
Conceptual Code Mining

Pr. Kim Mens

INGI / UCL

Friday July 23, 2004

Mining Aspects
with Formal Concept Analysis

IRST Workshop on Aspect Oriented Programming Trento, Italy

Dr. Tom Tourwé

SEN / CWI

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 2

Overview

!! Research contextResearch context

!! A crash course in formal concept analysisA crash course in formal concept analysis

!! Mining for crosscutting concerns with FCAMining for crosscutting concerns with FCA

!! Overall approachOverall approach

!! The substring experiment in detailThe substring experiment in detail

!! The parse tree experimentThe parse tree experiment

!! ConclusionConclusion

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 5

Software Evolution and

Aspect-Oriented Programming

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 6

Research Idea

!! Original goalOriginal goal

–– Mining AspectsMining Aspects using Formal Concept Analysis using Formal Concept Analysis

–– also mining for architectural and other patternsalso mining for architectural and other patterns

!! First step (First step (±± completed) completed)

–– Checked feasibility of approach with simple propertiesChecked feasibility of approach with simple properties
•• By relying on By relying on naming conventionsnaming conventions

–– Managed to discover relevant source code regularitiesManaged to discover relevant source code regularities
•• Coding conventionsCoding conventions

•• Coding idioms and design patternsCoding idioms and design patterns

•• Crosscutting featuresCrosscutting features

!! Next step (ongoing)Next step (ongoing)

–– Improve approach to do Improve approach to do ““realreal”” aspect mining aspect mining

•• By relying on By relying on source-code similaritiessource-code similarities

–– Hope to discover real aspects or join pointsHope to discover real aspects or join points

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 7

Overview

!! Research contextResearch context

!! A crash course in formal concept analysisA crash course in formal concept analysis

!! Mining for crosscutting concerns with FCAMining for crosscutting concerns with FCA

!! Overall approachOverall approach

!! The substring experiment in detailThe substring experiment in detail

!! The parse tree experimentThe parse tree experiment

!! ConclusionConclusion

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 8

A note on terminology

FCA terminologyFCA terminology

–– (Formal) Context(Formal) Context

–– (Formal) Concept(Formal) Concept

–– (Formal) Object(Formal) Object

–– (Formal) Attribute(Formal) Attribute

Our terminologyOur terminology

–– ContextContext

–– ConceptConcept

–– ElementElement

•• to avoid confusion with to avoid confusion with ““objectsobjects”” in in

the OO sensethe OO sense

–– PropertyProperty

•• to avoid confusion with to avoid confusion with ““attributesattributes””

in OO / UML sensein OO / UML sense

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 9

Formal Concept Analysis (FCA)

!! Starts fromStarts from

–– a a set of elementsset of elements

–– a set of a set of properties of those elementsproperties of those elements

!! Determines Determines conceptsconcepts

–– Maximal groupsMaximal groups of elements and properties of elements and properties

–– Group:Group:

•• Every element of the concept has those propertiesEvery element of the concept has those properties

•• Every property of the concept holds for those elementsEvery property of the concept holds for those elements

–– MaximalMaximal

•• No other element (outside the concept) has those same propertiesNo other element (outside the concept) has those same properties

•• No other property (outside the concept) is shared by all elementsNo other property (outside the concept) is shared by all elements

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 10

object-object-

orientedoriented
functionalfunctional logiclogic static typingstatic typing

dynamicdynamic

typingtyping

C++C++ XX -- -- XX --

JavaJava XX -- -- XX --

SmalltalkSmalltalk XX -- -- -- XX

SchemeScheme -- XX -- -- XX

PrologProlog -- -- XX -- XX

Example : Elements and Properties

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 17

object-object-

orientedoriented
functionalfunctional logiclogic static typingstatic typing

dynamicdynamic

typingtyping

C++C++ XX -- -- XX --

JavaJava XX -- -- XX --

SmalltalkSmalltalk XX -- -- -- XX

SchemeScheme -- XX -- -- XX

PrologProlog -- -- XX -- XX

Example : Concepts

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 18

Concept Lattice

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 20

Overview

!! Research contextResearch context

!! A crash course in formal concept analysisA crash course in formal concept analysis

!! Mining for crosscutting concerns with FCAMining for crosscutting concerns with FCA

!! Overall approachOverall approach

!! The substring experiment in detailThe substring experiment in detail

!! The parse tree experimentThe parse tree experiment

!! ConclusionConclusion

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 21

Mining for crosscutting concerns with

formal concept analysis
!! First StepFirst Step

–– Use common Use common substringssubstrings of class, method & parameter names to group of class, method & parameter names to group
related source code elementsrelated source code elements

–– Relies on coding conventionsRelies on coding conventions

–– Assumes that elements corresponding to a same concern will have aAssumes that elements corresponding to a same concern will have a
similar namesimilar name

!! Next step (ongoing)Next step (ongoing)

–– Use Use ““regular parse tree expressionsregular parse tree expressions”” to find source code fragmentsto find source code fragments
that implement similar that implement similar behaviourbehaviour

–– Looks for recurring patterns in the source codeLooks for recurring patterns in the source code

–– Similar to clone detection, but more advancedSimilar to clone detection, but more advanced

–– Assumes that elements corresponding to a same concern will haveAssumes that elements corresponding to a same concern will have
similar codesimilar code

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 22

Schematically :

Substring Concepts
!! Elements Elements : classes, methods, parameters: classes, methods, parameters

!! Properties Properties : substrings of classes, methods, : substrings of classes, methods, ……

“The Substr
ing

Experim
ent”

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 23

Schematically :

Parse tree Concepts
!! Elements Elements : methods: methods

!! Properties Properties : regular parse tree expressions: regular parse tree expressions

“The Parse
 Tree

Experim
ent”

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 24

Overview

!! Research contextResearch context

!! A crash course in formal concept analysisA crash course in formal concept analysis

!! Mining for crosscutting concerns with FCAMining for crosscutting concerns with FCA

!! Overall approachOverall approach

!! The substring experiment in detailThe substring experiment in detail

!! The parse tree experimentThe parse tree experiment

!! ConclusionConclusion

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 25

Overall approach

1.1. Generate the formal contextGenerate the formal context

!! Elements, properties & incidence relationElements, properties & incidence relation

2.2. Concept AnalysisConcept Analysis

!! Calculate the formal conceptsCalculate the formal concepts

!! Organize them into a concept latticeOrganize them into a concept lattice

3.3. FilteringFiltering

!! Remove irrelevant concepts (false positives, noise, useless, Remove irrelevant concepts (false positives, noise, useless, ……))

4.4. ClassificationClassification

!! Classify results according to relevance for userClassify results according to relevance for user

5.5. Analyse unclassified conceptsAnalyse unclassified concepts

!! Manually analyse concepts that were not classified automaticallyManually analyse concepts that were not classified automatically

6.6. Completion of conceptsCompletion of concepts

!! Some concepts are relevantSome concepts are relevant

but need to be completed to represent reality correctlybut need to be completed to represent reality correctly

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 26

DelfSTof : our Conceptual Code Mining Tool

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 27

Overview

!! Research ContextResearch Context

!! A crash course in formal concept analysisA crash course in formal concept analysis

!! Mining for crosscutting concerns with FCAMining for crosscutting concerns with FCA

!! Overall approachOverall approach

!! The substring experiment in detailThe substring experiment in detail

!! The parse tree experimentThe parse tree experiment

!! ConclusionConclusion

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 28

The substring experiment
1. Generate formal context
!! We want to group elements that share a substringWe want to group elements that share a substring

!! As As elementselements we collect we collect

–– all classes, methods and parametersall classes, methods and parameters

–– in some package(s) of interestin some package(s) of interest

!! As As propertiesproperties we compute we compute

–– All All ““relevantrelevant”” substrings of the names of those elements substrings of the names of those elements

•• Based on where uppercases occurBased on where uppercases occur in an element in an element’’s names name

–– QuotedCodeConstantQuotedCodeConstant !! { quoted, code, constant }{ quoted, code, constant }

•• Filter substrings that produce too much noiseFilter substrings that produce too much noise

!! Incidence relationIncidence relation : An element has a certain property if : An element has a certain property if

–– It has the substring in its nameIt has the substring in its name

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 29

……

XX

--

--

--

variablevariable

……

XX

--

XX

functorfunctor

……

--

--

XX

--

messagemessageunifyunify indexindex envenv sourcesource ……

Object>>Object>>unifyWithObjectunifyWithObject: : inEnvinEnv::

myIndexmyIndex: : hisIndexhisIndex: : inSourceinSource::
XX XX XX XX ……

Variable>>Variable>>unifyWithMessageFunctorunifyWithMessageFunctor::

inEnvinEnv:: myIndex myIndex:: hisIndex hisIndex:: inSource inSource::
XX XX XX XX ……

AbstractTermAbstractTerm>>>>unifyWithunifyWith:: inEnv inEnv::

myIndexmyIndex:: hisIndex hisIndex:: inSource inSource::
XX XX XX XX ……

AbstractTermAbstractTerm>>>>unifyWithVariableunifyWithVariable::

inEnvinEnv:: myIndex myIndex:: hisIndex hisIndex:: inSource inSource::
XX XX XX XX ……

…… XX XX XX XX ……

The substring experiment
2. Concept Analysis (1)

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 30

……

XX

--

--

--

variablevariable

……

XX

--

XX

functorfunctor

……

--

--

XX

--

messagemessageunifyunify indexindex envenv sourcesource ……

Object>>Object>>unifyWithObjectunifyWithObject: : inEnvinEnv::

myIndexmyIndex: : hisIndexhisIndex: : inSourceinSource::
XX XX XX XX ……

Variable>>Variable>>unifyWithMessageFunctorunifyWithMessageFunctor::

inEnvinEnv:: myIndex myIndex:: hisIndex hisIndex:: inSource inSource::
XX XX XX XX ……

AbstractTermAbstractTerm>>>>unifyWithunifyWith:: inEnv inEnv::

myIndexmyIndex:: hisIndex hisIndex:: inSource inSource::
XX XX XX XX ……

AbstractTermAbstractTerm>>>>unifyWithVariableunifyWithVariable::

inEnvinEnv:: myIndex myIndex:: hisIndex hisIndex:: inSource inSource::
XX XX XX XX ……

…… XX XX XX XX ……

The substring experiment
2. Concept Analysis (2)

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 32

2. Concept Analysis - a concept

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 33

The substring experiment
Some quantitative results

!! Remarks :Remarks :

–– "" properties properties "" < < "" elements elements "" is a good signis a good sign

–– Time to compute = a few seconds / minutesTime to compute = a few seconds / minutes

–– Still too much concepts remain after filteringStill too much concepts remain after filtering

414414123412344179417972972947794779Ref.BrowserRef.Browser

126126

327327

7373

281281

#filtered#filtered

617617

14191419

491491

11881188

#raw#raw

55

2424

44

2222

time (sec)time (sec)

237237756756DelfSTofDelfSTof

47747713701370CodeCrawlerCodeCrawler

266266527527StarBrowserStarBrowser

43443414691469SoulSoul

#properties#properties#elements#elementsCase studyCase study

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 34

The substring experiment
3. Filtering
!! Irrelevant substrings are already filteredIrrelevant substrings are already filtered

–– with little meaning : with little meaning : ““dodo””, , ““withwith””, , ““forfor””, , ““fromfrom””, , ““thethe””, , ““ifTrueifTrue””, , ……

–– too small (< 3 chars)too small (< 3 chars)

–– ignore plurals, uppercase and colonsignore plurals, uppercase and colons

!! Extra filteringExtra filtering

–– Drop top & bottom concept when emptyDrop top & bottom concept when empty

–– Drop concepts with two elements are lessDrop concepts with two elements are less

!! More filtering needed (ongoing work)More filtering needed (ongoing work)

–– Recombine substrings belonging togetherRecombine substrings belonging together

–– Require some minimal coverage of element name by propertiesRequire some minimal coverage of element name by properties

–– Concepts higher in the lattice may be more relevantConcepts higher in the lattice may be more relevant

•• More shared propertiesMore shared properties

–– Avoid redundancy in discovered conceptsAvoid redundancy in discovered concepts

•• Make better use of the lattice structure (now it is Make better use of the lattice structure (now it is ““flattenedflattened””))

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 38

!! Programming idiomsProgramming idioms

–– Accessor Accessor methods (methods (accessorsaccessors))

–– Polymorphism (Polymorphism (hierarchy methodshierarchy methods))

!! Design patterns Design patterns ((hierarchy methodshierarchy methods))

–– Visitor, Abstract Factory,Visitor, Abstract Factory,

ObserverObserver

!! Crosscutting featuresCrosscutting features

–– ““UnificationUnification”” ((hierarchy methodshierarchy methods))

–– Crosscutting class-related behaviourCrosscutting class-related behaviour

((class name in keywordclass name in keyword & & class name in parameterclass name in parameter))

–– ““BindingsBindings””, , ““Horn clausesHorn clauses””, , ““resolutionresolution”” ((unclassifiedunclassified))

!! Opportunities for refactoringOpportunities for refactoring

–– Mainly code duplicationMainly code duplication

The substring experiment
Discovered aspectual views (Soul)

An aspectual view is

a set of source code entities,

such as classes, methods and

parameters, that are

structurally related and often

crosscut the entire source

code.

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 39

Overview

!! Research ContextResearch Context

!! A crash course in formal concept analysisA crash course in formal concept analysis

!! Mining for crosscutting concerns with FCAMining for crosscutting concerns with FCA

!! Overall approachOverall approach

!! The substring experiment in detailThe substring experiment in detail

!! The parse tree experimentThe parse tree experiment

!! ConclusionConclusion

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 40

Parse Tree Experiment (1)

!! Use FCA to group methods according to structural similarities inUse FCA to group methods according to structural similarities in

their parse treestheir parse trees

–– Elements = methodsElements = methods

–– Properties = Properties = ““regular parse tree expressionsregular parse tree expressions””

!! Regular parse tree expressionsRegular parse tree expressions

–– We We ““abuseabuse”” some functionality provided by the some functionality provided by the rewrite rule editorrewrite rule editor of of

the the Refactory Refactory BrowserBrowser

–– Allows us to describe parse tree nodes, parameterized with an @ forAllows us to describe parse tree nodes, parameterized with an @ for

those those subtrees subtrees that we want to leave genericthat we want to leave generic

–– ExampleExample

•• RefactoryRefactory.Browser..Browser.RBMessageNodeRBMessageNode(`@x7 rollback: `@x8)(`@x7 rollback: `@x8)

•• RefactoryRefactory.Browser..Browser.RBReturnNodeRBReturnNode(^`@x18)(^`@x18)

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 41

A discovered parse tree concept

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 42

Parse Tree Concepts (2)

!! Experiment ongoingExperiment ongoing

!! Currently a kind of advanced clone detection techniqueCurrently a kind of advanced clone detection technique

–– Slightly more expressive (e.g., order of statements unimportant)Slightly more expressive (e.g., order of statements unimportant)

!! DiscoversDiscovers

–– Lots of cases of code duplicationLots of cases of code duplication

–– Interesting opportunities for refactoringInteresting opportunities for refactoring

!! Enough to detect aspects / join points?Enough to detect aspects / join points?

–– (How) do we detect potential aspects or join points?(How) do we detect potential aspects or join points?

•• What exact combination of regular parse tree expressions to use?What exact combination of regular parse tree expressions to use?

–– How to filter uninteresting concepts?How to filter uninteresting concepts?

•• E.g., cases of code duplication that are not really aspectsE.g., cases of code duplication that are not really aspects

!! More experiments / fine-tuning neededMore experiments / fine-tuning needed

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 43

Overview

!! Research ContextResearch Context

!! A crash course in formal concept analysisA crash course in formal concept analysis

!! Mining for crosscutting concerns with FCAMining for crosscutting concerns with FCA

!! Overall approachOverall approach

!! The substring experiment in detailThe substring experiment in detail

!! The parse tree experimentThe parse tree experiment

!! ConclusionConclusion

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 44

Conclusion

!! Current statusCurrent status

–– Substring experiment performedSubstring experiment performed

•• Discovers interesting source-code regularities just based on namesDiscovers interesting source-code regularities just based on names

•• Some refinement needed : mainly more advanced filteringSome refinement needed : mainly more advanced filtering

–– Parse tree experiment sParse tree experiment seems promising complement / extension to alreadyeems promising complement / extension to already
existing experimentexisting experiment

–– Enough to detect aspects?Enough to detect aspects?

!! Future workFuture work

–– Work out parse tree experimentWork out parse tree experiment

–– Check it on a real aspect program : are the weaved aspects discovered by theCheck it on a real aspect program : are the weaved aspects discovered by the
approach?approach?

–– Consider more dynamic informationConsider more dynamic information
•• E.g., examining the execution trace of the programE.g., examining the execution trace of the program

•• Perhaps in combination with examining the static structurePerhaps in combination with examining the static structure

July 23, 2004; Trento, Italy IRST Workshop on Aspect Oriented Programming 45

Some Publications

!! Mining Aspectual Views using Formal Concept AnalysisMining Aspectual Views using Formal Concept Analysis

–– TomTom Tourw Tourwéé (CWI) & Kim Mens (UCL)(CWI) & Kim Mens (UCL)

–– Accepted for publication / presentation at SCAM2004 (+ journal ?)Accepted for publication / presentation at SCAM2004 (+ journal ?)

!! Conceptual Code Mining Conceptual Code Mining –– Mining for Source-Code Regularities with Mining for Source-Code Regularities with

Formal Concept AnalysisFormal Concept Analysis

–– Kim Mens (UCL) & Tom Kim Mens (UCL) & Tom TourwTourwéé (CWI)(CWI)

–– Accepted for publication / presentation at ESUG2004 research trackAccepted for publication / presentation at ESUG2004 research track

–– Accepted for publication in a special issue of the Elsevier international journalAccepted for publication in a special issue of the Elsevier international journal

"Computer Languages, Systems and Structures"Computer Languages, Systems and Structures””

!! Aspect-Oriented Software EvolutionAspect-Oriented Software Evolution

–– Tom Mens (UMH), Kim Mens (UCL) & TomTom Mens (UMH), Kim Mens (UCL) & Tom Tourw Tourwéé (CWI)(CWI)

–– Published in ERCIM News No. 58, Special theme on Automated SoftwarePublished in ERCIM News No. 58, Special theme on Automated Software

EngineeringEngineering

