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Abstract

The conceptual structure of existing software systems is
often implicit or non-existing in the source code. We pro-
pose the lightweight abstraction ofintentional source-code
views as a means of making these conceptual structures
more explicit. Based on the experience gained with two case
studies, we illustrate how intentional source-code views can
simplify and improve software understanding, maintenance
and evolution in various ways. We present the results as a
catalog of usage scenarios in a pattern-like format.

Keywords: Software maintenance, tool support, intentional
source-code views, logic metaprogramming.

1 Introduction

The architecture and conceptual structure of existing
software systems are often hidden or absent in the source
code. Consequently, lots of the programmers’ assump-
tions, intentions and conventions remain unrevealed, which
makes it more difficult to understand, evolve and maintain
the code. We propose the notion ofintentional source-code
viewsto codify the conceptual structure of software systems
more explicitly and to provide a means of reasoning about
this information to better understand and improve the code.

To investigate the practical usefulness of intentional
views to aid software maintenance, we conducted two case
studies. One focused on understanding and documenting an
existing software system and using this documentation to
check the source code for inconsistencies. In a second one
we built an application from scratch to get insights on how
intentional views helped in developing better systems and
on how they facilitated the maintenance task.

From the experience gained with these case studies we
distilled an initial catalog of typicalusage patterns, which

is summarized in table 1. Patterns 4.1 and 4.6 explain how
intentional views can help in documenting and restructuring
the source code to make it more understandable and more
reusable. Patterns 4.2 and 4.3 show how to detect anomalies
in the source code (such as coding conventions that were
not respected or missing unit tests). Pattern 4.4 illustrates
how intentional views can be used to verify consistency of
the source code with a design diagram. Finally patterns 4.5
and 4.6 explain how intentional views can help in a code
generation context (to keep track of all non-generated code
or to customize the code generator).

The remainder of the paper is structured as follows.
Section 2 introduces the notion of intentional source-code
views. We provide a working definition, show how to define
intentional source-code views in a logic metaprogramming
language, give a concrete example, and present the tool we
implemented for browsing and defining intentional views.
Section 3 briefly presents the case studies and Section 4 dis-
cusses each of the discovered usage patterns in detail. We
end the paper with a general discussion (Section 5), related
work (Section 6) and some concluding remarks (Section 7).

2 Intentional views

For an elaborate discussion of the model ofintentional
source-code views(or ‘intentional views’, for short), we re-
fer to [11]. Here, we explain only those details of the model
that are needed to understand the examples in this paper.

2.1 Definition

Here is our working definition of the notion of ‘inten-
tional source-code view’:

An intentional source-code view is a set of related program
entities (such as classes, instance variables, methods,
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Table 1. Overview of the discovered Usage Patterns
Usage pattern Purpose

4.1 Conceptual Structuring Render explicit the conceptual structure of a software system
4.2 Enforcing Coding Conventions Verify consistent usage of coding conventions throughout a system
4.3 Verifying Test-suite CompletenessEnsure full unit test coverage
4.4 Checking Design Consistency Verify consistency of source code with a design diagram
4.5 Detecting Manual Code In the context of code generation, retrieve all non-generated code
4.6 Software Customization Tailor a software system to different clients

method statements)1 that is specified by one or more
alternative descriptions (one of which is the ‘default’
description). Each alternative description is an executable
specification of the contained elements in the view. Such
a description reflects the commonalities of the contained
elements in the view, and as such, codifies a certain
intention that is common to all these elements. In addition,
we require that all alternative descriptions of a given
view are ‘extensionally consistent’, in other words, after
computation they should yield the same set of elements.
The computational medium in which we describe the in-
tentional views is a declarative metaprogramming language.

This definition highlights some key elements that turn inten-
tional views into more than mere ‘sets’ of program entities:

Intentional. The sets are not defined by enumeration but
are computed from a specification. This is useful when
the software is modified as the sets are ‘updated’ au-
tomatically: it suffices to recompute the specification.
Intentional descriptions are also more concise.

Declarative. The executable specifications are written in a
declarative language, which makes them easy to read.
This is important as they codify essential knowledge
on the programmers’ assumptions and intentions.

Alternative descriptions. Some descriptions are more in-
tuitive, others are more efficient to compute. As such
it is useful to specify both. Also, sometimes there are
different natural ways in which to codify a view, de-
pending on the perspective taken.

Extensional consistency.The consistency constraint be-
tween different alternative descriptions allows us to as-
sess the correctness of the view definition, as well as
the consistency of the actual source code (e.g., consis-
tent usage of certain conventions and assumptions in
the source code). Extensional consistency is verified
by our Intentional View Browser (see Subsection 2.4).

1For the moment, we only provide support for static program entities,
although the approach could be generalized to dynamic program entities
(such as class instances) as well.

Deviations. Although not mentioned in the definition, for
each alternative we can also specify positive and neg-
ative ‘deviations’, i.e. elements that do not satisfy the
specification of the alternative but that should be in-
cluded, and elements that do satisfy the specification
but should not be included. These deviations indicate
‘exceptions to the general rule’ made by programmers.
They also help in defining intentional views incremen-
tally: you can start out with a rough rule that has some
exceptions and refine it later to make it more precise.

Relations. By relating intentional views we codify high-
level structural knowledge about the source code. For
example (see Subsection 4.3), in one of our cases we
wanted to express that the test-suite for an application
was complete. We codified this using two views, one
containing the application methods and one contain-
ing the test methods, and a relation expressing that for
every method in the first view there should exist a cor-
responding test method in the second view.

Negative information. By using logic negation in our in-
tentional descriptions we can codify negative informa-
tion too (all program entities that do not have a certain
property), which is often very powerful.

2.2 Logic metaprogramming

We implemented our intentional view model as well as
a user-friendlyIntentional View Browserin the logic meta-
programminglanguageSoul. Soul is a dialect of the in-
terpreted logic programming language Prolog, that is inte-
grated in theVisualWorks Smalltalk development environ-
ment. It is ameta-programming language because it comes
with a predefined library of logic predicates for meta-level
reasoning aboutSmalltalk programs. Here is one example
of a logic predicate that is about Smalltalk program entities:

classInCategory(?Class,?Category) if
class(?Class),
equals(?Category,[?Class category]).

This predicate declares the relationship between a class
and its category2. It consist of a single rule that takes 2 ar-

2In VisualWorks Smalltalk, all classes are tagged with some ‘category’.



guments?Class and?Category which can either be in-
stantiated or left variable upon calling the predicate.3 When
the arguments are left variable, the rule produces multiple
results to return all appropriate values for those variables.

The rule calls an auxiliary predicateclass(?Class)
which can be used to retrieve all classes in theSmalltalk im-
age, or, when?Class is bound to a value, to check whether
a certain class exists in theSmalltalk image. The implemen-
tation of this predicate is given in [12].

SinceSoul has a tight symbiosis withSmalltalk, we can
also executeSmalltalk expressions during the interpretation
of logic rules. The expression[?Class category] is
an example of this.4 When the logic interpreter encounters
this expression, it jumps toSmalltalk to send the message
category to theSmalltalk class bound to the logic vari-
able?Class . The interpreter then continues the logic in-
terpretation process with the returned result.

Overall, the rule works as follows. First we verify
whether?Class is an existing class, or bind it to?Class
if it is variable. Then we verify whether?Category is the
category name of that class, or bind the category name to
?Category if it is unbound.

2.3 Example

As a concrete example of how to declare an intentional
view in the logic programming languageSoul, suppose that
we want to group all classes that belong to some application,
calledgsmCase (see Subsection 3.2). First, we declare the
name of the view and a list of alternative descriptions for
this view. There are two alternatives, one which groups the
classes by category and one which groups them by package:

view(gsmCase,<byCategory,byPackage>).

The default alternative is specified by a separate fact. We
choose as default the one that is most efficient to compute:

default(gsmCase,byCategory).

Then, we describe each alternative separately, using a pred-
icate that states which entities belong to the view according
to this alternative description. E.g., the alternative descrip-
tion byCategory is defined as follows:

intention(gsmCase,byCategory,?Class) if
classInCategory(?Class,?Category),
startsWith(?Category,[’GSMCase’]).

The expression[’GSMCase’] usesSoul ’s symbiosis with
Smalltalk to reify a Smalltalk string into aSoul value.

3Logic variables inSoul are always prefixed with a question mark, as
opposed toProlog where they start with a capital.

4Note that inSoul square brackets [. . . ] denote reifiedSmalltalk ex-
pressions, as opposed toProlog where they denote lists. InSoul, lists are
delimited with<>.

Known deviations of this alternative description can be
specified separately by means of factsinclude/3 and
exclude/3 that declare which entities should be included
in (respectively excluded from) the description. For exam-
ple, the classAdHocQueryTool is in another category
but does belong to thegsmCase application:

include(gsmCase,byCategory,
[AdHocQueryTool]).

We do not need to exclude any classes.
The definition of the alternative description

byPackage is similar and accumulates all classes
that belong to the Smalltalk packageGSMCase.

2.4 The Intentional View Browser

Our intentional view model isnon-intrusive. It can be
added on top of any existing programming language or en-
vironment, allowing the definition of intentional views on
top of that language. We implemented a prototype tool, the
Intentional View Browser, for supporting intentional views
on top of theVisualWorks Smalltalk development environ-
ment. It was conceived as a plug-in for theStarBrowser5,
although it runs as a stand-alone application too.

TheStarBrowseris an advancedSmalltalk browser that
has full drag and drop support to group related program en-
tities in sets. TheStarBrowseralso has limited support for
defining ‘computed’ sets, where the computation is speci-
fied by aSmalltalk expression that returns a collection. The
Intentional View Browserextends the functionality of the
StarBrowserwith the notion of intentional views as an ad-
vanced kind of ‘computed’ sets. Figure 1 shows theInten-
tional View Browserat work.

The window on the left of Figure 1 shows theStar-
Browserwith the Intentional View Browserplug-in. The
left-most pane of this window shows all sets of related pro-
gram entities that have been defined in theStarBrowser.
Here, it only contains intentional views that have been
defined with theIntentional View Browser. 42 inten-
tional views have been defined, of which the names are
shown, as well as (between parentheses) the number of
alternative descriptions for each view. When clicking
on an intentional view, the names of the alternative de-
scriptions for that view are shown, with the default al-
ternative distinguished (in bold). For example, the inten-
tional view soulGrammarTerms has two alternatives:
byCategory andbyHierarchy . The default alterna-
tive isbyHierarchy .

The right hand side of the same window can be used
to browse the detailed definition of the currently selected
intentional view or alternative description. In Figure 1,
we selected the alternativebyHierarchy of the view

5http://www.iam.unibe.ch/̃ wuyts/StarBrowser/



Figure 1. The Intentional View Browser

soulGrammarTerms and the window shows the logic
predicate defining this alternative description, as well as the
lists of positive and negative deviations for this alternative.

When clicking the button ‘show extension’, a new win-
dow is opened showing all program entities contained in
this view. Each entity can be selected to inspect and modify
its contents. Before computing this extension, the user is
polled to check extensional consistency of the entire view
first. In case the extensional consistency is not satisfied, a
list containing all inconsistencies is shown to the user.

The tool also offers other features, some of which are
still under development.

3 Case studies

To investigate the practical usefulness of intentional
views to aid software maintenance, we conducted two case
studies. The first one focused on understanding and docu-
menting an existing software system and in the second one
we built a new application from scratch.

3.1 Soul

The first case we considered (also see [11]) is the
Smalltalk implementation of the metaprogramming lan-
guageSoul itself. It is a medium-sizedSmalltalk applica-
tion of about 100 classes. The main goal of this case study
was to try and understand theSoul implementation, to ex-
plicitly document its implicit conceptual structure and ar-
chitecture and to codify this information in such a way that
it could be used for detecting existing inconsistencies in the
software as well as detecting conflicts that might be intro-
duced upon evolution of the software.

3.2 The GSM case

The second case was a simple didacticSmalltalk appli-
cation we built for computing invoices for a mobile phone
operator. In the remainder of this paper we refer to this
application as the “GSM case”. The main goal of this
case study was to try and understand how intentional views
would facilitate and improve our software development and
maintenance job.

Part of the GSM case was generated automatically from
a UML class diagram using a simple code generator we built



ourselves for this purpose [10]. Amongst other things, we
generated the class structure, the instance creation methods
and the accessor and mutator methods. The remainder of
the application was written by hand.

3.3 Approach

The approach we used in both case studies was quite
similar. We defined intentional views (and relations among
such views), whenever we felt the need for it to help us
understand, improve, (re-)structure or document the source
code. To help us in defining and browsing the views, we
extensively used theIntentional View Browser. Whenever
possible, we used the specific features provided by inten-
tional views (e.g., the ‘extensional consistency’ requirement
or the ability to define and verify relations among views) to
detect interesting inconsistencies in the code and to detect
conflicts when the software evolved.

4 Usage patterns

Rather than chronologically enumerating the intentional
views we defined in each of the case studies and, for each
of them, explaining how they helped the software developer
or maintainer, we summarise the results of our case studies
under the form of “usage patterns”. Every pattern consists
of a name, a purposeindicating what task the intentional
view was used for, arationale explaining why this task is
a relevant one, a concreteexampletaken from one of our
cases, asolutiondescribing in general how exactly we can
use intentional views to help achieving the task at hand and
optionally some moreexamplesandrelated patterns. Table
1 gives a brief overview of the discovered usage patterns.

4.1 Conceptual Structuring

Purpose: Render explicit the “hidden” or implicit struc-
ture of an existing system.

Rationale: When developing, maintaining or just trying to
understand the source code of a software system we of-
ten discover places in the source code where the struc-
ture could be improved to make it more modular, more
comprehensible or easier to browse through. Though
conceptually we might have a good idea of what the
intended structure should be like, often this structure
is only implicit or even absent in the source code.

Example: The code of our GSM case consists of dif-
ferent kinds of classes: classes that weregenerated,
classes forgenerating these classes andmanually-
addedclasses. In addition to these, there are specific
classes for connecting to an externaldatabaseand even

a class that implements a littledatabase toolthat was
used during development only. In an initial version of
the GSM case, all these classes belonged to a single
package without any syntactic distinction (not even in
category name or in naming convention). Obviously,
when the application attained a certain size, this flat
structure became quite confusing, so we decided to in-
troduce an explicit distinction by creating five inten-
tional views (one for each type of class):

gsmCaseGeneratedApplClasses
gsmCaseLogicSupportClasses
gsmCaseManualApplClasses
gsmCaseDBApplClasses
gsmCaseDBSupportClasses

In addition, we added a constraint that these views
form a partition of the entire system:

relation(partition, gsmCase,
< gsmCaseGeneratedApplClasses,

gsmCaseLogicSupportClasses,
gsmCaseManualApplClasses,
gsmCaseDBApplClasses,
gsmCaseDBSupportClasses > ).

wheregsmCase is the intentional view which we gave
as an example in Subsection 2.3.

But while declaring these views, we were faced with
the problem that we had not enough information yet
to declare them intentionally due to the lack of a syn-
tactic distinction among them. So we were forced to
introduce an explicit difference between these classes
at the code level first: we decided to assign them a dif-
ferent category name indicating which type of classes
they represented. In terms of this extra information we
could easily define the intentional views, for example:

intention(gsmCaseDBApplClasses,
byCategory,?Class) if

classInCategory(?Class,
[#’GSMCase DB stuff’]).

Without this extra information, we could only have
enumerated all classes in the view, which we wanted to
avoid. So, the mere fact of wanting to codify the con-
ceptual structure with an intentional view induced a re-
structuring (in this case: refining the category names6)
that made this structure more explicit in the code.

Solution: To render explicit the intended conceptual struc-
ture of a software system, we codify it by means of in-
tentional views and relationships among them. When

6In Java, there are no class categories. There we could use structured
class comments or refine the file hierarchy wherein the source files reside.



encoding these views is impossible because the in-
tended structure is not present in the source code, we
may first need to modify the source code slightly so
that the required intentional views can be defined more
easily (e.g., by tagging or commenting certain entities,
by using more consistent naming or coding conven-
tions, by refining the directory structure, . . . ). After
that we define the views and declare the relationships.
In other words, we use the intentional views to ‘over-
lay’ a kind ofconceptual structureon the source code.
It is a ‘conceptual’ structure in the sense that concep-
tually we (want to) think of the source code as being
structured like that, but in fact this structure is not yet
explicit in the source code or does not even exist in
the source code. However, the mere fact of defining
this ‘conceptual structure’ explicitly as an intentional
view often induces this structure explicitly in the code
as well, thus enhancing the structure of the system.

Related patterns: After applying this pattern, consider ap-
plying “Enforcing coding conventions”.

4.2 Enforcing coding conventions

Purpose: Verify the consistent use of certain coding con-
ventions throughout the system.

Rationale: Programmers (andSmalltalk programmers in
particular) use lots of coding conventions and ‘best
practice patterns’ to codify their intentions [3]. Un-
fortunately, consistent usage of such conventions and
patterns strongly depends on the software developers’
discipline as it is difficult to verify that the conventions
are actually respected throughout the system.

Example: Returning to the example of usage pattern 4.1,
in a later version of the GSM case we made the intro-
duced conceptual structure more explicit by creating
five separate packages, one for each set of classes. At
the same time, for each of the intentional views men-
tioned in the example of usage pattern 4.1 we added
an alternative description stating that all classes in this
view belonged to a certain package. E.g.,

intention(gsmCaseDBApplClasses,
byPackage,?Class) if

classInPackage(?Class,
[’GSMCaseDBStuff’]).

Extensional consistency of this alternative with the al-
ready existing alternative implicitly expressed the con-
straint that every class in a certain package should have
a certain (corresponding) category name.

Solution: The extensional consistency constraint between
the different alternative descriptions of an intentional

view can be used to implicitly express an essential con-
vention or assumption in the source code.

Example 2: A second example is taken from theSoul ap-
plication. Consider an intentional view that contains
all logic predicates. There are two alternative ways of
defining this view. The first one uses a naming con-
vention: all logic predicates are wrapped in methods
of a class that belongs to a category starting with the
string ‘Soul-Logic’. The second alternative states that
all classes containing logic predicates are descendants
of the same classLogicRoot, which defines a means of
wrapping logic predicates in ordinary Smalltalk meth-
ods. For the details of this example we refer to [11].

Extensional consistency of both alternative descrip-
tions implies that the naming convention specified by
the first alternative must be respected by all subclasses
of LogicRoot. Although this particular constraint is not
‘crucial’ in the sense that breaking it will not give rise
to program errors, respecting it does make the source
code ‘cleaner’ and thus more understandable and eas-
ier to browse. In fact, the constraint gives an explicit
semantics to the naming convention so that we can ac-
tually besure that everything in a Smalltalk category
with the correct name represents a real logic predicate.

Example 3: Both previous examples were quite syntac-
tic in nature. As a more semantic example, suppose
we want to enforce the convention that every mutator
method assigns a value to the corresponding instance
variable. Again we do this by defining an intentional
view mutatorMethods with two alternatives. Ex-
tensional consistency takes care of the rest.

The first alternative codifies theSmalltalk naming con-
vention that mutator methods are named after the in-
stance variable they modify, followed by a colon7.

intention(mutatorMethods,byName,?M) if
mutatorMethod(?M,?).

mutatorMethod(?M,?V) if
instVar(?C,?V),
equals(?N,[?V,’:’]),
classImplementsMethodNamed(?C,?N,?M).

The second alternative refines the first one with an ex-
tra clause which states that the method?M actually
assigns some value to the variable?V. The predicate
methodWithAssignment will traverse the entire
method parse tree of the mutator method to search for
such an assignment.

7The expression[?V,’:’] is a meta-level call to Smalltalk to con-
catenate a colon to the variable name contained in?V, using the Smalltalk
string concatenation operator ‘,’.



intention(mutatorMethods,byBody,?M) if
mutatorMethod(?M,?V),
methodWithAssignment(?M,?V,?)

Extensional consistency of these two alternatives im-
plies that all methods which follow the naming con-
vention of mutator methods will actually assign the ap-
propriate variable as well.

4.3 Verifying test-suite completeness

Purpose: Ensure full unit test coverage.

Rationale: When using a unit testing approach, we want
the tests to cover the application as much as possible.

Example: In the Soul application, we wanted to ensure
that every predefined logic predicate had a correspond-
ing test method that tests correctness of the predicate.
With a broad unit test coverage many implementation
errors could be detected at a very early stage. Un-
fortunately, not every predicate had a corresponding
test method, since most predicates were ported in bulk
from an earlier version ofSoul without unit tests.

Our model of intentional views helped the developers
in achievingtest-suite completeness. Two intentional
views played a crucial role. One view grouped all logic
predicates, another grouped all unit test methods. Test-
suite completeness was made explicit as a relation be-
tween these two intentional views: for every predicate
in the first view there must exist a corresponding test
method in the second one.

We also used these views and relation to automatically
generate a “stub” test method for all predicates that did
not have a corresponding test method. These stub test
methods contained a test that always failed, thus trig-
gering the developers’ attention that the corresponding
predicate still needed to be tested.

For the details of this example, again we refer to [11].

Solution: Unit testing relies on straightforward conven-
tions that are codified (and thus verified) easily by in-
tentional views and relations among views. For exam-
ple, the name of the test class typically has the same
name as the class being tested, appended with ‘Test’,
and the name of the test method is typically the name
of the method to be tested, prepended with ‘test’.

4.4 Checking Design Consistency

Purpose: Verify consistency of the system’s source code
with a higher-level design diagram.

Rationale: Without a means of ensuring that the source
code of a software system is, and remains, consis-
tent with a higher-level design diagram, the design di-
agram soon becomes outdated and looses its relevance
as high-level documentation of the source code.

Solution: To verify whether every entity (e.g., class,
method) in a UML class diagram corresponds to one in
the source code and vice versa, we declare one inten-
tional view with two alternative definitions. The first
alternative groups all entities that have been defined
in the diagram, the other groupsall existing entities
in the implementation. Of course, this requires that
the diagram is somehow accessible by our logic meta-
programming environment. Inconsistencies may arise
either when adding, for example, a class or method to
the code without updating the diagram or when mod-
ifying the diagram without updating the code. These
inconsistencies are detected automatically when veri-
fying extensional consistency of the intentional view.

Example: In our GSM case, source code was partially gen-
erated from a UML class diagram. The diagram was
represented by a set of logic facts, extracted using
XMI from a UML class diagram in an XML-compliant
drawing tool. The above solution allowed us to verify
easily when the design diagram was out of sync with
the implementation and when either (part of) the code
needed to be regenerated, or the diagram needed to be
updated (using XMI to export the logic facts describ-
ing the diagram back to the drawing tool).

4.5 Detecting Manual Code

Purpose: In the context of a code generation approach, re-
trieve all code that was not generated.

Rationale: When we have a code generator it is very easy
to regenerate the code. But care should be taken that
code that was added manually afterwards does not get
lost upon regenerating.

Example: As part of the code generator for our GSM case,
we implemented a simple routine for backing up the
manually-added code after a code generation step. Ba-
sically, this routine just computes the extension of the
intentional view described in Figure 2, which contains
all application classes that have not been generated.

Solution: The manual code can be defined as an intentional
view which is the difference of the intentional view
containing all code for the application with an inten-
tional view containing all generated code.



intention(gsmCaseManualApplClasses,byDifference,?Class) if
extension(gsmCase,?Class),
not(extension(gsmCaseGeneratedApplClasses,?Class)).

or alternatively

intention(gsmCaseManualApplClasses,byDifference,?Class) if
extension(difference(gsmCase,gsmCaseGeneratedApplClasses),?Class)

Figure 2. Intentional view containing all manually-defined classes.

Related pattern: This pattern could be generalised into
one that “computes the complement8 of another view”.
This is not only useful in the context of code genera-
tion, but also when collaborating with other develop-
ers. For example, suppose it is another developer’s job
to do a big refactoring of the user interface. When do-
ing my own job it might be a good idea to consider all
code except for the user interface code.

4.6 Software customization

Purpose: Tailor a software system to different clients.

Rationale: For some clients some features of a software
system may be irrelevant and do not need to be in-
cluded. Some other features (like debugging and unit
testing) are only relevant to developers and are irrele-
vant for all clients. How can you easily keep track of
all these different possible customizations?

Example: For debugging purposes, the code generator of
our GSM case inserted a print statement in many meth-
ods throughout the application. Just dropping the code
generation method responsible for this from the gen-
erator sufficed to rebuild exactly the same application,
but which did not print all the debug statements upon
execution. This assumes that the code generator is im-
plemented more or less as shown in Figure 3.

Solution: Create a specific intentional view that contains
all code for a particular client. It may be a good idea to
create some views per functionality first from which
the different users can choose which functionalities
they (do not) want to include in their version.

5 Discussion and Future Work

The notion of intentional source-code views9 was orig-
inally conceived as a means of declaring architectural

8with respect to all entities of a certain kind that are currently known to
the development environment

9In [9] and earlier papers we used the term ‘virtual classification’ in-
stead of ‘intentional source-code view’.

knowledge explicitly at a sufficiently abstract level, while
retaining the ability to perform automated consistency
checking of the source code with the architecture [9]. Prob-
ably due to the limited size and duration of the conducted
case studies, we did not yet find sufficient evidence to sup-
port the claim that intentional views are an ideal abstraction
for that. We still believe, though, that intentional views may
prove useful for describing software architectures, but more
experiments are needed to validate this.

The resultsdoseem to indicate a broader relevance of in-
tentional views than we first expected, to facilitate a variety
software maintenance tasks, like:

• Documenting and restructuringthe source code to
make it more understandable and more reusable (e.g.,
by making the conceptual structure of an existing sys-
tem more explicit, by enforcing the consistent usage of
naming and coding conventions throughout the system
or by ensuring test-suite completeness);

• Detecting anomaliesin the source code (e.g., non-
respected coding conventions or missing unit tests);

• Verifying consistencyof the system’s source codewith
a higher-level diagram(e.g., a UML class diagram);

• Customisingthe software system for different clients;

• Generating code(e.g., keeping track of all non-
generated code or customizing the code generator).

These positive results will lead us to further explore the us-
age of our intentional view model and browser as an ad-
vanced software development and maintenance tool. Re-
lated to this, we will try to achieve a more seamless integra-
tion of theIntentional View Browserin theStarBrowserand
in theVisualWorksdevelopment environment.

Although both case studies considered in this paper were
written in VisualWorks Smalltalk, one of the main advan-
tages of our intentional view model is that it is generalisable
to any other language (or language dialect). The only thing
that is needed is a logic metaprogramming language that
can reason about source code for that particular language.
The logic metaprogramming language does not even have



generateCode if
forall( intention(generationForClient,?GenerationPredicate),

call(?GenerationPredicate) ).

where the intentional viewgenerationForClient is defined as

intention(generationForClient,default,?GenerationPredicate) if
extension(generationPredicates,?GenerationPredicate),
not(predicateName(?GenerationPredicate,generateDebugStatements)).

Figure 3. Customisation of our code generator for a particular client.

to be written in the language it reasons about. For exam-
ple, Johan Fabry is working onSoulJava [4], a variant of
Soul, still written in Smalltalk, but which supports reason-
ing about and manipulatingJava source code. Related to
this, we are also actively researching how theSoul environ-
ment can be turned into a language-independent framework
for reasoning about source code. Another thing we are envi-
sioning is the development of an Intentional View Browser
for Java as an Eclipse plug-in.

In spite of the high declarative and intuitive nature of
intentional views, one might argue that it still requires an
above-average developer to define intentional views. There-
fore, we are currently investigating how to facilitate the task
of defining intentional views. One possibility is to offer a
simpler, but maybe less expressive, language in which to
define the intentional views (as opposed to using a full-
fledged logic programming language). Another way is to
add tool support which offers some predefined templates for
the most common kinds of intentional views, that only need
to be parameterised with some concrete details. A third so-
lution is to offer a tool that helps us in semi-automatically
extracting intentional views from the source code or from
an enumerated set of elements. For example, Tourwé et.
al. investigate the use of inductive logic reasoning to derive
the logic rules describing an intentional view from a set of
examples contained in an extensionally-defined view [17].

6 Related work

Conceptual modules[2, 1] bear close resemblance to in-
tentional source-code views, both in spirit and in approach.
Like an intentional view, a conceptual module is a logical
module that can be overlaid on an existing system. It is a
set of lines of source code (from multiple parts of a sys-
tem) that are treated as a logical unit. As opposed to our
approach, conceptual module provides no support for code
generation. Our approach seems more expressive and finer
grained too because it is not restricted to lines of source
code only. It is also more expressive in that a logic meta-
programming language is used to reason about intentional
views as opposed to a regular expression pattern matching

approach. But this increased expressiveness comes at a cost
of decreased efficiency. (Though nothing prohibits us from
implementing in our logic metalanguage a highly-optimized
predicate for doing string-pattern matching and using that
predicate whenever efficiency is crucial.)

Concern graphs[14] are an abstraction meant to lo-
calize software concerns by means of graph representa-
tions of program entities (nodes) and their relations (edges).
Again, concern graphs differ from intentional views in the
granularity of the representation. The number of repre-
sentable entities is deliberatly kept to a minimum (essen-
tially: classes, methods and attributes) and there is a fixed
set of 7 kinds of relations among the entities (“declares”,
“calls”, “reads”, “writes”, ...). This deliberate restriction
imposed by the concern graph approach makes the expres-
sions of concerns concise. Intentional source-code views do
not impose such a restriction and are therefore more expres-
sive. Thanks to the strong symbiosis withSmalltalk, they
can reason about anythingSmalltalk can reason about. But
again sometimes this may make the expressions somewhat
less concise or less efficient.

Many other approaches exist where multiple views on
the same software system are offered, e.g. [6]. There are
even some approaches that use a logic programming lan-
guage for this. However, due to the large variety of exist-
ing approaches it is not clear to us yet where exactly our
approach fits in and what its advantages and disadvantages
over these other approaches are.

There exist interesting relations with database research
too. At the risk of oversimplifying things, if we would
consider the source-code repository as a mere database of
source-code entities, one could say that intentional source-
code views are similar todatabase views. In fact [6] men-
tions how “database views [. . . ] can be used to build
multiple-view systems where the views are informed of
changes to model objects and requery the model to update
the view’s state. [. . . ] Unidirectional constraint systems
[. . . ] use constraint rules between software specification
components which, when triggered, automatically update
affected structures or flag the presence of inconsistencies.”

Combined with a code-generation approach, intentional



views may prove useful as an enabling technology for
achievingaspect-oriented programming[8], by generating
or weaving code for all entities that belong to a certain in-
tentional view. As such, a lot of work related to aspect-
oriented programming is also related to intentional source-
code views (e.g., subject-oriented programming [7], multi-
dimensional separation of concerns [16], concern space
modeling [15] and the AspectBrowser [5]) . A detailed
investigation of how intentional views may aid aspect-
oriented software development remains future work.

Finally, we repeat that work exists on using intentional
views to describe software architectures [9, 13], but that
more experiments are needed to further refine the model.

7 Conclusion

Whereas in [11] we presented the model of intentional
source-code views, this paper reports on two case studies
we conducted to investigate the practical usability of inten-
tional views. We expected the results to show the usefulness
of intentional views to codify the “architecture of existing
systems”. Instead the case studies showed how the specific
features of intentional views — their declarative and inten-
tional yet executable nature, the ability to define verifiable
relations among views, the ability to define several alter-
natives of a view and the requirement of ‘extensional con-
sistency’ among these alternatives — could be exploited to
facilitate a whole range of software development and main-
tenance tasks. For ease of understanding, we expressed the
results under the form ofusage patterns. Taking into ac-
count the rather limited scope of the case studies, we are
convinced that the discovered patterns constitute only the
tip of the iceberg and that many more useful applications of
intentional views to aid software maintenance exist.
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