
OPUS : a Formal Approach to Object-Orientation

accepted at FME'94
Tom Mens, Kim Mens, Patrick Steyaert

Department of Computer Science, Faculty of Sciences
Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
e-mail: {tommens@is1|we34154@is1|prsteyae@vnet3}.vub.ac.be

Abstract. OPUS is an elementary calculus that models object-orientation.
It expresses in a direct way the crucial features of object-oriented
programming such as objects, encapsulation, message passing and
incremental modification. This is illustrated by numerous examples. Thanks
to the way objects are constructed in this calculus, we can deal with self-
reference, recursion and even mutual recursion in a straightforward way. We
also illustrate that it is relatively easy to model different kinds of
inheritance mechanisms. Finally, we argue to which extent our calculus can
be used for modeling and investigating object-oriented concepts.

1 Introduction

Until now there has not been given a satisfactory formal model for the object-
oriented programming paradigm. Therefore we think it is meaningful to construct a
calculus that provides a formal foundation for a whole range of object-oriented
programming languages (OOPLs), just like λ-calculus represents the theoretical
backbone of functional languages. More specifically, we would like to find those key-
features that are essential for object-oriented programming and build a calculus that
allows us to model a wide range of object-oriented concepts using only a very
restricted set of syntactic constructs. In section 6 we will discuss how such a formal
calculus can be used as a tool for investigating and relating object-oriented concepts.

Our calculus is based on the extended abstract [18] presented at an ECOOP
workshop. An early version of this calculus can be found in the Ph.D.-thesis of
Patrick Steyaert [19]. Because the calculus provides a formal foundation in which
object-oriented features can be expressed, we will call it OPUS, which is an acronym
for Object-oriented Programming calculUS. The main features of OPUS are:
• OPUS explicitly employs names for message passing. As already discussed in
numerous papers, the use of names greatly simplifies the modeling of object-oriented
systems. Examples of this are: the λ-calculus augmented with records (cf. [4, 5]),
Milner's π-calculus for describing concurrent computations [11] and λ-calculus
augmented with names, combinations and alternations [7].
• In [12], Oscar Nierstrasz argues that encapsulation is one of the most fundamental
concepts of object-orientedness, and that all object-oriented mechanisms and
approaches exploit this idea to various ends. For this reason, we provide an explicit
encapsulation mechanism in our calculus, allowing to create strongly encapsulated
objects containing a public part and an encapsulated private part.

• Because we want our calculus to model basic object-oriented features such as
inheritance and subclassing in a straightforward way, we introduce an incremental
modification mechanism similar to the one proposed in [20].
• As opposed to [1], we believe that no explicit syntactic provisions should be made
for recursion (e.g. "self" sends). We will show how recursive objects can be modeled
in a straightforward way using only the basic syntax of the calculus.
• With [6, 19], we advocate the use of explicit interfaces, i.e. an object's interface is
determined totally by the object's definition: the object should always respond to the
same messages, independent of the context in which it is used.
• Last but not least, with [9] we agree that our object-oriented model should satisfy
the property of homogeneity: "any entity is an object, and the unique control structure
is message passing".

In the following section we define the syntax and reduction rules of our calculus,
discuss the intuitive meaning of the various syntactical constructs, and explain them
by means of examples. Section 3 shows how we can deal with recursion by
introducing a notion of self-reference, and presents some illustrative examples such as
updatable objects, mutual recursion, recursive data structures and an example of
iteration. In the fourth section we illustrate how class-based as well as mixin-based
inheritance can be modeled in our calculus. The section that follows provides some
pointers to related work. Section 6 indicates several topics for further research, and
discusses the use of OPUS as a formal foundation for OO. Finally, the last section
summarizes the results achieved in this paper, and draws a conclusion.

2 Syntax of OPUS

2.1 Context Free Grammar

Definition: An OPUS-expression is an element of the language generated by the
following context free grammar (in EBNF-notation) where the start symbol is
Expression, all terminal symbols are denoted between double quotes and Name is also a
terminal symbol.

Expression ⇒ Object | Name | MessageSend | Composition
Object ⇒ Compound | Simple
MessageSend ⇒ Expression Name
Composition ⇒ "(" Expression "++++" Expression ")"
Compound ⇒ "<" Expression "/" Expression ">"
Simple ⇒ " [" List "] "
List ⇒ [AssocList]
AssocList ⇒ [AssocList ","] Assoc
Assoc ⇒ VarAssoc | MethodAssoc
VarAssoc ⇒ Name "=" Expression
MethodAssoc ⇒ Name "#" Expression

Notation:
1) In the rest of this paper, we will assume that N denotes a meta-variable of type
Name, E and Ei are meta-variables of type Expression, L and Li denote meta-variables of
type List, and A is a meta-variable of type Assoc.

2) We introduce two notations for reducing expressions. → means "...reduces in one
step to...", while
Error!

Convention: In all the examples in this paper, a Name will always be written in
lowercase. (Words written in uppercase will be used as macro-definitions for predefined
objects.)

Definition: An N-association is an expression of the form N=E or N#E.

In the following subsections we give an intuitive explanation of the syntax
described by the context free grammar, enumerate the reduction rules that will be used
to reduce expressions to normal form, and illustrate them by means of examples.

2.2 Objects and Encapsulation

In our calculus, we have chosen for an object in its most general form to consist
of a public part and a private part. These objects will be called compound objects, and
are denoted as < Public / Private >. Both public and private parts can contain methods
as well as instance variables. The public part contains the public methods and instance
variables visible for other objects. The private (or encapsulated) part on the other hand
consists of variables and methods that are only used to implement public methods.

When invoking a public method in a compound object, unbound names in this
method are looked up in the encapsulated part of the object (this is called private
method invocation). Instance variables on the other hand are not bound in the private
part. Because of this difference between methods and instance variables, we need a way
to distinguish them. Method associations will be represented by a name, followed by
a #, followed by an expression (e.g. getx#x), while variable associations are
represented by a name, followed by an equality symbol, followed by an expression
(e.g. x=xval). This difference will not be visible to the sender of a message, because
the principle of homogeneity demands that both methods and instance variables are
invoked using exactly the same syntax (message passing is an atomic operation).

Public and private parts in their simplest forms are just association lists (records)
of instance variables and methods. These records are called simple objects and are
denoted between square brackets, while the associations are separated by commas, as
for example in [x#a,y=b,z=c].

2.3 Message Passing

For the moment we will only work with messages without arguments. Later we
will see how message passing with arguments can be simulated by private attributes,
or by means of our composition operator. Passing a message N to an expression E is
denoted by E N. The way this message N is evaluated depends on the form of E.

Simple objects.
Passing a message to a simple object is similar to record selection. If the

association corresponding to the message is an instance variable, message passing
coincides with selecting the value of this variable. E.g. [x#a,y=b,z=c] y reduces to b.
There is a problem however if the association corresponding to the message is a

method. Normally we would "execute" this method by looking up all unbound names
in the private part of the object. But since a simple object has no private part, this is
impossible. Therefore, when a name is sent to a simple object, and the association
corresponding to this name is of the form N#E, we do not reduce the expression any
further. E.g. [x#a,y=b,z=c] x reduces to [x#a] x which is an expression in normal form.
All of this can be formalized in the following rule:

Rule 1: Message passing to a simple object

[L , N=E] N → E (variable selection)
[L , A] N → [L] N if A is no N-association

Compound objects.
Message passing to a compound object selects an attribute in the public part of the

object. Again there will be a major difference between method selection and instance
variable selection. In the case of instance variables, we simply select the value of the
corresponding association. E.g. < [x#a,y=b,z=c] / [a=d] > y will reduce to b. In the
case where the attribute is a method however, the body of the method has to be
evaluated in the context of the private part. For evaluating an expression E1 in a
context E we will use the notation {E}(E1).1 E.g. < [x#a,y=b,z=c] / [a=d] > x reduces
to {[a=d]}(a), which can be further reduced to d, using the definition of evaluation in a
context that will be given later.

Rule 2: Message passing to a compound object

< [L , N=E1] / E > N → E1 (variable selection)
< [L , N#E1] / E > N → {E}(E1) (method execution)
< [L , A] / E > N → < [L] / E > N if A is no N-association

In this rule we observe that passing a message to an object results in searching
the association list in the public part from right to left for an attribute corresponding
to the message name, and then executing the corresponding method or fetching the
corresponding value. If no attribute is found, the expression cannot be reduced any
further. For example, <[x=a,y#y]/[y=b]> z reduces to <[]/[y=b]> z by applying rule 2
twice. This new expression is in normal form, and intuitively corresponds to a
"message not understood" error2.
Convention: If two different attributes corresponding to the same name occur in an
association list, only the last one is significant (due to the right-to-left strategy for
searching attributes). This automatically solves any problems concerning double use
of names: only the last occurrence of a name is relevant. For this reason we introduce
the convention that, if more than one attribute corresponding to a given name occurs
in a simple object, we only write the rightmost occurrence3. E.g.
[x=a,z=b,y#y,y#z,x#x] will be abbreviated to [z=b,y#z,x#x].

1 This notation is not part of the syntax, but can be considered as some kind of meta-level
reduction scheme (similar to the substitution mechanism in lambda-calculus).
2 In contrast to [9], we don't make explicit use of error messages. In a future version of this
calculus we are planning to deal with error messages at a semantic level.
3 The main argument for introducing this shorthand notation is that it makes the examples
easier to read and understand.

It is important to note that rule 2 provides for both method selection and method
application in one single derivation step! In most models based on λ-calculus with
records this is not the case because method selection and method application are
considered distinct operations. This however compromises object-based encapsulation,
since it allows a method to be selected and temporarily stored somewhere, and later on
this method can be retrieved and applied in a totally different context, gaining access
to the object's encapsulated parts without passing through its interface.

Next, we will show how evaluation in a context can be defined formally.
Intuitively, evaluating an expression in some context distributes over all sub-
expressions, except for method associations (because those are evaluated in the
encapsulated part of the object to which they belong, according to the previous rule).
Evaluating a name in a context coincides with sending the name to that context. Note
that the context in which an expression is evaluated can be an arbitrary object. The
exact definition of evaluation of an expression in a context is given below:

{E}(E1 N) equals {E}(E1) N
{E}((E1 + E2)) equals ({E}(E1) + {E}(E2))
{E}(< E1 / E2 >) equals < {E}(E1) / {E}(E2) >
{ E } ([L]) equals [{E}(L)] if L is not empty
{ E } ([]) equals []
{E}(L,A) equals {E}(L),{E}(A)
{E}(N=E1) equals N={E}(E1)
{E}(N#E1) equals N#E1
{E}(N) equals E N

Evaluating a simple object in a context E yields a new simple object where only the
instance variables are evaluated in the context, while the methods remain unaltered
(because they are not evaluated in the context, but in the private part of the object of
which they are part). Indeed {E}(N=E1) is defined as N={E}(E1), whereas {E}(N#E1)

simply yields N#E1.
To illustrate the above definition, consider the following example, where E denotes an
arbitrary expression:

{E}(< [x=a,y=b,z#d] / [a=e] > x)
= {E}(< [x=a,y=b,z#d] / [a=e] >) x
= < {E}([x=a,y=b,z#d]) / {E}([a=e]) > x
= < [x={E}(a),y={E}(b),z#d] / [a={E}(e)] > x
= < [x=E a,y=E b,z#d] / [a=E e] > x

In the rest of the examples presented in this paper, we will always immediately
give the resulting expression when evaluating an expression in a context, and omit all
the intermediate steps.

2.4 Examples

In this section, we will try to illustrate the concepts discussed earlier by
expressing conditionals in our calculus in both a functional and an object-oriented
way.

Functional Conditionals.
A functional IF-object needs three arguments: a condition, a then-part and an else-part.
On invocation of the message res it returns the value of the then-part if the condition
is true, and the value of the else-part otherwise. If we define TRUE and FALSE as
objects that return the values true or false when the message istrue is sent, the
definition4 of IF can be given as follows:

TRUE := [istrue#true] FALSE := [istrue#false]

IF := [res#< cond / [true=then,false=else] > istrue]

To deal with the arguments, we extend this IF-object to a compound object by
encapsulating a private part containing the values of the variables cond, then and
false. Sending a res message to this extended object yields the expected result, as can
be seen in the following derivation that uses the message passing rules described
earlier.

< IF / [cond=TRUE,then=a,else=b] > res

= < [res#<cond/[true=then,false=else]> istrue] /
[cond=TRUE,then=a,else=b] > res (def. IF)

→,+ {[cond=TRUE,then=a,else=b]}
(<cond/[true=then,false=else]> istrue) (rule 2)

= < [cond=TRUE,then=a,else=b] cond /
[true=[cond=TRUE,then=a,else=b] then,
 false=[cond=TRUE,then=a,else=b] else] > istrue (def. {})

→,+ < TRUE / [true=a,false=b] > istrue (rule 1)

= < [istrue#true] / [true=a,false=b] > istrue (def. TRUE)

→,+ {[true=a,false=b]}(true) (rule 2)

= [true=a,false=b] true (def. {})

→,+ a (rule 1)

We can easily extend this example to create functional boolean operators NOT, AND
and OR.

NOT := [res#< arg / [true=FALSE,false=TRUE] > istrue]

AND := [res#< first / [true=<second/[true=TRUE,false=FALSE]> istrue,
false=FALSE] > istrue]

OR := [res#< first / [false=<second/[true=TRUE,false=FALSE]> istrue,
true=TRUE] > istrue]

One can check that the following reductions are valid:

4 The operator := that binds expressions to variables, is not present in the syntax of the
calculus. It is only used to make the examples more readable. Words written in uppercase
refer to "predefined" objects that have to be replaced "in place" (cf. macro-definitions).

< NOT / [arg=TRUE] > res →,+ FALSE

< AND / [first=TRUE,second=FALSE] > res →,+ FALSE

< OR / [first=FALSE,second=TRUE] > res →,+ TRUE

Object-oriented Conditionals.
Following the object-oriented approach, TRUE- and FALSE-objects are defined as
simple objects that return then (respectively else) on invocation of the method if.

TRUE := [if#then] FALSE := [if#else]

Using these boolean objects, a conditional expression will look as follows:

< TRUE / [then=a,else=b] > if

= < [if#then] / [then=a,else=b] > if (def. TRUE)

→,+ {[then=a,else=b]}(then) (rule 2)

= [then=a,else=b] then (def. {})

→,+ a (rule 1)

We will now try to generalize these boolean objects, so that they understand not only
if-messages, but also messages not, and and or:

TRUE := [if#then, and#arg, or#TRUE, not#FALSE]

FALSE := [if#else, and#FALSE, or#arg, not#TRUE]

Here a problem arises, because the definition of both objects is defined in terms of
themselves and the other object. This is not allowed, because we are not (yet) able to
deal with recursive (and even mutual recursive!) definitions. Later we will explain
how to solve this problem.

2.5 Currying of Private Attributes

For modeling objects, the most important advantage over λ-calculus with records
(cf. [4, 5]) is that the public and private parts of a compound object need not be
simple objects, but can be compound objects themselves! This is essential on the one
hand to model private methods, and on the other hand to have some form of curried
binding of instance variables (i.e. private attributes that are bound in different stages).
The rule needed to express this currying principle is very simple.

Rule 3: Currying

< < E1 / E2 > / E3 > → < E1 / < E2 / E3 > >

Using the currying principle, it is very easy to define a conditional in which the then
and else part are already filled in, while the condition has to be provided for later on.
This can be achieved by extending the previously defined IF-object as follows:

< IF / [then=a,else=b,cond#cond] >

Now the only thing left to do is providing a condition for this extended object.

< < IF / [then=a,else=b,cond#cond] > / [cond=TRUE] >

Finally, if we send the message res to this compound object, derivation leads to the
expected result:

< < IF / [then=a,else=b,cond#cond] > / [cond=TRUE] > res

= < < [res#<cond/[true=then,false=else]> istrue] /
[then=a,else=b,cond#cond] > / [cond=TRUE] > res (def. IF)

→,+ < [res#<cond/[true=then,false=else]> istrue] /
< [then=a,else=b,cond#cond] / [cond=TRUE] > > res (rule 3)

→,+ {< [then=a,else=b,cond#cond] / [cond=TRUE] >}
(<cond/[true=then,false=else]> istrue) (rule 2)

→,+ < [cond=TRUE] cond / [true=a,false=b] > istrue (def. {}, rule 1&2)

→,+ < TRUE / [true=a,false=b] > istrue (rule 1)

→,+ a (see example of section 2.4)

This example clearly illustrates that it is possible to provide the required arguments
for a given method in different stages. First the then and else part were given, and
next the condition was added. Argument passing can be modeled using exactly this
mechanism: arguments are bound to an object in supplement to the already bound
instance variables. In section 2.7 we will present an alternative approach.

2.6 Object Composition

In many cases it will be useful to have some kind of mechanism that allows us to
compose two simple objects into a resulting object. This "composition" of objects
operationally corresponds to the concatenation of records, where all the attributes of
the second record are added to the first one, and if there is an attribute that already
occurred in the first record, its value will simply be "overwritten" by the
corresponding value in the second record (due to the right-to-left strategy for attribute
lookup). This mechanism will prove useful when dealing with inheritance.

Rule 4: Composition of objects

[L1] + [L2] → [L1 , L2]

Notice that rule 4 is only defined for simple objects, although the syntax allows the
components E1 and E2 of a composition (E1+E2) to be arbitrary expressions. This is
because it might be possible to eventually reduce these expressions to simple objects
by means of the reduction rules. If this is not possible, rule 4 cannot be applied.

This composition operator can be used as an incremental modification
mechanism. For example, suppose we have a POINT-object that understands the
messages getx, gety and set.5

POINT := [getx#x, gety#y, set#<self/[self=self,x=x,y=y]>]

If we want to modify this object to obtain a CIRCLE-object, by adding a getr message,
and modifying the set message, then this can be done by composing the POINT-object
with the following MODIFIER:

MODIFIER := [getr#r, set#<self/[self=self,x=x,y=y,r=r]>]

The resulting object is:

CIRCLE := (POINT + MODIFIER)
= [getx#x,

gety#y,
set#<self/[self=self,x=x,y=y]>,
getr#r,
set#<self/[self=self,x=x,y=y,r=r]>]

This new object contains two set-messages, of which only the last one is relevant,
because it "overwrites" the first one. Using the convention that we only write those
methods and instance variables that are relevant (in case of double use of names), the
previous object can be written somewhat simpler:

CIRCLE := [getx#x, gety#y, getr#r, set#<self/[self=self,x=x,y=y,r=r]>]

2.7 Message Passing with Arguments

Until now, we have only dealt with message passing without arguments for
reasons of simplicity. Nevertheless we have seen that it is possible to simulate
arguments by means of private attributes. This approach compromises to some extent
the encapsulation of objects, because private attributes of an object can be overwritten
by arguments with the same name. In a future version of our calculus we will try to
solve this problem.

To make it easier to understand the examples, we introduce a new syntactic
construction for dealing with message passing with arguments, and give a
corresponding derivation rule for message passing. To allow argument passing, the
syntax of the context free grammar needs to be modified as follows:

MessageSend ⇒ WithoutArguments | WithArguments
WithoutArguments ⇒ Expression Name
WithArguments ⇒ (Expression Name ":" Expression)

For message passing with arguments, parentheses are needed to avoid ambiguity.
However, we will adopt the convention that message passing associates to the left. In
this way we can drop most of the parentheses when dealing with messages with

5 This example will be explained more into detail in section 3.2.

arguments. E.g. E1 N2:E2 N3:E3 means (E1 N2:E2) N3:E3 instead of E1 N2:(E2

N3:E3).

A new rule for passing messages with arguments needs to be introduced. It
basically corresponds to an "extend-then-send" construction, i.e. first the private part
of the object is extended with the arguments of the message, and next the message is
sent to this extended object.

Rule 5: Message passing with arguments

< E1 / E2 > N:E → < E1 / (E2 + E) > N

Furthermore, in order to deal with this new syntactic construction, the definition of
evaluation in a context needs to be extended with:

{E}(E1 N:E2) equals {E}(E1) N:{E}(E2)

3 Recursion

3.1 Dealing with self-reference

In most object-oriented languages (e.g. Smalltalk) it is common that an object
can modify its own (public) methods and instance variables using a self-reference that
returns the object itself. We will show that it is very easy to implement a notion of
self-reference in our calculus: the self instance variable will be a variable that behaves
in exactly the same way as all other instance variables.

Before continuing we introduce the following notation for creating a self-referring
expression given an initial expression E:

σE := < E / [self=E] >

Informally this means that a self-referring expression is defined by creating a
compound object where the public part contains the initial expression, while the
private part contains a variable self that refers to this expression. A special case of
this is the object σself = <self/[self=self]>, containing an unbound variable self that
will be bound later on thanks to the scoping rules.

Notice that the operator σ only unfolds one level of recursion, whereas a fixed-
point operator (such as the Y-operator in λ-calculus) corresponds to an infinite
recursive unfolding6. The advantage of the use of infinite recursion is that we only
have to apply the fixed-point operator once, and that any future reference to the object
will yield the same object. However, this implies that the object cannot be updated.
Therefore we prefer to use our operator σ, and explicitly rewrite the operator each time
we want to expand another level.

6 It is possible to define such a fixed-point operator in our calculus, but that is beyond the
scope of this paper.

An example of the use of self-reference is given below, where we construct a
compound object with only one method s in its public part, such that invocation of
this method returns the object itself.

Property: σ[s#σself] s →,+ σ[s#σself]

Proof:
σ [s#σself] s = < [s#σself] / [self=[s#σself]] > s (def. σ)

→,+ {[self=[s#σself]]}(σself) (rule 2)

= {[self=[s#σself]]}(<self/[self=self]>) (def. σ)

→,+ < [s#σself] / [self=[s#σself]] > (def. {} & rule 1)

= σ[s#σself] (def. σ)

In a similar way, if we reduce the expression σ[s#σself s] s we obtain exactly the
same expression again. This means that deriving this expression leads to an infinite
reduction sequence without ever reaching a normal form. The proof of this property is
similar to the previous one.

Property: σ[s#σself s] s →,+ σ[s#σself s] s

3.2 Updatable Objects

Now we will show how the σ-operator can be used to deal with updatable objects.
We define a POINT-object with two private variables x and y that can only be accessed
by means of the public methods getx and gety (that simply return the value of x and
y respectively) and set (that stores a new value in x and y). In order to obtain the
expected result, the set-method should be invoked by means of a message with two
arguments x and y representing the new x- and y-values.

POINT := [getx#x,gety#y,set#<self/[self=self,x=x,y=y]>]

The compound object σPOINT will satisfy our requirements, as we can see from the
following reduction:

(σPOINT set:[x=1,y=2]) gety

= (< POINT / [self=POINT] > set:[x=1,y=2]) gety (def. σ)

→,+ < POINT / ([self=POINT] + [x=1,y=2]) > set gety (rule 5)

→,+ < POINT / [self=POINT,x=1,y=2] > set gety (rule 4)

→,+ {[self=POINT,x=1,y=2]}(<self/[self=self,x=x,y=y]>) gety (rule 2)

→,+ < POINT / [self=POINT,x=1,y=2] > gety (rule 1)

→,+ {[self=POINT,x=1,y=2]}(y) (rule 2)

→,+ 2 (rule 1)

3.3 Mutual Recursion

In an earlier example, we needed a mechanism to deal with mutual recursion. The
solution to this is similar to plain recursion, but slightly more complicated, because
we have to deal with two different objects interacting with each other. For this reason,
we do not only need a self instance variable, referring to the object itself, but also an
instance variable other referring to the object with which the given object is mutually
recursive. Reviewing the proposed object-oriented definitions of TRUE and FALSE in an
example earlier in this paper,

TRUE := [if#then,and#arg,or#TRUE,not#FALSE]

FALSE := [if#else,and#FALSE,or#arg,not#TRUE]

we observe that only minor changes have to be made, by introducing a SELF and
OTHER object, replacing them for TRUE and FALSE in the previous definitions, and
adding two private instance variables self and other, containing the object itself and
its mutually recursive object respectively.

TRUE := < TRUE' / [self=TRUE',other=FALSE'] >

FALSE := < FALSE' / [self=FALSE',other=TRUE'] >

TRUE' := [if#then,and#arg,or#SELF,not#OTHER]

FALSE' := [if#else,and#SELF,or#arg,not#OTHER]

SELF := < self / [self=self,other=other] >

OTHER := < other / [self=other,other=self] >

It is easy to see that these definitions yield the expected results, as can be verified by
means of the following derivations:

TRUE not →,+ FALSE

TRUE and:[arg=FALSE] →,+ FALSE

TRUE or:[arg=FALSE] →,+ TRUE

3.4 Recursive Data Structures

In this section we illustrate how recursive data structures can be simulated in our
calculus. More specifically we will show how to deal with circular linked lists and
double linked lists.

Circular linked lists.
These are simply lists of records containing a value part and a next-pointer referring to
the next record. Moreover, because the list is circular, the next-pointer in the last
record should point to the first record. In figure 1, the schematic representation of a
linked list with three items (1, 2 and 3) is given.

1
next next

next

2 3

Fig. 1. Circular linked list

The way to simulate this in OPUS is rather straightforward:

CIRCULAR := [val=1,
next#<[val=2,

next#[val=3,
next#σself]

] / [self=self] >]

One can easily check that this corresponds to a circular linked list, by looking at the
following derivations:

σCIRCULAR next next next →,+ σCIRCULAR

σCIRCULAR next val →,+ 2

Double linked lists.
These are lists of records where each record contains a value part, a next-pointer
referring to the next record, and a prev-pointer referring to the previous record. The
next-pointer of the last record and the prev-pointer of the first record both point to nil.
In figure 2 we give an example of such a double linked list.

next next

prevprev

next

prev
1 2 3

nil
nil

Fig. 2. Double linked list

The OPUS-expression corresponding to this list is the following one:

DOUBLE := [val=1,
prev#nil,
next#<[val=2,

prev#σself,
next#<[val=3,

prev#σself next,
next=nil] / [self=self]>

] / [self=self] >]

Again one can see that this expression does what is expected:

σDOUBLE next next prev prev →,+ σDOUBLE

3.5 An Iterative Example

To illustrate that it is possible to deal with iteration in our calculus, we show
how to express the classical functional example of calculating the factorial.

FAC := [res#< IF / [cond=n iszero, then=fac,
else=σself res:[n=n-1,fac=fac*n]] > res]

It is easy to see that this definition of factorial7 works as expected, by observing that
it corresponds to the following intuitive definition:

FAC(n, fac) = if n iszero then fac else FAC(n-1, fac*n)

The argument n contains the number of which the factorial has to be computed, while
the argument fac is used as an accumulator to iteratively accumulate the value of the
factorial. We start with an initial value of fac=1 and at each step this value is
multiplied with a new value, as can be seen in the following reduction that calculates
the factorial of 3:

(σFAC res:[n=3,fac=1])

→,+ < FAC / [self=FAC,n=3,fac=1] > res

→,+ < FAC / [self=FAC,n=2,fac=3] > res

→,+ < FAC / [self=FAC,n=1,fac=6] > res

→,+ < FAC / [self=FAC,n=0,fac=6] > res

→,+ 6

4 Dealing with Inheritance

In this section, we will illustrate that it is possible to model different kinds of
inheritance mechanisms in our calculus in a straightforward manner. First we
illustrate how to deal with class-based inheritance; secondly we do the same for mixin-
based inheritance. Intuitively it should be clear that inheritance can be expressed in our
calculus, because in [20] it is shown that inheritance can be modeled as an incremental
modification mechanism: a parent P is transformed by means of a modifier M to form
a result R = P + M. Now if we assume that R, P and M are simple objects, then this
mechanism exactly corresponds to our own composition operator!

4.1 Class-based Inheritance

Intuitively, classes can be defined as templates from which objects are created. In
our approach, we will use the public part as template, i.e. two different instances of a
given class will have the same public part, but can have different private parts. For
example, instance variables x and y will differ between different instances of the same
POINT-class, while the getx, gety and set methods will be the same for all copies.

Taking care never to turn away from our basic principle that "everything is an
object", we will formally define a class as a compound object. The private part of this
compound object will consist of:

7 In this definition it is important to note that the arithmetic operations iszero, +, * and -
can be defined as OPUS-expressions, but that is beyond the scope of this paper.

- an inst variable, containing the value of the public part of each instance of a
class;
- a self variable, referring to the class itself (to allow recursive class-methods);
- a super variable, referring to the superclass of a given class (to allow code
reuse).

For example we will define a POINTCLASS with instances of the form POINT, and a
BOUNDEDCLASS which is a subclass of POINTCLASS, and has instances of the form
BOUNDEDPOINT.

POINTCLASS := < POINTPUBLIC / [inst=POINT,
self=POINTPUBLIC,
super=root] >

BOUNDEDCLASS := < BOUNDEDPUBLIC / [inst=BOUNDEDPOINT,
self=BOUNDEDPUBLIC,
super=POINTPUBLIC] >

The public part of a class will consist of:
- a new method, needed to create new instances of the given class. As for
classes, instances can refer to themselves using a self-variable, but they can
also refer to their class using a class-variable.
- possibly some other class-methods

As an example, we define the public parts of the POINTCLASS and BOUNDEDCLASS
respectively. Instances of BOUNDEDCLASS are created by delegating the new message
to its superclass.

POINTPUBLIC := [new#<inst/[self=inst,class=self]>]

BOUNDEDPUBLIC := [new#<super/[inst=inst,self=self,super=super]> new]

The idea behind class-based inheritance is that a new class is defined by specifying
how it differs from an already existing class. This principle of incremental
modification is simply implemented by defining the instance of a given subclass as an
instance of its parent, modified by a certain modifier:

inst=(PARENTINST + MODIFIER)

For example, POINT-instances understand the messages getx, gety , set and move.
BOUNDEDPOINT-instances inherit these methods of POINT, while the set message is
overwritten by another one that tests whether the new x-value exceeds the upper bound
5.

POINT := [getx#x, gety#y,
set#< self / [self=self,class=class,x=x,y=y] >,
move#(<self/[self=self,class=class]> set:[x=x,y=y])]

MODIFIER := [set#< x ≤ 5 / [then=<self/[self=self,class=class,x=x,y=y]>,
else=error] > if]

BOUNDEDPOINT := (POINT + MODIFIER)

The correctness of all these definitions will be illustrated by the following two
reductions. The first one creates an instance of POINTCLASS, changes the coordinates
of the instantiated point, and returns the y-value.

POINTCLASS new set:[x=1,y=2] gety

→,+ < POINT / [self=POINT,class=POINTPUBLIC] > set:[x=1,y=2] gety

→,+ < POINT / [self=POINT,class=POINTPUBLIC,x=1,y=2] > gety

→,+ 2

The second reduction illustrates the late binding of self, one of the essential aspects of
inheritance, by creating a BOUNDEDPOINT-instance, and executing its move-method. In
the example we can clearly see that this results in invoking the move-method of
POINT using the self of BOUNDEDPOINT. In this way the new set-method is used
instead of the original one. Hence we obtain late binding.

BOUNDEDCLASS new move:[x=1,y=2]

→,+ {[inst=BOUNDEDPOINT,self=BOUNDEDPUBLIC,super=POINTPUBLIC]}
(<super/[inst=inst,self=self,super=super]> new) move:[x=1,y=2]

= < POINTPUBLIC /
[inst=BOUNDEDPOINT,self=BOUNDEDPUBLIC,super=POINTPUBLIC]>
new move:[x=1,y=2]

→,+ < BOUNDEDPOINT / [self=BOUNDEDPOINT,class=BOUNDEDPUBLIC] >
move:[x=1,y=2]

→,+ < BOUNDEDPOINT / [self=BOUNDEDPOINT,class=BOUNDEDPUBLIC] >
set:[x=1,y=2]

→,+ < 1 ≤ 5 / [then=<BOUNDEDPOINT/[self=BOUNDEDPOINT,
class=BOUNDEDPUBLIC,x=1,y=2]>,

else=error] > if

→,+ < BOUNDEDPOINT /
[self=BOUNDEDPOINT,class=BOUNDEDPUBLIC,x=1,y=2] >

We must admit that there are still some problems with class-based inheritance due to
the fact that our argument passing mechanism compromises encapsulation. However,
due to space limitations we will not go deeper into this matter.

4.2 Mixin-based Inheritance

Mixin-based inheritance is a mechanism sometimes used in prototype-based
object-oriented languages (in contrast to languages such as Smalltalk, where class-
based inheritance is advocated). New objects are created by cloning existing ones.
Moreover, objects can be extended using mixins: a mixin-method returns a copy of
the receiver extended with the declarations specified in the mixin's body. The order in
which mixins are applied is important for the external visibility of public attribute
names. In [16], it is shown how mixins can be regarded as named attributes of an
object: an object lists as mixin attributes all and only those mixins that are applicable

to it. Precisely those mixin-attributes can be used to extend the object. Mixins can be
inherited and nested within each other. In this way we obtain a very powerful
inheritance mechanism. In fact, in [2] it is shown that mixin-based inheritance
subsumes the inheritance mechanisms provided by Smalltalk, Beta and CLOS.

In this paper, we follow the same approach as [16]. Using the OPUS-syntax, a
mixin-method will always have the following form

mixin#σ(self + MIXIN)

because a mixin extends the current object (self) with new methods and variables
described in MIXIN. Remark that the same syntax will also be used for messages that
only overwrite variables in an object with new values. Indeed, because overwriting
existing attributes is a special case of extending an object with attributes, these
methods can be regarded as a special kind of mixin-methods. We will introduce the
following shorthand notation for the expression above:

mixin@MIXIN

As an example, assume that we have three mixin-methods makePoint, addColor
and make3D. The first two mixin-methods can be applied to every object, while the
third one is nested: it can only be applied to objects that have already been extended
with makePoint. Invoking makePoint extends the current object with a new mixin-
method make3D, two instance variables x and y , and two methods setx and sety for
updating their values. Executing make3D extends this new (already extended) object by
adding an instance variable z and a public method setz. Finally, the addColor method
can be applied to every object and results in extending the object with an instance
variable c and a public setcol method. Using the new notation mentioned above, this
example can be expressed as follows:

OBJECT := [makePoint@[x=x,
y=y,
setx@[x=x],
sety@[y=y],
make3D@[z=z,

setz@[z=z]]],
addColor@[c=c,

setcol@[c=c]]]

Using these definitions, we can for example extend the root-object to a point (1,2),
replace its y-coordinate by 3, extend this point-object to a colored point-object by
adding the color yellow, extend this colored point-object to a colored 3D-object with
z-coordinate 2, and finally ask the color of this object using one single expression:

OBJECT makePoint:[x=1,y=2] sety:[y=3] addColor:[c=yellow] make3D:[z=2] c

Note that it is also possible to obtain late binding of self using mixin-methods, but
since the mechanism is essentially the same as for class-based inheritance, we will not
provide an example of this.

5 Related Work

There are lots of calculi being constructed for the purpose of modeling object-
orientedness in a suitable way. Each of these calculi has its own specific characteristics
and advantages. For this reason, it is useful to find out where our calculus can be
situated amongst the others.

Only a small set of people is currently working on OO calculi that are not based
on λ-calculus, mostly in the area of concurrent OOPLs. For example, Robin Milner
has introduced the π-calculus [11], and Oscar Nierstrasz proposed an "object-calculus"
[13]. Most of the current research on formal OO-models consists of attempts to
generalize λ-calculus in order to describe OO-concepts more easily. All of these models
however have difficulties in expressing some of the essential features of object-
orientedness in a satisfying way.

For example, as opposed to OPUS, most of the OO-models based on polymorphic
typed λ-calculus (e.g. [10, 14, 15]) do not have atomic message passing since it is
composed of record selection and functional application. We explained earlier that this
compromises object-based encapsulation.

Dami's λ-calculus with names, combinations and alternations (cf. [7, 8])
essentially has the same shortcomings, although it seems possible to introduce a
higher-level syntax in which these problems do not occur. There appear to be some
striking similarities with OPUS, such as the use of names for interaction between
objects and the way in which objects are modeled.

Another approach based on λ-calculus is λ&-calculus [3]. This calculus does have
atomic message passing, and the message passing rules are very similar to ours.
However, because λ& adopts a multi-methods approach, object-interfaces are not
explicit at all, while OPUS does have explicit interfaces.

There also seem to be many connections between OPUS and the untyped calculus
proposed by Abadi and Cardelli in [1], but the latter contains an explicit recursion
operator in its basic syntax. We feel that this is not necessary, because it is possible to
simulate recursion using more primitive concepts, as we have shown earlier in this
paper.

6 Future Perspectives

This section will motivate how our calculus can be used as a tool in the research
and understanding of new OO-concepts, the interrelationships between existing
concepts, etc.

Using a calculus one can give rigorous definitions of concepts that have no
generally accepted formal definition (e.g. what is an object, what is a class?).
Furthermore, there is still a lot of discussion going on about which features are truly
essential to OO and which are not. A formal model might provide help in solving
these problems. For example, in this paper we have shown that recursion is not
essential, because it can be expressed using more primitive concepts.

A common theory also provides a basis for making comparisons between related
concepts, enabling us to learn more about their interrelationships. This can be useful
to find out which approach is best fit to solve a certain problem. For example, in the
near future we are planning to use our calculus for investigating the differences

between encapsulated and non-encapsulated inheritance (cf. [17]), and to find out how
they interact with each other.

Our OO calculus can be interesting from a more practical point of view as well. It
might be used as a basis for developing new OOPLs based on a very small set of
essential features (thus with a more orthogonal design), yet with the same
expressiveness as currently available OOPLs. (In analogy with the design of
functional languages based on λ-calculus like LISP, Scheme, Gofer, Miranda and
Haskell.)

Finally, a lot of people face important difficulties when trying to prove general
properties of OOPLs. One of the main reasons for their problems is a lack of a solid
formal basis. Thus formal methods for OO are necessary for reasoning about the
paradigm.

Although our calculus provides some very promising results, further research
remains to be done. Below we provide some ideas for improvement of our calculus.
• We plan to show that OPUS is as powerful as λ-calculus, by providing a translation
scheme from λ-calculus to OPUS and vice versa.
• We are studying the confluency property for our calculus. We are convinced that our
calculus is confluent, but the results are not mature enough to be presented in this
paper.
• The derivation rules of OPUS can be considered as a kind of operational semantics
for the syntactic constructs of the calculus. Similarly, it is worthwhile looking at a
suitable denotational semantics for OPUS.
• Just as λ-calculus can be extended to typed λ-calculus, typing could be added to
OPUS as well.

7 Conclusion

As a conclusion, we claim that we have succeeded in finding a suitable formal
framework in which many object-oriented programming languages can be expressed.
Although the calculus in this paper has a very simple syntax and only a few reduction
rules, we believe that it can model all key-features of object-orientedness.

Our calculus contains some innovative features such as the use of an explicit
encapsulation operator to hide implementation details of objects, and the fact that
message passing is treated as an atomic operation. We argued that this approach is
more object-oriented than in many other formal models where message passing
consists of two distinct operations, namely method selection and method invocation.

Another important feature is that interaction occurs through names (as in Dami's
calculus [7]) instead of positions as is the case in λ-calculus. We also introduced an
incremental modification operator to model different kinds of inheritance mechanisms,
and have shown that it is not necessary to include notions like recursion and classes in
the basic syntax, because they can be modeled using the other syntactic constructs.
Although the calculus was originally designed to work with object-oriented examples,
functional examples can also be expressed easily, making the calculus more or less
multi-purpose. Finally, we have argued how our calculus can be used as a tool for
describing and relating existing OO-concepts, or investigating new concepts.

8 Acknowledgments

We express our extreme gratitude to Niels Boyen and Wolfgang de Meuter for the
heavy discussions and numerous remarks, to Laurent Dami and Kris De Volder for
some helpful comments given when proof-reading an early version of this paper, and
to several anonymous referees for their useful suggestions.

9 References

1. M. Abadi, L. Cardelli: A Theory of Primitive Objects. Unpublished, 1994
2. G. Bracha, W. Cook: Mixin-based Inheritance. OOPSLA/ECOOP '90 Conference

Proceedings, pp. 303-311, ACM Press, 1990
3. G. Castagna, G. Ghelli, G. Longo: A Calculus for Overloaded Functions with

Subtyping. Extended Abstract, ACM, 1992
4. L. Cardelli, J. Mitchell: Operations on Records. Proceedings on Mathematical

Foundations of Programming Semantics, LNCS 442, 1989
5. L. Cardelli: A semantics of multiple inheritance. Information and Computation

76, pp. 138-164, 1988
6. P. Canning, W. Cook, W. Hill, W. Olthoff: Interfaces for Strongly-Typed Object-

Oriented Programming. OOPSLA '89 Conference Proceedings, pp. 457-467,
ACM Press, 1989

7. L. Dami: Extensible Lambda Expressions: A Lambda Calculus with Names,
Combinations and Alternations. Technical Report, University of Geneva, 1993

8. L. Dami: Named Parameters: A Foundation for Subtyping. Extended Abstract,
Submitted to LICS, University of Geneva, 1994

9. L. Dami: Software Composition: Towards an Integration of Functional and
Object-Oriented Approaches. Ph.D.-Thesis, University of Geneva, 1994

10. M. Hofmann, B. Pierce: An abstract view of objects and subtyping. Technical
Report ECS-LFCS-92-226, University of Edinburgh, 1992

11. R. Milner: The Poliadic π-calculus: A tutorial. Technical Report ECS-LFCS-91-
180, University of Edinburgh, 1991

12. O. Nierstrasz: A survey of object-oriented concepts. Object-oriented concepts,
databases and applications, pp. 3-21, ACM Press and Addison-Wesley, 1989

13. O. Nierstrasz: Towards an Object Calculus. ECOOP Workshop on Object-Based
Concurrent Computing, LNCS 612, 1992

14. B. Pierce: A Model of Delegation Based on Existential Types. Working Draft,
Inria-Roquencourt, 1993

15. B. Pierce, D. Turner: Object-oriented Programming without Recursive Types.
Technical Report ECS-LFCS-92-225, University of Edinburgh, 1992

16. P. Steyaert, W. Codenie, T. D'Hondt, K. De Hondt, C. Lucas, M. Van
Limbergen: Nested Mixin-Methods in Agora. Technical Report vub-prog-tr-93-01,
Vrije Universiteit Brussel, ECOOP' 93 Conference Proceedings, 1993

17. A. Snyder: Inheritance and the Development of Encapsulated Software
Components. Research Directions in Object-Oriented Programming, MIT Press,
1987

18. P. Steyaert: Towards a Calculus for Objects and its Reflective Variant. Extended
Abstract (unpublished), presented at ECOOP '92 workshop on reflection and
metalevel architectures, 1992

19. P. Steyaert: Open Design of Object-Oriented Languages, A Foundation for
Specialisable Reflective Language Frameworks. Ph.D.-Thesis, Vrije Universiteit
Brussel, 1994

20. P. Wegner, S. Zdonik: Inheritance as an Incremental Modification Mechanism, or
What Like is and Isn't Like. ECOOP '88 Conference Proceedings, pp. 55-77,
Springer-Verlag, 1988

