A Qualitative Comparison of Three Aspect Mining Technigues

M. Ceccatd”, M. Marin®®, K. Mens?, L. Moonen?%, P. Tonell&", T. Tourng®

() ITC-irst, Trento, Italy (2) Delft University, The Netherlands
(3) Universié catholique de Louvain, Belgium (4) CWI, The Netherlands

ceccato@itc.it, a.m.marin@ewi.tudelft.nl, kim.mens@info.ucl.ac.be,
leon.moonen@computer.org, tonella@itc.it, tom.tourwe@cwi.nl

Abstract themselves becomes more difficult, since the code of the

) different concerns isangledwith the main functionality of
The fact that crosscutting concerns (aspects) cannot be wel,yse modules.

modularized in object oriented software is an impediment to Aspect miningools try to identify such concerns semi-

program comprehension: the |mplgmentat|on ofa concern ISautomatically. The development of techniques and tools for
pr|cally sca‘gtered over many locations a.nd t.angled with theye jgentification of concern code is an absolute necessity
implementation of other concerns, resulting in a system th%iven the size and complexity of current-day software sys-

is hard to explore and understancispect miningaims t0 o ms These tools allow developers to employ a bottom-up
identify crosscutting concerns in a system, thereby 'mprov'n%omprehension strategy by helping them to divide a software

the system’s comprehensibility and enabling migration of ex—System in conceptually coherent pieces (concerns), which

ist_ing (object-oriented) programs to a.sp_ect—orienFed Ones. Inthey can study and understand in isolation, without wor-
this paper, we compare threespect mining techniquebat rying about the other code (i.e., a divide-and-conquer ap-
were develope_d mo_le_pendently by d'ﬁerem resear(_:h team?iroach) [2]. Moreover, aspect mining (eventually) allows
fan-lm anarl]y5|s|r<]je_nt|f|er ar;]alysmnd dynamic analysmst developers to refactor the system into an aspect-oriented one,
apply each technique to the same case (JHotDrayv) and Myghere some or all crosscutting concerns are cleanly captured
tually compare the individual results of each techmgue base side so-calledispects Aspect mining is thus an important

on the discovered aspects and on the level of detail and dU8s5rerequisite step for aspect refactoring, but is also valuable
ity of those aspects. Strengths, weaknesses and underlyi d 4 software exploration technique by itself [10].
assumptions of each technique are discussed, as well as their In this paper, we compare three aspect mining techniques

complementar_ity. We concl_ude W_ith a diSCUSSiOF of pOSSiblﬁwat were developed independently: fan-in analysis [8], iden-
ways to combine the techniques in order to achieve a bettetrifier analysis [9, 15] and dynamic analysis [14]. We dis-

overall aspect-mlmn_g technique. _ cuss the strengths, weaknesses and underlying assumptions

Kgywords:cros;cyttmg concerns, Qspect—onented Program-nt each of them. Our goal is not to decide which technique

ming, aspect mining, fan-in analysis, conceptanalysis. g qest' at identifying relevant aspects, because it is hard
(if not impossible) to define the optimal modularization into

1. Introduction classes and aspects for a given system. Different design de-
cisions on what is an aspect and what is part of the principal

The tyranny of the dominant decomposition [12] states thatlecomposition may be equally good, thus it is hard to come

no matter how well a system is decomposed into modulaput with a commonly agreed set @flevantaspects. Rather,

units like functions and classes, some functionality will al-we aim at finding out how the independent techniques com-

ways cut across that modularity. Some well-known exampleg®lement each other and can be combined so as to minimize

of thesecrosscutting concerniiclude persistence, session their weaknesses and maximize their strengths. The lack of

management, logging and error handling. a clearly definable benchmark, to be used as the reference

From a program comprehension point of view, crosscutfor comparison, prevented us from conductinguantitative

ting concerns are a burden for two reasons. First of all, disstudy and constrained us to consider a sefefiitativecom-

covering or understanding the implementation of a specifi®arison criteria.

concern is difficult, as the concern is not localized in one Our contributions can be summarized as follows:

single module buscatteredover many different modules.

Secondly, understanding the implementation of the modules e We explain what the three aspect mining techniques are

and are not capable of and discuss how they tackle conementshat have commopropertiest FCA takes as input a
prehension issues such as code scattering and tanglingp-calledcontext which consists of a (potentially large, but
finite) set ofelementsand a set opropertieson those ele-

e We present a detailed comparison of the different techzants. Starting from such a context, FCA determimesi-

niques and discuss how they can be combined in ordex, 5| groups of elements and properties, cattedceptssuch

to achieve better results. Such _mformatlon is allsc.) relthat each element of the group shares the properties, every
evant to other researchers working on aspect mining t9.onerty of the group holds for all of its elements, no other el-
get a better understanding of how their individual tech-gment outside the group has those same properties, nor does
niques compare to and could be combined with ours; 4y hroperty outside the group hold for all elements in the

e The results of applying the techniques on a com-97OUP-: , o
mon benchmark application, JHotDraw 5.4b, document The containment relationship between these groups of el-

many of the concerns present in that application. This i€ments and properties defines a partial ordgr over the set of
of particular interest to JHotDraw developers and userdll concepts, which can be shown to be a lattice [5]. The lat-

since it helps them to understand conceptually coherer{C€'S bottom concept contains those elements that have all
parts of the system in isolation. In addition, these re-Properties. The top concept contains those properties that

sults are of interest to other aspect mining researcher@old for all elements. A concept is a sub-concept of another

since JHotDraw has been proposed as common bencRe: its super-concept, if its properties are a superset of the
mark for aspect mining [8]. super-concept’s properties and its elements are a subset of

the super-concept’s elements. Intuitively, the sub-concept

The remainder of this paper is structured as follows: Inrelationship can be interpreted as a specialization of more
Section 2 we introduce the necessary background Concep%nel'aj notions: the lower we are in the lattice the more spe-
to understand the three aspect mining techniques that afdfic the concepts become (more properties to satisfy and less
explained in Section 3, which is followed by a discussion€lements that satisfy them).
of their individual results in Section 4. Next, we compare The nodes (concepts) of a concept lattice are typically
the benefits and drawbacks of the techniques by interpre{abded with their full set of associated properties and ele-
ing their results in Section 5. Based on that comparison, wénents. Withsparse labelingf the lattice, however, we label
present a number of ways to combine the techniques so as gonode with an element only if it is the most specific (i.e.,
obtain a better overall aspect mining technique in Section dowest) node having that element, and we label a node with
We conclude our paper in Section 7. For an overview of re@ property only if it is the most general (i.e., highest) node
lated work concerning aspect mining, we refer to the paper§aving that property. This labeling scheme is much more

discussing the individual techniques [2, 8, 9, 14, 15]. compact without loss of information.
2. Background concepts 3. The three aspect mining techniques
2.1. Fan-in In this section, we give a brief overview of each of the three

The fan-in metric, as defined by Henderson-Sellers, CountsteChmqueS’ developed mdependently by (_jn‘ferent research
roups, that support the semi-automated discovery of poten-

the number of locations from which control is passed into ial aspects in the source code of a software system that was
module [7]. In the context of object-orientation, the module- ", PS . Y
written in a non aspect-oriented way.

type to which this metric is applied is the method. We define
the fan-in of a methodM/ as the number of distinct method 3 1 Fan-in analysis

bodies that can invok&/. Because of polymorphism, one

call site can affect the fan-in of several methods: a call toBased on earlier studies of crosscutting concerns described

method M contributes to the fan-in oM/, but alsoto all in literature, we observed that crosscutting functionality can
methods refined by, as well asto all methods that are occur at different levels of modularity. Classes, for instance,
refining M [8]. can assimilate new concerns by implementing multiple in-

This interpretation of the fan-in metric in the context of terfaces or by implementing new methods specific to super-
polymorphism corresponds to the standard behavior of thénposed roles. At the method level, crosscutting in many
search for referencefeature of the Eclipse IDE, which pro- cases resides in calls to methods that address a different con-
vides an easy way of implementing the metric. cern than the core logic of the caller. Typical examples in-

; clude logging, tracing, pre- and post-condition checks, and
2.2. Concept analysis 99ing 9. p p

. . . 1We use the termelementand propertyinstead ofobjectandattribute
Formal concept analysis (FCA) [5] is a branch of lattice the-;seq in traditional FCA literature, because these latter terms have a very

ory that can be used to identify meaningful groupingglef specific meaning in OO software development.

exception handling. It is exactly this type of crosscutting Identifier analysisrelies on this assumption and tries
that we capture with fan-in analysis. to identify potential aspects and crosscutting concerns by
When we study the mechanics of AOP, we see that it emgrouping program entities with similar names. More specif-
ploys the so-calleddviceconstruct to eliminate crosscutting ically, it applies FCA with as elements all classes and meth-
at the method level. This construct is used to acquire contrabds in the analyzed program (except those that generate too
of program execution and add crosscutting functionality tomuch noise in the results, like test classes and accessor meth-
methods without an explicit invocation from that method. Asods), and as properties the identifiers associated with those
a result, it isolates the crosscutting nature of these concerrdasses and methods.
in a separate module. The identifiers associated to a method or class are com-
In our approach, we reverse this line of reasoning anguted by splitting up its name based on where capitals appear
employ fan-in analysis in the system’s source code to findin it. For example, a method namegateUndoActivity
symptoms of code scattering. In this case, concerns presegields three identifiersreate ,undo andactivity . Inad-
themselves as a number of distributed calls to a method imdition, we apply the Porter stemming algorithm [11] to make
plementing a crosscutting functionality and tamountof sure that identifiers with the same root form (lilkkedo and
calls (fan-in) is a good measure for the importance and scatmdoable) are mapped to one single representative identi-
tering of the discovered concern. fier or ‘'stem’. It is these stems that are used as properties for
To perform the fan-in analysis, we implemented the metthe concept analysis.
ric as a plug-in for the Eclipse platform, and integrated itinto The FCA algorithm then groups entities with the same
an iterative process that consists of three steps: identifiers. When such a group contains a certain minimum
number of elements (in the experiment, a threshold of 4 was
used) the group is considered a seed for a potential aspect.
The only remaining but most difficult task is that of decid-
2. Filtering of the results from the previous step by ing manually whether a concept identifies a valid aspect. To
help the developer in this last task, ddelfSTofsource-code
e eliminating all methods with fan-in values below mjning tool presents the concepts in such a way that they can
a chosen threshold (in the experiment, we used &e prowsed easily by a software engineer and so that he or
threshold of 10); she can readily access the code of the classes and methods
e eliminating the accessor methods (methods whosé&elonging to a discovered concept.
signature matches get*/set* pattern and whose
implementation only returns or sets a reference); 3.3. Dynamic analysis

e eliminating utility methods, liketoString() and Formal concept analysis has been used to locate ‘features’ in
collection manipulation methods, from the re- procedural programs [3]. In that work, the goal was to iden-
maining subset. tify the computational units (procedures) that specifically im-

tplement a feature (i.e., requirement) of interest. Execution

3. (Largely manual) analysis of the methods in the resul biained b i th der ai
ing, filtered set by exploring the callers and call sites,Fraces obtained by running the program under given scenar-

the naming conventions used, the implementation andPS prov@e_d the input data.(dynamlc_ analysis).
the comments in the source code. In a similar way, dynamic analysis can be used to locate

aspects in program code [14] according to the following pro-
The last step is partly supported by the implemented plugeedure. Execution traces are obtained by running an instru-
in through reports of the caller lists for each investigatedmented version of the program under analysis, for a set of
method. The callers can be organized per package or classcenarios (use-cases). The relationship between execution
thus facilitating the inspection of the calling context. traces and executed computational units (methods) is sub-
jected to concept analysis. The execution traces associated
with the use-cases are the elements of the concept analy-
In the absence of designated language constructs for aspectés context, while the executed methods are the properties.
naming conventions are the primary means for programmerk the resulting concept lattice (with ‘sparse labeling’), the
to associate related but distant program entities. This is espé&ise-case specificoncepts are those labeled by at least one
cially the case for object-oriented programming, where polyirace for some use-case (i.e. the concept contains at least
morphism allows methods belonging to different classes t®@ne specific property) while the concepts with zero or more
have the same signature, where it is good practice to usgroperties as labels are regardedyasericconcepts. Thus,
intention-revealing names [1], and where design and othewse-case specific concepts are a subset of the generic ones.
programming patterns provide a common vocabulary known Both use-case specific concepts and generic concepts
by many programmers. carry information potentially useful for aspect mining, since

1. Automatic computation of the fan-in metric for all
methods in the investigated system.

3.2. Identifier analysis

Concern type | # | Seed's description |

Consistent behavior 4 | Methods implementing the consistent behavior shared by different callers, such as checkjng and
refreshing figures/views that have been affected by the execution of a command.

Contract enforcement 4 | Method implementing a contract that needs to be enforced, such as checking the reference to
the editor’s active view before executing a command.

Undo 1 | Methods checking whether a command is undoable/redoable anddioenethod in the super:

class, which is invoked from the overriding methods in subclasses.
Persistence and resurrectionl | Methods implementing functionality common to persistent elements, such as read/write oper-
ations for primitive types wrappers (e.g., Double, Integer, etc.) which are referenced Ty the

scattered implementations of persistence/resurrection.

Theexecutemethod in the command classes and command constructors.

The observers’ manipulation methods aradify methods in classes acting as subject.
The composite’s methods for manipulating child components, such as adding a new child.
Methods in the decorator that pass the calls on to the decorated components.
Methods that manipulate the reference from the adapéerdle to the adapte&fgure).

Command design pattern
Observer design pattern
Composite design pattern
Decorator design pattern
Adapter design pattern

RPN PR

Table 1. Summary of the results of the fan-in analysis experiment.

they group specific methods that are always executed under Nevertheless, despite the fact that they do not explicitly
the same scenarios. When the methods that label one suelddress tangling, fan-in analysis and identifier analysis are
concept (using the ‘sparse labeling’) crosscut the principahble to detect quite some interesting aspects and crosscut-
decomposition, a candidate aspect is determined. = Moréing concerns. One reason for this is that not all concerns are
specifically, a concept is a candidate aspect if: ddatter- necessarily tangled. A second reason is that the techniques
ing: more than one class contributes to the functionality asdo consider tangling implicitly. For example, when a sin-
sociated with the given concept (i.e., the methods labelingyle method calls many different other methods it contributes
the concept belong to more than one class)ig8pling: the to the fan-in value of many different other methods. The
class itself addresses more than one concern (i.e., appearsiiividual method itself thus addresses different concerns,
more than one use-case specific concept). which can be considered as tangling. Similarly, the fact that
The first condition alone is typically not sufficient to iden- a method addresses different concerns is often reflected in
tify crosscutting concerns, since it is possible that a giverthe identifiers chosen for that method.
functionality is allocated to several modularized units with- Although both techniques could be extended to consider
out being tangled with other functionalities. In fact, it might tangling more explicitly, in Section 6, we discuss rather how
be decomposed into sub-functionalities, each assigned toacombination of the different techniques might lead to an
distinct module. It is only when the modules specifically in- aspect mining technique that performs even better.
volved in a functionality contribute to other functionalities
as We![I that crosscutting is detected, hinting for a candidatgy Results of the aspect mining
aspect.

In this section, we present the results of applying each tech-
nique to version 5.4b1 of JHotDraw, a Java program with

As the two main indicators of aspects in program code ar@pprogwgg(t)%ly 186020 no;—cgmmgnte? lines ofk<;od3 and
scatteringand tangling we briefly discuss to what extent aroun methods. JHotDraw is a framework for draw-

each of the techniques described look for these indicatorE'g struct_ured Z.D graphics and was originally _developed as
when mining for aspects. an exercise to illustrate good use of object-oriented design

Both fan-in analysis and identifier analysis focus on de_patterns [4] in a Java program. These particularities recom-
. . S s : . mend it as a well-designed case study, a prerequisite for con-
tecting scattering, albeit in different ways: fan-in analysis

identifies potential aspects by looking for scattered calIsilgggggn:ggroi\t/earg%mssh;C\:gutagta;%zﬁ';rrilze;:gg ;[ien?irtlgtlsnlfss.
while identifier analysis looks for scattering of similar iden- ’

tifiers. They do not explicitly consider tangling, however. are present in even well-designed (legacy) systems.
Dynamic analysis, on the other hand, tries to find code thaj 1
is tangled as well as scattered : it looks for use-case spe-

cific methods that are scattered over different classes, anfls described in Subsection 3.1, fan-in analysis first performs
in addition requires that there is some tangling of multiplea number of successive steps to filter the methods in the an-
functionalities in the involved classes. alyzed system. The threshold-based filtering, which selects

3.4. Tangling and scattering

The fan-in analysis experiment

Crosscutting concern

| Concept(s)

#elements |

Some elements

|

Observer change(d) / check / 67/14/ figureChanged(e) / checkDamage()
listener / release 65/12 createDesktopListener() / ...

Undo undo(able) / redo(able) 53 /14 createUndoActivity() / redo()

Visitor visit 12 visit(FigureVisitor)

Persistence file / storable / 15/5/ registerFileFilters(c) / readStorable() /
load / register 8/7 loadRegisteredimages

Drawing figures draw 112 draw(g)

Moving figures move 36 moveBy(X,y), moveSelection(dx,dy)

| lterating over collectiong iterator [5 | iterator(), listlterator(), ... |

Table 2. Selection of results of the identifier analysis experiment.

methods with high fan-in values, kept around 7% of the to-
tal number of methods. The filters for accessors and utility
methods eliminated around half of the remaining methods.
In the remaining subset, more than half of the methods (52%)
were categorized asspect seedsnethods that by the struc-
ture of the calls and the call sites strongly connote a cross-
cutting concern and thus offer the core elements to further
explore and understand the whole extent of the concern’s im-
plementation. This seed/non-seed categorization was largely
based on manual analysis.

Table 1 gives an overview of the types of crosscutting con-
cerns that were identified and the seeds that led to their iden-
tification. Several of these concern types, sucltassis- For more details regarding fan-in analysis and a complete
tent behavioror contract enforcemeritL3], have more than discussion of the JHotDraw results, we refer to [8].
one instance in JHotDraw; that is, multiple unrelated (cross-] .])
cutting) concerns exist that conform to the same general dét-2. The identifier analysis experiment

scription. For example, one instancecohtract enforcement Applying the identifier analysis technique of Subsection 3.2

checks a priori conditions to a command’s execution, wh|IeOn JHotDraw yielded 230 concepts and took about 31 sec-

another instance verifies common requirements for activatfmdS when using a threshold of 4 for the minimum number

ing drawing tools. The number of different instances thatof elements in a concept. With a threshold of 10, the number
were detected is indicated in thecolumn.

T o ; . , . of concepts produced was significantly less: only 100 con-
We distinguish three situations in which the fan-in metr'ccepts remained after filtering, for a similar execution time.

can be associated with the crosscutting structure of a conce§p poih cases, 2193 elements and 507 properties were con-
implementation: (also indicated in Table 1). sidered. It is a good sign that the number of properties is
significantly smaller than the total number of elements con-
sidered, as it implies that there is quite some overlap in the
filentifiers of the different source-code entities, which was
one of our premisses.

Table 2 presents some of the candidate aspects and

2. The implementation of the crosscutting concern is scaterosscutting concerns discovered by manually analyzing the
tered throughout the system, but makes use of a conrklasses and methods belonging to the extent of the concepts
mon functionality. The crosscutting resides in the callProduced by the FCA algorithm. The first column names
sites, and can be detected by looking at the similarithe concern, the second column shows the identifiers shared
ties between the calling contexts and/or the callers. ExPY the elements belonging to the concept(s) corresponding

amples of concerns in this category aegsistencand to that concern. When multiple concepts (identifiers) corre-
undol[8]. spond to one single concern, they are separated by a‘/’. The

have specific methods associated to them: sthigect
role in an Observer design pattern is responsible to no-
tify and manage the observer objects, while¢bmpos-

ite role defines specific methods for manipulating child
components. In general, establishing a relation between
these seed-methods and the complete concern to which
they appertain might require a better familiarity of the
human analyzer with the code being explored, than for
the previous two categories. However, many of these
patterns are well-known and have a clear defined struc-
ture, which eases their recognition [6].

1. The crosscutting functionality is implemented through
a method and the crosscutting behavior resides in th
explicit calls to this method. Examples in this category
includeconsistent behavicandcontract enforcement

: ; 2Whereas the threshold of 4 was chosen arbitrarily, the threshold of 10
3. The methods reported by the fan-in analySlS are part O\}cvas determined experimentally: below that threshold the amount of con-

.the roles superimposed_to classes that participate in th&pts that were regarded as noise was significantly higher than ebove the
implementation of a design pattern. Many of these roleshreshold.

CH.ifa.draw.figures: l Aspect ‘ Concepts‘ Methods ‘
EllipseFigure.basicMoveBy(int,int) Undo 2 36
EolzLiniF;guIe .bzsic?M;veBg(i(I.lt;ir}ti) Bring to front 1 3

ectan erigure.pasicliove int,1in
RoundRictangleFigure .basic%oveBy(int ,int) Send to back 1 3
TextFigure.moveBy(int,int) Connect text 1 18

CH.ifa.draw.standard: Persistence 1 30
AbstractFigure.moveBy(int,int) Manage handles 4 60
DecoratorFigure.moveBy(int,int) Move figure 1 7

Command executability 1 25

Figure 1. Specific methods corresponding to Connect figures 1 55
the discovered aspect Move figure Figure observer 4 11
Add text 1 26

Add URL to figure 1 10

Manage figures outside drawing 1 2

third column shows the size of the extent for each concept. | Get attribute 1 2
Finally, for illustration purposes, the fourth column shows | Setattribute 1 2
some program entities appearing in the extent of the discov- | Manage view rectangle 1 2
ered concepts. Visitor 1 6

We retained 41 crosscutting concerns out of 230 concepts,
when we used a threshold of 4 for the minimum number of
elements in a concept. We categorized these discovered
concerns in three different categories. (1) Some of these

concerns looked like aspects in the more traditional sense i q . i llv.in order t
(e.g.,observer undoandpersistencg (2) Many other con- use-case specific and generic concepts manually, in order to

cerns seemed to represent a crosscutting functionality th&e;ern;]l_ne;]whlch oaeslgotl;ld be re_gardg(i a}s plaus_ltl_) le aspTer:: s
was part of the business logic (e.drawing figuresmoving and which ones should be considered falSe positives. €

figureg. The distinction between these two first categoriescriterion we followed in this assessment was the following:

is rather subjective, however. (3) We also discovered thred concgpt satisfying.the crosscutting conditions is considered
Java-specific concerns (e.@erating over collectionsthat a candidate aspect if
are difficult to factor out into an aspect because they rely on e it can be associated to a single, well-identified function-
or extend specific Java code libraries. ality (this usually accounts for the possibility to give it

a short description that labels it), and

Table 4. Summary of the results of the dy-
namic analysis experiment.

4.3. The Dynamic Analysis experiment
_ _ _ _ . e some of the classes involved in such a functionality have
The dynamic analysis technique of Subsection 3.3 is sup- 3 different primary responsibility (indicating crosscut-

ported by theDynamoaspect mining todl The first step ting with respect to the principal decomposition).
required byDynamois the definition of a set of use-cases.

To accomplish this task we used the documentation assocf2f Course, due to the nature of aspects and the related design
ated with the main functionalities of JHotDraw and defineddecisions, some level of subjectivity still remains (as is the
a use-case for each functionality described in the documerf:ase for the other techniques).

tation. For example, we created a use-case to draw a rect- Figure 1 shows an example of a concept that was clas-
angle, one to draw a line using the scribble tool, one to Cre_sn°|ed as a candidate aspect. In addition to satisfying the

ate a connector between two existing figures, one to attacffoSscutting conditions, the methods labeling the concept in
a URL to a graphical element, and so on. In total we obhe sparse representation are associated to a clearly identified
tained 27 use-cases. When executed they exercised 128nctionality Move figurg and the involved classes have an-

methods belonging to JHotDraw classes, so that the initigfther Primary responsibility (grouping features of drawable

context for the concept analysis algorithm contained 27 elfigures). _ _ _
In the end, the list of candidate aspects shown in Table 4

ements and 1262 properties. The resulting concept lattice ; -
contained 1514 nodes. was obtained. The four topmost aspects are use-case specific.

s apparent from the second column of the table, and as was

Of all the concepts in the lattice, based on the crosscuttin ; >) ;
conditions of scattering and tangling, 11 were classified aln€ case for the identifier analysis experiment, some aspects

use-case specific aspects, while 56 (including those 11) wetkere detected by multiple concepts. In total, among the 56

considered as generic aspects. We then revisited both tfg€Neric concepts satisfying the crosscutting conditions, 24
concepts were judged to be associated with 18 candidate as-

SAvailable fromhttp://star.itc.it/dynamo/ under GPL. pect.

Concern Fan-In Analysis | Identifier Analysis | Dynamic Analysis

Observer + + +
Consistent behavior / Contract enforcement | + - -
Command execution + +

Bring to front / Send to back - -
Manage handles - +
Move Figures + (discarded) +

++[4]

Table 3. A selection of detected concerns in JHotDraw.

The methods associated with each candidate aspespecific pre-condition check on certain methods in a class
(counted in the last column of Table 4, see also Figure lhierarchy. An example from the JHotDraw case is @oen-
are indicative of the “aspectizable” functionality. Although mandhierarchy for which thexecutenethods contain code
they may be not the complete list (dynamic analysis is parto ensure the pre-condition that an 'active view' reference
tial) and may contain false positives, they represent a goodxists (is not null).
starting point (“seeds”) for a refactoring intervention aimed We classify these concerns as combination of contract en-

at migrating the application to AOP. forcement and consistent behavior since these types often
have very similar implementations and choosing a particular

5. Interpretation of the results type depends mainly on the context and (personal) interpre-
tation.

In this section we discuss some selected concerns that were Fan-in analysis is particularly suited to address this kind
identified by the different techniques. We selected a concernf scattered, crosscutting functionalities, which involve a
that was detected by all three techniques, as well as a reparge number of calls to the same method, while the other two
resentative set of concerns that were detected by some tectechniques potentially miss it. In fact, contract enforcement
nigues but not by others. This allows us to clearly pinpointand consistent behavior are usually associated with method
the strengths and weaknesses of each individual techniquealls that occur inevery execution scenario, so that they
which in turn enables us to propose different ways of com-cannot be discriminated by any specific use-case. On the
bining the techniques to achieve better results. other hand, identifier analysis will miss those cases where
the methods that enforce a given contract or ensure consis-
tent behavior do not share a common naming scheme.

Table 3 summarizes the concerns we selected. The first coEommand execution Revisiting the example of thexe-
umn names the concern. The other columns show by wha{te methods in theCommandhierarchy, we observe that
technique(s) the concern was discovered: if a technique disgentifier analysis did identify a concept with exactly these
covered the concern, we put a + sign in the correspondingnethods. Indeed, aixecutemethods have the same name
column, otherwise a - sign is in the table. and manual inspection showed they exhibit similar behav-
Observer The Observer design pattern is an example of dor: they nearly all make a super call to erecutemethod,
concern reported by all techniques. Other examples includ#voke acheckDamagenethod and (though not always) in-
undo functionality andpersistencewhose implementation Voke asetUndoAcivityandgetUndoActivitynethod.
in JHotDraw is described in [8]. Their identification should Hence, whereas identifier analysis may not detect the
come as no surprise, because they correspond to well-knownore generic Contract enforcement / Consistent behavior as-
aspects, frequently mentioned in AOP literature, or to funcect directly, it can identify some locations (pointcuts) where
tionalities for which an AOP implementation looks quite nat- potentially such an aspect could be introduced. Of course,
ural. the technique is currently rather lightweight and only identi-
Concerns identified by all three techniques are probabljies locations that share similar identifiers.

the best starting point for migrating t_he give_n application toBring to front / Send to back The functionality associ-
AOP, because developers can be quite confident that the Cof " \yith this concern consists of the possibility to bring
cernis very likely to be an aspect. However, thefactthatonl)ﬁgures to the front or send them to the back of an image.

four of such aspects were discovered, stresses the need for@ihen exercised. it executes specific methods that have a
approach that combines the strengths of different techniqueﬁ)W fan-in, hence they were not detected by fan-in analysis.

Contract enforcement / consistent behavior The con- Identifier analysis also missed them, because there were not
tract enforcementand consistent behavioconcerns [13] enough methods with a sufficiently similar name to surpass
generally describe common functionality required from, orthe threshold. Hence, dynamic analysis is the only technique
imposed on, the participants in a given context, such as that identified this concern. This example is a good repre-

5.1. Selected concerns

sentative of crosscutting concerns that are reported only bljkely to occur in most (if not all) the execution traces, so that
dynamic analysis: whenever the methods involved in a funcno specific use-case can be defined to isolate the associated
tionality are not characterized by a unifying naming schemdunctionality.

(or there are not enough of them), neither do they have high Identifier analysis is the least discriminating of the three
fan-in, the other two techniques are likely to fail. techniques and has a large overlap with the other two tech-

Manage handles A crosscutting functionality is responsi- Midues. When a concern can be identified through fan-in
ble for managing the handles associated with the graphiczﬁnalys's and/or dynamic analysis, identifier analysis can of-

elements. Such handles support interactive operations, suf isolate ittoo, since a common lexicon is often used in the
as resizing of an element, conducted by clicking on the hanf@mes of the involved methods. However, identifier analy-

dle and dragging the mouse. This candidate aspect is ir'S S0metimes discards aspects reported by one of the other

teresting because it is detected by dynamic analysis and k}y,vo technigues due to the filtering thgt is applied to limit the

identifier analysis, but in different ways. Identifier analysis "umber of concepts to be manually inspected. Aspects that

detects this concern based on the presence of the word *haft€ t00 small (in terms of number of involved methods) are

dle’ in identifiers. Consequently, it misses methods such aSften discarded by identifier analysis. _

north(), south(), east(), west() . which are _ In conclusion, j[he _results seem to |nd|c§1te a big op_portu-

clearly related to this concern, but do not share the lexicofty for the combination of different techniques, as will be

with the others. On the other hand, dynamic analysis reportdiscussed in Section 6.

both the latter methods apd (some of) thqse containipg thg 3 Limitations

word ‘handle’. However, since not all possible handle inter-

actions have been exercised, the output of dynamic analys&s a consequence of applying each technique to the same

is partial and does not include all the methods reported bgase, some of the limitations of the respective techniques

identifier analysis. have become obvious. For example, we obtained a better
The manage handlesoncern was missed by the fan-in idea of potential ‘false negatives’, i.e. concerns that were not

analysis because the calls are too specific: they are similadentified by a particular technique but that were identified

but different calls instead of one single called method with aby another. Below, we summarize some of the discovered
high fan-in. limitations. In the next section we then discuss how these
Moving figures The three techniques discard concerns Onllr_nltatlons may be overcome by combining different tech-
different bases: some of the concerns are filtered automati® 2"
cally while others are excluded manually. Timeve figures Fan-In Analysis mainly addresses crosscutting concerns
concern, seeded by theoveBymethod in théFigureclasses, that are largely scattered and have a significant impact on
is one example where different, subjective decisions can bthe modularity of the system. The downside of this charac-
made depending on whether the concept is classified either &istic is that concerns with a small code footprint and thus
a candidate aspect or as part of the principal decompositiovith low fan-in values associated, will be omitted. For exam-
The moveBymethods allow to move a figure with a given ple, the identification o©bserverdesign pattern instances is
offset. The team who used fan-in analysis argued that thdependent on the number of classes implementingthe
original design seems to consider this functionality as part ogerverrole. These classes contain calls to specific methods
a Figure’s core logic. The other two teams considered it asin thesubjectclass for registering as listeners to tbjects
part of a crosscutting functionality and included it in the list changes. The number observerclasses will determine to a
of reported candidates. large extent the number of calls to the registration method in
This example highlights the difficulty of deciding objec- thesubjectrole. A collateral effect is the anticipated unsuit-
tively on what is and what is not an aspect and corroborategbility of the technique for analyzing small case studies.

our ChOi_Ce to conduct a qualitative, instead of a quantitative'dentiﬁer Analysis tends to produces a |0t of deta”ed re-
comparison. sults. However, these results typically contain too much
noise (false positives), so a more effective filtering of the
discovered concepts, as well as of the elements inside those
The three proposed techniques address symptoms of crossancepts, is needed. In addition, the discovered concepts
cutting functionalities, such as scattering and tangling, inare often incomplete, in the sense that they do not completely
quite different ways. “cover” an aspect or crosscutting concern. Often, more than
Overall, fan-in analysis and dynamic analysis showone concept is needed to describe a single concern, as was
largely complementary result sets. This is an expected rethe case for th®bserveraspect. The individual concepts
sult, since the first technique focuses on identifying thosghemselves may also need to be completed with additional
methods that are called at multiple (scattered) places. Howelements that are not contained in those concepts. This was
ever, when a method is called multiple times in a system, it ishe case for th&Jndoaspect: in addition to the methods with

5.2. Discussion

‘undo’ or ‘undoable’ in their name, some of the methods call-Completion of aspects As explained in Subsection 5.3,
ing these undo methods need to be considered as part of tehen identifying a particular crosscutting concern, fan-in
coreaspectas well. analysis and dynamic analysis in fact only produce inter-

Dynamic Analysis has as its main limitations that it is par- _estlng_seeds_ for that concern, which may SErVe as a start-
tial (i.e., not all methods involved in an aspect are retrieved)'ng point to discover the actual code addressing that concern.

being based on a dynamic analysis, and it can determine only€V€l0Pers need to browse the source code in order to “com-
aspects that can be discriminated by different execution scé€t€” the concern. Dynamic analysis in particular suffers

narios (e.g., aspects that are exercised in every program el this problem as itis only partial. _
ecution cannot be detected). Additionally, it does not deal BY combining the techniques in clever ways, this problem

with code that cannot be executed (e.g., code that is part gy be alleviated. For example, dynamic analysis may com-
a larger framework, but that is not used in a specific applicaplete the output of fan-in analysis by other methods that label
tion). the same (dynamic analysis) concept as the ones calling that

with the high fan in. In addition, the detailed information
provided by identifier analysis may be used to complete both
the results produced by dynamic analysis and fan-in analysis.

In this section, we discuss possible ways in which the pro—':or dynamic analysis, we may add methods belonging to the

posed techniques can be used to improve each other's resulf@me (identifier analysis) concepts as those labeling the con-

Our proposals for combination are based on our knowledggIdeer (dynamic analysi;) concept. For fz.an—in.e_lnalysis, we
of the characteristics of the individual techniques, as well a ay add methods bglongmg_ to the same (identifier an_aIyS|s)
on the experimental results presented above. concepts as thosg with thg high fan-in, or as those calling the
method with the high fan-in.
6.1. Combining the results As an example, consider thgndo concern. Since most
of the involved methods are executed in all the considered

Since the three techniques are based on different CharaCtes,réenarios, dynamic analysis can detect only a small subset

istics, some aspects are found by one technique only (S&& yhem However, these can be associated with the (iden-

Subsection 5.1). This does not imply that such aspects Alftier analysis) concepts containing the recurring words (in

less likely to be good aspects. For example, recall from S“b()ur example, ‘undo’ and ‘undoable’) and the other methods

section 5.3 that dynamic analysis cannot deal very well Withn such concepts can be regarded as a completion of the can-
methods with a high fan-in and conversely fan-in analySiSdidate aspect detected by dynamic analysis

cannot deal very well with low fan-in methods. Therefore,
it does make sense to take the union of all aspects discofReducing false negatives Some of the generic concepts
ered by these two approaches separately, thereby achieving@mputed by dynamic analysis are discarded because they
better coverage of the crosscutting concerns in the systerfontain a high number of methods that can hardly be inter-
Examples of concerns detected by only one of these tw®reted as belonging to one single concern. However, some
techniques ar€ontract enforcement / Consistent behavior commonality among them does exist, since they are shared
(fan-in) andBring to front / Send to bacfdynamic analysis). by @ subset of the execution traces. Thus, they potentially
Identifier analysis also detects concepts that are not dddentify multiple, slightly different, crosscutting concerns.
tected by any of the other techniques. Given the large numlt would be possible to apply identifier analysis only to the
ber of concepts identified by this particular technique, it ismethods reported by dynamic analysis in each such generic,
less clear if these results can simply be combined with théarge concept. Inspection of the resulting lattice could reveal
results of the other techniques. It remains to be investigatethe presence of clearly identifiable and now separated cross-
whether these detected concerns are false positives of idefutting functionalities.

tifier analysis, or actual concerns missed by the other teC"Grouping identifier analysis concepts As can be seen
niques. In the former case, we could use the outcome of thgom Table 2, more than one identifier analysis concept typ-
other techniques to reduce these false positives reported l?&’ally corresponds to one concern. The identifier analysis
identifier analysis, by keeping an identifier analysis concephpproach thus requires us to manually inspect the individ-
only when some of its elements are also reported by the othg[a| concepts to decide which of them are related to one and
techniques as belonging to a concern. the same crosscutting concern. Information provided by the
other techniques may help us to group concepts in a more
automated way. For example, dynamic analysis produces a
Whereas the previous subsection explained how the end rérace of different methods playing a role in a given concern.
sults of (some of) the techniques could be combined, thisf these methods belong to different (identifier analysis) con-
subsection focuses on how the techniques themselves couteépts, it may be a good idea to group these concepts. Con-
be combined in order to improve the quality of the results. sider thePersistenceconcern. The names of the methods

6. Towards a combination of the techniques

6.2. Combining the techniques

in the use-case specific concept reported by dynamic analgther aspect mining techniques to our case study; (3) imple-
sis include words that belong to different identifier analysismenting and evaluating the combination methods proposed
concepts (like, ‘file’, ‘storable’, ‘load’ or ‘register’). These in this paper; (4) defining an aspect mining evaluation frame-

could be unified into a unique candidate aspect. work, based upon our experience with the case study con-
sidered in this paper; (5) assessing the difficulty of moving

6.3. Summary from aspect identification to the actual refactoring towards
aspects.

We conclude that the three techniques can be combined in)]
different ways. Since fan-in analysis and dynamic analysi¢\cknowledgments Part of this collaboration was funded
are highly complementary, it makes sense to take the unioBY RELEASE, a European Science Foundation scientific net-
of the discovered concepts. Both combined seem potentiall/OrK-
very powerful for revealing the interesting seeds. Identifier
analysis, on the other hand, seems like a good technique fdeferences
complement and augment the discovered seeds with more in-
formation on where the discovered aspects are addressed it]

. . Inc., 1997.
Fhe code, in other words it may be used 'Fo extend' the seed 2] A. Deursen, M. Marin, and L. Moonen. Aspect mining and
into real concerns. Conversely, both fan-in analysis and dy- * * refactoring. InProc. of the First Int. Workshop on REFactor-
namic analySiS may be used to restrict the (Often Iarge) output ing: Achievements, Challenges, Effects (REFACEQ8)3.
produced by the identifier analysis. [3] T. Eisenbarth, R. Koschke, and D. Simon. Locating features

in source codelEEE Transactions on Software Engineering
. 29(3):195-209, March 2003.

7. Conclusion and future work [4] E. Gamma, R. Helm, R. Johnson, and J. VlissidB=sign

)) Patterns: Elements of Reusable Object-Oriented Software
In this paper we took a closer look at three independently Addison-Wesley, 1994.

developed aspect mining techniques. Each of them has[5] B. Ganter and R. Wille.Formal Concept Analysis: Mathe-
strengths and weaknesses. Fan-in analysis is focused on matical FoundationsSpringer-Verlag, 1999. _

those concerns that are implemented as scattered method®] J- Hannemann and G. Kiczales. Design pattern implemen-
calls and manifest themselves as high fan in methods. Conse- [2tion in Java and Aspectd. Rroceedings of the 17th An-

. o nual ACM conference on Object-Oriented Programming, Sys-
quently, it fails to identify candidate aspects associated with tems, Languages, and Applications (OOPSL#gges 161

K. Beck. Smalltalk: best practice patternsPrentice-Hall,

low fan-in. Identifier analysis can detect crosscutting when- 173. ACM Press. 2002.
ever the involved methods share the same lexicon. However,7] B. Henderson-SellersObject-oriented metrics: measures of
it fails in absence of good naming conventions or of con- complexity Prentice-Hall, Inc., 1996.

cerns that share only a common semantic context, but not a[8] M. Marin, A. Deursen, and L. Moonen. Identifying aspects
lexicon. Dynamic analysis relies on the possibility to isolate ~ using fan-in analysis. IRroc. of the 11th IEEE Working Con-
crosscutting functionalities through the execution of scenar- férence on Reverse Engineering (WCRE 20@#lft, The

ios that exercise them. It fails whenever a functionality is o, Eemgﬂgnadnsd '#ﬁ%?:’;r 2Doglff/i'n|§Esgufggggégv%i?ﬁl?g}nal
present in all execution traces.) : '

’) concept analysisElsevier Journal on Computer Languages,
The properties used by the three techniques are orthog- Systems & Structure€005. To be published.

onal to each other. The experimental results obtained on §0] L. Moonen. Exploring software systems. Rroceedings
meaningful case study confirmed their complementary na- of the International Conference on Software Maintenance
ture. This suggest the possibility of several useful combi- (ICSM 2003) IEEE Computer Society Press, 2003.

nations of these techniques. A simple combination strategyl1l M. Porter. An algorithm for suffix stripping. Program
consists of taking the union. Yet, it is expected to be very ef- 14(3):130-137, 1980.

fecti dt ually i h b fth[e12] P. Tarr, H. Ossher, W. Harrison, and J. S. M. Sutton. N degrees
ective and 1o actually increase the coverage, because o of separation: Multi-dimensional separation of concerns. In

different properties exploited by the three techniques. Since |ytemational Conference on Software Engineeribg99.
identifier analysis relies on the presence of meaningful wordg13] The Aspectd TeamThe AspectJ Programming Guid®alo
that characterize the candidate aspect, it can be used to com- Alto Research Center, 2003. Version 1.2.
plete the other two techniques with all methods sharing thd14] P. Tonella and M. Ceccato. Aspect mining through the for-
same lexicon. Moreover, the presence of different words in ~ Mal concept analysis of execution tracesProc. of the 11th
fan-in analysis and dynamic analysis concerns might suggest ~ 'EEE Working Conference on Reverse Engineering (WCRE
the unification of identifier analysis concepts, that can be re- zgge?szeclifé’tThe Netherlands, November 2004. IEEE Com-
garded as possibly associated to a single concern. 15] '[I)' Tourwe ar)(c':l K. Mens. Mining aspectual views using for-
Our future work will be devoted to: (1) extending the mal concept analysis. IRroc. of the Fourth IEEE Interna-

comparison at the level of the seeds detected by each tech- tional Workshop on Source Code Analysis and Manipulation
nique for the commonly identified concerns; (2) applying (SCAM 2004)IEEE Computer Society, September 2004.

