
A Qualitative Comparison of Three Aspect Mining Techniques

M. Ceccato(1), M. Marin(2), K. Mens(3), L. Moonen(2,4), P. Tonella(1), T. Tourẃe(4)

(1) ITC-irst, Trento, Italy (2) Delft University, The Netherlands
(3) Universit́e catholique de Louvain, Belgium (4) CWI, The Netherlands

ceccato@itc.it, a.m.marin@ewi.tudelft.nl, kim.mens@info.ucl.ac.be,
leon.moonen@computer.org, tonella@itc.it, tom.tourwe@cwi.nl

Abstract

The fact that crosscutting concerns (aspects) cannot be well
modularized in object oriented software is an impediment to
program comprehension: the implementation of a concern is
typically scattered over many locations and tangled with the
implementation of other concerns, resulting in a system that
is hard to explore and understand.Aspect miningaims to
identify crosscutting concerns in a system, thereby improving
the system’s comprehensibility and enabling migration of ex-
isting (object-oriented) programs to aspect-oriented ones. In
this paper, we compare threeaspect mining techniquesthat
were developed independently by different research teams:
fan-in analysis, identifier analysisanddynamic analysis. We
apply each technique to the same case (JHotDraw) and mu-
tually compare the individual results of each technique based
on the discovered aspects and on the level of detail and qual-
ity of those aspects. Strengths, weaknesses and underlying
assumptions of each technique are discussed, as well as their
complementarity. We conclude with a discussion of possible
ways to combine the techniques in order to achieve a better
overall aspect-mining technique.
Keywords:crosscutting concerns, aspect-oriented program-
ming, aspect mining, fan-in analysis, concept analysis.

1. Introduction

The tyranny of the dominant decomposition [12] states that
no matter how well a system is decomposed into modular
units like functions and classes, some functionality will al-
ways cut across that modularity. Some well-known examples
of thesecrosscutting concernsinclude persistence, session
management, logging and error handling.

From a program comprehension point of view, crosscut-
ting concerns are a burden for two reasons. First of all, dis-
covering or understanding the implementation of a specific
concern is difficult, as the concern is not localized in one
single module butscatteredover many different modules.
Secondly, understanding the implementation of the modules

themselves becomes more difficult, since the code of the
different concerns istangledwith the main functionality of
those modules.

Aspect miningtools try to identify such concerns semi-
automatically. The development of techniques and tools for
the identification of concern code is an absolute necessity
given the size and complexity of current-day software sys-
tems. These tools allow developers to employ a bottom-up
comprehension strategy by helping them to divide a software
system in conceptually coherent pieces (concerns), which
they can study and understand in isolation, without wor-
rying about the other code (i.e., a divide-and-conquer ap-
proach) [2]. Moreover, aspect mining (eventually) allows
developers to refactor the system into an aspect-oriented one,
where some or all crosscutting concerns are cleanly captured
inside so-calledaspects. Aspect mining is thus an important
prerequisite step for aspect refactoring, but is also valuable
as a software exploration technique by itself [10].

In this paper, we compare three aspect mining techniques
that were developed independently: fan-in analysis [8], iden-
tifier analysis [9, 15] and dynamic analysis [14]. We dis-
cuss the strengths, weaknesses and underlying assumptions
of each of them. Our goal is not to decide which technique
is ‘best’ at identifying relevant aspects, because it is hard
(if not impossible) to define the optimal modularization into
classes and aspects for a given system. Different design de-
cisions on what is an aspect and what is part of the principal
decomposition may be equally good, thus it is hard to come
out with a commonly agreed set ofrelevantaspects. Rather,
we aim at finding out how the independent techniques com-
plement each other and can be combined so as to minimize
their weaknesses and maximize their strengths. The lack of
a clearly definable benchmark, to be used as the reference
for comparison, prevented us from conducting aquantitative
study and constrained us to consider a set ofqualitativecom-
parison criteria.

Our contributions can be summarized as follows:

• We explain what the three aspect mining techniques are



and are not capable of and discuss how they tackle com-
prehension issues such as code scattering and tangling;

• We present a detailed comparison of the different tech-
niques and discuss how they can be combined in order
to achieve better results. Such information is also rel-
evant to other researchers working on aspect mining to
get a better understanding of how their individual tech-
niques compare to and could be combined with ours;

• The results of applying the techniques on a com-
mon benchmark application, JHotDraw 5.4b, document
many of the concerns present in that application. This is
of particular interest to JHotDraw developers and users
since it helps them to understand conceptually coherent
parts of the system in isolation. In addition, these re-
sults are of interest to other aspect mining researchers
since JHotDraw has been proposed as common bench-
mark for aspect mining [8].

The remainder of this paper is structured as follows: In
Section 2 we introduce the necessary background concepts
to understand the three aspect mining techniques that are
explained in Section 3, which is followed by a discussion
of their individual results in Section 4. Next, we compare
the benefits and drawbacks of the techniques by interpret-
ing their results in Section 5. Based on that comparison, we
present a number of ways to combine the techniques so as to
obtain a better overall aspect mining technique in Section 6.
We conclude our paper in Section 7. For an overview of re-
lated work concerning aspect mining, we refer to the papers
discussing the individual techniques [2, 8, 9, 14, 15].

2. Background concepts

2.1. Fan-in

The fan-in metric, as defined by Henderson-Sellers, counts
the number of locations from which control is passed into a
module [7]. In the context of object-orientation, the module-
type to which this metric is applied is the method. We define
the fan-in of a methodM as the number of distinct method
bodies that can invokeM . Because of polymorphism, one
call site can affect the fan-in of several methods: a call to
methodM contributes to the fan-in ofM , but also to all
methods refined byM , as well asto all methods that are
refiningM [8].

This interpretation of the fan-in metric in the context of
polymorphism corresponds to the standard behavior of the
search for referencesfeature of the Eclipse IDE, which pro-
vides an easy way of implementing the metric.

2.2. Concept analysis

Formal concept analysis (FCA) [5] is a branch of lattice the-
ory that can be used to identify meaningful groupings ofel-

ementsthat have commonproperties.1 FCA takes as input a
so-calledcontext, which consists of a (potentially large, but
finite) set ofelementsand a set ofpropertieson those ele-
ments. Starting from such a context, FCA determinesmaxi-
malgroups of elements and properties, calledconcepts, such
that each element of the group shares the properties, every
property of the group holds for all of its elements, no other el-
ement outside the group has those same properties, nor does
any property outside the group hold for all elements in the
group.

The containment relationship between these groups of el-
ements and properties defines a partial order over the set of
all concepts, which can be shown to be a lattice [5]. The lat-
tice’s bottom concept contains those elements that have all
properties. The top concept contains those properties that
hold for all elements. A concept is a sub-concept of another
one, its super-concept, if its properties are a superset of the
super-concept’s properties and its elements are a subset of
the super-concept’s elements. Intuitively, the sub-concept
relationship can be interpreted as a specialization of more
general notions: the lower we are in the lattice the more spe-
cific the concepts become (more properties to satisfy and less
elements that satisfy them).

The nodes (concepts) of a concept lattice are typically
labeled with their full set of associated properties and ele-
ments. Withsparse labelingof the lattice, however, we label
a node with an element only if it is the most specific (i.e.,
lowest) node having that element, and we label a node with
a property only if it is the most general (i.e., highest) node
having that property. This labeling scheme is much more
compact without loss of information.

3. The three aspect mining techniques

In this section, we give a brief overview of each of the three
techniques, developed independently by different research
groups, that support the semi-automated discovery of poten-
tial aspects in the source code of a software system that was
written in a non aspect-oriented way.

3.1. Fan-in analysis

Based on earlier studies of crosscutting concerns described
in literature, we observed that crosscutting functionality can
occur at different levels of modularity. Classes, for instance,
can assimilate new concerns by implementing multiple in-
terfaces or by implementing new methods specific to super-
imposed roles. At the method level, crosscutting in many
cases resides in calls to methods that address a different con-
cern than the core logic of the caller. Typical examples in-
clude logging, tracing, pre- and post-condition checks, and

1We use the termselementandproperty instead ofobjectandattribute
used in traditional FCA literature, because these latter terms have a very
specific meaning in OO software development.



exception handling. It is exactly this type of crosscutting
that we capture with fan-in analysis.

When we study the mechanics of AOP, we see that it em-
ploys the so-calledadviceconstruct to eliminate crosscutting
at the method level. This construct is used to acquire control
of program execution and add crosscutting functionality to
methods without an explicit invocation from that method. As
a result, it isolates the crosscutting nature of these concerns
in a separate module.

In our approach, we reverse this line of reasoning and
employ fan-in analysis in the system’s source code to find
symptoms of code scattering. In this case, concerns present
themselves as a number of distributed calls to a method im-
plementing a crosscutting functionality and theamountof
calls (fan-in) is a good measure for the importance and scat-
tering of the discovered concern.

To perform the fan-in analysis, we implemented the met-
ric as a plug-in for the Eclipse platform, and integrated it into
an iterative process that consists of three steps:

1. Automatic computation of the fan-in metric for all
methods in the investigated system.

2. Filtering of the results from the previous step by

• eliminating all methods with fan-in values below
a chosen threshold (in the experiment, we used a
threshold of 10);

• eliminating the accessor methods (methods whose
signature matches aget*/set* pattern and whose
implementation only returns or sets a reference);

• eliminating utility methods, liketoString() and
collection manipulation methods, from the re-
maining subset.

3. (Largely manual) analysis of the methods in the result-
ing, filtered set by exploring the callers and call sites,
the naming conventions used, the implementation and
the comments in the source code.

The last step is partly supported by the implemented plug-
in through reports of the caller lists for each investigated
method. The callers can be organized per package or class,
thus facilitating the inspection of the calling context.

3.2. Identifier analysis

In the absence of designated language constructs for aspects,
naming conventions are the primary means for programmers
to associate related but distant program entities. This is espe-
cially the case for object-oriented programming, where poly-
morphism allows methods belonging to different classes to
have the same signature, where it is good practice to use
intention-revealing names [1], and where design and other
programming patterns provide a common vocabulary known
by many programmers.

Identifier analysisrelies on this assumption and tries
to identify potential aspects and crosscutting concerns by
grouping program entities with similar names. More specif-
ically, it applies FCA with as elements all classes and meth-
ods in the analyzed program (except those that generate too
much noise in the results, like test classes and accessor meth-
ods), and as properties the identifiers associated with those
classes and methods.

The identifiers associated to a method or class are com-
puted by splitting up its name based on where capitals appear
in it. For example, a method namedcreateUndoActivity

yields three identifierscreate , undo andactivity . In ad-
dition, we apply the Porter stemming algorithm [11] to make
sure that identifiers with the same root form (likeundo and
undoable ) are mapped to one single representative identi-
fier or ‘stem’. It is these stems that are used as properties for
the concept analysis.

The FCA algorithm then groups entities with the same
identifiers. When such a group contains a certain minimum
number of elements (in the experiment, a threshold of 4 was
used) the group is considered a seed for a potential aspect.
The only remaining but most difficult task is that of decid-
ing manually whether a concept identifies a valid aspect. To
help the developer in this last task, ourDelfSTofsource-code
mining tool presents the concepts in such a way that they can
be browsed easily by a software engineer and so that he or
she can readily access the code of the classes and methods
belonging to a discovered concept.

3.3. Dynamic analysis

Formal concept analysis has been used to locate ‘features’ in
procedural programs [3]. In that work, the goal was to iden-
tify the computational units (procedures) that specifically im-
plement a feature (i.e., requirement) of interest. Execution
traces obtained by running the program under given scenar-
ios provided the input data (dynamic analysis).

In a similar way, dynamic analysis can be used to locate
aspects in program code [14] according to the following pro-
cedure. Execution traces are obtained by running an instru-
mented version of the program under analysis, for a set of
scenarios (use-cases). The relationship between execution
traces and executed computational units (methods) is sub-
jected to concept analysis. The execution traces associated
with the use-cases are the elements of the concept analy-
sis context, while the executed methods are the properties.
In the resulting concept lattice (with ‘sparse labeling’), the
use-case specificconcepts are those labeled by at least one
trace for some use-case (i.e. the concept contains at least
one specific property) while the concepts with zero or more
properties as labels are regarded asgenericconcepts. Thus,
use-case specific concepts are a subset of the generic ones.

Both use-case specific concepts and generic concepts
carry information potentially useful for aspect mining, since



Concern type # Seed’s description

Consistent behavior 4 Methods implementing the consistent behavior shared by different callers, such as checking and
refreshing figures/views that have been affected by the execution of a command.

Contract enforcement 4 Method implementing a contract that needs to be enforced, such as checking the reference to
the editor’s active view before executing a command.

Undo 1 Methods checking whether a command is undoable/redoable and theundomethod in the super-
class, which is invoked from the overriding methods in subclasses.

Persistence and resurrection1 Methods implementing functionality common to persistent elements, such as read/write oper-
ations for primitive types wrappers (e.g., Double, Integer, etc.) which are referenced by the
scattered implementations of persistence/resurrection.

Command design pattern 1 Theexecutemethod in the command classes and command constructors.
Observer design pattern 1 The observers’ manipulation methods andnotifymethods in classes acting as subject.
Composite design pattern 2 The composite’s methods for manipulating child components, such as adding a new child.
Decorator design pattern 1 Methods in the decorator that pass the calls on to the decorated components.
Adapter design pattern 1 Methods that manipulate the reference from the adapter(Handle) to the adaptee(Figure).

Table 1. Summary of the results of the fan-in analysis experiment.

they group specific methods that are always executed under
the same scenarios. When the methods that label one such
concept (using the ‘sparse labeling’) crosscut the principal
decomposition, a candidate aspect is determined. More
specifically, a concept is a candidate aspect if: (1)scatter-
ing: more than one class contributes to the functionality as-
sociated with the given concept (i.e., the methods labeling
the concept belong to more than one class); (2)tangling: the
class itself addresses more than one concern (i.e., appears in
more than one use-case specific concept).

The first condition alone is typically not sufficient to iden-
tify crosscutting concerns, since it is possible that a given
functionality is allocated to several modularized units with-
out being tangled with other functionalities. In fact, it might
be decomposed into sub-functionalities, each assigned to a
distinct module. It is only when the modules specifically in-
volved in a functionality contribute to other functionalities
as well that crosscutting is detected, hinting for a candidate
aspect.

3.4. Tangling and scattering

As the two main indicators of aspects in program code are
scatteringand tangling, we briefly discuss to what extent
each of the techniques described look for these indicators
when mining for aspects.

Both fan-in analysis and identifier analysis focus on de-
tecting scattering, albeit in different ways: fan-in analysis
identifies potential aspects by looking for scattered calls,
while identifier analysis looks for scattering of similar iden-
tifiers. They do not explicitly consider tangling, however.
Dynamic analysis, on the other hand, tries to find code that
is tangled as well as scattered : it looks for use-case spe-
cific methods that are scattered over different classes, and
in addition requires that there is some tangling of multiple
functionalities in the involved classes.

Nevertheless, despite the fact that they do not explicitly
address tangling, fan-in analysis and identifier analysis are
able to detect quite some interesting aspects and crosscut-
ting concerns. One reason for this is that not all concerns are
necessarily tangled. A second reason is that the techniques
do consider tangling implicitly. For example, when a sin-
gle method calls many different other methods it contributes
to the fan-in value of many different other methods. The
individual method itself thus addresses different concerns,
which can be considered as tangling. Similarly, the fact that
a method addresses different concerns is often reflected in
the identifiers chosen for that method.

Although both techniques could be extended to consider
tangling more explicitly, in Section 6, we discuss rather how
a combination of the different techniques might lead to an
aspect mining technique that performs even better.

4. Results of the aspect mining

In this section, we present the results of applying each tech-
nique to version 5.4b1 of JHotDraw, a Java program with
approximately 18,000 non-commented lines of code and
around 2800 methods. JHotDraw is a framework for draw-
ing structured 2D graphics and was originally developed as
an exercise to illustrate good use of object-oriented design
patterns [4] in a Java program. These particularities recom-
mend it as a well-designed case study, a prerequisite for con-
sidering improvements through aspect-oriented techniques.
Furthermore, it also shows that modularization limitations
are present in even well-designed (legacy) systems.

4.1. The fan-in analysis experiment

As described in Subsection 3.1, fan-in analysis first performs
a number of successive steps to filter the methods in the an-
alyzed system. The threshold-based filtering, which selects



Crosscutting concern Concept(s) #elements Some elements

Observer change(d) / check / 67 / 14 / figureChanged(e) / checkDamage() /
listener / release 65 / 12 createDesktopListener() / . . .

Undo undo(able) / redo(able) 53 / 14 createUndoActivity() / redo()
Visitor visit 12 visit(FigureVisitor)
Persistence file / storable / 15 / 5 / registerFileFilters(c) / readStorable() /

load / register 8 / 7 loadRegisteredImages

Drawing figures draw 112 draw(g)
Moving figures move 36 moveBy(x,y), moveSelection(dx,dy)

Iterating over collections iterator 5 iterator(), listIterator(), . . .

Table 2. Selection of results of the identifier analysis experiment.

methods with high fan-in values, kept around 7% of the to-
tal number of methods. The filters for accessors and utility
methods eliminated around half of the remaining methods.
In the remaining subset, more than half of the methods (52%)
were categorized asaspect seeds: methods that by the struc-
ture of the calls and the call sites strongly connote a cross-
cutting concern and thus offer the core elements to further
explore and understand the whole extent of the concern’s im-
plementation. This seed/non-seed categorization was largely
based on manual analysis.

Table 1 gives an overview of the types of crosscutting con-
cerns that were identified and the seeds that led to their iden-
tification. Several of these concern types, such asconsis-
tent behavioror contract enforcement[13], have more than
one instance in JHotDraw; that is, multiple unrelated (cross-
cutting) concerns exist that conform to the same general de-
scription. For example, one instance ofcontract enforcement
checks a priori conditions to a command’s execution, while
another instance verifies common requirements for activat-
ing drawing tools. The number of different instances that
were detected is indicated in the# column.

We distinguish three situations in which the fan-in metric
can be associated with the crosscutting structure of a concern
implementation: (also indicated in Table 1).

1. The crosscutting functionality is implemented through
a method and the crosscutting behavior resides in the
explicit calls to this method. Examples in this category
includeconsistent behaviorandcontract enforcement.

2. The implementation of the crosscutting concern is scat-
tered throughout the system, but makes use of a com-
mon functionality. The crosscutting resides in the call
sites, and can be detected by looking at the similari-
ties between the calling contexts and/or the callers. Ex-
amples of concerns in this category arepersistenceand
undo[8].

3. The methods reported by the fan-in analysis are part of
the roles superimposed to classes that participate in the
implementation of a design pattern. Many of these roles

have specific methods associated to them: thesubject
role in an Observer design pattern is responsible to no-
tify and manage the observer objects, while thecompos-
ite role defines specific methods for manipulating child
components. In general, establishing a relation between
these seed-methods and the complete concern to which
they appertain might require a better familiarity of the
human analyzer with the code being explored, than for
the previous two categories. However, many of these
patterns are well-known and have a clear defined struc-
ture, which eases their recognition [6].

For more details regarding fan-in analysis and a complete
discussion of the JHotDraw results, we refer to [8].

4.2. The identifier analysis experiment

Applying the identifier analysis technique of Subsection 3.2
on JHotDraw yielded 230 concepts and took about 31 sec-
onds when using a threshold of 4 for the minimum number
of elements in a concept. With a threshold of 10, the number
of concepts produced was significantly less: only 100 con-
cepts remained after filtering, for a similar execution time.2

In both cases, 2193 elements and 507 properties were con-
sidered. It is a good sign that the number of properties is
significantly smaller than the total number of elements con-
sidered, as it implies that there is quite some overlap in the
identifiers of the different source-code entities, which was
one of our premisses.

Table 2 presents some of the candidate aspects and
crosscutting concerns discovered by manually analyzing the
classes and methods belonging to the extent of the concepts
produced by the FCA algorithm. The first column names
the concern, the second column shows the identifiers shared
by the elements belonging to the concept(s) corresponding
to that concern. When multiple concepts (identifiers) corre-
spond to one single concern, they are separated by a ‘/ ’. The

2Whereas the threshold of 4 was chosen arbitrarily, the threshold of 10
was determined experimentally: below that threshold the amount of con-
cepts that were regarded as noise was significantly higher than ebove the
threshold.



CH.ifa.draw.figures:

EllipseFigure.basicMoveBy(int,int)

PolyLineFigure.basicMoveBy(int,int)

RectangleFigure.basicMoveBy(int,int)

RoundRectangleFigure.basicMoveBy(int,int)

TextFigure.moveBy(int,int)

CH.ifa.draw.standard:

AbstractFigure.moveBy(int,int)

DecoratorFigure.moveBy(int,int)

Figure 1. Specific methods corresponding to
the discovered aspect Move figure.

third column shows the size of the extent for each concept.
Finally, for illustration purposes, the fourth column shows
some program entities appearing in the extent of the discov-
ered concepts.

We retained 41 crosscutting concerns out of 230 concepts,
when we used a threshold of 4 for the minimum number of
elements in a concept. We categorized these discovered
concerns in three different categories. (1) Some of these
concerns looked like aspects in the more traditional sense
(e.g.,observer, undoandpersistence). (2) Many other con-
cerns seemed to represent a crosscutting functionality that
was part of the business logic (e.g.,drawing figures, moving
figures). The distinction between these two first categories
is rather subjective, however. (3) We also discovered three
Java-specific concerns (e.g.,iterating over collections) that
are difficult to factor out into an aspect because they rely on
or extend specific Java code libraries.

4.3. The Dynamic Analysis experiment

The dynamic analysis technique of Subsection 3.3 is sup-
ported by theDynamoaspect mining tool3. The first step
required byDynamois the definition of a set of use-cases.
To accomplish this task we used the documentation associ-
ated with the main functionalities of JHotDraw and defined
a use-case for each functionality described in the documen-
tation. For example, we created a use-case to draw a rect-
angle, one to draw a line using the scribble tool, one to cre-
ate a connector between two existing figures, one to attach
a URL to a graphical element, and so on. In total we ob-
tained 27 use-cases. When executed they exercised 1262
methods belonging to JHotDraw classes, so that the initial
context for the concept analysis algorithm contained 27 el-
ements and 1262 properties. The resulting concept lattice
contained 1514 nodes.

Of all the concepts in the lattice, based on the crosscutting
conditions of scattering and tangling, 11 were classified as
use-case specific aspects, while 56 (including those 11) were
considered as generic aspects. We then revisited both the

3Available fromhttp://star.itc.it/dynamo/ under GPL.

Aspect Concepts Methods

Undo 2 36
Bring to front 1 3
Send to back 1 3
Connect text 1 18

Persistence 1 30
Manage handles 4 60

Move figure 1 7
Command executability 1 25
Connect figures 1 55
Figure observer 4 11
Add text 1 26
Add URL to figure 1 10
Manage figures outside drawing 1 2
Get attribute 1 2
Set attribute 1 2
Manage view rectangle 1 2
Visitor 1 6

Table 4. Summary of the results of the dy-
namic analysis experiment.

use-case specific and generic concepts manually, in order to
determine which ones could be regarded as plausible aspects
and which ones should be considered false positives. The
criterion we followed in this assessment was the following:
a concept satisfying the crosscutting conditions is considered
a candidate aspect if

• it can be associated to a single, well-identified function-
ality (this usually accounts for the possibility to give it
a short description that labels it), and

• some of the classes involved in such a functionality have
a different primary responsibility (indicating crosscut-
ting with respect to the principal decomposition).

Of course, due to the nature of aspects and the related design
decisions, some level of subjectivity still remains (as is the
case for the other techniques).

Figure 1 shows an example of a concept that was clas-
sified as a candidate aspect. In addition to satisfying the
crosscutting conditions, the methods labeling the concept in
the sparse representation are associated to a clearly identified
functionality (Move figure) and the involved classes have an-
other primary responsibility (grouping features of drawable
figures).

In the end, the list of candidate aspects shown in Table 4
was obtained. The four topmost aspects are use-case specific.
As apparent from the second column of the table, and as was
the case for the identifier analysis experiment, some aspects
were detected by multiple concepts. In total, among the 56
generic concepts satisfying the crosscutting conditions, 24
concepts were judged to be associated with 18 candidate as-
pect.



Concern Fan-In Analysis Identifier Analysis Dynamic Analysis
Observer + + +
Consistent behavior / Contract enforcement + - -
Command execution + + -
Bring to front / Send to back - - +
Manage handles - + +
Move Figures + (discarded) + +

Table 3. A selection of detected concerns in JHotDraw.

The methods associated with each candidate aspect
(counted in the last column of Table 4, see also Figure 1)
are indicative of the “aspectizable” functionality. Although
they may be not the complete list (dynamic analysis is par-
tial) and may contain false positives, they represent a good
starting point (“seeds”) for a refactoring intervention aimed
at migrating the application to AOP.

5. Interpretation of the results

In this section we discuss some selected concerns that were
identified by the different techniques. We selected a concern
that was detected by all three techniques, as well as a rep-
resentative set of concerns that were detected by some tech-
niques but not by others. This allows us to clearly pinpoint
the strengths and weaknesses of each individual technique,
which in turn enables us to propose different ways of com-
bining the techniques to achieve better results.

5.1. Selected concerns

Table 3 summarizes the concerns we selected. The first col-
umn names the concern. The other columns show by what
technique(s) the concern was discovered: if a technique dis-
covered the concern, we put a + sign in the corresponding
column, otherwise a - sign is in the table.

Observer The Observer design pattern is an example of a
concern reported by all techniques. Other examples include
undo functionality andpersistence, whose implementation
in JHotDraw is described in [8]. Their identification should
come as no surprise, because they correspond to well-known
aspects, frequently mentioned in AOP literature, or to func-
tionalities for which an AOP implementation looks quite nat-
ural.

Concerns identified by all three techniques are probably
the best starting point for migrating the given application to
AOP, because developers can be quite confident that the con-
cern is very likely to be an aspect. However, the fact that only
four of such aspects were discovered, stresses the need for an
approach that combines the strengths of different techniques.

Contract enforcement / consistent behavior The con-
tract enforcementand consistent behaviorconcerns [13]
generally describe common functionality required from, or
imposed on, the participants in a given context, such as a

specific pre-condition check on certain methods in a class
hierarchy. An example from the JHotDraw case is theCom-
mandhierarchy for which theexecutemethods contain code
to ensure the pre-condition that an ’active view’ reference
exists (is not null).

We classify these concerns as combination of contract en-
forcement and consistent behavior since these types often
have very similar implementations and choosing a particular
type depends mainly on the context and (personal) interpre-
tation.

Fan-in analysis is particularly suited to address this kind
of scattered, crosscutting functionalities, which involve a
large number of calls to the same method, while the other two
techniques potentially miss it. In fact, contract enforcement
and consistent behavior are usually associated with method
calls that occur inevery execution scenario, so that they
cannot be discriminated by any specific use-case. On the
other hand, identifier analysis will miss those cases where
the methods that enforce a given contract or ensure consis-
tent behavior do not share a common naming scheme.

Command execution Revisiting the example of theexe-
cute methods in theCommandhierarchy, we observe that
identifier analysis did identify a concept with exactly these
methods. Indeed, allexecutemethods have the same name
and manual inspection showed they exhibit similar behav-
ior: they nearly all make a super call to anexecutemethod,
invoke acheckDamagemethod and (though not always) in-
voke asetUndoAcivityandgetUndoActivitymethod.

Hence, whereas identifier analysis may not detect the
more generic Contract enforcement / Consistent behavior as-
pect directly, it can identify some locations (pointcuts) where
potentially such an aspect could be introduced. Of course,
the technique is currently rather lightweight and only identi-
fies locations that share similar identifiers.

Bring to front / Send to back The functionality associ-
ated with this concern consists of the possibility to bring
figures to the front or send them to the back of an image.
When exercised, it executes specific methods that have a
low fan-in, hence they were not detected by fan-in analysis.
Identifier analysis also missed them, because there were not
enough methods with a sufficiently similar name to surpass
the threshold. Hence, dynamic analysis is the only technique
that identified this concern. This example is a good repre-



sentative of crosscutting concerns that are reported only by
dynamic analysis: whenever the methods involved in a func-
tionality are not characterized by a unifying naming scheme
(or there are not enough of them), neither do they have high
fan-in, the other two techniques are likely to fail.

Manage handles A crosscutting functionality is responsi-
ble for managing the handles associated with the graphical
elements. Such handles support interactive operations, such
as resizing of an element, conducted by clicking on the han-
dle and dragging the mouse. This candidate aspect is in-
teresting because it is detected by dynamic analysis and by
identifier analysis, but in different ways. Identifier analysis
detects this concern based on the presence of the word ‘han-
dle’ in identifiers. Consequently, it misses methods such as
north(), south(), east(), west() , which are
clearly related to this concern, but do not share the lexicon
with the others. On the other hand, dynamic analysis reports
both the latter methods and (some of) those containing the
word ‘handle’. However, since not all possible handle inter-
actions have been exercised, the output of dynamic analysis
is partial and does not include all the methods reported by
identifier analysis.

The manage handlesconcern was missed by the fan-in
analysis because the calls are too specific: they are similar
but different calls instead of one single called method with a
high fan-in.

Moving figures The three techniques discard concerns on
different bases: some of the concerns are filtered automati-
cally while others are excluded manually. Themove figures
concern, seeded by themoveBymethod in theFigureclasses,
is one example where different, subjective decisions can be
made depending on whether the concept is classified either as
a candidate aspect or as part of the principal decomposition.
The moveBymethods allow to move a figure with a given
offset. The team who used fan-in analysis argued that the
original design seems to consider this functionality as part of
a Figure’s core logic. The other two teams considered it as
part of a crosscutting functionality and included it in the list
of reported candidates.

This example highlights the difficulty of deciding objec-
tively on what is and what is not an aspect and corroborates
our choice to conduct a qualitative, instead of a quantitative,
comparison.

5.2. Discussion

The three proposed techniques address symptoms of cross-
cutting functionalities, such as scattering and tangling, in
quite different ways.

Overall, fan-in analysis and dynamic analysis show
largely complementary result sets. This is an expected re-
sult, since the first technique focuses on identifying those
methods that are called at multiple (scattered) places. How-
ever, when a method is called multiple times in a system, it is

likely to occur in most (if not all) the execution traces, so that
no specific use-case can be defined to isolate the associated
functionality.

Identifier analysis is the least discriminating of the three
techniques and has a large overlap with the other two tech-
niques. When a concern can be identified through fan-in
analysis and/or dynamic analysis, identifier analysis can of-
ten isolate it too, since a common lexicon is often used in the
names of the involved methods. However, identifier analy-
sis sometimes discards aspects reported by one of the other
two techniques due to the filtering that is applied to limit the
number of concepts to be manually inspected. Aspects that
are too small (in terms of number of involved methods) are
often discarded by identifier analysis.

In conclusion, the results seem to indicate a big opportu-
nity for the combination of different techniques, as will be
discussed in Section 6.

5.3. Limitations

As a consequence of applying each technique to the same
case, some of the limitations of the respective techniques
have become obvious. For example, we obtained a better
idea of potential ‘false negatives’, i.e. concerns that were not
identified by a particular technique but that were identified
by another. Below, we summarize some of the discovered
limitations. In the next section we then discuss how these
limitations may be overcome by combining different tech-
niques.

Fan-In Analysis mainly addresses crosscutting concerns
that are largely scattered and have a significant impact on
the modularity of the system. The downside of this charac-
teristic is that concerns with a small code footprint and thus
with low fan-in values associated, will be omitted. For exam-
ple, the identification ofObserverdesign pattern instances is
dependent on the number of classes implementing theob-
serverrole. These classes contain calls to specific methods
in thesubjectclass for registering as listeners to thesubject’s
changes. The number ofobserverclasses will determine to a
large extent the number of calls to the registration method in
thesubjectrole. A collateral effect is the anticipated unsuit-
ability of the technique for analyzing small case studies.

Identifier Analysis tends to produces a lot of detailed re-
sults. However, these results typically contain too much
noise (false positives), so a more effective filtering of the
discovered concepts, as well as of the elements inside those
concepts, is needed. In addition, the discovered concepts
are often incomplete, in the sense that they do not completely
“cover” an aspect or crosscutting concern. Often, more than
one concept is needed to describe a single concern, as was
the case for theObserveraspect. The individual concepts
themselves may also need to be completed with additional
elements that are not contained in those concepts. This was
the case for theUndoaspect: in addition to the methods with



‘undo’ or ‘undoable’ in their name, some of the methods call-
ing these undo methods need to be considered as part of the
coreaspectas well.

Dynamic Analysis has as its main limitations that it is par-
tial (i.e., not all methods involved in an aspect are retrieved),
being based on a dynamic analysis, and it can determine only
aspects that can be discriminated by different execution sce-
narios (e.g., aspects that are exercised in every program ex-
ecution cannot be detected). Additionally, it does not deal
with code that cannot be executed (e.g., code that is part of
a larger framework, but that is not used in a specific applica-
tion).

6. Towards a combination of the techniques

In this section, we discuss possible ways in which the pro-
posed techniques can be used to improve each other’s results.
Our proposals for combination are based on our knowledge
of the characteristics of the individual techniques, as well as
on the experimental results presented above.

6.1. Combining the results

Since the three techniques are based on different character-
istics, some aspects are found by one technique only (see
Subsection 5.1). This does not imply that such aspects are
less likely to be good aspects. For example, recall from Sub-
section 5.3 that dynamic analysis cannot deal very well with
methods with a high fan-in and conversely fan-in analysis
cannot deal very well with low fan-in methods. Therefore,
it does make sense to take the union of all aspects discov-
ered by these two approaches separately, thereby achieving a
better coverage of the crosscutting concerns in the system.
Examples of concerns detected by only one of these two
techniques areContract enforcement / Consistent behavior
(fan-in) andBring to front / Send to back(dynamic analysis).

Identifier analysis also detects concepts that are not de-
tected by any of the other techniques. Given the large num-
ber of concepts identified by this particular technique, it is
less clear if these results can simply be combined with the
results of the other techniques. It remains to be investigated
whether these detected concerns are false positives of iden-
tifier analysis, or actual concerns missed by the other tech-
niques. In the former case, we could use the outcome of the
other techniques to reduce these false positives reported by
identifier analysis, by keeping an identifier analysis concept
only when some of its elements are also reported by the other
techniques as belonging to a concern.

6.2. Combining the techniques

Whereas the previous subsection explained how the end re-
sults of (some of) the techniques could be combined, this
subsection focuses on how the techniques themselves could
be combined in order to improve the quality of the results.

Completion of aspects As explained in Subsection 5.3,
when identifying a particular crosscutting concern, fan-in
analysis and dynamic analysis in fact only produce inter-
esting seeds for that concern, which may serve as a start-
ing point to discover the actual code addressing that concern.
Developers need to browse the source code in order to “com-
plete” the concern. Dynamic analysis in particular suffers
from this problem as it is only partial.

By combining the techniques in clever ways, this problem
may be alleviated. For example, dynamic analysis may com-
plete the output of fan-in analysis by other methods that label
the same (dynamic analysis) concept as the ones calling that
with the high fan in. In addition, the detailed information
provided by identifier analysis may be used to complete both
the results produced by dynamic analysis and fan-in analysis.
For dynamic analysis, we may add methods belonging to the
same (identifier analysis) concepts as those labeling the con-
sidered (dynamic analysis) concept. For fan-in analysis, we
may add methods belonging to the same (identifier analysis)
concepts as those with the high fan-in, or as those calling the
method with the high fan-in.

As an example, consider theUndo concern. Since most
of the involved methods are executed in all the considered
scenarios, dynamic analysis can detect only a small subset
of them. However, these can be associated with the (iden-
tifier analysis) concepts containing the recurring words (in
our example, ‘undo’ and ‘undoable’) and the other methods
in such concepts can be regarded as a completion of the can-
didate aspect detected by dynamic analysis.

Reducing false negatives Some of the generic concepts
computed by dynamic analysis are discarded because they
contain a high number of methods that can hardly be inter-
preted as belonging to one single concern. However, some
commonality among them does exist, since they are shared
by a subset of the execution traces. Thus, they potentially
identify multiple, slightly different, crosscutting concerns.
It would be possible to apply identifier analysis only to the
methods reported by dynamic analysis in each such generic,
large concept. Inspection of the resulting lattice could reveal
the presence of clearly identifiable and now separated cross-
cutting functionalities.

Grouping identifier analysis concepts As can be seen
from Table 2, more than one identifier analysis concept typ-
ically corresponds to one concern. The identifier analysis
approach thus requires us to manually inspect the individ-
ual concepts to decide which of them are related to one and
the same crosscutting concern. Information provided by the
other techniques may help us to group concepts in a more
automated way. For example, dynamic analysis produces a
trace of different methods playing a role in a given concern.
If these methods belong to different (identifier analysis) con-
cepts, it may be a good idea to group these concepts. Con-
sider thePersistenceconcern. The names of the methods



in the use-case specific concept reported by dynamic analy-
sis include words that belong to different identifier analysis
concepts (like, ‘file’, ‘storable’, ‘load’ or ‘register’). These
could be unified into a unique candidate aspect.

6.3. Summary

We conclude that the three techniques can be combined in
different ways. Since fan-in analysis and dynamic analysis
are highly complementary, it makes sense to take the union
of the discovered concepts. Both combined seem potentially
very powerful for revealing the interesting seeds. Identifier
analysis, on the other hand, seems like a good technique to
complement and augment the discovered seeds with more in-
formation on where the discovered aspects are addressed in
the code, in other words it may be used to extend the seeds
into real concerns. Conversely, both fan-in analysis and dy-
namic analysis may be used to restrict the (often large) output
produced by the identifier analysis.

7. Conclusion and future work

In this paper we took a closer look at three independently
developed aspect mining techniques. Each of them has
strengths and weaknesses. Fan-in analysis is focused on
those concerns that are implemented as scattered methods
calls and manifest themselves as high fan in methods. Conse-
quently, it fails to identify candidate aspects associated with
low fan-in. Identifier analysis can detect crosscutting when-
ever the involved methods share the same lexicon. However,
it fails in absence of good naming conventions or of con-
cerns that share only a common semantic context, but not a
lexicon. Dynamic analysis relies on the possibility to isolate
crosscutting functionalities through the execution of scenar-
ios that exercise them. It fails whenever a functionality is
present in all execution traces.

The properties used by the three techniques are orthog-
onal to each other. The experimental results obtained on a
meaningful case study confirmed their complementary na-
ture. This suggest the possibility of several useful combi-
nations of these techniques. A simple combination strategy
consists of taking the union. Yet, it is expected to be very ef-
fective and to actually increase the coverage, because of the
different properties exploited by the three techniques. Since
identifier analysis relies on the presence of meaningful words
that characterize the candidate aspect, it can be used to com-
plete the other two techniques with all methods sharing the
same lexicon. Moreover, the presence of different words in
fan-in analysis and dynamic analysis concerns might suggest
the unification of identifier analysis concepts, that can be re-
garded as possibly associated to a single concern.

Our future work will be devoted to: (1) extending the
comparison at the level of the seeds detected by each tech-
nique for the commonly identified concerns; (2) applying

other aspect mining techniques to our case study; (3) imple-
menting and evaluating the combination methods proposed
in this paper; (4) defining an aspect mining evaluation frame-
work, based upon our experience with the case study con-
sidered in this paper; (5) assessing the difficulty of moving
from aspect identification to the actual refactoring towards
aspects.

Acknowledgments Part of this collaboration was funded
by RELEASE, a European Science Foundation scientific net-
work.

References

[1] K. Beck. Smalltalk: best practice patterns. Prentice-Hall,
Inc., 1997.

[2] A. Deursen, M. Marin, and L. Moonen. Aspect mining and
refactoring. InProc. of the First Int. Workshop on REFactor-
ing: Achievements, Challenges, Effects (REFACE03)., 2003.

[3] T. Eisenbarth, R. Koschke, and D. Simon. Locating features
in source code.IEEE Transactions on Software Engineering,
29(3):195–209, March 2003.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[5] B. Ganter and R. Wille.Formal Concept Analysis: Mathe-
matical Foundations. Springer-Verlag, 1999.

[6] J. Hannemann and G. Kiczales. Design pattern implemen-
tation in Java and AspectJ. InProceedings of the 17th An-
nual ACM conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 161–
173. ACM Press, 2002.

[7] B. Henderson-Sellers.Object-oriented metrics: measures of
complexity. Prentice-Hall, Inc., 1996.

[8] M. Marin, A. Deursen, and L. Moonen. Identifying aspects
using fan-in analysis. InProc. of the 11th IEEE Working Con-
ference on Reverse Engineering (WCRE 2004), Delft, The
Netherlands, November 2004. IEEE Computer Society.

[9] K. Mens and T. Tourẃe. Delving source-code with formal
concept analysis.Elsevier Journal on Computer Languages,
Systems & Structures, 2005. To be published.

[10] L. Moonen. Exploring software systems. InProceedings
of the International Conference on Software Maintenance
(ICSM 2003). IEEE Computer Society Press, 2003.

[11] M. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, 1980.

[12] P. Tarr, H. Ossher, W. Harrison, and J. S. M. Sutton. N degrees
of separation: Multi-dimensional separation of concerns. In
International Conference on Software Engineering, 1999.

[13] The AspectJ Team.The AspectJ Programming Guide. Palo
Alto Research Center, 2003. Version 1.2.

[14] P. Tonella and M. Ceccato. Aspect mining through the for-
mal concept analysis of execution traces. InProc. of the 11th
IEEE Working Conference on Reverse Engineering (WCRE
2004), Delft, The Netherlands, November 2004. IEEE Com-
puter Society.

[15] T. Tourwé and K. Mens. Mining aspectual views using for-
mal concept analysis. InProc. of the Fourth IEEE Interna-
tional Workshop on Source Code Analysis and Manipulation
(SCAM 2004). IEEE Computer Society, September 2004.


