
Conceptual Code Mining

Dr. Tom Tourwé

SEN / CWI

Pr. Kim Mens

INGI / UCL

Thursday, May 13 2004

Mining for Source Code Regularities
With Formal Concept Analysis

May 13, 2004 INGI Research Meeting 2

Overview

! Research idea

! A crash course in formal concept analysis

! Mining for source-code regularities with FCA

! The experiments in detail

! Conclusion

May 13, 2004 INGI Research Meeting 3

Research Context

! Software understanding and

reengineering

– Where to start?

! Book on “Object-oriented
engineering patterns”

– Chapter 3: First Contact

– a set of patterns that may be

useful when you encounter a
legacy system for the first

time.

! Forces:

– Time is scarce

– Legacy is large and complex

! “First contact” patterns

– Chat with the maintainers

– Interview During Demo

– Read all code in one hour

– Skim the documentation

– Do a mock installation

May 13, 2004 INGI Research Meeting 4

Research Goal

! Research goal :
– Automated tool support to help you “get started”

! Formal concept analysis (FCA)
– A mathematical technique

– With known applications in data analysis and knowledge
processing

! Can we use FCA to “mine” the source code?
– For relevant structural regularities in the source code

• Coding conventions

• Coding idioms and design patterns

• Crosscutting features

May 13, 2004 INGI Research Meeting 5

Overview

! Research idea

! A crash course in formal concept analysis

! Mining for source-code regularities with FCA

! The experiments in detail

! Conclusion

May 13, 2004 INGI Research Meeting 6

Formal Concept Analysis (FCA)

! Starts from

– a set of elements

– a set of properties of those elements

! Determines concepts

– Maximal groups of elements and properties

– Group:

• Every element of the concept has those properties

• Every property of the concept holds for those elements

– Maximal

• No other element (outside the concept) has those same properties

• No other property (outside the concept) is shared by all elements

May 13, 2004 INGI Research Meeting 7

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Elements and Properties

May 13, 2004 INGI Research Meeting 8

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 13, 2004 INGI Research Meeting 9

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 13, 2004 INGI Research Meeting 10

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 13, 2004 INGI Research Meeting 11

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 13, 2004 INGI Research Meeting 12

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 13, 2004 INGI Research Meeting 13

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 13, 2004 INGI Research Meeting 14

object-

oriented
functional logic

static

typing

dynamic

typing

C++ X - - X -

Java X - - X -

Smalltalk X - - - X

Scheme - X - - X

Prolog - - X - X

Example : Concepts

May 13, 2004 INGI Research Meeting 15

Concept Lattice

May 13, 2004 INGI Research Meeting 16

Discovered Concepts

Properties shared by

all languages (none)

Languages having

all properties (none)

OO languages
Languages with

dynamic typing

Dynam. typed

OO languages

Static. typed

OO languages

Dynam. typed

funct. languages

Dynam. typed

logic languages

May 13, 2004 INGI Research Meeting 17

Overview

! Research idea

! A crash course in formal concept analysis

! Mining for source-code regularities with FCA

! The experiments in detail

! Conclusion

May 13, 2004 INGI Research Meeting 18

Mining for source-code regularities

with formal concept analysis
! Elements : classes, methods, parameters

! Properties : substrings of classes, methods, …

May 13, 2004 INGI Research Meeting 19

Overall approach

1. Generate elements & properties for FCA algorithm

! Pre-filter irrelevant ones

2. Concept Analysis

! Find relevant groupings of elements in source code

3. Filtering

! Remove irrelevant concepts (false positives, noise, useless, …)

4. Classification

! Classify results according to relevance for user

5. Completion of concepts

! Some concepts are relevant

but need to be completed to represent reality correctly

May 13, 2004 INGI Research Meeting 20

Our Conceptual Code Mining Tool

May 13, 2004 INGI Research Meeting 21

Overview

! Research idea

! A crash course in formal concept analysis

! Mining for source-code regularities with FCA

! The experiments in detail

! Conclusion

May 13, 2004 INGI Research Meeting 22

The substring experiment
1. Generate elements & properties
! We want to group elements that share a substring

! Problem :

– “Having a substring in common” is binary

– FCA properties are unary

• Does an element satisfy the property or not?

! Solution :

– Every substring corresponds to an FCA property

• Does an element have this substring in its name?

– Generate relevant substrings

• Based on where uppercases occur in an element’s name

– QuotedCodeConstant ! { quoted, code, constant }

• Filter substrings that produce too much noise

May 13, 2004 INGI Research Meeting 23

The substring experiment
2. Concept Analysis (1)

May 13, 2004 INGI Research Meeting 24

…

X

-

-

-

variable

…

X

-

X

functor

…

-

-

X

-

messageunify index env source …

Object>>unifyWithObject: inEnv:

myIndex: hisIndex: inSource:
X X X X …

Variable>>unifyWithMessageFunctor:

inEnv: myIndex: hisIndex: inSource:
X X X X …

AbstractTerm>>unifyWith: inEnv:

myIndex: hisIndex: inSource:
X X X X …

AbstractTerm>>unifyWithVariable:

inEnv: myIndex: hisIndex: inSource:
X X X X …

… X X X X …

The substring experiment
2. Concept Analysis (2)

May 13, 2004 INGI Research Meeting 25

…

X

-

-

-

variable

…

X

-

X

functor

…

-

-

X

-

messageunify index env source …

Object>>unifyWithObject: inEnv:

myIndex: hisIndex: inSource:
X X X X …

Variable>>unifyWithMessageFunctor:

inEnv: myIndex: hisIndex: inSource:
X X X X …

AbstractTerm>>unifyWith: inEnv:

myIndex: hisIndex: inSource:
X X X X …

AbstractTerm>>unifyWithVariable:

inEnv: myIndex: hisIndex: inSource:
X X X X …

… X X X X …

The substring experiment
2. Concept Analysis (2)

May 13, 2004 INGI Research Meeting 26

2. Concept Analysis - a concept (3)

May 13, 2004 INGI Research Meeting 27

The substring experiment
Some quantitative results

! Remarks :

– " properties " < " elements " is a good sign

– Time to compute = a few seconds / minutes

– Still too much concepts remain after filtering

414123441797294779Ref.Browser

126

327

73

281

#filtered

617

1419

491

1188

#raw

5

24

4

22

time (sec)

237756DelfSTof

4771370CodeCrawler

266527StarBrowser

4341469Soul

#properties#elementsCase study

May 13, 2004 INGI Research Meeting 28

The substring experiment
3. Filtering
! Irrelevant substrings are already filtered

– with little meaning : “do”, “with”, “for”, “from”, “the”, “ifTrue”, …

– too small (< 3 chars)

– ignore plurals, uppercase and colons

! Extra filtering

– Drop top & bottom concept when empty

– Drop concepts with two elements are less

! More filtering needed (ongoing work)

– Recombine substrings belonging together

– Require some minimal coverage of element name by properties

– Concepts higher in the lattice may be more relevant
• More shared properties

– Avoid redundancy in discovered concepts
• Make better use of the lattice structure (Now it is “flattened”)

May 13, 2004 INGI Research Meeting 29

The substring experiment
4. Classification
! In single class

– Accessors

– Chained messages

– Delegating methods

– Similar signatures

! In same hierarchy

– Polymorphic methods

– Substring shared by method

name & parameter name

– Similar signatures

– Similar class names

! Crosscutting

– Polymorphic methods

– Substring shared by method

name & parameter name

– Similar signatures

– Similar class names

! Substring shared by method

name & class name

! Substring shared by class

name & parameter name

! Unclassified

May 13, 2004 INGI Research Meeting 30

The substring experiment
5. Completion (ongoing work)
! Discovered classifications may require completion

– E.g., we may discover an interesting set of polymorphic methods

– But some methods are missing because, e.g.,

• Their implementing class does not adhere to the right naming

convention

• One of their parameters they had was named differently

– These classifications should be completed “a posteriori”

• Can this be done (semi) automatically?

May 13, 2004 INGI Research Meeting 31

! Code duplication

! Design patterns

– Visitor, Abstract Factory, Builder, Observer

! Programming idioms

– Accessor methods

– Polymorphism

! Relevant domain concepts

– Correspond to frequently occuring properties

– “Unification”, “Bindings”, “Horn clauses”, “resolution”

! Opportunities for refactoring

! Crosscutting concerns

The substring experiment
Discovered “regularities”

May 13, 2004 INGI Research Meeting 32

Overview

! Research idea

! A crash course in formal concept analysis

! Mining for source-code regularities with FCA

! The experiments in detail

! Conclusion

May 13, 2004 INGI Research Meeting 33

Conclusion

! Current status

– Substring experiment already performed, but needs refinement

• Mainly more advanced filtering

– Parse tree experiment seems promising complement / extension
to already existing experiment

• Use “generic parse trees” as properties (ongoing work)

! Future work

– Can we use FCA to mine the source-code for “aspects”?

– Current results do seem promising enough

• Using substrings assumes that elements corresponding to a same
concern will have a similar name

• Using generic parse trees assumes that elements corresponding to
a same concern will have similar code

