
Declaratively Codifying Software Architectures

Using Virtual Software Classi�cations

Kim Mens, Roel Wuyts and Theo D'Hondt

Programming Technology Lab, Vrije Universiteit Brussel

f kimmens j rwuyts j tjdhondt g@vub.ac.be

Abstract

Most current-day software engineering tools and environments do not su�ciently support

software engineers to declare or to enforce the intended software architecture. Architectures

are typically described at a too low level, inhibiting their evolution and understanding. Fur-

thermore, most tools provide little support to verify automatically whether the source code

conforms to the architecture. Therefore, a formalism is needed in which architectures can be

expressed at a su�ciently abstract level, without losing the ability to perform conformance

checking automatically. We propose to codify declaratively software architectures using vir-

tual software classi�cations and relationships among these classi�cations. We illustrate how

software architectures can be expressed elegantly in terms of these virtual classi�cations and

how to keep them synchronized with the source code.

1 Introduction

The problem of architectural mismatch [3] is a well-known problem: by the time an ar-

chitecture speci�cation is published, it is already wrong. It is also an important problem,

because although designing an architecture may take up to one year, the engineers must

then live with the architecture for up to �fteen years of development and maintenance [12].

A related problems is the problem of architectural erosion. Perry and Wolf [10] de�ne ar-

chitectural erosion as \violations in the architecture that lead to increased system problems

and brittleness". Because the implementation of a software application continually evolves,

most software applications tend to drift away from their original architecture, eventually

turning the software into a legacy system when no proper actions are taken.

To counter these problems, we not only need to describe software architectures explicitly

at a su�ciently high level of abstraction, but also provide support for keeping the source

code conform to it. The contribution of this paper is to present a formalism in which

architectural knowledge can be codi�ed with the ability to check conformance of source code

automatically. Preferably, such a formalism should possess the following characteristics:

� It should allow reasoning at su�ciently high levels of abstraction, i.e., in terms of the

concepts that are the focus of interest at that time. At architectural level, we reason

about components, connectors, architectural patterns, . . . At design level, we reason

in terms of classes, methods, inheritance, aggregations, . . . And at implementation

level we are interested in individual statements, message expressions, and so on.

1



� Because we do not want to limit our expressiveness, we want to use a full-edged

programming language. More speci�cally, to allow powerful reasoning we prefer a

logic programming language in which we can exploit the full power of uni�cation.

� To allow conformance checking of source code to the architecture, we need an explicit

mapping of high-level architectural components and relationships to all possible kinds

of source-code artifacts and dependencies.

� We want the formalism to be as open as possible. It should be possible at all times

to introduce new kinds of architectural relationships, to reason about new kinds of

source-code artifacts at architectural level, or to de�ne new mappings between archi-

tectural components and source-level artifacts.

Although our ultimate goal is to develop a tool or environment supporting declaration

and veri�cation of architectures, in this paper we mainly focus on the formalism underlying

such a tool. The formalism adheres to the above characteristics. We use virtual clas-

si�cations to map high-level architectural components to source-level artifacts (and vice

versa). We declare explicit relationships between these virtual classi�cations to describe

the co-operations among them. The medium in which we de�ne virtual classi�cations and

their relationships, and that links them to the source code is SOUL, the Smalltalk Open

Uni�cation Language [15]. We will present an example of declaring an architecture at a

high level of abstraction in this medium, and illustrate how to check conformance of the

source code to this architecture automatically .

Before explaining our approach in section 3, we discuss some closely related work in the

next section. Sections 4 to 7 illustrate our formalism by means of some experiments. Before

concluding (section 9), section 8 discusses the achieved results and future work.

2 Related work on software architectures

The architecture of a software system de�nes that system in terms of high-level compo-

nents and interactions among those components. In addition to specifying the structure

and topology of the system, the architecture also provides some rationale for the design

decisions in terms of the system requirements [13]. In this paper, however, we focus on the

structural aspects of software architectures only.

Much research has been done on architecture description languages (ADLs) [13, 9]. ADLs

provide a formal basis for describing software architectures by specifying the syntax and

semantics of modeling components, connectors, and con�gurations. Although some would

characterize our work as the search for a new ADL, personally, we would situate it in the

area of developing formalisms for reasoning about architectural designs. In this paper,

we do not intend to promote our formalism as a better or more general ADL. We merely

want to validate our claim that virtual classi�cations are a useful abstraction for codifying

software architectures.

Murphy's work on software reexion models [8] is closely related to ours. Software

reexion models show where an engineer's high-level model of the software does and does

not agree with a source model, based on a declarative mapping between the two models.

Module Interconnection Languages (MILs) [11] can be used to describe formally the global

structure of a software system, by specifying the interfaces and interconnections among the

system modules. These formal descriptions can be processed automatically to verify system



integrity. A MIL describes the interconnections between modules in terms of the entities

they contain (e.g., variables, constants, procedures, type de�nitions, ...).

Shaw and Garlan [13] argue that MILs force software architects to use a lower level of

abstraction than is appropriate, because they focus too much on `implementation' rather

than `interaction' relationships between modules. In our opinion, software reexion models

su�er from the same problem: high-level relationships between architectural components

are typically mapped to calling relations, �le dependencies, cross-reference lists and so on.

Our formalism tries to extend approaches such as software reexion models or MILs, to

higher levels of abstraction allowing, for example, the declaration of:

� architectural components that are mapped to multiple software artifacts, spread

throughout the source code;

� more complex relationships dealing with transitive closures, protocols, programming

conventions, design styles, ...;

� higher-level architectural components and relationships that are described in terms

of other high-level components and relationships themselves.

Another di�erence between software reexion models and our approach is the di�erence

in focus. To obtain more exibility and e�ciency | at the cost of decreased precision |

Murphy [7] rejects the use of parsers, but uses lexically-based tools that produce approx-

imate results when extracting information from source code. We approach the problem

from the other end of the spectrum. Because we do not want to restrict a priori the kinds

of source-code artifacts we want to reason about at architectural level, we do use parsers.

Furthermore, to allow powerful reasoning about this information, we use the technique of

uni�cation. Our goal is to allow describing software architectures at the highest abstraction

level possible (without losing the ability to verify conformance of source code), at the cost

of decreased e�ciency.

3 Our approach

In developing our formalism, we were inspired by De Hondt's dissertation on software

classi�cation as an approach to architectural recovery in evolving object-oriented systems

[5]. De Hondt presents the software architecture model | where classi�cations are con-

tainers of software artifacts, and artifacts can be classi�ed in multiple classi�cations |

as a powerful model to organize software artifacts in a exible and uniform manner. He

uses these software classi�cations to capture architectural abstractions that were reverse

engineered from lower-level software artifacts and their interrelationships.

Whereas De Hondt distinguishes several kind of software classi�cations, in this paper

we investigate to which extent virtual software classi�cations and their interrelationships

can be used to codify software architectures and to reason about them. Virtual classi�ca-

tions are special classi�cations that can compute their elements. This makes them more

abstract than, for example, manually constructed classi�cations, because they describe in

an explicit (and in our case, declarative) way which artifacts are intended to belong to the

classi�cation. For reasons of brevity, in the remainder of this paper we will often write

`virtual classi�cation' or even `classi�cation' instead of `virtual software classi�cation'.

Another source of inspiration was SOUL, the Smalltalk Open Uni�cation Language [15],

which we chose as a medium in which to conduct our experiments. SOUL is a reective,



Input

OutputOutput

Working
memory
Working
memory

Knowledge
base

Knowledge
base

Rule
selection

Rule
selection

Rule
interpreter

Rule
interpreter

Rule
base
Rule
base

Fact
memory

Fact
memory

Figure 1. Rule-based system architecture

PROLOG-like, declarative rule-based language implemented in Smalltalk. Smalltalk was

chosen as base language because of its very good reective facilities which make processing

source code much easier. Building on these facilities, SOUL allows the declaration of

structural rules about Smalltalk source code. These rules can be used to query the software

system to �nd occurrences of certain structures, or to enforce the presence of structures.

Currently, SOUL comes with a layered framework of rules that allow reasoning at the

implementation and the design level.

In this paper, we not only use SOUL as a medium in which to codify architectural

knowledge (by adding an architectural layer), but also as a case study to express the

architecture of the SOUL rule engine. We chose this particular case, not only because of our

�rst hand knowledge of the SOUL implementation, but also because the basic architecture

of rule-based systems is explicitly documented upon in literature. Another reason for

choosing this case it that it allows us to explain both the architecture of the SOUL system

and some of the principles behind SOUL at the same time. Our slightly modi�ed variant

of the rule-based architecture presented in [13, 4] is depicted in �gure 1.

To validate our claims, we set up the following experiment: we codify the architecture of

the SOUL rule engine and check conformance of the Smalltalk implementation of SOUL to

this architecture. The codi�ed architecture is depicted in �gure 2 which is a re�nement of

�gure 1. More particularly the names of some virtual classi�cations were made a bit more

speci�c, the relationships were given an intuitive name such as uses or creates (optionally

annotated with a `*' denoting the transitive closure of that relationship), and two cardi-

nalities were attached to each relationship. The cardinality 9 means `at least one' and 8

means `every'. For example, the `uses' relationship between `Input' and `Query Interpreter'

could be read as: `every item in the Input classi�cation should use at least one item in

the Query Interpreter classi�cation'. Note that the all-to-one cardinality 8 is stronger than

typical many-to-one cardinalities available in most design notations.

Using this experiment we argue why virtual classi�cations and their relationships provide

a good abstraction for describing architectural entities, ranging from architectural compo-

nents and connectors, through architectures and subarchitectures, to architectural patterns.

Using the same experiment we explain how to perform conformance checking of source code

to architectures: we explain how virtual classi�cations can be computed from source-code

artifacts, how relations among virtual classi�cations are mapped to more primitive depen-

dencies between source-code artifacts and how to check conformance of entire architectures

(possibly containing subarchitectures).



Input

uses

creates

creates

uses
uses

uses*

uses*
Results

Working
memory
Working
memory

Repository

Rule
selection

Rule
selection

Query
interpreter

Query
interpreter

Rule
base
Rule
base

Fact
memory

Fact
memory

�

��

� �

�

�

�

�

�

� �� �

Figure 2. SOUL rule engine architecture

4 Declaring virtual classi�cations

In this section we declare the virtual classi�cations of the SOUL rule engine architecture

depicted in �gure 2. This illustrates how virtual classi�cations expressed in SOUL provide

an abstract mapping of high-level architectural entities to low-level source-code artifacts.

All code extracts are presented in SOUL syntax which is very similar to PROLOG syntax,

with a few noteworthy di�erences. Instead of using square brackets `[' and `]', SOUL lists

are delimited by `<' and `>'. In SOUL, `[ ... ]' denotes a re-i�cation of Smalltalk code in

the SOUL language. Finally, SOUL variables start with a `?' instead of with a capital.

The experiment starts with virtual classi�cations that are straightforward mappings to

source-code artifacts, but we then show mappings that cross-cut the system, or that are

expressed in terms of other architectural entities. Also note that, for example, methods of

the same class can be classi�ed in many di�erent classi�cations.

Working memory. Conceptually, the workingMemory classi�cation contains only those
classes that have something to do with the working memory of the SOUL rule engine.
In the source code, this boils down to the SOULBindings class and all subclasses
thereof, because these are responsible for handling the bindings that are assigned
to variables during uni�cation. This is straightforwardly implemented, using the
prede�ned hierarchy predicate:

Rule classIsClassifiedAs(?Class,workingMemory) if

hierarchy([SOULBindings],?Class).

Once this rule is de�ned, we can launch a query that computes all classes belong-
ing to this classi�cation. This query succeeds for every class that is a subclass of
SOULBindings.

Query classIsClassifiedAs(?Class,workingMemory).

Rule selection. The classi�cation ruleSelection groups all software artifacts that deal with
selecting the relevant rules from the logic repository upon query evaluation. This
classi�cation consists of methods1 only, namely all methods named unifyingClauses:
de�ned on classes in the SOUL system. The body of the rule implementing this
consists of a conjunction of two statements: the �rst restricts the scope to SOUL
classes (using an auxiliary classi�cation soulClass), and the second retrieves from
these classes all methods named unifyingClauses:. The prede�ned SOUL predicate
classImplements �nds the method with a given name in a given class.

1In SOUL, methods will be represented by their parse-tree representation, including their class, name
and body.



Rule methodIsClassifiedAs(?Method,ruleSelection) if

classIsClassifiedAs(?Class,soulClass),

classImplements(?Class,[#unifyingClauses:],?Method).

Although this classi�cation looks very simple, it actually speci�es a mapping that

crosses the boundaries among many di�erent classes and hierarchies: the ruleSelection

methods belong to many classes spread throughout the entire SOUL implementation.

Query interpreter The queryInterpreter classi�cation consists of all methods that deal
with the actual interpretation of queries. Conceptually, these are all the methods
that get called | directly or indirectly | when a query is interpreted. Because
interpretation of a query is started by invoking the method interpret:repository: on
class SOULQuery, we merely need to compute the transitive closure of all methods
that are invoked by this method. For reasons of e�ciency, we restrict the scope to
relevant classes and methods only, skipping for example methods that have to do with
input/output, displaying, . . . All this is done by an auxiliary predicate reaches.

Rule methodIsClassifiedAs(?Method,queryInterpreter) if

classImplements([SOULQuery],[#interpret:repository:],?M),

reaches(?M,?Method).

This classi�cation de�nes a real cross-cut of the SOUL code, starting from one method

and collecting all methods that are transitively invoked by this initiating method.

Input. The input classi�cation is an example of a classi�cation that is not de�ned directly
as a mapping to lower-level artifacts, but at a higher and more abstract level, in
terms of its relation with another classi�cation. It contains the classes that initiate
the interpretation process of a query. Conceptually, these are the classes that belong
to the soulApplication classi�cation consisting of all SOUL GUI applications, and
that use a method that is classi�ed in the queryInterpreter classi�cation.

Rule classIsClassifiedAs(?Class,input) if

classIsClassifiedAs(?Class,soulApplication),

methodIsClassifiedAs(?Method,queryInterpreter),

uses(?Class,?Method).

Repository. The repository of a rule-based system is typically made up of a rule base

and the fact memory. We de�ned this classi�cation as consisting of methods that

access (read or write) directly or indirectly the instance variable clauses of class

SOULRepository.

Results. The results classi�cation contains software artifacts that deal with the results of

queries. This classi�cation merely contains the class SOULResult and its subclasses.

5 Codifying a software architecture

This section illustrates how to codify a software architecture using virtual classi�cations

and relationships among them. We also show how conformance checking from source code

to an architecture is done.

5.1 Relationships between components

Before discussing how to describe software architectures, we explain the kinds of rela-

tionships that can be expressed. The idea is to connect architectural components (in our

case: virtual classi�cations) with high-level intuitive connectors such as uses, creates and



accesses. However, because we want to check source-code conformance to architectures, and

architectural relationships in particular, we need to map these high-level connectors to more

primitive dependencies (such as message invocations, instance creation, reading or writing

variables, and combinations thereof) that can actually be found in the source code. In order

to map a relationship between two classi�cations containing many source-code artifacts to

dependencies between those artifacts, we also need to specify cardinalities. For example,

uses(allToOne,input,queryInterpreter)means that all artifacts in the input classi�cation

should use at least one artifact in the queryInterpreter classi�cation. Other cardinalities

used in this paper are oneToOne, oneToAll, and allToAll. In the examples that follow, we

will often use shortcuts such as usesAllToOne(input,queryInterpreter) where the cardi-

nalities are absorbed in the name of the predicate instead of given as extra argument when

calling the predicate.

The uses relationship (among others) is not only de�ned between classi�cations, but

is overloaded at many levels of abstraction. At the highest abstraction level, it works

with classi�cation names. This is translated into a uses relationship between groups of

source-code artifacts (corresponding to the classi�cations named). Next, using the speci�ed

cardinality, this is translated to one or more uses relationships among the classi�ed artifacts.

Depending on the kinds of artifacts, the relationship is further re�ned. In the case of uses

between two methods, we just check whether there is a message invocation between the

two. When one of the arguments is a class, we de�ne the uses relationship in terms of a

uses relationship on the methods of that class. For example, a class uses a method if at

least one of its methods uses that method.

Finally, we want to stress that the high-level connectors between architectural compo-

nents can have an arbitrary complexity. uses is an example of a simple connector that maps

almost directly to message invocations at source-code level. The creates relationship is a

bit more complex. Without going into the details, the mapping for this relationship takes

into account both lazy initialization and direct invocation of class creation methods (con-

structors) [1], and instance creation through factory methods or class factories [2]. Another

example of a more complex relationship is usesTrans which corresponds to the transitive

closure of the uses relationship. Also negative relationships (stating for example that two

classi�cations should not be connected) can be expressed.

5.2 The SOUL architecture

As an example of a concrete architecture, we illustrate how the architecture of the SOUL
rule engine (�gure 2) can be expressed in terms of the virtual classi�cations declared in
section 4. As is illustrated by the declarations below, an architecture description consists
of a unique name, a list of components of which the architecture is composed (in this
example, the components are virtual classi�cations), and a list of relationships among the
architectural components.

Fact architecture(soul,

< input,queryInterpreter,workingMemory,ruleSelection,repository,results >,

< usesAllToOne(input,queryInterpreter),

usesOneToOne(queryInterpreter,workingMemory),

usesTransOneToOne(queryInterpreter,ruleSelection),

usesTransAllToOne(ruleSelection,repository),

createsOneToOne(ruleSelection,workingMemory),

usesOneToOne(ruleSelection,workingMemory),



uses

uses

Interpretation Substitution

Query
interpreter

Query
interpreter

�

�

�

�

Figure 3. Query interpreter subarchitecture

createsOneToOne(queryInterpreter,results),

not(related(workingMemory,repository)) >).

5.3 Conformance checking

Once an architecture has been declared, it can be used to verify whether the source
code conforms to it. Indeed, because an architecture declares relationships among virtual
classi�cations, and virtual classi�cations and their relationships can be mapped to source-
code artifacts and dependencies among these artifacts, an architecture indirectly de�nes
a relationship between source-code artifacts. To check whether an architecture with some
name is valid (i.e., whether the source code conforms to it), we �rst fetch the description
of the architecture with that name. Then, we check whether the architecture is well-
formed, i.e., that the components have been declared and that the relationships between
the enumerated components are well-formed. Finally, we check whether these declared
relationships between the architectural components hold.

Rule checkArchitecture(?ArchitectureName) if

architecture(?ArchitectureName,?Components,?Relationships),

wellFormedArchitecture(?Components,?Relationships),

checkArchitecturalRelationships(?Relationships).

The auxiliary predicate checkArchitecturalRelationships checks whether the declared re-

lationships hold, by invoking them one by one. For example, in the case of the soul archi-

tecture, the �rst relationship usesAllToOne(input,queryInterpreter) checks whether every

item in the input classi�cation uses at least one item in the queryInterpreter classi�cation

(see also section 5.1).

Our initial conformance checking tool was very primitive, merely returning a `true' or

`false' depending on the success of the conformance check. We are currently extending

the tool to provide more detailed information on the conformance checking process. More

precisely, in analogy to [8], we could compute the convergences (where the source code

agrees with the architecture), the divergences (where the source code shows dependencies

that are not predicted by the architecture) and the absences (where the source code does

not contain dependencies that are described by the architecture). We can do this by

making our cardinality predicates (8 and 9) more intelligent. For example, when checking

a relationship, the predicate for 9 could remember for which artifacts the relationship holds

and the predicate for 8 could remember which artifacts failed to satisfy the relationship

(if any). However, because the predicates are implemented with lazy evaluation | for

e�ciency reasons |, the extra information they provide is restricted by their lazyness.

6 Re�ning a classi�cation as a software architecture

The soul architecture codi�ed in section 5.2 used only software classi�cations as compo-

nents. However, software architectures can have subarchitectures as components as well. To



illustrate this, this section re�nes the queryInterpreter classi�cation as an architecture itself.

More precisely, we de�ne two subclassi�cations and declare relationships between them, as

illustrated in �gure 3. This results in a classi�cation queryInterpreter that is de�ned at a

high level of abstraction, and that can still be checked for source-code conformance.

6.1 The interpretation and substitution subclassi�cations

The original queryInterpreter classi�cation consisted of software artifacts that deal with
the interpretation of queries. This interpretation process actually consists of two phases:
the interpretation phase where terms and clauses are interpreted, and a substitution phase,
where bindings found during uni�cation are substituted in the term that is currently being
interpreted. We will declare these two phases as subclassi�cations: interpretation and
substitution.

Rule methodIsClassifiedAs(?Method,interpretation) if

classIsClassifiedAs(?Class,soulClass),

methodInProtocol(?Class,[#interpretation],?Method).

Rule methodIsClassifiedAs(?Method,substitution) if

classIsClassifiedAs(?Class,soulClass),

methodInProtocol(?Class,[#substitution],?Method).

Note that both rules use Smalltalk protocols to select the relevant methods. Smalltalk

environments typically subdivide the methods of a class in protocols such as printing,

accessing, initialize, . . . Although we can reason at a more semantic level by relying on

such information, we are dependent on the developers' goodwill to use these protocols in

a disciplined way. However, the task of �lling in these protocols (or other tags) could

be partially supported by a tool integrated in the software development environment. In

languages other than Smalltalk, protocols can be simulated by allowing software engineers

to explicitly `tag' software artifacts with extra semantic information during the development

process.

6.2 The queryInterpreter subarchitecture

Based on these subclassi�cations we can rede�ne the queryInterpreter classi�cation as
their union.

Rule isClassifiedAs(?Artifact,queryInterpreter) if

union(interpretation,substitution,?C), member(?Artifact,?C).

However, because there are a number of important relationships between these subclas-
si�cations, the ruleInterpreter classi�cation is more than a mere union. In fact, it is in turn
an architecture composed of these subclassi�cations together with their relationships (see
�gure 3).

Fact architecture(queryInterpreter, <interpretation,substitution >,

< usesOneToOne(interpretation,substitution),

usesOneToOne(interpretation,interpretation) >).

When adopting a coarse-grained view, queryInterpreter is simply a classi�cation that is
connected to other classi�cations. But in a more �ne-grained view, we consider it as an
architecture consisting of several subcomponents with their own relationships. In the latter
view the connections between queryInterpreter and other classi�cations can be re�ned in
terms of these subcomponents. This is typically done by introducing ports [13]. We simulate
ports by de�ning port bindings that re�ne relationships between architectural components



Input

uses

creates

uses

uses

Results

Working
memory
Working
memory

Interpretation
Substitution

Query
interpreter

Query
interpreter

Repository

Rule
selection

Rule
selection

Figure 4. Port bindings

in terms of relationships between their subcomponents. For example, we can re�ne the
uses relationship from input to queryInterpreter, into a uses relationship from input to
interpretation (which is a subclassi�cation of queryInterpreter). The port binding for this
example is implemented by the �rst fact below. Figure 4 illustrates some other bindings,
and their SOUL implementation is given below. Note that some relationships may be
re�ned into more than one relationship, as is the case for the uses relationship between
queryInterpreter and workingMemory.

Fact portBinding( uses,input,queryInterpreter,input,interpretation).

Fact portBinding( creates,queryInterpreter,results,interpretation,results).

Fact portBinding( uses,queryInterpreter,workingMemory,

interpretation,workingMemory).

Fact portBinding( uses,queryInterpreter,workingMemory,

substitution,workingMemory).

Fact portBinding( uses,queryInterpreter,ruleSelection,

interpretation,ruleSelection).

For some relationships between classi�cations, no port binding may be provided. When

checking those relationships, the coarse-grained view is adopted, by considering the classi-

�cations as a mere union of their subclassi�cations.

6.3 Conformance checking | revisited

Finally, we revisit the conformance checking rules in the current situation where clas-
si�cations can be architectures that are, in turn, built up from many classi�cations. To
deal with this situation, the checkArchitecture rule needs to be re�ned with an extra clause
checkSubArchitectures(?Components) which checks for each of the components whether its
architecture is valid. For components that are ordinary classi�cations, nothing special needs
to be done, but for components that are again architectures, the checkArchitecture predicate
is called recursively to check conformance to that (sub)architecture. Also, the checkArchi-
tecturalRelationships predicate needs to take the port bindings into account. For those
relationships that are re�ned by a port binding, the re�ned version(s) should be checked.

Rule checkArchitecture(?ArchitectureName) if

architecture(?ArchitectureName,?Components,?Relationships),

wellFormedArchitecture(?Components,?Relationships),

checkSubArchitectures(?Components),

checkArchitecturalRelationships(?Relationships).

7 Architectural patterns

This section shows how we can easily de�ne architectural patterns in our formalism,

demonstrating again that it can be used at very high levels of abstraction, without losing



the ability to do conformance checking. As an example we de�ne the rule-based system

architectural pattern (see �gure 1), of which the soul architecture is a speci�c instance.
An architectural pattern describes an architectural structure consisting of architectural

components and relationships. However, as opposed to a concrete architecture, it provides
a template that can contain `holes' (implemented by logic variables) that need to be �lled
in upon instantiation. The predicates below implement the rule-based system architectural
pattern, and show how this template can be used to re-implement the soul architecture in
term of this pattern.

Fact ruleBasedSystemPattern(

?Related1,?Related2,?Related3,?Related4,?Related5,?Related6,

description( < ?Input,?RuleInterpreter,?WorkingMemory,

?RuleSelection,?KnowledgeBase,?Output >,

< ?Related1(?Input,?RuleInterpreter),

?Related2(?RuleInterpreter,?WorkingMemory),

?Related3(?RuleInterpreter,?RuleSelection),

?Related4(?RuleSelection,?KnowledgeBase),

?Related5(?RuleSelection,?WorkingMemory),

?Related6(?RuleInterpreter,?Output),

not(related(?WorkingMemory,?KnowledgeBase)) >)).

Rule architecture(soul,?Components,?Relationships) if

equals(?Components,< input,queryInterpreter,workingMemory,

ruleSelection,repository,results >),

ruleBasedSystemPattern(

usesAllToOne,usesOneToOne,usesTransOneToOne,

usesTransAllToOne,createsAndUsesOneToOne,createsOneToOne,

description(?Components,?Relationships)).

Note that the rule instantiating the soul architecture makes heavy use of logic uni�cation

when �lling in the holes of the pattern with the concrete components and relationships.

Although not present in this example, upon instantiation of a pattern, some more speci�c

constraints that are not provided by the pattern may be declared as well. Similarly, more

complex architectural patterns make use not only of (uni�cation of) logic variables, but

also use logic reasoning to declare the structure of the pattern itself (e.g., the relationships

between the components). Due to space limitations, we could not include an example

illustrating this.

8 Discussion and future work

Our initial experiments were very promising. We actually succeeded in declaring the

architecture of part of the SOUL system, and checking conformance of the source code to

this architecture. We even de�ned a subarchitecture and declared an architecture in terms

of an architectural pattern, while still being able to check conformance. However, as one

single case study is not su�cient to prove our claims, more case studies will be performed

in the near future.

The architectural model employed in this paper was rather primitive. For example, we

only considered fairly simple connectors such as uses and creates that can be mapped rather

straightforwardly to lower-level implementation relationships. We are currently extending

the model to deal with higher-level connectors or even connectors constructed from other

connectors themselves. Preferably, we want architectural connectors that include more



semantics than uses or creates, for example, by relying on particular conventions adopted

by the engineers, or by reasoning about speci�c tagging information annotated by the

engineers during development. Another extension is to allow other (perhaps user-de�ned)

kinds of cardinalities.

To validate the practical usability (e�ciency, simplicity, ease of use, readability, ...) of

our formalism, more experiments are needed as well. One such experiment is to declare

an architecture and check conformance of di�erent versions of the source code to it. A

related experiment is to investigate how re�ning an architecture a�ects the source code's

conformance to it. Experiments such as these �t in our longer term research goal to develop

a formalism for managing unanticipated evolution of software architectures. To achieve this

goal, we will extend the current formalism with the technique of reuse contracts [14, 6],

which is speci�cally targeted for dealing with unanticipated evolution of software artifacts

(and automated conict checking in particular).

During our experiments, we noticed that the current implementation of our formalism

is not very performant. Computing some classi�cations or checking some relationships

(especially those involving transitive closures) can take a very long time (sometimes more

than one hour). To gain more performance, we want to extend SOUL with extra search

techniques and more advanced uni�cation schemes.

The current formalism is only supported by a very primitive tool. Therefore, in par-

allel with optimizing and extending the formalism, a real tool or environment supporting

declaration and veri�cation of architectures should be developed.

Another future research track is to develop SOUL further and to promote SOUL as

a general medium for expressing software development styles ranging from programming

conventions and idioms, through design patterns [15], to software architectures and archi-

tectural patterns.

9 Conclusion

The experiments showed that our consistent use of a declarative programming language

throughout all abstraction layers | from source-code level through the design and architec-

tural level to architectural patterns | provides a viable formalism to reason about architec-

tural knowledge on a su�ciently high level of abstraction while still allowing conformance

checking of source code. Virtual classi�cations proved their worth as suitable abstractions

of architectural components. They hide the details of the lower-level design and source-code

artifacts on which they are mapped, yet allowing us to reason about their relationships with

other architectural components independently of the artifacts they actually contain. Our

layered formalism also provides a powerful way of de�ning highly abstract relationships

between architectural components, by building them up from lower-level relationships that

are again constructed from even lower level ones. As such, simple low-level relationships

can be successfully combined into complex high-level relationships. Finally, these mappings

of architectural components to lower-level components, and of architectural relationships

to lower-level relationships, made it easy to implement the conformance checking rules by

implementing conformance checking at a high level in terms of conformance checking rules

at lower levels, all the way down to the source code.



10 Acknowledgements

We wish to thank our colleagues at the Programming Technology Lab for proof-reading

and discussing early versions of this paper: Kris De Volder, Carine Lucas, Tom Mens, Tom

Tourw�e and Bart Wouters. We are also grateful to Serge Demeyer, Patrick Steyaert and

the anonymous referees for commenting on a more �nal version of this paper.

Kim Mens' research is funded by the Brussels Capital Region (Belgium) and Wang

Global. Roel Wuyts' research is conducted on a doctoral grant from the \Instituut ter

bevordering van het Wetenschappelijk en Technologisch onderzoek in de industrie" (Flan-

ders, Belgium).

References

[1] K. Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addisson-Wesley, 1994.

[3] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: Why reuse is so hard. IEEE Software,
November 1995.

[4] F. Hayes-Roth. Rule-based systems. Communications of the ACM, 28(9):921{932, September 1985.

[5] K. De Hondt. A Novel Approach to Architectural Recovery in Evolving Object-Oriented Systems. PhD
thesis, Department of Computer Science, Vrije Universiteit Brussel, Belgium, 1998.

[6] C. Lucas. Documenting Reuse and Evolution with Reuse Contracts. PhD thesis, Department of Com-
puter Science, Vrije Universiteit Brussel, Belgium, September 1997.

[7] G. Murphy and D. Notkin. Lightweight source model extraction. In Proceedings of SIGSOFT'95, Third
ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages 116{127. ACM Press,
1995.

[8] G. Murphy, D. Notkin, and K. Sullivan. Software reexion models: Bridging the gap between source
and high-level models. In Proceedings of SIGSOFT'95, Third ACM SIGSOFT Symposium on the
Foundations of Software Engineering, pages 18{28. ACM Press, 1995.

[9] P. Oreizy. Issues in modeling and analyzing dynamic software architectures. In Proceedings of the
International Workshop on the Role of Software Architecture in Testing and Analysis, 1998. Marsala,
Sicily, Italy, June 30.

[10] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. ACM SIGSOFT
Software Engineering Notes, 17(4):40{52, 1992.

[11] R. Prieto-Diaz and J. M. Neighbors. Module interconnection languages. Journal of Systems and
Software, 6(4):307{334, November 1987.

[12] R. W. Schwanke, V. A. Strack, and T. Werthmann-Auzinger. Industrial software architecture with
Gestalt. In Proceedings of IWSSD-8, pages 176{180. IEEE Computer Society Press, 1996.

[13] M. Shaw and D. Garlan. Software Architecture | Perspectives on an Emerging Discipline. Prentice
Hall, 1996.

[14] P. Steyaert, C. Lucas, K. Mens, and T. D'Hondt. Reuse contracts: Managing the evolution of reusable
assets. In Proceedings of the OOPSLA'96 Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications, number 31(10) in ACM SIGPLAN Notices, pages 268{285. ACM Press, 1996.

[15] R. Wuyts. Declarative reasoning about the structure of object-oriented systems. In Proceedings TOOLS
USA'98, IEEE Computer Society Press, pages 112{124, 1998.


