
Reuse Contracts:
Managing the Evolution of Reusable Assets

Patrick Steyaert, Carine Lucas, Kim Mens, Theo D’Hondt

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
http://progwww.vub.ac.be/

Email: prsteyae@vnet3.vub.ac.be, clucas@vnet3.vub.ac.be,
kimmens@is1.vub.ac.be, tjdhondt@vnet3.vub.ac.be

Abstract. A critical concern in the reuse of
software is the propagation of changes made to
reusable artifacts. Without techniques to manage
these changes, multiple versions of these artifacts
will propagate through different systems and
reusers will not be able to benefit from
improvements to the original artifact. We propose
to codify the management of change in a software
system by means of reuse contracts that record the
protocol between managers and users of a
reusable asset. Just as real world contracts can be
extended, amended and customised, reuse
contracts are subject to parallel changes encoded
by formal reuse operators: extension, refinement
and concretisation. Reuse contracts and their
operators serve as structured documentation and
facilitate the propagation of changes to reusable
assets by indicating how much work is needed to
update previously built applications, where and
how to test and how to adjust these applications.

1 Introduction
It has become a well-known fact that the degree to
which software reusability is pursued is matched
by the extent to which the same reusability fails to
fulfil the high expectations. A delicate balance
between longer term investments in reusable
artifacts and the need to meet deadlines needs to
be accomplished. To be properly reusable,
artifacts should undergo some form of
certification thereby turning them into reusable
assets [2]. To be able to leverage on the

investment, reusers must be able to benefit from
future improvements of the assets they reuse:
proper evolution of reused assets should not
invalidate previous reuse. In a similar vein, reuse
should go beyond the act of copying out code
fragments and adapting them to current
requirements without regard for the evolution of
the reused fragments. This implies the
management of some kind of consistency in the
evolution of reusable software. The absence of
such management mechanisms is recognised as an
important inhibitor to successful reuse [2, 12, 15].
In this paper we not only recognise the need for
software to evolve both during its initial design
and when it is being reused, we actually advocate
the development of a methodology for managing
change in the process of engineering reusable
software. We advocate a kind of reuse that, unlike
black-box reuse, allows reusable assets to be
adapted before reuse. This makes our approach
more akin to white-box reuse: it cannot always be
guaranteed that changes to a given reusable asset
will propagate without invalidating previous reuse.
Unlike white-box reuse, however, reuse is
controlled in a way so that reusers know when and
how the assumptions they make about reusable
assets are broken when this asset is changed.
We propose to codify this management of change
in an (object-oriented) software system by means
of reuse contracts. Reuse contracts are interface
descriptions (of, for instance, classes), offering
guidelines for reusing assets in some problem
domain and recording the protocol between
managers and users of a reusable asset. Similar to



the real world where contracts can be extended,
amended and customised, reuse contracts are
subject to typical reuse operators: extension,
refinement and concretisation. Together, reuse
contracts and operators can be used by the asset
producer to document that part of the design that
is relevant for reusers. Moreover, they document
the assumptions made by reusers about the way an
asset is reused. This documentation facilitates the
propagation of changes to assets by indicating
how much work is necessary to update previously
built applications, where and how to test and how
to adjust these applications. Reusers thus can
benefit from improvements to the assets they reuse
and the proliferation of different versions of
reusable assets can be kept to a minimum. In a
similar vein, reuse contracts can be valuable to the
asset developer to assess the impact of changes and
to decide whether changes should be made.
As a tangible case in which to explain our ideas,
we focus on class abstractions with inheritance as
the reuse mechanism. This is by far the best-
known and most widely used technique available
today for structuring object-oriented software. We
use abstract classes, specialisation interfaces [7]
and the different reuse operators, as a framework
in which to study change management of method
overriding. We analyse some of the problems that
can arise in inheritors when changes are made to a
parent class and show how reuse contracts can help
in solving these problems. While the proposed
reuse operators are sufficiently expressive for our
discussion, it is beyond the scope of this paper to
give a formal treatment of their completeness.
Interested readers can verify this and other
properties in another document [8].
The major contribution of this paper is the
identification of a framework for the codification
of the evolution of reusable assets. Class
hierarchies are used as a specific case in which to
explore a consistent set of reuse operators. Our
conjecture is that this approach is applicable to
other and possibly more general adaptable
systems. We even dare to suggest that reuse
contracts have a broader scope than managing
evolution in reusable assets: they shed light on the

architecture of the asset, can be used as structured
documentation and generally assist a software
engineer in adapting assets to particular needs.
They thus help break down the barriers between
asset producers and asset reusers. When adopted,
reuse contracts may significantly enhance the way
in which software is being built and managed.

2 Conflicts with Evolving Parent Classes
As a concrete case, in this paper we focus on reuse
based on abstract classes and inheritance. Because
the power of inheritance lies in the ability to
override methods that are invoked by methods of
the parent class, the possible problems with
inheritance become apparent when considering the
calling structure between a class and its inheritors.
A class hierarchy can evolve in different ways (see
Fig. 1). First, a class hierarchy evolves simply by
editing the classes in it. Since this corresponds to
the replacement of a class with a new, modified
version, and this class may already have a number
of inheritors, this form of evolution is called
parent class exchange. Second, classes evolve
through inheritance. Rather than just editing it, a
class’s description gets “modified” by inheritors.
This kind of evolution is called layering: a class’s
description evolves through a chain of inheritors,
each adding its own layer of modifications. The
only difference with parent class exchange is the
availability — after modification — of both the
original class and the modified class.

Abstract A

SubClass B

SubClass C

SubClass D

Abstract A'

SubClass B'

. . .

ayering

?
parent class
exchange

?

calling structure

Fig. 1 Problems when Reusing Classes



The problem with class evolution in general, is that
modifications made to the calling structure of a
parent class can introduce conflicts in already
existing inheritors. With layering, the calling
structure of a parent class gets modified by a chain
of inheritors, which makes it difficult to assess the
impact of the modifications made by intermediate
inheritors. This is perceived by many users of
object-oriented class libraries and frameworks as
one of the major obstacles to reuse them.
Similarly, with parent class exchange, it is difficult
to detect whether changes made to the parent’s
calling structure introduce conflicts in inheritors.
As both problems are similar, we will only focus
on the latter. We take a closer look at four specific
conflicts introduced by parent class exchange.

2.1 Conflicts in the Method Interfaces
The first problem involves the case where an
exchanged parent class introduces a new method,
while one of the inheritors had previously
introduced a method with the same name. If this
method is not invoked by any of the other
methods of the parent, at first sight, this causes no
erroneous behaviour (the case where this method
is invoked by other methods of the parent is
discussed in section 2.3). The method of the
inheritor will simply override the method of the
parent class. But, as a consequence, the intention
represented by the adaptation of the parent class
will get lost. Moreover, as this causes no technical
error, this loss will probably go unnoticed.
A related problem is that of conflicts in
annotations made to a method’s interface. It is not
uncommon to attach extra design information to
methods. As inheritors rely on this information,
this can lead to extra conflicts. For example,
methods can be marked as being abstract or
concrete. Inheritors that override an abstract
method assume that the overridden method has no
implementation. This can lead to a conflict in
inheritors when the parent is exchanged with a
class where this abstract method is already made
concrete. Apart from an annotation abstract or
concrete, we will also add other design
information to the interface.

2.2 Unimplemented Methods
Another kind of problem is where an exchanged
parent class introduces a new abstract method, that
might be invoked by other methods of the
exchanged parent. When already existing
inheritors do not provide an implementation for
these newly added abstract methods, this results in
incomplete classes.

2.3 Method Capture
The exchanged parent class can include extra
method invocations. These could be invocations of
methods that are provided by this parent class
itself, but also invocations of methods that are
implemented by an inheritor and that were not
invoked before. In the latter case, we say that these
methods of the inheritor get captured by the
methods of the parent that invoke them. This may
result in erroneous behaviour, as the inheritor did
not take into account that its method would be
invoked by the parent. Two cases of method
capture can be distinguished. First, the case where
a method that did not exist in the original parent
class is now introduced and invoked. An inheritor
might have introduced a method with the same
name, that will now be invoked by the new parent.
As this could not be foreseen, we call this
accidental method capture. Second, in the
exchanged parent, a method that already existed in
the original parent might be invoked by more
methods than before. An inheritor might have
overridden this method, and this implementation
will now be invoked by more methods of the
parent. As this can be foreseen more easily, we call
it regular method capture.
A good example of how a similar kind of
problems can occur in class hierarchies can be
found in the standard Smalltalk-80 class library.
The reason why the names of primitive methods
(e.g., basicAt:, basicAt:put:, ...) on the root class
(Object) are prefixed with 'basic' is exactly to
avoid users accidentally introducing a method with
the same name in their classes, thus causing a
situation similar to method capture.



2.4 Inconsistent Methods
When method invocations are omitted — which is
frequently done for performance reasons — the
inverse situation of method capture can arise. If on
parent class exchange the new parent class
performs less invocations of a method than before,
this might lead to inconsistent behaviour. We then
say that the method that used to perform the
invocation has become inconsistent with the
method that used to get invoked. This terminology
is due to Kiczales and Lamping [6].
Consider the prototypical example of a Collection
hierarchy. A class Set defines a method add and a
method addAll, which invokes add to add a group
of elements to the set simultaneously. A subclass
CountingSet might override add to keep a counter
of the number of elements added to the set. If on
parent class exchange in a new version of Set,
addAll does not invoke add anymore, this will lead
to inconsistent behaviour in CountingSet, as not all
additions will be counted. addAll has become
inconsistent with add.

3 Reuse Contracts
3.1 Documenting Dependencies through

Specialisation Interfaces
To be able to detect and solve the above problems
it is crucial to have the right kind of
documentation. Currently, the main mechanism to
document the design of object-oriented software
systems is through abstract classes [5]. The client
interface of an abstract class sketches the design of
future concrete subclasses, by indicating which
methods they should provide. However,
information about internal dependencies is also a
crucial piece of design information to inheritors.
This information can usually only be acquired by
inspecting the code. To solve this problem,
Lamping introduced specialisation interfaces as a
means to document the calling structure of a class,
by explicitly naming all methods that are invoked
through self sends in each method [7]. Consider,
for example, an abstract class AbstractView1, that
describes the general behaviour of a view that
                                                
1 Throughout this text we use a part of a GUI library as an
example. The example is inspired by [4] and [6].

visually represents a certain subject. A view can be
drawn and updated. The method Update relies on
the method Draw and on a number of other
methods for its implementation.
Class AbstractView
Abstract Draw()
Concrete Update() [ self.SetPen(2);

self.SetRect(40,60);
 self.Draw() ]
Concrete SetPen(size) [ … ]
Concrete SetRect(height, width) [ … ]

End Class

The specialisation interface of AbstractView is
shown below. The information on the self sends is
provided by enumerating the names of the
referenced methods between curly braces after the
method’s signature.
Specialisation Interface AbstractView
Abstract Draw
Concrete Update { Draw,SetPen,SetRect }
Concrete SetPen { … }
Concrete SetRect { … }

End Specialisation Interface

While specialisation interfaces are an important
step towards achieving actual reuse of design, their
main drawback is that they document the internal
dependencies of a class by listing all self sends in
a class. They do not distinguish between
implementation level and design level
dependencies and thus do not allow hiding of
implementation details. While providing too little
information about internal dependencies makes it
impossible to define large applications in an
implementation independent way, exposing too
much implementation detail restricts the ability to
evolve or to allow different implementations. It is
thus very important to expose only those parts of
the internal structure that are crucial to the design
of a class. Reuse contracts are introduced in the
next section as a mechanism that distinguishes
between that part of the specialisation interface
that is implementation dependent and that part that
is crucial for inheritors. They thus hide those
dependencies on which inheritors should not rely.
A remark must also be made about the kind of
information that specialisation interfaces can
provide. Specialisation interfaces can be specified
either by listing method dependencies purely
based on names, or by including type information,



or by including semantic information that
specifies, for example, the order in which methods
should be invoked. The art is in finding the right
balance between descriptions that are easily
understood and expressed, and descriptions that
capture enough of the semantics of possible
adaptations. Reuse contracts will only indicate
which methods rely on which other methods, by
enumerating the names of methods that are
invoked through self sends. Although reuse
contracts provide only syntactic information, this
is enough to firmly increase the likelihood of
behaviourally correct exchange of parent classes.
For simplicity we have restricted the reuse
contracts we propose here to include only
documentation on the internal dependencies
among a class's methods. The dependencies
among the methods of one class and the methods
of its acquaintances are at least as important. Just
as our current reuse contracts are based on
specialisation interfaces, reuse contracts could be
developed based on descriptions of interclass
relationships. Such descriptions have already been
studied in the form of contracts [3, 4], but will not
be discussed here.

3.2 Definition of Reuse Contracts
A reuse contract is a set of method descriptions
that is divided into two subsets: the abstract and the
concrete method descriptions. Reuse contracts are
only interfaces: they never contain actual methods,
only descriptions of methods. Each method
description consists of a method name together
with a specialisation clause and an annotation
abstract or concrete. For reasons given in the
previous paragraph, the specialisation clauses only
list the methods that are crucial to the design of a
particular method. Methods that are listed in
specialisation clauses are called hook methods and
can be abstract as well as concrete. This term
should not be confused with the term template
methods, which is usually used to describe
concrete methods that invoke abstract methods in
their implementation. Finally, similarly to classes
and inheritance, new reuse contracts can be
derived from existing ones. Unlike inheritance we
will have different operations to obtain a derived

reuse contract; e.g., a reuse contract can be an
extension of another one. We will discuss the
meaning of the various possible relationships in
section 4. Summarising, we a reuse contract can be
defined as follows:

A reuse contract is an interface, i.e., a set of
method descriptions each consisting of
• a unique name,
• an annotation abstract or concrete,
• a (possibly empty) specialisation clause.

Furthermore, for a reuse contract to be well-
formed it needs to satisfy certain conditions:

A reuse contract is well-formed if every name
occurring in one of the specialisation clauses
corresponds to a method description appearing
in the reuse contract itself;
Well-formed reuse contracts can be explicitly
related to other reuse contracts by one of the
following operators: concretisation, extension,
refinement, abstraction, cancellation, coarsening.

Unless explicitly stated otherwise, from now on
when we use the term “reuse contract” we mean a
well-formed reuse contract. As a first example,
consider a reuse contract View describing the
abstract class AbstractView from section 3.1.
Reuse Contract View
Abstract
Draw

Concrete
Update { Draw }

End Reuse Contract

As discussed, this reuse contract is subdivided into
an abstract and a concrete section. While
AbstractView’s specialisation interface enumerated
all methods invoked through self sends in Update,
in the reuse contract View only Draw is mentioned
in the specialisation clause of Update, as the
invocation of this method is the only one crucial
to the design. The other methods that were
invoked through self sends in Update were pure
implementation methods and are therefore not
included in the reuse contract. Not only did we
leave SetPen and SetRect out of the specialisation
clause of the Update method, we also did not



include them in the list of method descriptions in
the reuse contract View.

3.3 Implementing Abstract Classes that
Comply with Reuse Contracts

Since reuse contracts only describe interfaces,
implementations must be associated with them. As
these implementations should satisfy the design
imposed by a reuse contract, the classes should
comply with the reuse contracts in some way: we
say that a reuse contract is implemented by an
(abstract) class when the conditions below are
fulfilled.

A reuse contract R is implemented by a class C if
(1) C provides an implementation for all

concrete method descriptions of R;
(2) C provides a signature, but no

implementation for any abstract method
description of R;

(3) for every name n in a specialisation clause
of a concrete method description m of R,
the method in C with name n is invoked
through a self send by the method
corresponding to m (or by a method of C
that is directly or indirectly invoked by m).

According to this definition the abstract class
AbstractView is a possible implementation of the
reuse contract View. The definition also
immediately implies that reuse contracts
containing abstract method descriptions are
implemented by abstract classes.
The need to explicitly declare reuse contracts as
well as the compliance of classes to reuse contracts
could be criticised for too much verbosity. Some
remarks can be made about this comment. In
languages that promote the separation of interface
and class hierarchies, reuse contracts can be
introduced as an extension to these interfaces. In
that case, reuse contracts do not introduce too
much overhead, since interfaces must be specified
anyway. For languages that do not include
interfaces, reuse contracts can be managed by the
programming environment. In that case, reuse
contracts could be semi-automatically constructed
on the basis of the calling structure (the
programmer only has to delete the descriptions

and names of methods that should not be
exposed). Moreover, since reuse contracts are
design concepts, they should actually already have
been constructed during the design phase.
A problem can occur with classes that include
implementation-specific methods not specified by
the reuse contract. As these methods are not
specified in the reuse contract but only in the
implementation, it is possible that a user later
accidentally introduces a method with the same
name in the class implementing a derived reuse
contract. As discussed in section 2.3., method
capture might occur. The classes that implement
the reuse contracts should therefore encapsulate
the invocation of their implementation-specific
methods (whether they are public or private) from
the derived reuse contracts and their
implementations. Different approaches are
possible to achieve this. Kiczales and Lamping
suggest using a package system such as the
Common Lisp package system or information
hiding facilities such as provided in languages like
C++ [6]. Another possibility is that a tool checks
for this kind of errors and requires the user to
rename one of the methods involved. Yet another
option is provided by languages that offer the
possibility to explicitly encapsulate self sends [1,
14]. In such languages, the self sends to
implementation-specific methods can be explicitly
encapsulated so that they are invisible to future
inheritors.
Another problem that may occur with
implementation-specific methods is that the
specialisation clauses might demand that a method
m performs a self send to some method n, while
this self send is not made in m itself, but only in
one of the implementation-specific methods
invoked by m. Therefore, when verifying whether
an implementation satisfies a reuse contract, it is
actually necessary to look at the transitive closure
of all self sends made from within methods. This is
the motivation behind the phrase: “or by a
method of C that is directly or indirectly invoked
by m” in clause 3 of the above definition.
Note that even when a self send appears in the
implementation of a method, it is not always



possible to check — without extensive data flow
analysis — whether this invocation will actually be
performed at run-time. It could for instance occur
in the body of a conditional expression. As
discussed in the previous section, reuse contracts
do not aim at fully specifying the design of classes
at a behavioural level, only through descriptions.

4 Operators on Reuse Contracts
Reuse contracts are only a first step towards
solving the problems concerning parent class
exchange from section 2. Without reuse contracts
it is difficult to detect problems such as method
capture because specialisation interfaces are not
explicitly available. But even making specialisation
interfaces explicit does not suffice in order to
detect problems on parent class exchange. More
information is needed both on the assumptions
made by inheritors about their parent classes and
on the way the parent classes are actually reused.
Consider exchanging a parent class with a new
parent class that introduces a new method m.
When looking at plain inheritors, it is not always
clear whether a method with the name m in the
inheritor was intended to override the method m
of the parent class or whether it was intended as a
new method leading to unintended method
capture. These two cases can only be differentiated
by meticulously comparing the reuse contracts of
the old parent class, the new parent class and the
inheritors. This is neither practical (in practice the
old parent class might not even be available
anymore), nor intuitively compelling. We propose
a methodology that is more intuitive for both
inheritors and developers of reusable classes and
guides them in managing changes to these classes.
It is based on a categorisation of the typical
actions undertaken by the designers of both
abstract classes and inheritors and the changes
these actions cause in the calling structure. We
essentially distinguish three different logical
operators on reuse contracts: concretisation,
refinement and extension and their inverse
operators: abstraction, coarsening and
cancellation. Although not the only operators
imaginable, they do coincide with the typical ways

to use abstract classes. By examining the
interactions between these operators and by
investigating which operators respect the design,
rules can be proposed that facilitate exchange of
reuse contracts of parent classes. In the above
example, had it been clear that the inheritor
intended to perform an extension (i.e., introducing
a new method), it would have been easier to detect
possible problems.
So, in order to be able to correctly assess the
impact of parent class exchange, reuse contracts
must be labelled with how they are derived from
other reuse contracts in terms of the basic
operators. For the programmer, the work effort
involved is obviously not the adding of an extra
keyword (i.e., extension, concretisation, ...), but
rather the careful construction of the derived reuse
contract corresponding to the inheritor by means
of the basic operators. While this puts an extra
burden on the programmer requiring making
more conscious decisions during the design
process, the pay-off of this work will become clear
in the next sections. Moreover, supporting tools
can be constructed that automatically decompose
the derived reuse contract of an inheritor in terms
of the basic operators. Such tools can also be an
extra help in understanding how an inheritor
differs from its parent.
In this section we will define the different
operators, in the next section their interactions will
be examined and we will discuss how this
information can be used to detect and solve
problem cases. While the definitions of the
operators and the discussion of their interactions
were developed on a much more formal level [8],
they are presented in this paper in a way that
makes their intuition more clear. For every
operator a definition, a description of the
prerequisites and an inverse operator are given.
Each operator will be defined in terms of a
modifier M. This modifier is necessary to discuss
parent class exchange, as for an inheritor having
its parent class exchanged comes down to
applying the same modifier that was applied to the



former parent, to the new parent2. The
prerequisites for each operator will describe the
exact form of these modifiers, as well as the
conditions they must comply with in order to be
correct. Modifiers themselves are reuse contracts,
although not necessarily well-formed ones.
Every R and Rx in the following definitions
represent a well-formed reuse contract. Every M
and Mx represent a reuse modifier, i.e., a reuse
contract that is not necessarily well-formed. In the
examples we will not explicitly mention the
modifiers, as they will always be clear from the
context.

4.1 Concretisation
Concretisation is an operation that is typically
performed by an application developer, when
customising assets to obtain applications tailored
to a certain domain. It makes an asset more
concrete, by overriding (some) abstract method
descriptions with concrete ones.

Rc is a concretisation of R with Mc if
(1) R is concretisable with Mc (defined below);
(2) Rc contains only method descriptions with

the same name and specialisation clause as
in R;

(3) every abstract method description of R
listed by Mc becomes concrete in Rc;

(4) all other method descriptions in R remain
unchanged in Rc.

When we are not explicitly interested in the
modifier Mc, we simply say that Rc is a
concretisation of R. As concretising a reuse
contract can happen in several steps, we distinguish
complete concretisations from partial
concretisations. Whereas the former yield new
reuse contracts containing only concrete method
descriptions, the latter result in reuse contracts that
still contain abstract method descriptions and need
subsequent concretisations. The effect of a
concretisation is depicted in Fig. 2. Note that a
concretisation does not change the calling
structure, nor does it add new method descriptions.

                                                
2 This is similar to the way inheritance is achieved in
languages with mixin-based inheritance [1].

Reuse Contract R

Abstract

Concrete

Reuse Contract Rc

Abstract

Concrete

Fig. 2 Concretisation
As concretisations merely transform some abstract
method descriptions of R to concrete ones, at first
sight a correct concretisation modifier Mc should
only mention their names. Although including
information on the specialisation clauses as well
seems to be redundant, it is necessary in order to
avoid conflicts in the method interfaces, as will be
explained in section 5.1. On the other hand, since
only abstract method descriptions can be
concretised, including the annotation is not really
necessary. Nevertheless, to be consistent with the
other definitions we include this redundant
information.

R is concretisable with Mc
if every method description of Mc
(1) is concrete;
(2) has a name corresponding to an abstract

method description of R;
(3) has the same specialisation clause as in R.

The following reuse contract ViewPort is an
example of a complete concretisation of View. It
transforms the only abstract method description
Draw of View into a concrete one.
Reuse Contract ViewPort
is a concretisation of View
Concrete
Draw
Update { Draw }

End Reuse Contract

As there are no abstract method descriptions in
this reuse contract, the keyword Abstract was left
out.
The opposite of a concretisation is called an
abstraction. Abstraction will not often be used, but
might, for example, be wanted by a library
developer to add a more abstract layer to a class
library.



Ra is an abstraction of R
iff R is a concretisation of Ra

This means that Ra is an abstraction of R if some
method descriptions that were concrete in R are
made abstract in Ra and no other changes occur.

4.2 Extension
An extension adds new method descriptions to a
reuse contract. An application developer might use
extension to introduce new method descriptions to
express a certain behaviour particular to the
application; the developer of reusable assets might
use it to enhance an asset's functionality.

Re is an extension of R with Me if
(1) R is extendible with Me (defined below);
(2) Re contains all method descriptions of R

plus all method descriptions of Me.

An extension is called concrete if no abstract
method descriptions are added, otherwise it is
called abstract. A legal extension modifier Me
must fulfil the following conditions:

R is extendible with Me if
(1) Me contains no method description with the

same name as a method description in R
(2) the specialisation clauses of method

descriptions in Me contain only names of
method descriptions occurring in Me or R.

Condition 1 is included to make the different
operators more orthogonal. Just as a concretisation
cannot add new method descriptions (condition 2
of concretisable) and thus perform an extension,
an extension cannot affect any existing method
descriptions.

Reuse Contract R Reuse Contract Re

Fig. 3 Extension
The reuse contract DragableView below is an
example of a (concrete) extension of the reuse

contract View. An extra method description Drag is
added, representing a method that has to invoke
Draw to redraw the view at its new position.
Reuse Contract DragableView
is an extension of View
Abstract
Draw

Concrete
Update { Draw }
Drag { Draw }

End Reuse Contract

The opposite of extension is called cancellation.
Cancellation will mainly be used by an asset
developer to remove unnecessary behaviour from
the asset.

Rc is a cancellation of R
iff R is an extension of Rc

A cancellation merely removes existing method
descriptions. Of course, this operation can only be
performed if the method descriptions that need to
be removed are not listed in the specialisation
clauses of any other methods (unless these are
removed as well).

4.3 Refinement
Finally, refinement is the operation of overriding
method descriptions in order to refine their
design. It can be performed by an asset developer
to model the evolution of an asset, or by an
application developer to make reuse contracts
specific to some application domain, thus creating
a more layered design. This is achieved by adding
extra hook methods to the specialisation clauses of
the original method descriptions. Since the already
existing hook methods are maintained, the design
of the original reuse contract is preserved. By
adding hook methods, it is refined.
As an example, consider the reuse contract Button
below which is a refinement of View. It refines the
method descriptions Update and Draw. Where Draw
originally had an empty specialisation clause, it
now lists a new abstract method Geometry.
Obviously, this new method description also needs
to be added to the reuse contract. Because a button
is always visually represented as ‘on’ or ‘off’,
Update is also refined to depend on this status. To
represent this behaviour, Update must rely on



Choose and UnChoose, which in turn rely on Refresh
to draw the button in either status.
Reuse Contract Button
is a refinement of View
Abstract
Geometry
Draw { Geometry }

Concrete
Update { Choose, UnChoose }
Choose { Refresh }
UnChoose ( Refresh }
Refresh { Draw }

End Reuse Contract

As the example illustrates, refinements can also
“extend” a reuse contract with new method
descriptions. This is the only place where the
functionalities of the operations partially overlap.
Condition 6 below restricts this overlap by stating
that new method descriptions can only be added
by a refinement if they are (directly or indirectly)
called by one of the refined methods. This is
illustrated in Fig. 4. Otherwise, adding method
descriptions is an extension.

Reuse Contract R Reuse Contract Rr

Fig. 4 Refinement
Note that while the old specialisation clause of
Update listed Draw, the new one only lists Choose
and UnChoose. This does however indirectly lead to
Refresh (because Choose and UnChoose list Refresh),
and eventually to Draw (because Refresh lists Draw).
When these indirections are taken into account, it
is clear that Update’s new specialisation clause is
indeed an augmentation of the old one. Therefore,
it is necessary to work with the transitive closure of
the specialisation clauses. Summarising all this we
can define a refinement in terms of an overriding
modifier Mo and an extending modifier Me, as
below.
A refinement is called concrete if none of the
added method descriptions (described by Me) are
abstract, otherwise it is abstract.

Rr is a refinement of R with (Me,Mo) if
(1) R is refinable with (Me,Mo) (defined

below);
(2) Rr contains all method descriptions of Me

and Mo as well as all method descriptions
of R not corresponding to a method
description in Mo.

For a modifier pair (Me,Mo) to express a correct
refinement, the following constraints need to be
satisfied:

R is refinable with (Me,Mo) if
(1) Me contains no method descriptions with

the same name as method descriptions in R;
(2) Mo contains only method descriptions with

the same name as method descriptions in R;
(3) the method descriptions in Mo have the

same annotations as the corresponding
method descriptions in R;

(4) the specialisation clauses of method
descriptions in Me or Mo contain only
names of method descriptions occurring in
Me, Mo or R;

(5) the transitive closures of specialisation
clauses in Mo are augmentations of the
transitive closures of the corresponding
specialisation clauses in R;

(6) the name of every method description in
Me must occur in at least one of these
augmented specialisation clauses.

Note that a refinement does not change the
annotation abstract or concrete attached to
method descriptions. Nevertheless, again to avoid
method interface problems, this information is
included.
The opposite of a refinement is called a
coarsening. We discuss coarsening a bit more in
depth than the other inverse operators, because it is
an important operator in practice. Coarsening is
achieved by omitting hook methods from the
specialisation clauses of method descriptions.
Although this means partially ignoring the design
of an asset, this is often done for performance
reasons or because some parts of the design are
irrelevant to certain domains.



Coarsening is defined as:

Rcoarse is a coarsening of R if
(1) every method description in Rcoarse

corresponds to a method description in R;
(2) these method descriptions are exactly the

same as in R except that the transitive
closure of their specialisation clause in
Rcoarse can be smaller than in R;

(3) method descriptions with names that were
mentioned in specialisation clauses in R but
are no longer mentioned in any
specialisation clause in Rcoarse can be
removed from Rcoarse.

The motivation behind 3 is twofold. First, to avoid
errors, only methods corresponding to method
descriptions that are not invoked anymore can be
removed. Second, if these method descriptions
were not invoked in R either, then the operation
concerned would be a cancellation rather than a
coarsening.
To keep things simple, the above definition of
coarsening was not given in terms of reuse
modifiers. An actual coarsening modifier should
associate a coarsening clause with each method,
indicating which method invocations are removed.
This information will be used later on to detect the
problem of inconsistent methods.

4.4 Implementation of Reuse Operators
All operators on reuse contracts that are defined in
this paper can be achieved on their implementor
classes through inheritance. We could, for
example, have an abstract class GeneralView

implementing the reuse contract View and a
concrete class MacintoshView implementing the
reuse contract ViewPort. While ViewPort is a
concretisation of View, MacintoshView is a subclass
of GeneralView.

inheritance

Reuse Contract
View

concretisation

implements

Reuse Contract
ViewPort

Abstract Class
GeneralView

Concrete Class
MacintoshView

implements

Fig. 5 Implementation of Reuse Operators

Note that this example is a simplification. First,
because the techniques to encapsulate invocations
of implementation-specific methods as discussed
in section 3.3. must be applied here. Second,
because the relation between reuse contracts and
the classes that implement them is presented as
one-to-one. This might not always be the case.
Different reuse contracts can provide different
views on a single class. Conversely, a single reuse
contract can be implemented by a chain of classes,
rather than a single class. In such inheritance
chains, the implementor can resort to plain code
reuse. Obviously, the responsibility to avoid
method capture and other problems within these
inheritance chains is then left to the implementor.

5 Managing Parent Class Exchange
through Reuse Contracts

In this section we discuss how reuse contracts help
in managing parent class exchange. Rather than
plainly examining exchange of parent classes, we
will investigate what the effect is of exchanging the
associated reuse contracts. We will call this base
contract exchange. Reuse contracts corresponding
to parent classes are called base reuse contracts (or
short, base contracts), and reuse contracts
corresponding to the inheritors are called derived
(reuse) contracts. This is depicted in Fig. 6.

Modifier Mder Modifier Mder

Modifier Mexch

Rbase

RnewRder

Rexch

Base (reuse)
contract

Derived (reuse)
contract

Derived contract
after exchange

Exchanged
base contract

Base contract
 exchange

Fig. 6 Base Contract Exchange
To examine the effect of base contract exchange,
we investigate what happens when the same
modifier Mder, that created a derived contract from
a base contract, is also applied to the exchanged
base contract. Unlike plain parent class exchange,
base contract exchange allows the detection of
conflicts by a set of simple rules. It is sufficient to
check whether the modifier Mder is still applicable
to the exchanged base contract (i.e., concretisable,



extendible or refinable). If so, we can safely
conclude that no assumptions made by the reuser
about the base contract are violated. Non-
applicability indicates the existence of a conflict
between the exchanged base contract and these
assumptions. This is further explained in the next
section.
More subtle conflicts, such as method capture and
inconsistent methods, cannot be detected without
further information on how the calling structure in
the exchanged base contract has changed. Exactly
this information is documented in the exchange
modifier Mexch (see Fig. 6). Rules to detect these
conflicts are based on the interaction between
Mexch and Mder.
As we will discuss the conflicts that may arise by
combining modifiers one by one, the results must
be iteratively applied for base reuse contract
exchanges that involve several modifiers. It is
proven in [8] (and illustrated in a prototype tool
for Smalltalk classes) that even if these modifiers
are not explicitly known, they can always be
computed by comparing the concerned reuse
contracts.

5.1 Conflicts in the Method Interfaces
A first set of problems concerns conflicts of
method names or annotations, or specialisation
clauses attached to a method. These conflicts can
be detected by checking whether the modifier that
created the derived contract is still applicable to
the exchanged base contract. Non-applicability
indicates that the reuser’s assumptions have been
violated. Moreover, by taking a closer look at the
particular operations involved we can differentiate
between different kinds of conflicts.

Name Conflicts: Extension versus Extension

When both the exchanged base contract and the
derived contract are created through an extension
of the original base contract (i.e., in Fig. 6 both
Mexch and Mder are extensions), name conflicts
might occur. More specifically, a name conflict
occurs when Mder introduces a new method
description with the same name as a method
description introduced by Mexch. This can be

detected by checking whether the exchanged base
contract is extendible with Mder.
Note that name conflicts can also occur when
Mexch or Mder (or both) are refinements that
introduce new methods. To detect this, only the
extension part of the refinement needs to be taken
into account.
These problems are comparable to problems
concerning multiple inheritance and can be solved
with similar techniques. In languages without
multiple inheritance they have to be solved
through renaming or hiding.

Annotation Conflicts: Concretisation versus
Concretisation

When both Mexch and Mder are concretisations, a
conflict may occur when the same method gets
concretised twice. This can easily be detected as
the exchanged base contract will not be
concretisable anymore with Mder (condition 2 of
concretisability will be violated, as the method is
already concrete). Only when both concretising
modifiers Mexch and Mder manipulate a disjoint set
of method names is there no problem. An
analogous reasoning holds when both Mexch and
Mder are abstractions.
Although such annotation conflicts will not cause
a problem for the corresponding classes
technically, the knowledge that Mder is no longer a
correct concretisation indicates that there might be
a problem on the behavioural level, because the
concretisation (and the corresponding
implementation) given by the exchanged base
contract will be ignored. The reuser can solve this
problem either by removing Mder, thus accepting
the concretisation Mexch, or by turning Mder into a
refinement which combines both concretisations,
or by turning Mder into a coarsening which
(partially) ignores the concretisation Mexch.

Specialisation Clause Conflicts: Refinement
versus Refinement

When Mexch and Mder are both refinements that
refine the same method a conflict might arise. This
is the case when the specialisation clause of this
method in Mexch contains more names than the
corresponding specialisation clause in Mder. In that



case, Mder will not be a correct refinement of the
exchanged base contract. The reuser can solve this
problem by changing the Mder modifier into a
coarsening thereby indicating that he has no
interest in “respecting” the design of the
exchanged base class. A more elaborate solution is
to re-implement the conflicting method as a
correct refinement.

Mixed Conflicts: Concretisation versus
Refinement

Mixed conflicts concerning the specialisation
clauses, as well as the annotations abstract or
concrete can occur when Mexch is a refinement
and Mder is a concretisation or vice versa.
In the case where the base contract is exchanged
for a refined version and a derived contract was
made by performing a concretisation of the base
contract, the concretisation Mder will not always be
applicable to the exchanged base contract.
Consider, for example, the reuse contract ViewPort
which concretises the Draw method of View, and the
reuse contract Button which refines the Draw

method of View to invoke a newly introduced
method Geometry. Despite the orthogonality of
concretisation and refinement, the concretisation
that created ViewPort from View cannot be applied
to Button. Applying this concretisation could lead
to incorrect behaviour as the implementation of
Draw corresponding to ViewPort is not required to
perform any self sends, while the implementation
of Draw corresponding to Button is obliged to

invoke Geometry. For this reason, a concretisation
can only be applied to reuse contracts where the
methods to be concretised have the same
specialisation clauses. This is the motivation
behind condition 3 in the definition of
concretisable.
Similar problems occur when the derived contract
is a refinement and the base contract is a
concretisation of the original base contract.
Information on the annotations abstract or
concrete in a refinement modifier is necessary as
refining an abstract method is essentially different
from refining a concrete method, since in the first
case no implementation is required while in the
second case there is. This is the motivation behind
condition 3 in the definition of refinable.
The only remedy is to update the conflicting parts
(and the associated reuse contracts), so that they
do take the extra design information into account.

Summary

The continued applicability of the reuse modifiers
indicates to reusers which parts of their
applications can be trusted, and which parts might
introduce behavioural problems. This set of
problems can be further subdivided, depending on
the kind of operations involved, as summarised by
the table below.
For refinements, a distinction is made depending
on whether refinability fails due to a conflict in its
extension part or in its overriding part.

Base contract
exchange

Operation to create
derived contract

Concretisation Extension / Extension
Part of Refinement

Overriding Part
of Refinement

Concretisation annotation conflict no method interface
conflict

mixed conflict (1)

Extension / Extension Part
of Refinement

no method
interface conflict

name conflict no method
interface conflict

Overriding Part
of Refinement

mixed conflict (2) no method interface
conflict

specialisation
clause conflict

5.2 Unimplemented Methods
The second kind of problem, somewhat related to
method interface conflicts, is that of
unimplemented methods. This problem occurs, for

example, when a base contract is exchanged with
an extended or refined version that adds new
abstract method descriptions. A concrete reuse
contract that was derived from a base contract



through a concretisation is not concrete anymore
when derived from the exchanged base contract
and needs additional concretisations. Only when
the extension or refinement is concrete (i.e., when
only concrete methods are introduced) can it be
guaranteed that no unimplemented methods will
be introduced. This is summarised by the
following property:

If Rder is a complete concretisation of Rbase
with Mder

and Rexch is a concrete refinement or extension
of Rbase

and Rnew is a concretisation of Rexch with Mder
then Rnew is a complete concretisation of Rexch

with Mder.

This implies that extensions and the extending
parts of refinements can be performed freely,
without having to worry much about possibly
existing concretisations. Either the concretisations
will still be complete or else it is easy to determine
how the partial concretisations can be completed.
In general, an extra concretisation needs to be
performed on all abstract method descriptions
added through the refinement or extension. This is
a significant result as it means that users that only
use an asset by concretising it, can easily switch to
new versions of the system, as long as this new
version is obtained by only making correct
refinements and extensions of the old one.
However, problems of method capture and
inconsistent methods might still occur.
Note that the problem of unimplemented methods
can also occur when, for example, Mexch is a
cancellation and Mder is a refinement that
introduces this cancelled method in its
specialisation clause. The reuser depends on a
method that has been removed. The only solution
therefore is to incorporate the old implementation
into the reuser's implementation.

5.3 Conflicts in the Calling Structure
Method Capture

While applicability of reuse modifiers can check
method interface conflicts, for the detection of
more subtle conflicts, such as method capture and

inconsistent methods, the specialisation clauses of
the modifiers must be taken into account.
A method capture occurs when a hook method m
that is added by exchanging a base contract is also
added or changed by a derived contract (Fig. 7). It
is accidental when the method m did not yet occur
in the original base contract.

Refinement  
or Extension

Mder

 m

Rder

 m

Mder

Mexch

 n

RexchRbase

m gets
captured

by n

Fig. 7 Definition of Method Capture
Thus, accidental method capture only occurs when
both reuse modifiers are extensions or refinements
that introduce the method m in their extension
part, thereby causing a name conflict.
This is illustrated in the following check for
accidental method capture that adds an extra
condition to the rule for name conflicts.

If a method m is the cause of a name conflict
when applying a reuse modifier Mder after Mexch
and m occurs in the specialisation clause of

a method n in Mexch.
then m gets accidentally captured by n

Regular method capture is more complicated to
check as it does not introduce a method interface
conflict (i.e., Mder remains applicable after base
contract exchange). Reuse contracts in their
current form only allow detection of regular
method capture by comparing the specialisation
clauses from the original base contract with the
specialisation clause of the exchange modifier (to
find newly added hook methods), and the
interface of Mder. The detection of regular method
capture thus happens directly on the level of
specialisation clauses (and not on the level of
applicability checks as is the case with the other
rules) and by taking the original base contract into
account. This can be amended by making explicit
in the Mexch modifier which part of the



specialisation clause is new. We did not do so
because we are not entirely convinced that regular
method capture is indeed a conflict. Regular
method capture can be entirely anticipated by the
developer of the exchanged base contract.
In any case, the user should be notified of
occurrences of accidental method capture.
Sometimes these captured methods have the
expected behaviour on the corresponding classes,
so that it is still (behaviourally) correct to apply
Mder to the adapted base contract Rexch although
as another operation. When this is not the case, the
problem can be solved by encapsulation
techniques, as was discussed for implementation-
specific methods in section 3.3.

Inconsistent Methods

While method capture occurs when augmenting
the specialisation clauses in a base contract Rbase,
inconsistent methods are created when parts of the
design are omitted by narrowing these
specialisation clauses. Fig. 8 illustrates this.

Coarsening

Mder

Rder

 m

Mder

Mexch  n

RexchRbase

n becomes
inconsistent

with m

 m

 n

RnewDer

Fig. 8 Definition of Inconsistent Methods
Notice that inconsistent methods can only appear
when the set of hook methods removed by
exchanging the base contract and the set of names
of method descriptions changed or added by the
reuse modifier Mder are not disjoint. Therefore
inconsistent methods can be detected as follows:

Assume that Rbase is a base contract, and that
Rexch and Rder are derived from Rbase by
applying modifiers Mexch and Mder respectively.
If Mexch is a coarsening where the

coarsening clause associated to some
method n contains m,

and m also occurs in the interface of Mder
then n becomes inconsistent with m

Indeed, inconsistent methods can only be
introduced by coarsenings or cancellations, since
these are the only operations that narrow (or
delete) specialisation clauses. Cancellation however
does not create inconsistencies, as the method
description that omitted the reference from its
specialisation clause simply does not exist
anymore. Therefore only coarsenings can create
inconsistent methods.
Notice that, similar to method capture, two forms
of inconsistencies between methods exist,
depending on whether the methods that have been
removed from the specialisation clauses are also
cancelled. In the latter case, an extra conflict will
arise since the Mder modifier in Fig. 8 will not be
applicable after base contract exchange.
Once inconsistencies are detected, the solution is
straightforward. On base contract exchange, all
method descriptions n that have become
inconsistent due to a coarsening might need to be
adapted by the derived reuse contract RnewDer as
well. Whereas they used to rely on a method m to
implement their behaviour, they do not anymore
in the exchanged base contract. This might lead to
inconsistent behaviour with respect to derived
reuse contracts that depended on this information.
Recall the example from section 2.4. After
exchanging the class Set with a version of addAll
that does not invoke add anymore, the subclass
CountingSet needs to override addAll as well to
avoid inconsistent behaviour.

5.4 Evaluation
The previous sections gave simple rules to detect
problems when exchanging parent classes. Most of
the possible conflicts are directly expressed in
terms of reuse contracts and operators rather than
on the level of interfaces and calling structures.
This allows developers to reason about change in
more intuitive terms and on a higher level than
previously possible.
Because conflicts upon change can be easily
detected, reuse contracts help to predict the work
effort to update existing applications. Because
they document what aspects possible reusers can
rely on, they can also be used by developers of a
reuse library to decide whether making a certain



change to the reuse library is a good idea or not.
For example, when adding method descriptions to
specialisation clauses, a distinction can be made
between adding new method descriptions and
adding already existing method descriptions.
When adding already existing method descriptions
to specialisation clauses, a developer of reusable
assets knows that there is a great chance that
method capture will occur. When these method
descriptions are abstract this is even a certainty,
since these method descriptions must be
concretised by derived contracts. Therefore the
developer might try to avoid doing this or at least
pay extra attention that the captured method is
only used for what it was originally defined for. In
the same vein, the rules from the previous section
can be used to guide application developers in
understanding where testing is needed when the
reusable asset has changed and how to fix the
problems.
We have mainly explained how reuse contracts can
be useful in the context of reusable asset
evolution. Reuse contracts are also an important
aid in making the layered structure of classes more
explicit. As mentioned in section 2, the problems
involved are similar to those in evolution of class
hierarchies. Associating reuse contracts with
classes in a class hierarchy helps in solving these
problems by classifying different inheritors by the
operators with which the associated reuse contracts
are derived and pointing out possible conflicts
when methods are overridden in the class
hierarchy.

6 Future Work
Extensions to the model

Although we restricted ourselves to only three
operators on reuse contracts, others are
imaginable. For example, in the course of
changing an abstract class a frequent operation is
that of refactoring existing methods by
introducing intermediate methods. The method
Update in the reuse contract Button is such an
example. In our approach this was implicitly
achieved through refinement.

One could also think of predefining frequent
combinations of operators on reuse contracts. An
interesting example of such a combined operator
on reuse contracts is turning an abstract hook
method into a concrete method that invokes newly
introduced abstract hook methods. This is a
typical operation to add a more concrete layer to
an abstract class. Currently, such an operator is a
combination of a refinement and a concretisation.
A more serious extension of reuse contracts is
including interclass relationships. In their current
form, reuse contracts only document the internal
dependencies among a class's methods. Part of our
future work is studying how reuse contracts can be
extended to include interclass dependencies as
well, yet on a less behavioural level than contracts
[3, 4].

Tools

When necessary, reuse contracts and the
relationships between reuse contracts must be
deduced. We already dispose of a prototype
implementation of such a tool3. This tool also
checks the correctness of explicitly declared
relationships and signals possible problem
situations as discussed throughout the text.
Such tools can also assist in the synchronisation of
reuse contracts and their implementations. Two
situations can be distinguished. In those parts of
the reuse library that have a stable design, the
implementation must be forced to comply to the
reuse contract. In those parts that are still subject
to major redesign, it should be possible to make
changes to both implementation and reuse
contracts independently. The environment could
discretely issue warnings, but should not become a
hindrance.

Analysis and Design Notations

Reuse contracts provide design information that is
complementary to what conventional object-
oriented design notations provide. We are actively
investigating how reuse contracts can be integrated

                                                
3 A prototype tool in Prolog can be found via the URL
http://progwww.vub.ac.be/prog/pools/rcs/rc.html. We are
also currently working on a “reuse contract”-extractor for
Smalltalk classes.



with existing design notations and how the same
principles could be applied to analysis and design
specifications instead of classes.

7 Related Work
The work of Kiczales and Lamping forms the
basis for this work by describing the problems
involved in the specification of class libraries and
by stressing the importance of internal
dependencies [6, 7]. Lamping approaches this
from a library specification angle and uses the
interfaces primarily as documentation. Stata and
Guttag extend the idea of specialisation interfaces
to incorporate full behavioural specifications [13].
Ossher and Harrison discuss the combination of
independently developed inheritance hierarchies
[10]. They suggest a new way of system building,
where systems are not adapted by subclassing or
modifying code, but by combining existing
hierarchies with merge operators. Their proposal
can however only handle non-conflicting parallel
extensions (two extensions are non-conflicting if
the order in which they are combined has no
importance). They emphasise the importance of
the exploration of conditions different from non-
conflicting that ensure that separate extensions
“work correctly together” when merged. In their
further work, they present composition rules to
combine different independently developed
“subjects” [11]. This work is more focused on
the implementation level than on the design level.
Another way to handle evolving frameworks is
refactoring [9] of class hierarchies. This work is, in
our opinion, complementary to our work.
Refactoring aims at transforming entire class
hierarchies in order to make them more reusable,
for example, by abstracting common behaviour
into abstract classes. It is based on code analysis
and transformation. Our work also starts from
class hierarchies, but deals with how to manage
design changes that propagate through these
hierarchies.

8 Conclusions
Although recently important advances have been
achieved in object-oriented software engineering,
reusability still fails to fulfil its high expectations.

Two of the most important inhibitors to successful
reuse are the lack of adequate documentation and
the absence of mechanisms to manage the
propagation of changes to reusable assets through
applications that have been built on them.
Reuse contracts and reuse operators solve these
problems by recording the protocol between
producers and users of reusable assets. They not
only document the design intentions of the asset
producer, but also the assumptions made by
reusers about the assets they reuse. When changes
are made to assets, this documentation allows to
identify which of these assumptions are no longer
valid and thus where the applications built on the
assets should no longer be trusted.
A detailed study of the reuse operators and their
interactions led to rules that describe just that.
These rules indicate to reusers where and how to
test and adjust applications, when the assets on
which they were built undergo changes. In a
similar vein, they assist asset developers in
assessing the impact of changes they make.

9 Acknowledgements
Special thanks to Adele Goldberg for supporting
this paper and for her suggestions that
fundamentally improved it. The authors would
also like to thank Niels Boyen, Koen De Hondt,
Wolfgang De Meuter, Serge Demeyer, Kris De
Volder, Karel Driesen, Theo Dirk Meijler, Mira
Mezini, Tom Mens, Bedir Tekinerdogan and Marc
Van Limberghen for useful discussions on this
subject and for reading drafts of this paper. We
also thank the EROOS group (Eric Steegmans,
Sam De Backer, Jan Dockx, Bart Swennen and
Stefan Van Baelen) for interesting exchanges of
ideas on the subject. Also thanks to Wilfried
Verachtert and Wim Codenie at OOPartners for
early discussions on the topic.

10 References
[1] Bracha, G. The Programming Language

Jigsaw: Mixins, Modularity and Multiple
Inheritance, PhD Thesis, Dept. of Computer
Science, University of Utah, 1992.

[2] Goldberg, A., Rubin, K. Succeeding with
Objects: Decision Frameworks for Project



Management, ISBN 0-201-62878-3,
Addison-Wesley Publishing Company,
1995.

[3] Helm, R., Holland, I., Gangopadhyay, D.
“Contracts: Specifying Behavioral
Compositions in Object-Oriented Systems”,
Proceedings of Joint ECOOP/OOPSLA ’90
Conference, pp. 169-180, ACM Press,
1990.

[4] Holland, I. The Design and Representation
of Object-Oriented Components, PhD thesis,
Northeastern University, 183 pages, 1992.

[5] Johnson, R., Foote, B. “Designing Reusable
Classes”, Journal of Object-Oriented
Programming, 1(2): 22-35, 1988.

[6] Kiczales, G., Lamping, J. “Issues in the
Design and Specification of Class
Libraries”, Proceedings of OOPSLA '92,
Conference on Object-Oriented
Programming, Systems, Languages and
Applications, pp. 435-451, ACM Press,
1992.

[7] Lamping, J. “Typing the Specialisation
Interface”, Proceedings of OOPSLA '93,
Conference on Object-Oriented
Programming, Systems, Languages and
Applications, pp. 201-215, ACM Press,
1993.

[8] Mens, K., Lucas, C., Steyaert, P. “ARC: an
Algebra of Reuse Contracts”, Tech-report
ftp-able at:   progftp.vub.ac.be/tech_report
/1996/vub-prog-tr-96-03.ps.Z.

[9] Opdyke, W., Johnson, R. “Refactoring: An
Aid in Designing Application Frameworks
and Evolving Object-Oriented Systems”,
Proceedings of Symposium on Object-
Oriented Programming Emphasizing
Practical Applications (SOOPPA), 1990.

[10] Ossher, H., Harrison, W. “Combination of
Inheritance Hierarchies”, Proceedings of
OOPSLA '92, Conference on Object-
Oriented Programming, Systems,
Languages and Applications, pp. 25-40,
ACM Press, 1992.

[11] Ossher, H., Kaplan, M., Harrison, W., Katz,
A., Kruskal, V. “Subject-Oriented

Composition Rules”, Proceedings of
OOPSLA '95, Conference on Object-
Oriented Programming, Systems,
Languages and Applications, pp. 235-250,
ACM Press, 1995.

[12] Pancake, C. “Object Roundtable, The
Promise and the Cost of Object
Technology: A Five-Year Forecast”,
Communications of the ACM, October 1995,
Vol 38(10), pp. 32-49, ACM Press, 1995.

[13] Stata, R., Guttag, J. “Modular Reasoning in
the Presence of Subclassing”, Proceedings
of OOPSLA '92, Conference on Object-
Oriented Programming, Systems,
Languages and Applications, pp. 200-214,
ACM Press, 1995.

[14] Van Limberghen, M., Mens, T.
“Encapsulation and Composition as
Orthogonal Operators on Mixins: A
Solution to Multiple Inheritance
Problems”, Object Oriented Systems
Journal, Volume 3, Number 1,
Chapmann&Hall, 1996.

[15] Yourdon, E. Object-Oriented System
Design: An Integrated Approach, Yourdon
Press Computing Systems, Prentice Hall,
1994.


