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Abstract

While many commercial and academic design recov-
ery tools have been proposed over the years, assessing
their relevance and comparing them is difficult due to
the lack of a well-defined, comprehensive, and common
framework. In this paper, we introduce such a common
comparative framework. The framework builds upon
our own experience and extends existing comparative
frameworks. We illustrate the comparative framework
on two specific design recovery tools.

1 Introduction

Ever since the first statements on the “software cri-
sis” [14, 15], work has been conducted to support pro-
gram maintenance and to develop program comprehen-
sion tools. These tools strive to help software engi-
neers in understanding ever larger and more complex
pieces of software. In particular, several examples of
design recovery tools can be found in academia and
industry. Design recovery tools recreate design abstrac-
tions from a combination of source code, existing de-
sign documentation, personal experience, and general
knowledge about problem and application domains [4].
Design recovery tools are helpful to software engineers
when comprehending pieces of software, because they
reduce the amount of information with which software
engineers must deal, as they abstract raw source code
to higher-level easier-to-understand constructs.

Existing design recovery tools have very different
characteristics, depending on the software constructs
they reason about, on the extraction and abstraction
techniques they implement, on the output they pro-
duce, and on the users’ knowledge level they assume, to
name but a few concerns. This wide variety of charac-
teristics prevents researchers and practitioners to com-

pare existing design recovery tools effectively and to
distinguish important design issues from technicalities.
Moreover, to the best of our knowledge, there does
not yet exist a comprehensive set of commonly agreed
upon concerns by which to compare and characterise
design recovery tools, despite some previous compara-
tive frameworks [2, 3, 8, 10].

We present a comprehensive comparative framework
for design recovery tools. This framework is the result
of our personal experience with developing design re-
covery tools, of discussions held with other tool devel-
opers, and of reusing existing comparative frameworks.
We believe that such a comparative framework is essen-
tial to highlight commonalities and differences in exist-
ing design recovery tools effectively. Also, a compara-
tive framework is useful for the systematic replication
of experimental study and to allow researchers to put
in perspective their results. Indeed, replication stud-
ies are only interesting if both the programs of which
the designs are recovered as well as the design recovery
tools that are used can be compared. Finally, we hope
that our framework can highlight weaknesses of exist-
ing design recovery tools, and thus suggest interesting
research directions.

In Section 2, we explain the methodology used to
build our comparative framework, discuss four existing
frameworks and introduce two design recovery tools.
In Section 3, we detail our comparative framework, its
concerns and criteria, using the two introduced tools
as examples. In Section 4, we discuss our comparative
framework and state open issues. Finally, in Section 5,
we conclude and sketch future work.

2 Constructing the Framework

We devised and adopted an iterative methodology
to build our comparative framework. We present our
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methodology, which was partly inspired by four exist-
ing comparative frameworks, and we introduce two de-
sign recovery tools that we use to exemplify our com-
parative framework.

2.1 Methodology

The construction of our comparative framework was
initiated by a research question put forward by the
organisers of the 6th Workshop on Object-Oriented
Reengineering, 2005 [5]. During the workshop, trig-
gered by the difficulty to compare presented design re-
covery tools, the organisers emphasised the need for a
comparative framework for design recovery tools. (In-
terestingly, the participants of the 1st STEP Workshop
on Empirical Studies in Reverse Engineering, 2005, in-
dependently highlighted the same need.) Part of the
workshop was dedicated to drafting an initial list of
concerns and criteria.

We adopted, refined, extended and validated this
initial list, formulating each concern and criterion in
more detail. We preferred a descriptive over a goal-
oriented methodology because the purpose of the com-
parative framework is to enable qualitative compar-
isons among design recovery tools, not to rank them.

We followed an iterative and interactive process.
Several iterations over intermediate versions of the
framework were required to provide a framework that
is as well-defined, comprehensive, and common as pos-
sible. During each iteration, we kept only sufficiently
discriminating concerns and criteria.

Although we applied our comparative framework
successfully on ten design recovery tools1, we only
present two tools for lack of space. Nevertheless, we do
not claim to have obtained a complete and final list of
concerns and criteria. We are currently validating our
comparative framework with even more design recov-
ery tools (including commercial ones) to refine further
the presented framework.

2.2 Previous Frameworks

Biggerstaff. In his precursor work [3], Biggerstaff in-
troduces a program understanding landscape, which is
a two dimensional matrix. The dimensions are de-
ductive/algorithmic methods versus plausible reason-
ing/heuristic methods on one axis, and model-driven
methods versus model-free methods on the other axis.
He uses this landscape to compare 9 program compre-
hension tools. It provides an interesting framework,

1Considered design recovery tools and techniques are: LiCoR,
Ptidej, JIAD, JFREEDOM, Refactoring Crawler, Hammock
graphs, Vanessa, web mining, TraceScraper, and FAMOOS.

from which we drew inspiration (in particular for our
Technique concern and its criteria Method and Model,
Section 3.5), although it does not address design recov-
ery tools specifically.

Bellay and Gall. Bellay and Gall [2] compare 4
reverse-engineering tools using 4 functional categories:
analysis, representation, editing/browsing, and gen-
eral capabilities: The analysis category characterises
their parsing capabilities; The representation category
classifies their output representations (textual versus
graphical and usability); The editing/browsing capa-
bility compares their editing and navigation capabili-
ties; Finally, the general capabilities category includes
concerns such as platforms and multi-user support. As
Table 1 summarises, we reused most of these categories
in our own framework.

Bellay and Concerns and criteria in
Gall’s categories our framework (and Sections)

Analysis Technique (3.5) Semantics

Representation Output (3.6) Representation

Navigation Technique (3.5) Automation

Other Tool (3.8) (Various)

Table 1. Mapping between Bellay and Gall’s
comparative framework and ours.

Gannod and Cheng. Gannod and Cheng [10] pro-
pose criteria to compare commercial and research de-
sign recovery tools by their outputs. They introduce a
taxonomy of reverse-engineering techniques, consisting
of 4 categories: plan-based, parsing-based, transforma-
tion techniques, and translation techniques, which they
further decompose in research and commercial tools.
Then, they present 4 semantic dimensions to compare
outputs: semantic distance (how abstract is the output
wrt. source code?), semantic accuracy (how accurate is
the output wrt. source code?), semantic precision (how
precise is the output wrt. source code?), and seman-
tic traceability (how equivalent are the output and the
source code semantically?). We reuse these categories
in the Method criterion of our Technique concern (Sec-
tion 3.5). We use the semantic dimensions as Quality
criteria for our Output concern (Section 3.6).

Ducasse and Tichelaar. Ducasse and Tichelaar [8]
studied the impact of design decisions on the meta-
models and environments of reengineering tools. They
introduce a design space to categorise reengineering
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tools, based on 9 axes: Languages, level of detail, multi-
ple models, grouping, extensibility, incremental loading,
exchange format structure, entity reference, and meta-
meta-model. They focused on implementations details
of the tools and on the meta-modeling techniques used
in the implementations. All but the grouping axis are
subsumed by our Input, Technique, and Output con-
cerns. Also, they related their different axes to form a
design space because choices in one axis typically have
some impacts on other axes. For example, the level of
detail of a tool influences its scalability.

2.3 Design Recovery Tools

Although we validated our comparative framework
on 10 different design recovery tools, in this paper we
exemplify our framework on two tools only. We deliber-
ately choose two design recovery tools that we develop
and extensively use, because we know these tools best.
We chose our own tools for convenience only, but this
choice does not reduce the soundness of the framework.

Ptidej. The Ptidej 2 tool suite (Pattern Trace Iden-
tification, Detection, and Enhancement in Java) is a
set of tools to evaluate and enhance the quality of
object-oriented programs, promoting the use of pat-
terns at the language, design and architectural levels.
The core of Ptidej is the PADL meta-model (Pattern
and Abstract-level Description Language) to describe
code-level models of programs using parsers for AOL
[1], C++, and Java (including AspectJ) source code.

Ptidej provides mechanisms to abstract code-level
models from programs through several analyses. In
particular, it provides an analysis to abstract binary
class relations [11] and thus, to promote code-level
models into idiom-level models. It also supports other
analyses to identify micro-architectures similar to de-
sign motifs (solutions of design patterns [9]) in idiom-
level models, using the dedicated PtidejSolver con-
straint solver.

LiCoR. LiCoR 3 (Library for Code Reasoning) has
been used to encode a variety of idioms and design
patterns and to support program comprehension ac-
tivities, such as: checking whether a piece of source
code matches a pattern; finding all pieces of code that
match a pattern; searching for all occurrences of some
used patterns; detecting violations of and enforcing the
consistent use of a pattern; and, generating code that
complies with a pattern [13]. It is also used as a basic
library for other tools that need to reason on source

2http://www.ptidej.net
3http://prog.vub.ac.be/research/DMP/soul/soul2.html

code. There are versions of LiCoR for the Smalltalk
and Java programming languages.

LiCoR is a logic library written in SOUL [16], a
Prolog-like logic programming language that is used to
conduct a variety of logic meta-programming experi-
ments. SOUL lives in symbiosis with its implemen-
tation language and runtime environment, Smalltalk.
This symbiosis provides the ability to reason about and
to manipulate Smalltalk objects within the logic par-
adigm, e.g., SOUL possesses primitive constructs for
evaluating Smalltalk expressions in logic rules. LiCoR
uses SOUL to reify Smalltalk language constructs and
to perform logic queries on these.

3 Comparative Framework

Concerns Questions on the tool

Context What is the context for its use?

Intent What is its purpose?

Users What is expected from its users?

Input What input does it accept?

Technique What algorithms does it use?

Output What output does it provide?

Implementation How is it implemented?

Tool How mature is it?

Table 2. Concerns of design recovery tools.

Our comparative framework characterises a design
recovery tool according to the Context in which it is
applied, its Intent, its Users, its Input and Output, the
Technique which it implements, its actual Implementa-
tion, and the Tool itself. We associate a question with
each concern to ease the understanding of its rationale,
as summarised in Table 2. The possible answers to
each question are discriminating criteria among design
recovery tools.

We present each concern together with its different
criteria, using a systematic pattern. We introduce con-
cerns with a definition and a question revealing their
rationale. Then, we detail the associated criteria sim-
ilarly. Finally, we briefly illustrate the concern using
Ptidej and LiCoR as examples.

3.1 Context

Definition. “What is the context for the use of the
design recovery tool?” The context of a design recovery
tool imposes external constraints on the tool, such as
the targeted software development methodology, the
users’ settings, the range of uses and the lifespan of
the tool.
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• Lifespan. “Is the tool designed for single or long-
term usage?” Tools may be developed at one point
in time, for a particular design recovery task, or
to be used for an extended period of time.

• Methodology. “To what methodology does the tool
apply?” The methodology, such as clean-room,
waterfall, RUP, or eXtreme Programming (XP),
used to develop and maintain software affects the
tools available to software engineers greatly. For
example, the rapid iterations in XP exclude time-
consuming batch tools, while such tools could be
appropriate when using the waterfall methodology.

• Range of Uses. “What is the range of uses of the
tool?” Is the tool dedicated to a particular pur-
pose or is it a general-purpose tool? This criterion
overlaps with, but differs from, Lifespan because
tools used over an extended period of time may ei-
ther be dedicated to a particular design discovery
task or may be general-purpose tools.

• Settings. “Is the tool targeting a research or indus-
trial setting?” Along with the methodology, the
setting influences possible tools. For example, in
a research setting, unstable tools with advanced
capabilities could be accepted, while in an indus-
trial setting stability is important.

• Universe of Discourse. (UoD) “Does the tool re-
quire access to all possible data?” In some con-
texts, a tool may access all possible data on a pro-
gram to analyse (in-house program, closed-world),
while in others, it may be limited to part of the
data only (reverse-engineering, open-world).

Examples. LiCoR is meant to be used over long pe-
riods of time, for example to check violations of pro-
gramming conventions regularly, although ad-hoc logic
queries can be performed as well. It is a general-
purpose tool that offers to its users the option of per-
forming any kind of logic query over their programs
(and includes a comprehensive library of rules). LiCoR
primarily targets researchers that need to build more
specific tools. Its UoD is open because its logic rules
are customisable to any specific case study on which
it is applied (for example, particular implementation
strategies of patterns or programming conventions).

Ptidej is also developed for use over long periods of
time, for example to ease the piecemeal understanding
of the architecture of large programs, focusing on the
identification of patterns (either at language, design, or
architectural-level). It can be included in any develop-
ment or maintenance methodology but is mainly tar-
geted towards researchers to develop their own analyses

and add-ons. The UoD of Ptidej is also open because it
can analyse subsets of programs, inferring not-provided
(unaccessible) data from provided data.

Context Ptidej LiCoR

Lifespan Long-term

Methodology Any

Range of Uses Pattern-based
analyses

General purpose

Settings Research

UoD Open

3.2 Intent

Definition. “What is the purpose of the design re-
covery tool?” The intent of a design recovery tool puts
in perspective its long- and short-term objectives:

• Long-term Objectives. Long-term objectives are
the goals beyond the tool itself. Design recov-
ery is not a goal in itself but helps in achieving
other, more important goals, such as support for
co-evolution, software improvement or system mi-
gration.

• Short-term Objectives. Short-term objectives are
the concrete goals of a tool, such as problem de-
tection, program comprehension, or design (re)-
documentation.

Intent Ptidej LiCoR

Long-term Promoting quality
through the use of
patterns

Co-evolving
source-code and
design

Short-term Recovering idiom-
and design-level
models

Codifying design
information

Examples. Although the short term objectives of
LiCoR are to codify design information in a logic meta
programming language to support different activities,
its long-term goal is to support co-evolution of source-
code and higher-level designs [6].

The long-term objectives of Ptidej are to promote
the use of patterns and to provide a tool suite to
experiment with patterns, to assess and to improve
the quality of programs designs and architectures. Its
short-term objective is to recover idiom-, design-, and
architectural-level models of programs.

3.3 Users

Definition. “What is expected from the users of the
design recovery tool?” Design recovery tools make im-
plicit and explicit assumptions about users’ experience
and impose on their users certain modes of interaction:
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• Acquaintance. “Does the tool assume that its users
know the analysed piece of software?” Users might
need to know about the application domain, func-
tionalities, physical decomposition, or source code.

• Experience. “Does the user need experience with
the tool to use its full capabilities?” One tool may
be straightforward to apply, while another one
may require important learning efforts.

• Prerequisites. “What prerequisite knowledge
should a user possess?” A tool may assume that
its users possess certain knowledge, e.g., users may
need to be experienced developers, know a partic-
ular modelling or programming language, or have
read the design pattern book [9].

• Targeted User. “What profile does the expected
tool user have?” A tool may assume its users to be
developers, maintainers, managers, or any combi-
nation thereof.

• Type. “Is the tool to be used by software engineers
directly?” A tool may either assume that its users
interact with it directly through its UI or that it
is called indirectly from another tool.

We did not include a criterion on how a user interacts
with the tool as this is discussed in the Data Collection
criterion of the Input concern (Section 3.4) and the
Level of Automation criterion of the Technique concern
(Section 3.5).

User Ptidej LiCoR

Acquaintance Source code Design knowledge

Experience Required

Prerequisites Binary class re-
lations [11], de-
sign patterns

Logic program-
ming, object
oriented design

Targeted User Educated software developer

Type Human/tool Human

Examples. LiCoR users must have knowledge of
logic programming, of design patterns, and of the
LiCoR logic library to reason about the source code
and to codify design information. Targeted users are
(experienced) developers acquainted with the design of
the program on which they want to reason.

Ptidej users must be acquainted with the source
code of the program under analysis. They also must
be familiar with binary-class relations, design patterns,
and the other patterns they want to recover. Ptidej can
be used as a façade for other tools through its extension
and analysis mechanisms.

3.4 Input

Definition. “What input does the design recovery
tool accept?” We decompose this concern in:

• Assumptions. “What are the assumptions on the
input data?” A tool may assume that certain
structural or semantic information exists in the
input implicitly (e.g., patterns) or that the in-
put conforms to some criteria (e.g., “good” object-
oriented style). These assumptions, when not ex-
plicit, hinder the comparison of tools with one an-
other.

• Automation. “Is the collection of data auto-
mated?” The collection of input data can be au-
tomatic (from the start of the tool until obtaining
the results), semi-automatic (interaction from the
user of the tool is required), or manual.

• Data Collection. “Where does the data needed
by the tool come from?” A tool may use data ob-
tained from static analyses, from dynamic analy-
ses, or a combination thereof. We further distin-
guish tools that require certain kinds of data (if
these are missing, the tool cannot work) and tools
that can optionally complement one kind of data
with another (providing the tool with several kinds
of data is likely to produce more accurate results).

• Documentation. “What input, other than the pro-
gram, can the tool take?” A tool may use exist-
ing design documentation like source code com-
ments and annotations, implementation documen-
tation (implementation choices, improvements, to
do lists, bug reports), design and architectural
documentation, and user documentation.

• Model. “What is the underlying meta-model de-
scribing the input?” The level of detail or of matu-
rity of the meta-model is an indicator for the matu-
rity of the tool. Moreover, tools working on similar
meta-models are potentially more inter-operable.
The underlying model could be, for instance, a
Smalltalk parse tree representation or the UML
meta-model.

• Precision. “Can the tool handle imprecisions in
the input?” Imprecisions may be syntactic or se-
mantic inconsistencies in the data, e.g., a source-
code file which cannot be parsed or compiled fully.

• Representation. “How must the input be repre-
sented concretely?” The representation describes
the actual physical embodiment of the input. For
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example, the representation can be a running
Smalltalk image or a set of Java files.

• Type of Data. “What type of data does the tool
need?” In addition to the kind of data that has
been collected (Data Collection), we further dis-
tinguish tools based on the actual type of data
they use.

• Versions. “Can the tool handle multiple versions
of the software simultaneously?” We distinguish
tools that can handle more than one version and
tools that require two or more versions.

Input Ptidej LiCoR

Assumptions Object-oriented programs
with recurring patterns

Automation Semi-automatic

Data Source Hybrid Static

Documentation No

Model PADL meta-
model

Parse-trees rei-
fied as facts

Precision Correct syntax Compilable

Representation PADL model Smalltalk image

Type of Data Program enti-
ties, binary class
relations

Method parse
trees

Versions Multiple Single

Examples. LiCoR reifies method parse-trees and,
thus, requires compilable code. It represents the parse
trees as logic facts. It works interactively on a running
Smalltalk image and changes to the code are reflected
immediately in the logic facts (or even in the image
when code is generated). The user indicates where a
logic query runs (for example, on all the methods of
classes in a certain namespace), and the rest of the col-
lection is automatic. LiCoR reasons about one version
of a system at a time, the version that is available in
the Smalltalk image in which it runs. The source code
must be fairly well structured for LiCoR to be usable
and to provide interesting results through logic queries.

Ptidej assumes that the source code follows some
loose but “good” programming style (e.g., fields must
be private). It builds models of programs described
with the PADL meta-model using parsers, which han-
dles missing data (e.g., they can analyse subsets of
large programs in which certain class definitions are
missing). Models from static data can be enhanced
with dynamic data. It does not use existing docu-
mentation automatically. Ptidej promotes models into
higher-level models through different analyses (e.g., de-
sign pattern identification). It can compare models to
highlight modifications among versions of programs.

3.5 Technique

Definition. “What algorithms does the design recov-
ery tool use?” The technique is the core of the tool and
is a major discriminating concern. We decompose this
concern in:

• Adaptability. “Is the technique adaptable?” A
technique is adaptable if it can adapt fairly eas-
ily to other kinds and types of input to produce
(possibly different) outputs.

• Automation. “Is the tool automated? Is the tool
interactive or can it run in batch mode?” The
level of automation characterises tools by their
required user input. A tool may be fully auto-
matic, may provide intermediary results, or may
require user interaction to direct its work. It may
also require manual interpretation of the produced
results. The “editing/browsing” category of Bel-
lay and Gall [2] is related to this criterion: tools
may offer or require browsers for users to guide the
tools.

• Complexity. “What is the complexity of the tech-
nique?” The computational complexity evaluates
the theoretical performance of the technique. The
complexity could be expressed with the big O no-
tation or with a Likert scale.

• Determinism. “Is the technique deterministic?” A
technique is deterministic if, being applied many
times on a same input, it produces a same output.

• Explicative. “Does the tool provide explanations
on the produced output?” A tool may explain how
it computed its output from the given input.

• Fuzzyness. “Can the technique return approxi-
mate results?” A technique can return approxi-
mate results or only complete results (and, thus,
no results at all if it is too strict wrt. to the input).

• Granularity. “What is the level of granularity of
the technique?” A tool may reason about classes
and packages, about methods and method depen-
dencies, or about statements. Granularity is re-
lated to the input, but not necessarily identical.
For example, the input of the tool could be exe-
cution traces from which only the actual names of
the messages are used.

• Incremental. “How incremental is the technique?”
A technique is incremental if, after analysing parts
of a program, analysis of additional entities takes
advantage of previous analyses and does not re-
quire a complete (re-)analysis.
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• Iterative. “Is the technique iterative?” A tech-
nique may be able to refine its results through
successive iterations with adjusted inputs and pa-
rameters.

• Language Independence. “Is the technique lan-
guage independent?” A technique is ‘language in-
dependent’ if its computation processes do not de-
pend theoretically on specificities of the program-
ming language from which the input is extracted.

• Maturity. “Is the technique mature?” A technique
is ‘mature’ if it is well-known in the domain of
software engineering and/or has been applied to
related domains successfully. A related question
is whether the technique is well-documented.

• Method. “What algorithm does the tool
use?” Biggerstaff [3] distinguishes between de-
ductive/algorithmic methods and plausible reason-
ing/heuristic methods. He further distinguishes
model-free (or bottom-up) from model-driven (or
top-down) techniques. Gannod and Cheng [10]
distinguish plan-based, parsing-based, transforma-
tion techniques, and translation techniques.

• Model. “On which model does the tool operate?”
This criterion concerns the internal computational
model of the tool. For example, in the case of
logic inferencing, the model is composed of Horn
clauses, while in the case of constraint program-
ming, the model is a constraint network.

• Scalability. “How scalable is the technique?” A
technique is scalable if it can deal with varying
amounts of data as its input. What is the largest
system that has been or can be handled by the
technique in a reasonable amount of time?

• Semantics. “What is the semantic level of the data
about which the tool reasons?” This criterion cor-
responds to Bellay and Gall’s analysis category [2].
We distinguish between:

– Lexical. Lightweight reasoning about the
program at a lexical level: sequences of char-
acters, regular expressions. . .

– Structural. Reasoning on the structure of the
input, e.g., parse trees.

– Semantical. Deep reasoning on the semantics
of the input, e.g., type information.

Technique Ptidej LiCoR

Adaptability Yes

Automation Semi-automatic

Complexity High

Determinism Yes

Explicative Yes No

Fuzzyness Yes No

Granularity Method depen-
dencies

Methods and
statements

Incremental Yes No

Iterative Yes No

Language In-
dependence

Yes

Maturity Mature

Method Explanation-
based constraint-
programming
(algotithmic /
model-driven /
heuristics)

Logic inferenc-
ing (deductive /
model-driven /
heuristics)

Model Constraint net-
works

Horn clauses

Scalability High Medium

Semantics Semantical Structural

Examples. The method used by LiCoR is partly de-
ductive (logic inferencing) and partly heuristic, because
the reasoning about design patterns is partly imple-
mented through heuristics. LiCoR does not return ap-
proximative results: logic queries either succeed or fail,
approximations must be embedded in the queries. De-
sign recovery with LiCoR is model-driven because it
requires models of the patterns to recover or to verify.
LiCoR is very adaptable. For example, we have written
other logic libraries in LiCoR that reify dynamic data
(execution trace information) and that interface with
the FAMIX meta-model [7] instead of parse trees. The
scalability of LiCoR depends on the logic queries. How-
ever, quite a large amount of memory is used because
LiCoR reifies source code completely, which prohibits
the analysis of large programs at one time.

Ptidej is explicative, fuzzy, and scalable partly be-
cause it uses explanation-based constraint program-
ming [12] to perform design pattern identification.
Explanation-based constraint programming provides
explanations on the design pattern found and allows
relaxing constraints semi-automatically to provide ap-
proximate occurrences. Also, its meta-model has
been designed specifically to describe large programs.
Ptidej also includes an efficient algorithm for design
pattern identification based on bit-vectors (from bio-
informatics). It is incremental because program enti-
ties can be added to a model at will. It is iterative
because analyses produce models that can be further
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analysed. It is model-driven like LiCoR because it re-
quires models of the patterns to recover.

3.6 Output

Definition. “What output does the design recov-
ery tool provide?” The output corresponds to all by-
products obtained by the user and generated by the
tool when applied on a given input. We decompose
this concern in:

• Human-readable. The output might be human-
readable or might require extra processing for vi-
sual display or interpretation. For example, a
manual interpretation of the output may be re-
quired if given as a set of numeric data or Gallois
lattices.

• Level of Detail. This criterion characterises the
information provided as output qualitatively, for
example, it distinguishes between tools answering
“a Visitor is present” with “Class X, Y, Z, method
M, N, O, and . . . form a Visitor”.

• Model. This criterion is similar to the Model cri-
terion of the Input concern in Section 3.4.

• Quality. This criterion assesses the quality of the
produced output and can be decomposed further
in detailed quality characteristics like those pro-
posed by Gannod and Cheng [10]: semantic dis-
tance, semantic accuracy, semantic precision, and
semantic traceability.

• Representation. This criterion corresponds to Bel-
lay and Gall’s [2] representation category and dif-
ferentiates possible output encoding formats. An
important issue here is the usability of the repre-
sentation by another tool.

• Type of Data. The type of data highlights the
expected outcome of applying the tools: names
of program entities, idioms, hooks and template
methods, meta-patterns, design patterns. . .

Output Ptidej LiCoR

Human-readable No Yes

Level of Detail Class Depends on
query

Model PADL Frames of bind-
ings

Quality High High

Representation Ini files Bindings of pro-
gram entities to
logic variables

Type of Data Program entities and patterns

Examples. LiCoR queries may return discovered
patterns and program entities playing a role in those
patterns, as bindings to the logic variables of those
queries. These results can be understood immediately
by a user or used as input for further queries. How
detailed is the result depends on the actual query (i.e.,
on how many parameters it has).

The output of Ptidej is not human-readable because
it requires Ptidej’s user-interface to display identified
patterns for interpretation. It is described with the
PADL meta-model and encoded as ini files, which can
be saved and reused later for comparisons as programs
evolve. Pattern identification focuses on the roles of
classes in patterns.

3.7 Implementation

Definition. “How is the design recovery tool imple-
mented?” We decompose this concern in:

• Dependencies. “Are there any implementation de-
pendencies?” This criterion evaluates dependen-
cies on libraries needed by the implementation.

• Language. “What is the programming language
used in the implementation?” This criterion is
straightforward to answer for most tools.

• Maintained. “Is the tool maintained?” A tool is
more interesting for other researchers and practi-
tioners if it is being actively maintained.

• Platforms. “What runtime platforms does the im-
plementation support?” The range of platforms on
which the implementation runs is important be-
cause implementation choices may limit the num-
ber of possible platforms.

• Quality. “What are the quality characteristics of
the implementation?” As for any program, the
implementation must possess recognised quality
characteristics, such as flexibility, extensibility,
readability, . . .

Implementation Ptidej LiCoR

Dependencies None SmaCC

Language Java Smalltalk

Maintained Yes

Platforms Sun J2SE VisualWorks

Quality High

Examples. LiCoR has a high-quality implementa-
tion in VisualWorks Smalltalk and is still maintained
actively. It relies on the SmaCC compiler framework.

Ptidej does not depend on any particular library. It
is implemented in Java and is actively maintained and
extended, for example to evaluate quality of aspects.
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3.8 Tool

Definition. “How mature is the design recovery
tool?” Maturity distinguishes simple handy scripts
from industrial-strength tools and is highlighted by sev-
eral criteria. Though some of these criteria seem over-
lapping with criteria of the Technique concern, they are
not identical, e.g., a technique may be language inde-
pendent but its implementing tool can be restricted to
some languages, for ease of development. This concern
somewhat corresponds to Bellay and Gall’s category
Other capabilities [2]. We distinguish:

• Documentation. “Is the tool documented?” A tool
can be associated with a user-directed documenta-
tion or scientific articles describing the technique
and its implementation.

• Kind of License. “What license applies to the
tool?” Licenses are an important factor in the
choice of a tool because some licenses may con-
strain the use of the tools in research or industrial
settings.

• Language Independence. “Is the tool language
independent?” A tool may be language depen-
dent, disregarding the language independence of
the technique used.

• Multi-user support. “Does the tool support collab-
orations?” A tool may support many collaborative
users simultaneously or may only support one at
a time.

• Quality. “What are the quality characteristics of
the tool?” As for its implementation, a tool must
possess qualities intrinsic of software engineering,
such as usability, portability. . .

• User-base. “Does the tool have a user-base?” A
tool with a user-base (users outside of its develop-
ment setting) is more interesting because it poten-
tially offers a community to interact with, and to
obtain feedback from.

Tool Ptidej LiCoR

Documentation Articles, source code

Kind of License GPL LGPL

Language Inde-
pendence

AOL, C++,
Java (includ-
ing AspectJ)

Java,
Smalltalk

Multi-user Single user only

Quality High

User base Other universities

Examples. LiCoR is distributed as a Visualworks
Smalltalk application under the LPGL license and has
been used and documented by researchers in several
universities. In addition to reasoning about Smalltalk,
an extension for Java is available.

Ptidej is available under GPL. It provides parsers for
several programming languages and is actively used in
several universities around the world. Its documenta-
tion is mainly composed of research articles and tech-
nical reports.

4 Discussion

We believe that our comparative framework is well-
defined, comprehensive, and common because it has
been built from clearly defined concerns and criteria,
because those concerns and criteria were defined and
refined iteratively relying on previous work and on the
community’s insights, and because it allowed compar-
ing ten different and independently developed design
recovery tools (of which two were presented).

However, further validation is required to verify
whether our framework enables an objective compar-
ison of tools. Such a validation may lead to refine-
ments of and extensions to the framework, but may
also lead to remove criteria that are not sufficiently dis-
criminating. Once a thorough comparison of existing
tools has been made using the proposed comparative
framework, we will attempt at proposing a fine-grained
taxonomy of design-recovery tools, characterising sim-
ilar tools and highlighting holes in the design space of
existing tools.

We faced many difficult choices regarding the con-
cerns and criteria while building the comparative
framework. We tried to achieve a delicate balance be-
tween having sufficient criteria to discriminate among
tools, and avoiding to overfeature the framework. We
do believe that we have achieved our goal of offering a
comparative framework which provides a solid basis on
which to build further with the help of the community,
though some of our choices could be further discussed.

5 Conclusion and Future Work

Many design recovery tools exist in industry and
academia. Although comparing these tools is essen-
tial to understand their differences, to ease replication
studies, and to discover what tools are lacking, such a
comparison is difficult because there is no well-defined,
comprehensive, and common comparative framework.
We developed such a comparative framework and il-
lustrated it on two design recovery tools: Ptidej and
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LiCoR. Our comparative framework comprises eight
concerns, which where further decomposed into fifty-
three criteria and which we applied on ten design recov-
ery tools successfully. Due to space limitations, we were
not able to include a complete comparison and classi-
fication of existing and generally known design recov-
ery tools for object-oriented programming languages as
well as (possibly) for other paradigms. Moreover, for
our framework to be actually usable, it should include
tools, such as questionnaires, checklists, and so on, sup-
porting its users during the task of evaluation. An
empirical validation to assess the quality of the frame-
work (usability, completeness. . . ) must also be per-
formed. Finally, the framework should be compared
against other existing framework thoroughly, such as
the ISO/IEC 14 102. This will be the subject of a
forthcoming survey paper for which we hope to receive
feedback from developers of design recovery tools in the
community as a general and concerted effort to provide
a comprehensive picture of the current state of the art.
Also, we will investigate the construction of a design
space similar to Ducasse and Tichelaar’s for our larger
sets of concerns and criteria.
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