well as



dynamic conditions over the join points that need to be captured by the point-
cut. To this extent, a query can make use of a number of predefined predicates,
stating conditions over join points, which form the heart of the CARMA lan-
guage. Some basic CARMA predicates that are used in this paper are shown in
Figure 3.

The expressive power of CARMA is a direct consequence of the logic language
features of unification and recursive logic rules, together with a complete and
open reification of the entire base program. CARMA has already proven useful
to write more robust property-based and pattern-based pointcut definitions [9].
For this paper, we further enhanced CARMA with view-based pointcuts using an
additional predicate classifiedAs(?entity,?view) that allows to define join
points in terms of the intensional views defined over a program. For example, we
can define a view-based pointcut that captures all calls to methods contained in
the Wiki Actions view as:

pointcut wikiActionCalls():
classifiedAs(?method,WikiActions),
methodInClass(?method,?selector,?class),
send(?joinpoint,?selector,?arguments)

The above pointcut definition is tightly coupled to the intensional view model
of SmallWiki but it is decoupled from the actual program structure. In combi-
nation with the support for verifying consistency of the intensional views model
with respect to the source code, we can thus alleviate part of the fragile pointcut
problem, as is illustrated by the experiment in the following section.

5 Experiment: Aspects in SmallWiki

In this section, we demonstrate on a small but realistic program, on which two
aspects were defined, how view-based pointcuts can detect occurrences of the
fragile pointcut problem when the program evolves.

Case selection. The case study we selected is SmallWiki [19], a fully object-
oriented and extensible Wiki framework, written by Lukas Renggli, that was
developed entirely in VisualWorks Smalltalk. A Wiki is a collaborative web ap-
plication that allows users to add content, but also allows anyone to edit the
content. The original version of SmallWiki we studied was version 1.54, the first
internal release of SmallWiki (14-12-2002), offering an operational Wiki server
with rather limited functionality: only the rendering and editing of fairly simple
Wiki pages was supported. This version contained 63 classes and 424 methods.

Set-up of the experiment. To illustrate our approach we conducted the fol-
lowing experiment:

1. We identified two aspects to be defined on the SmallWiki case.



2. Using an AOP approach with traditional pointcuts, we extended version 1.54
of SmallWiki with the extra functionality described by the aspects.

3. We applied the same aspects to version 1.304 of SmallWiki, an evolved ver-
sion of the application dating one year after the release of version 1.54. We
analyzed the impact of the changes in that evolution on the aspects. In par-
ticular, we assessed which changes gave rise to the fragile pointcut problem.

4. We made a conceptual model of Smallwiki’s program structure. In practice,
we merely reused a conceptual model which we conceived for an earlier exper-
iment using intensional views and relations. (By selecting a set of intensional
views that were already defined on the application, even before the aspects
were identified, we show that our approach does not necessarily require the
views to be defined in function of the aspects.)

5. We implemented the two aspects by means of view-based pointcuts, defined
in terms of that conceptual model.

6. We reapplied these aspects to the evolved version of SmallWiki and observed
how the evolved program gave rise to conflicts between the conceptual model
and the program. We compared the conflicting program entities with those
that caused the fragile pointcut problem before. By using the feedback of the
IntensiVE tool suite, we brought the program in sync with the conceptual
model, and analysed the implication of these changes in the light of the
fragile pointcut problem.

In the next subsections we elaborate on each of the steps of our experiment.

5.1 Two Aspects in SmallWiki

We extended our initial version 1.54 of SmallWiki with two simple aspects:

1. logging of actions: this aspect outputs information concerning which actions
(like saving, opening a page, . . . ) are executed in SmallWiki.

2. output in italics: this aspect changes the output of SmallWiki by rendering
all text in italics instead of a regular font.

5.2 A Traditional AOP Implementation

We implemented these two aspects in the (non-extended version of the) CARMA
aspect language. Below, we highlight how we defined the pointcuts in terms of
which those aspects were defined.

Implementing the ‘logging’ aspect. As mentioned earlier, all actions in the
Wiki system are implemented by means of a method which starts with the string
execute. Using this information we write down the following pointcut for the
logging of actions aspect:

1 classInNamespace(?class,[SmallWiki]),
2 methodWithNameInClass(?method,?selector,?class),
3 [’execute*’ match: ?selector],
4 reception(?joinpoint,?selector,?arguments)



Line 1 of this pointcut selects all classes in the SmallWiki namespace; line 2
and 3 select all methods within those classes whose name start with the string
execute; finally, line 4 selects all message reception join points of those methods.

Implementing the ‘output in italics’ aspect. The output of Wiki pages is
rendered by visitor objects which, for each different page component, generate
some kind of output (HTML, Latex, save to disk). We wish to weave on all calls
to these visitors originating from a Wiki page element. We declare this by means
of the following pointcut:

1 classInNamespace(?class,[SmallWiki]),
2 or( classInHierarchyOf(?class,[PageComponent]),
3 classInHierarchyOf(?class,[Structure])),
4 classInHierarchyOf(?outputclass,[OutputVisitor]),
5 methodWithNameInClass(?method,?name,?outputclass),
6 within(?joinpoint,?class,?m),
7 send(?joinpoint,?name,?args)

Lines 1–3 collect all page element classes (i.e., all classes in SmallWiki which
are either located in the hierarchy of PageComponent or in the hierarchy of
Structure); lines 4–5 select all methods that render output (i.e., methods im-
plemented on classes in the OutputVisitor hierarchy); finally, lines 6 and 7
select all join points from within Wiki page elements which perform a message
send to a method that renders output.

5.3 Applying the aspects to the evolved application

The evolved version of SmallWiki we selected was version 1.304, an internal
release of almost a full year (16-11-2003) after the 1.54 release (14-12-2002).
With 108 classes and 1219 methods, this evolved version was significantly larger
than version 1.54.

When assessing the impact of this evolution on the pointcut of the logging
aspect, we observed that all but two actions were correctly captured by the
pointcut. The save and authenticate actions, which were added in version
1.304, were not captured by the pointcut, because their method names do not
start with the string execute. The addition of these two methods thus caused
two accidental join point misses in the evolved version of SmallWiki.

We mentioned earlier that the ‘Wiki actions’ are not only characterized by
the fact that they all start with the string execute, but that they are also all
categorized in a method protocol named action. We could have expressed the
pointcut in terms of this alternative coding convention. This however would also
have resulted in a join point mismatch when applying the pointcut to the evolved
version of SmallWiki. Two other execute methods, namely executeSearch and
executePermission, would have been missed by the pointcut because they have
been misclassified in the private protocol instead of the action protocol.



The evolution step also had an impact on the pointcut for the italic out-
put aspect. In the evolved version, a significant number of new Wiki page ele-
ment components were added. For a number of these (i.e., LinkInternal and
LinkMailTo) there did not exist a directly corresponding visit method (i.e.,
visitLinkInternal and visitLinkMailTo) in the OutputVisitor hierarchy,
as was implicitly assumed by the pointcut declaration. Instead, for reasons of
implementation reuse, they had their visit method implemented on the abstract
Visitor class. From within this more abstract visit method, other visit meth-
ods, which were part of the OutputVisitor hierarchy, were then called. This
subtle change in the implementation had a major impact on the correctness of
the pointcut, causing the output generation methods of some of the newly added
classes to be accidentally missed by the pointcut.

5.4 Intensional Views on SmallWiki

In a previous experiment we documented the conceptual structure of SmallWiki
with 17 intensional views and 16 intensional relations [10]. For the current expe-
riment, we reused that conceptual model, modulo the renaming of some inten-
sional views to better reflect what SmallWiki concepts they represent. We do not
show all views here8, but limit ourselves to those interesting for the remainder
of this paper, as summarized by Figure 4, and explained below.

LegendIntensional views on SmallWiki

Page 
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Visitor  
Classes

Output 
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Fig. 4. Part of the conceptual model of SmallWiki version 1.54

– The Wiki Actions view groups all methods implementing an action on a Wiki
page. Two alternative intensions for this view were explained in subsection
4.1.

– The Page Elements view groups all classes representing components out of
which Wiki pages can be constructed (e.g., text, links, tables, lists). This
view is defined by the following alternative intensions:
1. All subclasses of either the PageComponent or Structure class;

8 For a more exhaustive list of views that were defined on SmallWiki, and how they
were defined, see [10].



2. All classes in the Wiki system implementing a method named accept;
3. All classes in the Wiki system containing a protocol named visiting.

Alternatives 2 and 3 codify the knowledge that, in order to implement op-
erations on Page Elements, SmallWiki relies heavily on the Visitor pattern.

– The Output Generation view groups all classes that generate output (e.g.,
HTML, Latex) for (the components of) a Wiki Page, and has as intension
all subclasses of OutputVisitor.

– The Visitor Classes view groups all subclasses of Visitor.
– The Classes Visited view describes another aspect of the Visitor pattern and

groups all classes that are visited by some Visitor in the SmallWiki system.

In addition to the constraint of extensional consistency between the different
alternatives of each of these views, Figure 4 also shows 3 intensional relations
that impose additional constraints on the views:

– The relation that the Page Elements view is a subset of the Classes Visited
view codifies the knowledge that all page elements can be visited by a vistor.

– The are Accepted by relation captures the important fact that all page
elements can be rendered by an Output Generation visitor.

– The third intensional relation states that the classes that render output are
a particular kind of Visitor Classes.

5.5 Implementation with View-Based Pointcuts

In this subsection we show how we defined the pointcuts of the two aspects
introduced earlier as view-based pointcuts in terms of the views discussed in
subsection 5.4.

To implement the logging of actions aspect using a view-based pointcut, we
use the following pointcut definition:

1 classifiedAs(?method,WikiActions),
2 methodWithName(?method,?message),
3 reception(?joinpoint,?message,?args),
4 withinClass(?joinpoint,?class)

This pointcut selects all reception join points of a message which is implemented
by a method in the Wiki Actions view. Line 4 is added to the pointcut in order
to propagate context information, concerning the class in which the join point
is present, to the advice.

Analogously, we declare a view-based pointcut for the italic output aspect.
We define this pointcut in terms of the Page Elements and Output Generation
views discussed in subsection 5.4:

1 classifiedAs(?class,PageElements),
2 send(?joinpoint,?message,?args),
3 withinClass(?joinpoint,?class),
4 classifiedAs(?outputclass,OutputGeneration),
5 methodWithNameInClass(?method,?message,?outputclass)



Lines 1 and 2 select all message sends that occur in Wiki page elements. Lines
4 and 5 further restrict these sends to those invoking a method that generates
output for the Wiki elements.

Note that both our traditional source-code based pointcut definitions and
our view-based pointcut definitions provided a fine-grained description of the
actual join points in the program execution that we wish to capture. Our model-
based pointcut definitions, however, do not refer to the syntactical or structural
organisation of the program on which they act.

5.6 Applying the aspects to the evolved application

To assess the fragility of our view-based pointcuts, we reapply them to the
evolved version 1.304 of SmallWiki. However, since view-based pointcuts are
defined in terms of intensional views, before reapplying them, we first need to
verify the impact of the evolution on the intensional view model and to try and
resolve possible evolution conflicts at that level.

When checking extensional consistency of the Wiki Actions view, on which
our logging pointcut is based, our IntensiVE tool suite warned us that the view
had become inconsistent. The feedback provided by the tool informed us that
the new actions save and authenticate did satisfy the second alternative, i.e.
they belonged to the action method protocol, but they did not adhere to the
first alternative, namely their name did not start with execute. Also, the tool
reported that the executeSearch and executePermission were not captured
by the second alternative, though they did satisfy the first alternative. Note
that these inconsistencies match exactly the cases that caused the join point
mismatches on our traditional implementation of the logging pointcut.

We resolved these mismatches between the model and the source code by
performing the following two actions. First, we explicitly declared the save and
authenticate methods as deviating cases to be included in the first alternative
of the view. Second, we modified the classification of the executeSearch and
executePermission so that they were correctly classified in the action protocol.

It is important to realise that, to detect and resolve these inconsistencies, we
did not have to reason about the view-based pointcut itself, but only about the
view(s) in terms of which it was defined. Furthermore, after having synchronised
the conceptual model with the program again, the pointcut correctly captured
the intended join points and we could safely apply the aspect to the code.

The italic output aspect depends on two intensional views: Wiki Page Ele-
ments and Output Generation. As for the logging aspect, before applying the
aspect to the evolved code, we first verified validity of these views with respect
to the source code. While the views themselves remained consistent during the
considered evolution, our tool suite warned us that the relation Wiki Page El-
ements are Accepted By Output Generation was invalidated. More specifically,
it informed us that the relation failed because of the classes LinkInternal and
LinkMailTo. These are exactly the same classes that caused join point mis-
matches on our traditional implementation of the italic output pointcut.



Before applying the italic output aspect to the evolved code, we first re-
solved the conflict. The problem was that the conflicting classes did not have a
corresponding visit method in the OutputVisitor hierarchy and thus were not
directly visited by an output visitor. By adapting the Output Generation view
so that these classes are explicitly defined as deviating cases to the view, we
reconciled the intensional relation with the program. When applying the italic
output aspect to the code now, it worked as desired.

6 Discussion

Our experiment showed that, when view-based pointcuts are used to implement
the logging of actions and italic output aspects on SmallWiki, the formalism and
tool suite of intensional views allowed us to discover exactly those evolution con-
flicts that caused join point mismatches in a more traditional implementation
of the aspects. To do so, our tool did not reason about the pointcut definitions
themselves, but only about the conceptual model in terms of which they were
defined. Indeed, because the evolution we applied concerned changes to struc-
ture of the base program, only the structural dependencies contained in the
conceptual model were affected. After resolving all detected inconsistencies, by
synchronising the conceptual model with the evolved program, we could straight-
forwardly apply the aspects to that program, without having to alter the original
view-based pointcut definition.

The core of our contribution lies in the observation that the fragile pointcut
problem can be transferred to a problem space where the fundamental cause of
the problem (i.e., the structural dependency of pointcuts on code) is isolated and
easier to resolve. Rather than addressing the problem at the level of program
code, we transfer it to the level of a conceptual model, where extra conceptual
information is available that allows us to detect certain join point mismatches.
The only requirement is the existence of a conceptual model which allows to ex-
press design-level constraints that can be verified against the code, and an aspect
language that features model-based pointcuts which can refer to concepts in the
conceptual model. Although view-based pointcuts, which combine CARMA and
intensional views, provide a powerful instantiation of model-based pointcuts, one
can easily imagine using other models and aspect languages, as we will describe
in section 7.

We do not claim that our technique detects and resolves all occurrences of
the fragile pointcut problem. Everything depends on the constraints imposed
by the conceptual model. Since, in our particular example, we started from
a case study which had already been well-documented with intensional views
and relations before [10], we were able to detect and avoid all occurrences of
the fragile pointcut problem as compared to a traditional AOP approach. In
general, the more constraints defined by the conceptual model, the lesser the
chance that certain inconsistencies go unnoticed. Further research is required on
methodological guidelines to design the conceptual model such that it provides
sufficient coverage to detect violations of the design rules.



Adoption of our model-based pointcut approach requires developers to de-
scribe a conceptual model of their program and its mapping to the program
code. This should not be seen as a burden, because it provides an explicit and
verifiable design documentation of the implementation. Such documentation is
not only valuable for evolution of aspect-oriented programs but for the evolution
of software in general. Providing a means of explicitly codifying and verifying
the coding conventions and design rules employed by developers allows them
to better respect these conventions and rules. The short term cost of having
to design the conceptual model thus pays off on longer-term because it allows
keeping the design consistent with the implementation and, consequently, allows
detecting potential conflicts when the program evolves.

7 Related and Future Work

In subsection 2.3 we already mentioned some other solutions that have been
proposed in the context of the fragile pointcut problem. We now take a closer
look at these solutions and describe their differences to our proposed solution.
We also describe other closely related work.

Expressive pointcut languages To render pointcut definitions less fragile
to base program evolution, more expressive pointcut languages are currently
under investigation. The CARMA language, for example, offers a complete logic
programming language for the definition of pointcuts. The language features of
unification and recursion offer expressiveness to render pointcut definitions more
robust [9]. The Alpha aspect language also uses a logic programming language
for the specification of pointcuts and enhances the expressiveness by providing
diverse automatically-derived models of the program and associated predicates
that can, for example, reason over the entire state and execution history [15].
EAOP [14] and JAsCo [20] offer event-based or stateful pointcuts that allow to
express the activation of an aspect based on a sequence of events during the
program’s execution.

Although such expressive pointcut languages permit to render pointcut defi-
nitions much less brittle, they do not make the problem disappear altogether. A
pointcut definition still needs to refer to specific base program structure or be-
haviour to specify its join points. This dependency on the base program remains
an important source of fragility. To deal with the fragility based on structural
dependencies, the user-defined conceptual model, presented in this paper, would
even complement the behavioural models used in Alpha and provide additional
expressiveness for pointcuts that need to refer to structural properties. Fur-
thermore, one could even argue that, in the occurrence of complex behavioural
property-based pointcuts, the rules that the base program needs to respect be-
come very complex to understand. Hence, although more expressive pointcut
languages reduce the fragility of pointcut definitions, they may render the ac-
tual detection of broken pointcuts more difficult.



Annotations An alternative solution that has been proposed is to define point-
cuts in terms of explicit annotations in the code [16, 17]. Similar to intensional
views, annotations classify source-code entities and thereby make explicit addi-
tional semantics that would otherwise be expressed through implicit program-
ming conventions. This solution, however, addresses the fundamental cause of
the problem only partially. While the pointcut definitions are now defined in
terms of semantic properties that would otherwise have remained implicit, the
problem is displaced to the annotations themselves. Instead of requiring base
developers to adhere to implicit programming rules, we now require them to an-
notate the base program explicitly. As a consequence, pointcuts are as brittle as
the annotations to which they refer. When the base code has not been correctly
annotated, or when annotations are not correctly updated when the base code
evolves, the ‘fragile pointcut problem’ resurfaces. Havinga et al. [16] try to solve
this problem by inserting the annotations in the code automatically by means
of a pointcut that introduces them. However, this again translates the problem
to the correctness of that pointcut expression, how well it captures the intention
of the aspect developer, and how robust it is towards future changes. Neverthe-
less, we can easily imagine implementing model-based pointcuts using AspectJ’s
annotation-property pointcuts, extended with a conceptual model that imposes
additional relations and constraints on the annotations that are used.

Pointcut-delta Analysis Pointcut delta analysis [7] tackles the fragile point-
cut problem by analysing the difference in captured join points, for each pointcut
definition, before and after an evolution. The analysis considers statically deter-
minable pointcut deltas and provides a static approximation of the join points
which are newly captured or which are no longer captured. A developer can in-
spect these deltas and verify potential join point mismatches. He is aided in the
process because the analysis also states which changes led to the delta.

While this approach can help to assess a number of interesting join point
mismatches, accidental misses which result from the addition or modification of
source-code entities that should be captured by a pointcut, but which are not,
are impossible to detect using pointcut-delta analysis. For instance, if we look
back at the logging of actions pointcut from Section 5, we see that the addition
of the save method, which is accidentally missed by the pointcut, would not be
detected by analyzing the sets of captured join points.

Nevertheless, the ideas proposed in pointcut-delta analysis can be used to
create an interesting extension to the model of intensional views. Instead of
comparing the sets of the different join points which are captured by the aspects
before and after an evolution, we could do a delta analysis on the sets of source-
code entities which belong to an intensional view. This way, a developer would
be informed of elements which, for instance, change classification or which no
longer belong to any classification. Using this feedback, the developer can then
(re)classify the source-code entities if needed.

Design Rules and XPI Yet another alternative approach is to explicitly in-
clude the pointcut descriptions in the design of the software and to require



developers to adhere to this design. Sullivan et al. [6] propose such an approach
by interfacing base code and aspect code through design rules. These rules are
documented in interface specifications that base code designers are constrained
to ‘implement’, and that aspect designers are licensed to depend upon. Once the
interfaces are defined (and respected), aspect and base code become symmetri-
cally oblivious to each others’ design decisions. The bare design rules approach
does not provide an explicit means to verify if developers adhere to these rules,
as opposed to the intensional views model presented in this paper. More recently,
the interfaces that are defined by the design rules were implemented as Explicit
Pointcut Interfaces (XPI’s) using AspectJ [21]. Using XPIs, pointcuts are de-
clared globally and some constraints can be verified on these pointcuts using
other pointcuts. Our approach is different in the fact that we keep the pointcut
description in the aspect, leaving more flexibility to the aspect developer. While
XPIs fix all pointcut interfaces beforehand, our conceptual model only fixes a
classification of the structural source code entities. The difference in applicability
and expressiveness of both approaches remains to be investigated.

Conceptual Models Model-based pointcuts alleviate the fragile pointcut prob-
lem by specifying pointcuts in terms of a conceptual model. Although in our
experiment we opted for the formalism of intensional views to define a concep-
tual model, we repeat that our approach is independent of the actual formalism
chosen. Any formalism which allows the definition of a high-level model of the dif-
ferent concepts in a program, and provides means to keep this model consistent
with the program code, can be used as a basis upon which to define model-
based pointcuts. A number of such formalisms are the Concern Manipulation
Environment (CME) [22], Cosmos [23], Reflexion Models [24], Conceptual Mod-
ules [25], . . . . With minimal effort, that is, given an extended pointcut language
that allows to express pointcuts in terms of the concepts in those formalisms,
these formalisms could be adopted to provide different flavours of model-based
pointcuts, in the like of our ‘view-based pointcuts’.

8 Conclusion

The fragile pointcut problem is a serious inhibitor to evolution of aspect-oriented
programs. At the core of this problem is the too tight coupling of pointcut
definitions with the base program’s structure. To solve the problem we propose
the novel technique of model-based pointcuts, which translates the problem to
a more conceptual level where it is easier to solve. This is done, on the one
hand, by decoupling the pointcut definitions from the actual structure of the
base program, and defining them in terms of a conceptual model of the software
instead. On the other hand, the conceptual model classifies program entities and
imposes high-level conceptual constraints over those entities, which renders the
conceptual model more robust towards evolutions of the base program. Potential
evolution conflicts can now be detected at that level, and solving these conflicts
requires changing either the conceptual model or its mapping to the program
code, but leaves the model-based pointcut definitions themselves intact.



As a particularly powerful instantiation of model-based pointcuts, we imple-
mented a formalism of view-based pointcuts, which extends the CARMA aspect
language and combines it with the conceptual model of intensional views. We
illustrated the formalism by defining two simple aspects on SmallWiki, an evolv-
ing Smalltalk application. When defining the aspects in terms of view-based
pointcuts, we managed to discover automatically some instances of the fragile
pointcut problem, that went unnoticed when using a more traditional aspect
implementation.
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