
Semantic Structures and Logic Properties of
Computer-based System Dependability Cases

Pierre-Jacques Courtois, Member IEEE

Université de Louvain-la-Neuve and AV Nuclear, Belgium
courtois@info.ucl.ac.be

November 1998

(A revised version appeared in Nuclear Engineering and Design, 203 (2001) 87-106)

Contents

1. Introduction
2. Case Example
3. Claims and Evidence
4. Convergence of Evidence
5. Interpretations
6. Structures
7. Formal Model
8. Entailment and Proof Obligations
9. Substructures and Embeddings
10. Language Inter-relations
11. Validation and Design

 Design Criteria
 Refinement Process
 Reflection and metaobjects

12. Open Issues and Concluding Remarks
Acknowledgements
References

Abstract: This work addresses the issue of structuring the validation process of dependable
computer based systems. It was motivated by the desire to make the licensing and
certification of these systems more reliable and efficient. The paper analyses the structural,
semantic and logic properties of the demonstration that a computer based system is
adequately specified, designed and maintained in operations. Three classes of dependability
claims are identified; those which address the environment - system interface, the design
and the operational behaviour. A structure is proposed to analyse the relations between
these classes and the convergence of their supporting evidence. Relations and formal
properties which should be satisfied by the underlying models, by the languages required for
the interpretations of the real domains, and by the proof obligations are identified. The
implications of these properties on design criteria and design mechanisms such as reflection
are discussed. A real industrial dependability case is used to illustrate the concepts and
discuss their applicability.

Key words - Safety critical software, safety assessment, dependability case, combining
evidence, model theory, formal model, interpretations.

1 Introduction

Computers are more and more used to implement functions where safety, availability,
reliability, or more generally dependability is at stake. Such qualities remain sterile if they
cannot be predicted and demonstrated. It is not sufficient that a system be safe and its
software correct; there must also exist a means to know it.

The demonstration that a system is dependable for a given application is quite hard, and
often responsible for unexpected licensing costs and delays. This is apparently true of any
complex artifact even when no computer is involved. The crude approach followed in
practice is to collect all possibly available information about the application, the system, and
the design, and to base a final approval on the combined evidence found therein.

The work reported here was prompted by difficulties met with this brute force approach over
the last six years in a number of industrial safety cases involving nuclear safety critical
software.

The following three paragraphs briefly discuss what are believed to be three root causes of
these difficulties and why they motivated this work, care being taken to avoid bias which
may be induced by the specific aspects of nuclear applications:

1) Environment - System Interface.
Many dependability requirements - for example those concerning safety or security - are
originally determined by the application in which the computer and its software are
embedded. What is required from the computer implementation is essentially to be an
available and/or reliable implementation of those requirements. On the other hand, many
pertinent arguments to demonstrate dependability - for instance the provision of safe
states and failure modes - are not provided by the computer system design and
implementation, but are determined by the environment and the role the system is
expected to play in it. Previous attempts at structuring the safety cases of computer
based systems have concentrate on the V&V problems raised by the computer and
software technology and have paid too little attention to this aspect.

2) Life-Time Coverage.
Dependability depends not only on the design, but also, and ultimately, on the
installation of the integrated system, on operational procedures, on procedures for
(re)calibration, (re)configuration, maintenance, even for decommissioning in some cases.
A dependability case is not closed before the actual behaviour of the system in real
conditions of operations has been found acceptable. The demonstration of the
dependability of a software based system therefore involves more than a code
correctness proof. It involves a large number of various claims spanning the whole
system life, and well-known to application engineers, but often not sufficiently taken into
account in the computer system design.

3) Model Interpretations.

draft/evidence6.doc 2

Dependability - although its absence may have severe real consequences in terms of life
losses and material damages - remains somehow an immaterial property. The
demonstration of its existence - especially for complex and digital systems - cannot be
strictly experimental and obtained by e.g. testing or operational experience. For instance,
a dependability case does not only include claims of the type:”the class X of
unacceptable events shall occur less than once per Y hours in operation”. It also
includes or subsumes the claim that the class of events X is adequately identified, i.e. is
complete and consistent. Dependability can only be discussed and shown to exist as
abstract properties of models of the system behaviour, of its interactions with the
environment and of accident scenarii. These models must be unambiguously understood
and agreed upon by all responsible actors of a dependability case: users, designers and
assessors. This is unfortunately seldom the case. Claims for dependability - although
usually based on a huge engineering and industrial past experience - often remain only
informally specified. Application domains, user interfaces, and industrial environments
often are also seldom or poorly formalised. One symptomatic and unfortunate
consequence of this situation is the deplorable tendency in licensing negotiations to
“juggle with assumptions”, i.e. to argue and interpret system or environment behaviour
or accident hypotheses in order to claim increased levels of safety or reliability without
making any change to the system itself or to the environment. A great need exists for
more formal treatments in industrial dependability cases, i. e. for more reliable models
and methods of interpretation.

Based on these observations, our approach is an attempt to provide a structure to organise
the variety of different claims of a dependability case, to avoid or minimise
misinterpretations, and to more systematically and formally establish the convergence of the
various pieces of evidence which support these claims.

Basic notions of model theory (see e.g. [Bell 1977]) were found useful to address these
structural and formal aspects of the validation process. A branch of mathematical logic,
model theory analyses the relationship between sets of first-order sentences and the
structures in which they are satisfied, i.e. their models. It is, in particular, concerned with
the methods by which models with prescribed properties can be constructed.

2 Case Example

We shall use the real safety case of a nuclear monitoring computer based system to illustrate
the notions and concepts introduced in the course of the following sections, and to discuss
their applicability. This real case is one of those which are modelled by a bayesian net in
[Courtois 1998].

After the Three Mile Island accident, nuclear utilities revised their accident procedures in
order to cover larger domains of abnormal or accidental plant states [NUREG 0696].
Computer based diagnostic systems were designed to monitor these critical state domains.
Among the various functions expected from such a system the one we have selected for our
example is the inventory of the reactor coolant for heat removal. This function has to

draft/evidence6.doc 3

monitor the coolant levels in the pressurizer and in the in reactor vessel, and the margin to
saturation. When the reactor existing instrumentation does not permit direct measurement of
the coolant level in the vessel, a special algorithm using other data must be designed to infer
and assess this level. This assessment must take into account the possibility that - under
special circumstances - steam may accumulate under the vessel head. The possible presence
of such a steam bubble must therefore be detected and announced to the operator. For the
particular reactor we are concerned with, the conditions to be monitored for this detection
were presumed to be associated with a rapid cooling of the coolant while being under natural
circulation, together with a rapid increase of the pressurizer level.

It is interesting to note at this point that the above description is not much different in form
and contents from the highest level specification of the monitoring function which was
initially documented by plants engineers for system designers.

3 Claims and Evidence

What is the most often -overlooked risk in software engineering?
That the environment will do something the designer never anticipated.

James J. Horning, ACM SEN 23, 4, 1998

In [Bloomfield 1995], a safety case is defined as “a documented body of evidence that
provides a convincing and valid argument that a system is adequately safe for a given
application in a given environment”. We want to extend this concept to the concept of
dependability case, which may cover other issues than safety, such as security and
availability.

We regard a dependability case as evidence that a given set of dependability claims are
satisfied by a computer based system (for short referred to as the system) in a given
environment. This set of claims is assumed to be consistent and complete. How to define
this set of high level requirements is an issue which must be resolved by safety and
engineering experts of the domain of application, and which is considered as being outside
the scope of this paper. What we shall be concerned with is to ensure that each claim of the
set is satisfied by the implementation.

We make the distinction between the notions of claim and requirement. Dependability
claims are viewed as required properties of the dynamic behaviour of a system
implementation, and of its interactions with the environment. When these properties are
explicitly specified by the functional and non-functional requirement specifications of the
system, then claims and system functional or non-functional requirement specifications
coincide. There are situations, however, where the properties claimed from the system
behaviour and from its interactions with the environment neither are a part, nor are an
immediate consequence of the system requirement or design specifications. For instance, it
is reasonable to claim that our monitoring system is fit for operations in post accidental
conditions and that it satisfies the design criteria - e.g. the single failure criterion and a
maximum reaction time - required for these operations, although some of the system
components may not have been originally specified and designed for this purpose. COTS

draft/evidence6.doc 4

components used in systems important to safety are another case where dependability claims
usually do not coincide with the system specifications.
Another difference is that system requirements and design specifications focus on system
fonctionality while dependability claims focus on system hazards [Wong 1998]. For
example, a system specification for our monitoring system is “to display the pressurizer
coolant temperature and level values”. In contrast a dependability claim states that
“pressurizer coolant temperature and level values must be displayed if and only if validated
measurements are available”. A system may satisfy the system specification, while failing to
satisfy the dependability claim.

A clear distinction must also be made between what to demonstrate (the dependability
claims) and how to demonstrate (the evidence). Practical experience, also supported by the
formal approach discussed later, has shown that in general an application dependability
claim and its supporting evidence can be organised in a three-dimensional structure.
This observation - fundamental to this work - is based on the fact that a claim for prevention
or for mitigation of a hazard at the application level is necessarily composed of claims - we
shall call them subclaims - which are of three types: subclaims of adequate functional and/or
non-functional design specifications to deal with the hazard, subclaims of correct design and
implementation of these specifications, and subclaims that these specifications are
maintained in operation. The supporting evidence for a dependability claim made at the
application level can be organised along the same structure.

Thus, every application-dependent dependability claim and its supporting evidence consists
of subclaims and evidence components along the following three dimensions:

1. Environment-system interface: subclaims and evidence of the adequacy of the set of
functional and non-functional requirement and design specifications to satisfy the
dependability claim and deal with the environment/system constraints and exceptions;

2. Design: subclaims and evidence that the embedded computer system is designed and
implemented so as to perform according to the above specifications;

3. Operations-environment interface: subclaims and evidence that the dependability
claim and the environmental constraints will remain satisfied during the whole life-time of
the computer based system - in the way it is integrated and operated in its environment. This
includes evidence that this system does not display behaviours unanticipated by the
specifications, or that such behaviours outside the design basis will be detected and their
consequences mitigated.

A dependability claim for the monitoring system of our example is expanded into subclaims
along these three dimensions on figure 1.

Environment - system subclaims and their supporting evidence components pertain to the
adequacy of the specification of the algorithm chosen to detect the pressurizer abnormal
behaviour - by observing the coolant in core temperature T and the pressurizer coolant level
L - and of the specifications of the actions to be taken in the presence of out of range data or
failure of the computer and communication system.

draft/evidence6.doc 5

The demonstration that these system specifications are “right”, i.e. that they correspond to
the intention of the dependability claim, is an essential and usually hard part of a
dependability case. In our example it turned out to be one of the most difficult step -
currently not yet fully resolved. The corresponding supporting evidence - see figure 2 -
depends in this example on the predictions of plant simulation models, the results of a failure
mode analysis, and the competence of plants engineers.

Dependability
Claim:

Abnormal pressurizer behaviour is detected and signalled to
operators within 6 minutes

Environment-

System
Subclaims:

Adequacy of parameter ranges, unit conversion, accuracy.
Adequacy of the system specification:

 if [-(∆T/∆t) > 5°C/h and (∆L/∆t >5%/min)
and (3 primary pumps stopped)]

then <send alarm>;
Adequate specifications of detection mechanisms and fail-states for T and L out
of range values, data link failures, and computer system failures.
.

Design

Subclaims

Adequate A/D input conversion, number representation and algorithms for
temperature (T) and water level (L) gradients.
Adequate auto-tests, exception and error procedures
Correct executable code.
Correct hardware implementation.

Operations-

Environmentl
Subclaims:

Adequate and Robust (e.g. to operators’ errors) in-service Procedures
for T and L (re-)calibration, periodic testing, maintenance.
Adequate anticipation of failure modes of computer hardware, sensors, power
supplies and plant interfacing instrumentation.
Absence of spurious alarms in operations.

Figure 1: Structure of subclaims of the dependability claim: pressurizer abnormal behaviour detection.

T: coolant in-core temperature; L: coolant level in pressurizer.

Design subclaims and evidence components are similarly summarised in figure 1 and 2
respectively. They support a correct integrated hardware and software implementation of
the specifications.

draft/evidence6.doc 6

Dependability
Claim:

Abnormal behaviour of the pressurizer is detected and signalled
to operators within 6 minutes.

Environment and
system evidence:

- Predictions from thermo-dynamic plant behaviour computer model.
- Competence and past experience of plant engineers.
- FMECA report and operational feedback from other plant incidents.

Design
Evidence:

- Quality of specifications.
- Formal or mechanical correctness proofs. Results of code unit tests.
- Competence and past experience of programmers, of supplier of
 instrumentation.

Operation-
environment

Evidence:

- Operational experience on thermocouple and gauges equipment;
- Integrated on site tests;
- Conclusions from probation period, operator reports, other similar
 installations.

Figure 2. Evidence components for dependability claim on pressurizer behaviour.

Operations - environment subclaims and evidence address the behaviour of the system while
in operations in its real environment. In fine they form the most essential and conclusive
part of a dependability case, especially when COTS components are involved. And yet they
are almost always ignored by software engineers, inclined to believe that this third
dimension is superfluous because these claims should be part of the system and design
specifications. This dimension includes all the subclaims which cannot be established
otherwise than by evidence that the integrated system operates correctly in every mode and
in its real environment. For the monitoring system, operational evidence must for instance
give assurance that operator in-service interventions such as (re)calibrations and periodic
tests are feasible and do not cause spurious alarms; that there is no undesirable interference
with existing instrumentation, that post-accidental conditions and failure modes have been
comprehensively anticipated and lead to safe states.

Operational evidence is in part experimental, and obtained by environment simulation,
integrated tests, probation periods or operational feedback. It is also the evidence that the
the continuous monitoring functions and periodic tests of the system, while in operations,
adequately anticipate and cover all undesirable behaviours. Such evidence can greatly
contribute to the confidence one has in the system. Often, it can be obtained only after the
system or its prototype has been installed and tried in real conditions.

This three dimension organisation is applicable to non-functional dependability claims.
Figure 3 shows for instance the subclaims which correspond to the requirement that the
monitoring system should be acceptable for post accidental conditions (PAM function).

draft/evidence6.doc 7

Dependability
Claim

(non-functional):

Abnormal pressurizer behaviour detection & signalling
is available as a PAM (post accidental monitoring) function.

Environment/

System
Subclaims:

Adequate set of selected design criteria, namely :
- quadruple HW redundancy;
- physical isolation of I/O and of power supplies; segregation from non-safety
 functions;
- single failure criterion; fail-safe behaviour of detection and signalling function;

Design

Subclaims:

Fail-safe computations for input data validation / invalidation, causing no
 spurious alarms;
Single failure network architecture and protocols;

Operations-
environment
Subclaims:

Adequate anticipation of impact of post-accidental conditions on the embedded
 system;
Adequate anticipation of input devices and computer failure modes;
Robust (re-)calibration, periodic test and resetting in-service procedures.

Figure 3. Non-functional dependability claim.

4 Convergence of Evidence

The term “dimension” which is used to introduce the three types of subclaims and evidence
components is intended to convey the notion that a particular dependability claim at the
application level and its supporting evidence can be viewed as two projections of subclaims
and evidence components respectively on one or more of these three dimensions. Along
each dimension, evidence can of course be of different nature - for instance deterministic or
probabilistic. It is likely to be mainly deductive in the first two dimensions and empirical in
the third one. Evidence can also offer different levels of confidence. The quantitative
evaluation of the confidence achieved - for instance by probabilistic measures - is an
important issue not directly addressed in this paper, but the model proposed could integrate
this evaluation.

We argue that the three dimensions are both necessary (in terms of subclaims) and sufficient
(in terms of evidence components).

They are necessary in the sense that one cannot ignore subclaims in any one dimension for a
dependable application. This is rather obvious for environment/system and operational
subclaims. The necessity of design subclaims, perhaps less obvious, is supported by the
same arguments which require that not only the product, but also the development process
needt to be assessed for dependable software based systems, or at least cannot be ignored
without justifications.

Note that the dimensions are not mutually independent. A dependability claim is translated
and expanded into system subclaims that certain system requirements specifications are

draft/evidence6.doc 8

adequate. In turn, every system subclaim for the adequacy of a system requirement induces
and is expanded into design and operational subclaims for, respectively, the correct
implementation and maintenance of these specifications. This expansion process of
(sub-)claims of one dimension into the next one will be formally analysed in section 7.

The three dimensions are also sufficient in the sense that a body of precise, pertinent and
converging components of evidence in these dimensions is sufficient to claim a dependability
property of a system behaviour. This notion of converging components of evidence implies
the possibility that stronger evidence in one dimension may compensate for weaker evidence
in another; for instance, system/environment or operational evidence that in operations a
particular event never (or always) occurs can supplement a lack of evidence on the adequacy
of the design or the implementation of a COTS component.

Every: is supported by
components of :

is expanded into a
set of:

Dependability Claim - - - system subclaims
Environment-System

subclaim
Environment evidence design subclaims

Design subclaim Design evidence operational subclaims
Operations-

Environment subclaim
Operational evidence - - -

Figure 4: Structure of relations between subclaims and evidence components

Convergence of distinct components of evidence cannot be established without a structure in
which the logical relations between these components and their respective roles to support
the claims can be expressed. Figure 4 summarises the basic structure of these relations.
Section 7 uses this structure as an axiomatic basis for a model in which the convergence of
evidence components can be formally defined and established.

5 Interpretations

We observed in the introduction that dependability claims are abstract properties, necessarily
formulated in some language, more or less formalised. They are necessarily related to the
real implementation system and to its environment through models and interpretations of the
real world. Besides, demonstration of dependability for complex digital systems cannot be
strictly experimental. Central to a dependability case is a logical analysis based on mental
representations of the real system and of its interactions with the environment.

The other main aspect of this work is therefore an attempt to give formal and logical
foundations to a dependability case. The purpose is to clarify the linguistic and logical
implications and to identify the nature of the relations that exist between the three

draft/evidence6.doc 9

dimensions of subclaims and evidence. The intention is of course not to cover formally all
practical details of an industrial dependability case, nor to provide methods for mechanical
analysis. Only basic notions of model theory (see e.g. [Bell 1977]) shall be needed.

As said earlier, the issue of completeness and consistency of the set of dependability claims
is application dependent and outside the scope of this paper. What, however, we are
concerned are the means to ensure that:

- the translation of a dependability claim into subclaims in each dimension is “right”,
 i.e. corresponds to what is intended and expected from a real system;
- the evidence components are “true”, i.e. reflect what a real system and its
 environment are;
- the evidence components support the subclaims.

The first two issues must clearly be answered through a process of validation, as there is no
higher level formal specifications against which to conduct a verification of the subclaims
and evidence components. The understanding and the semantic aspects of the real system
are primordial in this process.

The third issue is one of logic. If subclaims and evidence components are properly
formalised in some system, the former could be logically derived from the latter.

The connection between “valid” and “provable” - as clearly explained in [Rushby 1993] - is
of the same nature as between semantics and syntax. This connection, in model theory, is
established by interpretations that associate a true or a false (informal) statement about some
real world domain with each formula of a formal system. The purpose is to make the
syntactical notions of theorem and proof coincide with the semantic notions of truth and
model. If the axioms and assumptions correspond to true informal statements about the real
domain - i.e. the system and its environment - then the theorems - the subclaims - that can be
proven will also correspond to true informal statements about the real domain. And these
true facts are deduced from given true facts simply - like correctness proofs - by following
the rules of a formal system. No understanding of the real domain is required to carry out
these syntactic operations.

The understanding of the real domain, however, is needed to select the non logical axioms
and the assumptions, and to interpret the theorems (subclaims). Then, the difficulty - and
the frustration when risk and dependability assessment are at stake - is that we cannot exhibit
and directly deal with real entities. We are limited to use descriptions only. This
fundamental limitation makes a “true” validation of real dependability claims impossible.
Carefully defined interpretations of the real entity behaviours must be defined, and we must
restrict ourselves to a demonstration - in terms of these interpretations - that the
decomposition of an application dependability claim into distinct interrelated dimensions of
subclaims and evidence components is “right”, i.e. consistent and complete.

draft/evidence6.doc 10

6 Structures

We have adopted the structural viewpoint that one can regard the real entities as being
associated to (mathematical) structures (see e.g. [Bell 1977]). This choice - as opposed to a
constructive or intuitionistic approach in which proofs would be based on feasible
constructions rather than on structures - is not arbitrary. It reflects the fact that in a
dependability case some structures, like some of those defined by environment or
implementation constraints are given to us as existing “out there”, finished and completed
before we use them in our semantic analysis.

The notion of a structure is intended to be of the most elementary kind and of the most
general applicability in order to capture all aspects of a real system with hopefully no - or a
minimal set of - restrictive assumptions .

Informally, a structure merely consists of (1) a non-empty class called the universe or the
domain of the structure, the members of which are the individuals of the structure, (2)
possibly various basic operations and (3) various basic relations on the domain.

As an example, elementary arithmetic can be defined as the study of a particular structure,
that of individuals which are the natural numbers, basic operations being the addition and the
multiplication, and the only relation being the identity relation. Set theory is also concerned
with a structure whose individuals are all sets, identity and membership being the only
relations. Elementary Euclidean geometry can be regarded as the study of a structure: the
elementary Euclidean plane whose individuals are points and straight lines, with the
properties (unary relations) of being a point, a straight line, and the ternary relation of
collinearity.

For a dependability case we need descriptions of the three real domain entities involved, one
in each dimension: the Hw-Sw implementation, its physical environment, its modes of use
and operations.

Examples of structures which are relevant to the subclaims of the monitoring system (cfr.
figure 1) are given in figure 5. The design structure can be regarded as a time - independent
description of the computer system functionality, while the behavioural model captures the
time-dependent interactions of the system with the environment (including the users).

D.L. Parnas’s [Parnas et al. 1991] functional relations are a particular type of structures that
are adequate for the description and interpretation of the design and -in part- environment
dimensions. These relations provide a description of natural and environmental constraints
(NAT) of system functional requirements (REQ), of system input-output (IO), of software
specifications (SOFT).

Because dependability claims can be dealt with separately, the structures can differ from one
claim to the other in a same dependability case.

draft/evidence6.doc 11

7 Formal Model

“Le formel pur est stérile et sans intêrêt...
La valeur de la forme commence

lorsqu’un peu de matière la leste et la gauchit.”
Michel Tournier, “Petites Proses” , 1986.

The notions introduced in the two previous sections indicate that a dependability case spans
three distinct domains:

• A real domain D which consists of three entities: (i) the actual system (hardware and
software) implementation, (ii) its physical and user environment, and (iii) its mode of
use, operations and maintenance;

• The semantic domain of interpretations: Interpretations of the real entities, i.e.
mappings between structures associated with these three entities and three languages
L1 L2 and L3 respectively.

• The formal and logical domain: The syntax of the languages Li and a logical
system - for instance first order logic - used to formulate claims, statements of
evidence, and rules of inference.

Dependability
claim:

Abnormal behaviour of the pressurizer detected and signalled
to operators within 6 minutes; no automatic control action
generated.

Environment-system

structure:

Domain: - Set of postulated Initiating Events (PIE set);
 - Plants components: vessel, pressurizer;
Basic Relations: - P, T and L flow and thermodynamic equations;
 - PIE effects on T, L values

Design

Structure

Domain: - States of sensors, of A/D converters, of input-
 output registers;
Basic Relations: - input data conversion and validation;
 - input-ouput register relations;
 - software functional relations.

Operations-
environment

Structure

Domain: - States of: sensors, calibration and test
 equipment, power supplies, other interfacing
 plant instrumentation, operator;
 - PIE set.
Basic Relations: - operator actions, plant procedures;
 - effects of: PIE’s, accident scenarii, failures.

Figure 5: Structures for pressurizer behaviour dependability claim.

In practice, these three levels are always present in a dependability case. To make them
properly coincide, however, is a major issue. Misinterpretations between the real domain

draft/evidence6.doc 12

where failures actually occur, and the two other domains where dependability is specified
and demonstrated are major causes of undetected faults and incidents.

Let us briefly recall some of the basic notions we shall need to deal with the formal and
semantic domains.

The formal domain is needed because a proof pre-supposes the existence of a formal system
or language L of assumptions, axiom schemes and rules of inference. The proof in L of a
formula ϕ from a set of formulas Γ is then a finite sequence ϕ1,...,ϕn of formulas such that
ϕn = ϕ, and where each formula is either an axiom, a formula from Γ, or else follows from
earlier formulas by rules of inference. The formula ϕ is said to be provable from the
formulas Γ (written: Γ ├ ϕ).
A sentence ψ is a formula without free occurences of variables, i.e. where all variable
occurences are bound by the scope of a universal quantifier naming that variable. A theory
in L is a set of L sentences Γ which is closed under deducibility, i.e. such that for each
sentence ψ, if Γ├ψ, then ψ∈Γ. A system is consistent if it contains no formula ψ such that
both ψ and ¬ψ are theorems.

The structural viewpoint bases the semantic domain on the concept of structure which in
model theory - see e.g. [Bell 1977] - is regarded as an ordered triple
U = <A, {Ri}i∈I, {cj}j∈J>

where A is a nonempty set called the domain of U, {Ri} i∈I is the set of all basic λ(i)-ary
relations on A, {cj} j∈J is the set of designated members of A that are constants of U, and I
and J are sets indexing the relations and the constants.

An L-interpretation (or an L-structure) can then be defined as a structure U with a domain
and a set of constants associated with (corresponding to a perception of) a real world domain
D, and a mapping which assigns the basic elements of the structure to those of the language
L. This mapping allows values, basic operations and basic relations of U to be assigned to,
respectively, the variable, function and predicate symbols of L. Terms of L which do not
contain variables denote the constants of U. We shall always use bold type letters to denote
language symbols and plain letters to denote structure elements.

An L-valuation is an L-interpretation together with a particular assignment of values of its
domain to each variable in L, so that every formula in L acquires a true or false truth value.

In terms of these concepts, it results from the previous sections that every single
dependability claim of a case must be formalised by:

• Three structures U1(environment), U2(design), U3 (operational behaviour)
• Three languages (L1, L2, L3) to express sentences and formulas corresponding,

respectively, to statements of system, design and operational subclaims and evidence
components.
A logical system of rules of inference to make formal proofs in these languages.

draft/evidence6.doc 13

• Li- Interpretations, i.e. mappings <Ui - Li> which allow values, basic operations and
relations of Ui to be assigned to variable, function and predicate symbols of Li.

If an L-valuation σ valuates a formula ϕ to true, we say that this valuation satisfies ϕ. If
every valuation satisfying a set Γ of formulas also satisfies a formula ϕ, we say that ϕ is a
logical consequence of Γ, or that Γ logically implies or entails ϕ, and we write “Γ╞ϕ“.

A sentence ψ in L, i.e. a formula without free occurrence of variable, is logically valid or
holds in an L-structure U, or this structure U is a model for ψ, if it valuates ψ to true (we
write U╞ψ).
An L-structure is said to be a model for a set of sentences Γ if and only if it is a model for
every sentence in Γ.

A formal system is sound if Γ╞ϕ whenever Γ├ ϕ . It is complete if Γ├ϕ whenever Γ╞ϕ.
Thus soundness guarantees that every provable formula or sentence is semantically true.
Semantic truth is of course essential in the demonstration of safety. An inconsistent system
cannot be sound. Mathematics and formal systems are sound systems. Thus, whenever we
shall require a proof in those systems, the proof implies soundness. Completeness on the
other hand ensures that every true fact is provable. Most formal systems of practical interest
are not complete. This is why we cannot expect provability whenever we require semantic
truth, and not every sound and necessary claim of a dependability claim can be expected to
be provable within the same formal system.

8 Entailment and Proof obligations

An Li-interpretation together with its structure Ui is the formal connection between the
informal statements describing the claims and the evidence associated with the real domain
entity i, i=1,2,3, and the formulae of the formal language Li used to formulate proofs and
rules of inference. In terms of these notions, the claims and evidence components of a
dependability case must satisfy to the following obligations:

draft/evidence6.doc 14

Entailment obligations

Every: is entailed by: is expanded and provable
from:

Dependability Claim - - - environment-system
subclaims

Environment-System
subclaim

Environment evidence
components

Design subclaims

Design subclaim Design evidence
components

Operational-
environmentsubclaims

Operational-
environment subclaim

Operational evidence
components

- - -

 Items supported by structure U1 and language L1
 Items supported by structure U2 and language L2
 Items supported by structure U3 and language L3

Figure 6: Structure and Language Inter-relations

To be successful, a dependability case requires that, in each dimension i, i=1,2,3,
every subclaim be the logical consequence of evidence components in this
dimension, i.e. that these evidence components entail the subclaim. Besides, the
subclaim and the evidence components must reflect actual properties of the real
entities.
Therefore, in order to establish this semantic truth, in each dimension, an Li-structure
must exist such that all Li-valuations which satisfy the evidence component formulae
also satisfy the subclaim formula. If the subclaim is a sentence, there must exist an
Li-structure which is a model for this subclaim.

Proof obligations
Moreover, as we have seen in section 4, in each dimension i, each subclaim is
expanded into (i.e. tanslated into) subclaims of the next dimension (i + 1). The
demonstration that this expansion is “right” - i. e. consistent and complete - requires
the existence of a formal system in which each subclaim of dimension i can be
derived (proven) from a set of subclaims of dimension (i+1).

In other words, semantic truth is required for the use of evidence components to support
subclaims, and a formal sound derivation of claims from subclaims is required to establish
completeness and consistency of the subclaims. These entailment and proof obligations are
summarised in figure 6, and formally expressed in the following sections. It is important to
note that this table identifies logical relations only, and does not specify a top to bottom
sequence in which subclaims have to be stated, evidence found and proof obligations
discharged.

draft/evidence6.doc 15

 L1 - Interpretations (environment - system) and obligations

For a given dependability claim, say a formula or a sentence ϕa, there must exist an L1-
interpretation, i.e. an U1 structure which allows the valuation of the sets of L1- formulas
and/or sentences:

ϕa , Γenv-evidence and Γes-subclaims.

where Γenv-evidence and Γes-subclaims are the expression of the environment evidence
components and the environment-system subclaims of ϕa.
At the semantic level, every L1-valuation which satisfies the set Γenv-evidence must also satisfy
the set Γes-subclaims :

Γenv-evidence ╞ Γes-subclaims

In more intuitive terms, there must exist a body of environment-system evidence which,
when true in an environment-system structure U1, makes also true the system subclaim. If
both the evidence components and the environment-system subclaims are sentences, it
means that U1 must be a model of both.

At the syntactic level, ϕa must be provable from Γes-subclaims :

Γes-subclaims ├ ϕa .

Thus, for every dependability claim ϕa, one must have:

∀ϕa : ∃ U1, L1 ⇒ (Γenv-evidence ╞ Γes-subclaims ├ ϕa),

and also, because of the soundness of the the formal system: Γes-subclaims ╞ ϕa .

Assume, as an example, that ϕa is the dependability claim of figure 1. Then, the above
condition states that there must exist a structure - e.g. equations or a simulation model -
corresponding to the thermodynamic behaviour of the coolant in the plant relevant parts
(vessel, primary circuit, pressurizer). In this structure, every set of values of T (temperature)
and L (coolant level) corresponding to a steam bubble occurrence must valuate to true the
condition expressed in the environment-system subclaim of figure 1. Moreover, a language
is needed to interpret this structure, to formulate ϕa and the environment-system subclaims
from which it must be proved.

 L2 - Interpretations (design) and obligations

Similarly, for every environment-system subclaim, i.e. for every L1 formula, say
ϕs ∈ Γes_subclaims, there must exist a design structure U2 and an L2-interpretation which
allows the valuation of the L2 formulas and sentences:

draft/evidence6.doc 16

ϕs , Γd-subclaims , and Γd-evidence .

where Γd-subclaims, and Γd-evidence are, respectively, the design subclaims from which ϕs is
provable, and design evidence components. At the semantic and syntactic levels, one must
have for every environment-system subclaim ϕs:

∀ϕs ∈ Γes-subclaims : ∃ U2, L2 ⇒ (Γd-evidence ╞ Γd-subclaims ├ ϕs),

and also, because of the soundness of the formal system: Γd-subclaims ╞ ϕs.

In the case of the monitoring system, assume ϕs is the second environment-system subclaim
of figure 1. “Correct executable code“ is then a design subclaim, call it ϕd, from which, if
true, ϕs must be provable. Evidence to support ϕd may, for instance, be provided by a tool
which dissassembles binary code into a higher level language. In this case the individuals
and the relations of the structure U2 and the L2-interpretation should be, respectively, the
elements of the binary code, the relations of the disassembling process and a L2 formulation
of the disassembled code. The L1 original formulation of ϕs should be provable from the L2
disassembled formulation of ϕs. Sections 9 and 10 will discuss the relations between the two
pairs, U1, L1 and U2, L2, required by this type of proof obligation.

 L3 - Interpretations (operational behaviour)

For every design subclaim, i.e. for every L2 formula, say ϕd ∈ Γd-subclaims , there must exist an
operational behaviour-environment structure U3 and an L3-interpretation to allow the
valuation of the L3 formulas and sentences:

ϕd , Γo-evidence , and Γoe-subclaims ,

where Γo-evidence, and Γoe-subclaims are the expressions of the operational evidence and of the
operational-environment subclaims from which ϕd. is provable At the semantic and
syntactical levels, one must have for every design subclaim:

(∀ϕd ∈ Γd-subclaims): ∃ U3, L3 ⇒ (Γo-evidence ╞ Γoe-subclaims ├ ϕd),

and also, because of the soundness of the formal system: Γoe-subclaims ╞ ϕd.

For example, assume that ϕd is the non-functional design subclaim that the monitoring
system computations are fail safe in case of invalid input data and cause no spurious alarms
(cfr. figure 3). This subclaim is provable from different operational subclaims:

(i) adequate anticipation of post accidental conditions impact on input device and computer
equipment
(ii) adequate anticipation of input devices and computer failure modes
(iii) robust (re-)calibration, periodic test and resetting in-service procedures

draft/evidence6.doc 17

Evidence for these operational subclaims is provided by:
- operational experience of plant, and accident scenarii,
- operational experience of input device, computer hardware, power supplies and operator
behaviour,
- results of integrated tests, probation period, and operators reports.

Individuals of the domain of the operational structure U3 should be the states of the operator
and of the equipments mentioned above. The U3 relations are determined by accident
scenarii, failure modes, operator procedures. Data provided by operational experience and
integrated tests must valuate to true the operational subclaims formulated in an L3-
interpretation of this structure.

9 Substructures and Embeddings

Next, in order to understand how the structures Ui and the languages Li are inter-related, and
the properties that they must satisfy with respect to each other, we shall need the notions of
substructure and embedding.

Let L’ be a language which is an extension of L, i.e. every L symbol is also a L’ symbol,
and, in addition to the predicate symbols and constant symbols of L, L’ contains a set
{Ri: i∈I’} of predicate symbols and a set {cj:j∈J’} of constant symbols.

Given a L’-structure

U’ = <A, {Ri} i∈I∪I’, {cj} j∈J∪J’ >,
the L-structure

U = <A, {Ri}i∈I, {cj}j∈J >
is called [Bell 1977] the L-reduction of U’, and U’ the L’-extension of U.

Next, let

U = <A, {Ri}i∈I, {cj}j∈J >
U‘ = <A’, {R’i}i∈I, {cj’}j∈J >.

be L-structures. We say that U is a substructure of U’, and we write U ⊆ U’, if A ⊆ A’, for
each j∈J: cj = cj’, and, for each i∈I, Ri is the restriction of Ri’ to A, i.e. Ri = Ri’∩Aλ(i), where
Aλ(i) is the set of λ(i)-tuples of A.

For example, if L contains only the predicate symbol = , the function symbols {+, ×}, and
the constants 0 and 1, then the set of integers is a L-substructure of the set of rational
numbers.

An L-embedding of U into U‘ is a one to one mapping T of A into A’ such that

 (i) <cj, cj’> ∈ T
 (ii) <a1,...,aλ(i) > ∈ Ri ⇔ <a1’,...,aλ(i)’> ∈ Ri’,

draft/evidence6.doc 18

for all i∈I, and for a1,...,aλ(i) ∈ A, where <a1,...,aλ(i) > is an ordered sequence of members of A
which is an assignment of values to variables v1, v2, v3,... of L, and for all pairs ai, ai’ such
that <ai, ai’> ∈ T. An isomorphism of U onto U’is an embedding of U onto U’.

Stronger relations between interpretations are useful in model theory. U is said to be an
L-elementary substructure of U‘, and U‘ an L-elementary extension of U if U ⊆ U’ and for
any L-formula ϕ all of which free variables are assigned values from the domain of U, we
have:

U ╞ ϕ ⇔ U’ ╞ ϕ

for all possible value assignments of those free variables, and we write U p U’. In other
words, a formula (or sentence) ϕ is satisfied (holds) in U, if and only if it is also satisfied
(holds) in U‘.

An L-elementary embedding is an embedding T of U into U’ if for any L-formula ϕ all of
which free variables are among v0,...,vn, we have

U ╞ ϕ[a0,...,an] ⇔ U’ ╞ ϕ[a0
’,...,an

’]

for all a0,...,an ∈ A.

It is obvious that if U p U’, then U ⊆ U’, but the converse is not true. For instance
[Mendelson 1987], if L has the predicate symbol =, the function symbol + and the individual
constant symbol 0, then the structure U2I of even integers is a L-substructure of the structure
UI of integers, but is not an L-elementary substructure: if φ[y] = (∃x)(x+x=y), then UI ╞
φ[2], but not U2I ╞ φ[2]. Note that U2I is embedded in UI with the function g such that
g(x)=2x for all x in I. So, an isomorphic substructure is not necessarily an elementary
substructure nor an elementary embedding.

Now, let us see how these concepts apply to our dependability case model?

Assume ϕa is a dependability claim sentence, and U1 the structure in which ϕa is provable
from the set Γes-subclaims of environment-system subclaims. We have seen in section 8 that an
environment-system subclaim, ϕs ∈ Γes-subclaims , must be satisfied in U1. ϕs must also be
provable in a sound formal system from design subclaims, and therefore must also be
satisfiable in a structure U2 through a L2-interpretation.
Therefore, every ϕs ∈ Γes-subclaims which must be satisfied in U1, must also be satisfied in U2.
By the same argument, every ϕd ∈ Γd-subclaims which must be satisfied in U2, must also be
satisfied in U3.

For these conditions to be fullfilled, it is obviously sufficient that U1 p U2, and U2 p U3.
Sufficient, but not necessary, because all formulas that must be satisfiable and provable in
U2 (U3) need not be satisfiable or provable in U1 (U2).

draft/evidence6.doc 19

Two propositions on substructures provide tighter conditions. It is possible to demonstrate
(see e.g. exercise 2.99 in [Mendelson 1987]) that if U ⊆ U’, then:

(i) Let ϕ[v0,...vn] be a formula of the form (∀y0)...(∀ym) ψ[v0,...vn, y0,...,ym] where ψ
has no quantifiers. Then, for any a0,...,an in the domain of U, if U’ ╞ ϕ[a0,...,an], then U ╞
ϕ[a0,...,an]. In particular, U is a model for any sentence (∀y0)...(∀ym) ψ[y0,...,ym] where
ψ contains no quantifier, if U’ is a model for this sentence.
(ii) Let ϕ[v0,...vn] be a formula of the form (∃y0)...(∃ym) ψ[v0,...vn, y0,...,ym] where ψ
has no quantifiers. Then, for any a0,...,an in the domain of U, if U ╞ ϕ[a0,...an], then
U‘╞ ϕ[a0,...an]. In particular, U’ is a model for any sentence (∃y0)...(∃ym) ψ[y0,...,ym]
where ψ contains no quantifier, if U is a model for this sentence.

In other words, universal (existential) assertions true in the expansion (in the substructure)
are also true in the substructure (in the expansion) if they have no free variables, or if all
their free variables receive values from the domain of the substructure [remember that
(∃y)ψ(y,v) is an abbreviation for ¬(∀y)¬ψ(y,v)].

Corresponding propositions can also be demonstrated for embedded structures.

Translated into our dependability claim model, conditions (i) and (ii) appear to be sufficient
for all practical needs. Therefore, it is sufficient that U1 ⊆ U2, and U2 ⊆ U3, or that these
structures be embedded into each other.

Thus, the environment-system structure U1 of a dependability claim should be the root
structure of a tree of structure extensions. At the next level of this tree, there should be at
most one distinct design extension U2 per environment subclaim, and one distinct
operational extension U3 per design subclaim at the third operational level. The domain of
an extension contains the domain its substructure. The relations of a substructure are the
restrictions to its domain of the relations of its extension. Substructures may be embedded,
that is related to their extensions by means of a relation T between their domains, constants
and relations. These T relations express sufficient conditions for maintaining traceability
between a dependability claim, its subclaims and their entail and proof obligations.

10 Language Inter-relations

Alike structures, the languages involved in the demonstration that a dependability claim is
satisfied or holds in a L1-elementary substructure U1 are not independent.

Let L’ be a language which is an extension of L, i.e. every L-symbol is also a L’-symbol.
Then for each L’-valuation σ’, there is a unique L-valuation σ which agrees with σ’ on all L
symbols. We say that σ is the L-reduction of σ’, and σ’ is said to be an L’-expansion of σ.
In general an L-valuation has more than one L’-expansion.

Let ϕ be an L-formula.

draft/evidence6.doc 20

An S-form for ϕ (short for satisfiability form) is a formula ϕ‘ in some extension L’ of L,
such that any L-valuation σ satisfies ϕ iff σ has an L’-expansion σ‘ satisfying ϕ‘.
A V-form for ϕ (short for validity form) is a formula ϕ‘ in some extension L’ of L, such that
any L-valuation σ satisfies ϕ iff every L’- expansion σ‘ of σ satisfies ϕ‘.

It results from section 8 that the language L2 should be an extension of L1. More precisely,
for every dependability claim ϕa, the language L2, in which are expressed the design
subclaims Γd-subclaims from which an environment-system subclaim ϕs is provable, should be
an “extension” of the language L1 in which ϕs is expressed. Moreover, the formula ϕs
should have a satifiability expansion inL2.

Similarly, L3 in which are expressed the operational subclaims from which a design
subclaim ϕd is provable, should be an extension of L2 in which this design subclaim ϕd is
expressed.
Moreover, the formula ϕd should have a satifiability expansion in L3. Clearly,
satifiabilityforms are necessary and sufficient to guarantee that subclaims remain satisfied in
their expanded structures.

These relations among structures and languages across subclaim dimensions are indicated by
shaded areas in figure 6.

11 Validation and Design

Ideally, the techniques used in practice for the design and the validation of dependable
computer systems should conform to the formal notions introduced in the previous sections.
However, for real systems of reasonable complexity, the demonstration that the
implementation satisfies the dependabilty claims, especially their non-functional
requirements, is quite hard. Design criteria, and requirement refinement are some of the
classic concepts used to circument the difficulty. More recently, object oriented techniques
like reflection and meta-object protocols have also been proposed (see [Fabre 1998]). The
relationship between these concepts and the formal model outlined in the previous sections
is briefly discussed below.

• Design Criteria

The real domain (D) designers have to start from in practice, consists of informal statements
on: (i) the environmental properties and constraints that exist and must be maintained by the
system; (ii) the application dependability requirements (probabilistic or deterministic), and
(iii) evidence provided by the environment and the application (in terms of possible pre-
existing safe states, lines of defense, redundancy or diversity, operational procedures at the
application level).

draft/evidence6.doc 21

From these elements, designers usually infer appropriate design criteria (see e.g. [Börger
1997]), in certain industrial sectors called design assumptions or safety design principles. If
satisfied by the real system implementation, the selected criteria are assumed to somehow
guarantee the prescribed dependability requirements, especially the non-functional ones.
Instances of design criteria are: the single failure criterion, stable interfaces in time or value
domains [Kopetz 1998], fail silent behaviour, isolation between safety and non-safety
functions, safety margins. In practice, the selected criteria are used to translate non
functional requirements of the application into requirements for the design and the
implementation.

In many fields of application, the adopted design criteria result from a general engineering
consensus and are imposed by standards. They are sometimes taken - rather arbitrarily - as
deterministic substitutes for non-functional system requirements. Design criteria, however,
are and should be considered as proper environment-system subclaims (as in the example of
figure 3) from which the satisfaction of dependability claims needs to be demonstrated. An
environment-system structure or model, and a language interpretation are needed for this
proof obligation which, contrary to practice, should be considered as an essential part of the
dependability case. Formally, the valuation of this structure should show that the design
criteria are the logical consequence of environment-system evidence. The language
interpretation should allow the dependability claim to be proven from the design criteria.

• Refinement Process

In practice, because of the complexity of the design and its implementation, the
demonstration that the design criteria are satisfied by the implementation should be - like the
design itself - carried out in several steps. A first specification of the design is shown to be a
model for the selected design criteria. This specification can then be refined into an
implementation through successive reification stages. The concepts of substructure and
embedding can be used to formalise the syntactic and semantic aspects of these refinement
stages, and also the conditions under which they preserve the design criteria. At the syntactic
level, the successive language expansions used at each stage should then be shown to
preserve satisfiability forms of the initial design specification and of the design evidence.

• Reflection and Metaobjects

The use of object-oriented techniques such as reflection and meta-object protocols has
recently been proposed for implementing non functional requirements and fault tolerant
mechanisms into a dependable application (see, e.g., [Fabre 1998]). These generic
mechanisms have their advantages but also their limits due, in particular, to the difficulty of
the validation of their behaviour within a particular application (see e.g. [DeLemos,
Romanovsky, 1997]). This debate is outside the scope of this paper; but it is interesting to
note that the formal model of section 8 may provide a formal description of these concepts.

As an example, consider the non-functional dependability claim of figure 3. The different
attributes a PAM (post accident monitoring) function must enjoy - which are listed as design
criteria in figure 3 - may be associated to a class of metaobjects. At the semantic level, the

draft/evidence6.doc 22

valuation of an environment-system structure, say U1, by environment evidence components
must establish that an application object (function) specification together with these
metaobjects specifications will behave as intended by the dependability claim. At the
syntactic level, this dependability claim should be provable through a language
interpretation from the object and meta-object external specifications. The structure U1 must
be expanded into the design structure U2 of the functional object and of the meta objects. In
this design structure, design evidence must valuate to true the design specifications from
which the external specifications of the functional object and the metaobject must be proven.
The embedding T1,2 of the elementary structure U1 into a structure U2 is a relation which is a
formal representation of the metaobject design reflection mechanism. The domain of U1 is
the domain of the reflection mechanism T1,2, the domain of U2 is the range of the reflection.

Similarly, a design structure U2 could be extended into an operational structure U3 of the
run-time behaviour of the functional object and of the metaobjects. The embedding T2,3 of
U2 into U3 formally corresponds to a run-time metaobject reflection mechanism.

An issue is whether each of these structures U1, U2, U3 can be constructed as a set of separate
substructures, one associated with a functional object, and one associated with each
metaobject applied to the functional object. If not, the metaobject protocol does not enjoy
the semantic property of composability which is essential to the usefulness of the concept.
The conditions that substructures must satisfy for composability could presumably be
explored with model theory. The properties required from metaobject and reflection
mechanisms in order to be validatable might also be identifiable. This work is in progress
but preliminary results already raise interesting questions.

Suppose, for instance, that U° is a structure corresponding to some functional object:
U° = <{A, E, B}, {Ri

a}i∈I
a {Ri

b}i∈I
b, {cj}j∈J>

where the elements of A are the non-faulty states of the object, E is a set of fault conditions,
B is a set of faulty states, {Ri

a} is the set of relations corresponding to transitions between
states of A, and {Ri

b}the set of relations corresponding to transitions from {A∩E} to B, and
{cj} a set of constants.

We would like to construct a meta-object which, when applied to (reflected upon) a
functional object transforms this object into a fault tolerant object which, instead of moving
to states of B when faults are activated, moves to a set of safe states, say S. The fault tolerant
L-environment-system structure which should result from the application of the meta-object
on U° should be:
U1 = <{A,E,S}, {Ri

a, Rk
s}i∈I

a
 k∈I

s, {ck}k∈K>
where {Rk

s}is the set of transitions from {A∩E} to S and has the same domain as {Ri
b}, and

where {ck}k∈K contains {cj}j∈J .

The meta-object structure, say Umo, should be applicable independently from the specific
functionality of U°, essentially defined by A and {Ri

a}i∈I
a. It should therefore be restricted

to:
Umo = <{E,S}, {Rk

es}k∈I
es, {cq}q∈Q>

draft/evidence6.doc 23

where the domain and the range of {Rk
es} are E and S, respectively, and {cq}q∈Q is a subset

of {ck}k∈K .

First, we observe that the structure Umo is a substructure of U1 iff Rk

es is the restriction of Rk
s

to E. In other words, the transitions to B or S must depend on E only, and the safe states in
the fault tolerant metaobject must be independent from the current operational state in A.
This may be a serious restriction in practice.

A second observation is that U° is neither a substructure nor an L-embedding of U1. The
domain of U° is not contained in U1, and the relations of U1 cannot be restricted to those of
U°. Therefore, formulas or sentences which are satisfied in U° are not necessarily satisfied
in U1 and conversely.

A third observation is that U1 is not the result of a direct product construction of U° by Umo.
The direct product is defined as followed for a simple case (see e.g. [Bell 1977]). Let for
each i∈I, where I is an arbitrary non empty index set, Ui = <Ai,Ri> be an L-structure with a
non-empty domain Ai and a single binary relation Ri. Let Πi∈I Ai = A be the cartesian
product of the sets Ai. Let f,g denote elements of A. The direct product Πi∈I Ui of the family
{Ui : i∈I} is the structure <Πi∈I Ai,Q>, where Q is the set of all pairs <f,g> such that
<f(i),g(i)>∈Ri. It is clear that, in the case of the metaobject, the domain of U1 is not the
cartesian product of that of U° by Umo .

Conditions for the composability of structures remain to be explored. With the use of
ultrafilters, fundamental results in model theory like the Los’ theorem on ultraproducts (see
e.g; [Bell 1977, Mendelson 1987]) might provide a way to identify the conditions under
which given formulas which are satisfied in U° and Umo are also satisfied in U1.

12 Open Issues and Concluding Remarks.

This work is only a preliminary step towards the identification of structures, interpretations
and languages necessary for the semantic, syntactic and logical treatment of an application
dependability claim, and for the analysis of the convergence of its associated evidence
components. Further work is needed to explore the properties of these structures; but the
mere fact that this first step was feasible is encouraging in itself. Models of the kind we
have discussed should contribute to more reliable and efficient dependability cases, in
particular by helping licensors, designers and licensees to better understand each other.

On the other hand, the proof obligations and the language properties required by the theory
appear to be quite constraining, and probably difficult to realise in practice. These
obligations and properties should therefore be essentially regarded as guidance for reforming
and improving design and validation practices, at least for systems in need of a strict
validation and licensing process.

The simple axiomatic model outlined here offers of course various possibilities for
enrichement and further investigation.

draft/evidence6.doc 24

First, the model implicitly shows that each dependability claim of an application can be
expanded into subclaims and dealt with separately from other claims on the same
application. This separation of concerns contributes to traceability, and - although not in
current usage - should be recommended in practice. It also allows for the “reuse” of
subclaims and evidence components for different claims, and in principle allows systems to
be composed of subsystems “imported” with claims transposed as subclaims in the
dependability case of the composed system.

Secondly, we have dealt with deterministic and positive evidence only, but the approach
could be extended to integrate plausibility or probabilistic measures of confidence associated
with components of evidence, and possibly components of counter-evidence. At any rate,
the topology - nodes and edges - of a belief bayesian net for an application claim (see e.g.
[Courtois 1998]) - instead of being arbitrarily or subjectively derived - could be more
formally based on a three dimensional structure.

Third, the separate treatement of claims, however, leaves aside the issue of demonstrating
the completeness and consistency of the set of claims which compose a dependability case.
Another dimension added to the model - i.e. an application based structure and interpretation
like a complete and consistent set of postulated initiating events (PIE’s)- is a possible way to
integrate this demonstration.

Finally, for the simplicity of the analysis, we have considered the dependability case as a
static, complete case, all evidence components being available. In reality, of course, the case
evolves as the project progresses. In the earlier phases, environment and system evidence
only is available. Then design evidence accumulates as the hardware and software are being
developed. Once (parts of) the system can execute, operational evidence of actual
experience and maintainability becomes available. The structure of a dependability case, as
shown in figure 6, with its successive subclaim expansions and proof obligations is suitable
to allow this progression.

Acknowledgements

This work was supported by the European Community Esprit Long Term Research Project
20072-DeVa (Design for Validation). Thanks are due to colleagues in this project, Friedrich
Von Henke (Ulm University), Bev Littlewood and Lorenzo Strigini (City University,
London), Marie-Claude Gaudel (LRI, Paris), Jean-Claude Laprie (LAAS, Toulouse), and
Peter Puschner (Vienna University), for their useful comments on the formal and
dependabilty aspects of this research.
The author is also very much indebted to his colleagues in AV Nuclear, especially Ray
Ashley, Claude Baudelet, Pierre Govaerts, Jean-Jacques Van Binnebeek and Jacques
Vlassenbroeck, for their advice and/or the sharing of their experience in nuclear
instrumentation, operations and safety. Thanks are also due to Michel Sintzoff, department
of computer science, University of Louvain-la-Neuve, for his comments. Last but not least,
this research work has been initially motivated and greatly influenced by D.L. Parnas, Mc

draft/evidence6.doc 25

Master University, Canada, more specifically by his work on documentation, and by his
comments on an earlier version.

References

[Bell 1977] J. Bell, M. Machover, “A Course in Mathematical Logic”, North Holland, 1977,
2nd printing 1986.

[Bloomfield 1995] R. Bloomfield, “The SHIP Safety Case”, in Safecomp 95, Proc. 14th
IFAC conf. on Computer Safety, Reliability and Security (G. Rabe ed.), Belgirate, Italy, 11-
13 October 1995, Springer, ISBN 3-540-19962-4.

[Börger 1997] E. Börger, L. Mearelli, “Integrating ASM’s into the software Development
Life Cycle”, Manuscript presented at the Schloss Dagstuhl International Seminar on
“Practical Methods for Coe Documentation and Inspection”, Saarbrücken, May 1997.

[Courtois 1998] P.-J. Courtois, N.E. Fenton, B. Littlewood, M.Neil, L. Strigini,, D.R.
Wright, “Bayesian Belief Network Model for the Safety Assessment of Nuclear Computer-
Based Systems.” Esprit Long Term Research Project 20072-DeVa, Second Year Report Part
2, pp.485-512.

[Dahll 1997] G. Dahll, “Safety Assessment of Software based Systems”. SAFECOMP’97,
York 1997.

[DeLemos, Romanovsky, 1997] R. Delemos and A. Romanovsky, “Coordinated Atomic
Actions in Modelling Objects Cooperation”, in 1st IEEE Int. Symp. on Object-Oriented
Real-Time Distributed Computing, Kyoto, Japan, April 1998. (technical report, dept. of
Computer Science, Univ. of Newcastle upon Tyne, TR 620, 1997).

[Fabre 1998] J.-C. Fabre, T. Pérennou, “A Metaobject Architecture for Fault Tolerant
Distributed Systems: The FRIENDS Approach.” Esprit Long Term Research Project 20072-
DeVa, Second Year Report Part 2, pp.195-228.

[Kopetz 1998] H. Kopetz, “Component-Based Design of Large Distributed Real-Time
Systems”. Esprit Long Term Research Project 20072-DeVa, Second Year Report Part 2,
pp.17-30, 1998.

[Mendelson 1987] E. Mendelson, “Introduction to Mathematical Logic”, Wadsworth &
Brooks/Cole, Monterey, third edition, 1987.

[NUREG 0696] “ Functional Criteria for Emergency Response Facilities” NUREG - 0696
Report. Division of Emergency Preparedness, Office of Inspections & Enforcement, U.S.
Nuclear Regulatory Commission, Washington, D.C. 20555, 1981.

draft/evidence6.doc 26

draft/evidence6.doc 27

[Parnas et al. 1991] D.L. Parnas, G.J.K Asmis, J. Madey, “Assessment of Safety Critical
Software in Nuclear Power Plants” Nuclear safety, 32, 2, 1991.

[Rushby 1993] J. Rushby, “Formal Methods and the Certification of Critical Systems”,
Technical report CSL-93-7, SRI International, CA, December 1993.

[Wong 1998] Ken Wong. “Looking at Code With Your Safety Goggles On.” Proc. 1998
Ada-Europe International Conference on Reliable Software Technologies. Lecture Notes in
Computer Science 1411, Springer, pp.251-262.

