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Abstract: This work addresses the issue of structuring the validation process of dependable 
computer based systems.  It was motivated by the desire to make the licensing and 
certification of these systems more reliable and efficient.  The paper analyses the structural, 
semantic and logic properties of the demonstration that a computer based system is 
adequately specified, designed and maintained in operations.  Three classes of dependability 
claims are identified;  those which address the environment - system interface, the design 
and the operational behaviour.  A structure is proposed to analyse the relations between 
these classes and the convergence of their supporting evidence.  Relations and formal 
properties which should be satisfied by the underlying models, by the languages required for 
the interpretations of the real domains, and by the proof obligations are identified.  The 
implications of these properties on design criteria and design mechanisms such as reflection 
are discussed.  A real industrial dependability case is used to illustrate the concepts and 
discuss their applicability. 

 
Key words - Safety critical software, safety assessment, dependability case, combining 
evidence, model theory, formal model, interpretations. 
 



 
1 Introduction 
 
Computers are more and more used to implement functions where safety, availability, 
reliability, or more generally dependability is at stake.  Such qualities remain sterile if they 
cannot be predicted and demonstrated.  It is not sufficient that a system be safe and its 
software correct; there must also exist a means to know it. 
 
The demonstration that a system is dependable for a given application is quite hard, and 
often responsible for unexpected licensing costs and delays.  This is apparently true of any 
complex artifact even when no computer is involved. The crude approach followed in 
practice is to collect all possibly available information about the application, the system, and 
the design, and to base a final approval on the combined evidence found therein.   
 
The work reported here was prompted by difficulties met with this brute force approach over 
the last six years in a number of industrial safety cases involving nuclear safety critical 
software.   
 
The following three paragraphs briefly discuss what are believed to be three root causes of 
these difficulties and why they motivated this work, care being taken to avoid bias which 
may be induced by the specific aspects of nuclear applications: 
 

1) Environment - System Interface. 
Many dependability requirements - for example those concerning  safety or security - are 
originally determined by the application in which the computer and its software are 
embedded. What is required from the computer implementation is essentially to be an 
available and/or reliable implementation of those requirements.  On the other hand, many 
pertinent arguments to demonstrate dependability - for instance the provision of safe 
states and failure modes - are not provided by the computer system design and  
implementation, but are determined by the environment and the role the system is 
expected to play in it.  Previous attempts at structuring the safety cases of computer 
based systems have concentrate on the V&V problems raised by the computer and 
software technology and have paid too little attention to this aspect. 
 
2) Life-Time Coverage.   
Dependability depends not only on the design, but also, and ultimately, on the 
installation of the integrated system, on operational procedures, on procedures for 
(re)calibration, (re)configuration, maintenance, even for decommissioning in some cases.  
A dependability case is not closed before the actual behaviour of the system in real 
conditions of operations has been found acceptable.  The demonstration of the 
dependability of a software based system therefore involves more than a code 
correctness proof.  It involves a large number of various claims spanning the whole 
system life, and well-known to application engineers, but often not sufficiently taken into 
account in the computer system design. 
 
3) Model Interpretations. 

draft/evidence6.doc 2



Dependability - although its absence may have severe real consequences in terms of life 
losses and material damages - remains somehow an immaterial property.  The 
demonstration of its existence - especially for complex and digital systems - cannot be 
strictly experimental and obtained by e.g. testing or operational experience. For instance, 
a dependability case does not only include claims of the type:”the class X of 
unacceptable events shall occur less than once per Y hours in operation”.  It also 
includes or subsumes the claim that the class of events X is adequately identified, i.e. is 
complete and consistent.  Dependability can only be discussed and shown to exist as 
abstract properties of models of the system behaviour, of its interactions with the 
environment and of accident scenarii.  These models must be unambiguously understood 
and agreed upon by all responsible actors of a dependability case: users, designers and 
assessors. This is unfortunately seldom the case. Claims for dependability - although 
usually based on a huge engineering and industrial past experience - often remain only 
informally specified.  Application domains, user interfaces, and industrial environments 
often are also seldom or poorly formalised.  One symptomatic and unfortunate 
consequence of this situation is the deplorable tendency in licensing negotiations to 
“juggle with assumptions”, i.e. to argue and interpret system or environment behaviour 
or accident hypotheses in order to claim increased levels of safety or reliability without 
making any change to the system itself or to the environment.  A great need exists for 
more formal treatments in industrial dependability cases, i. e. for more reliable models 
and methods of interpretation. 
 

Based on these observations, our approach is an attempt to provide a structure to organise 
the variety of different claims of a dependability case, to avoid or minimise 
misinterpretations, and to more systematically and formally establish the convergence of the 
various pieces of evidence which support these claims. 
 
Basic notions of model theory (see e.g. [Bell 1977]) were found useful to address these 
structural and formal aspects of the validation process.  A branch of mathematical logic, 
model theory analyses the relationship between sets of first-order sentences and the 
structures in which they are satisfied, i.e. their models.  It is, in particular, concerned with 
the methods by which models with prescribed properties can be constructed. 
 
 
2 Case Example 
 
We shall use the real safety case of a nuclear monitoring computer based system to illustrate 
the notions and concepts introduced in the course of the following sections, and to discuss 
their applicability.  This real case is one of those which are modelled by a bayesian net in 
[Courtois 1998]. 
 
After the Three Mile Island accident, nuclear utilities revised their accident procedures in 
order to cover larger domains of abnormal or accidental plant states [NUREG 0696].  
Computer based diagnostic systems were designed to monitor these critical state domains. 
Among the various functions expected from such a system the one we have selected for our 
example is the inventory of the reactor coolant for heat removal.  This function has to 
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monitor the coolant levels in the pressurizer and in the in reactor vessel, and the margin to 
saturation. When the reactor existing instrumentation does not permit direct measurement of 
the  coolant level in the vessel, a special algorithm using other data must be designed to infer 
and assess this level.  This assessment must take into account the possibility that - under 
special circumstances - steam  may accumulate under the vessel head.  The possible presence 
of such a steam bubble must therefore be detected and announced to the operator.  For the 
particular reactor we are concerned with, the conditions to be monitored for this detection 
were presumed to be associated with a rapid cooling of the coolant while being under natural 
circulation, together with a rapid  increase of the pressurizer level.  
 
It is interesting to note at this point that the above description is not much different in form 
and contents from the highest level specification of the monitoring function which was 
initially documented by plants engineers for system designers. 
 
 
3 Claims and Evidence 

What is the most often -overlooked risk in software engineering? 
That the environment will do something the designer never anticipated. 

James J. Horning, ACM SEN 23, 4, 1998 

 
In [Bloomfield 1995], a safety case is defined as “a documented body of evidence that 
provides a convincing and valid argument that a system is adequately safe for a given 
application in a given environment”.  We want to extend this concept to the concept of 
dependability case, which may cover other issues than safety, such as security and 
availability.   
 
We regard a dependability case as evidence that a given set of dependability claims are 
satisfied by a computer based system (for short referred to as the system) in a given 
environment.  This set of claims is assumed to be consistent and complete.  How to define 
this set of high level requirements is an issue which must be resolved by safety and 
engineering experts of the domain of application, and which is considered as being outside 
the scope of this paper.  What we shall be concerned with is to ensure that each claim of the 
set is satisfied by the implementation.  
 
We make the distinction between the notions of claim and requirement.  Dependability 
claims are viewed as required properties of the dynamic behaviour of a system 
implementation, and of its interactions with the environment.  When these properties are 
explicitly specified by the functional and non-functional requirement specifications of the 
system, then claims and system functional or non-functional requirement specifications 
coincide.  There are situations, however, where the properties claimed from the system 
behaviour and from its interactions with the environment neither are a part, nor are an 
immediate consequence of the system requirement or design specifications.  For instance, it 
is reasonable to claim that our monitoring system is fit for operations in post accidental 
conditions and that it satisfies the design criteria - e.g. the single failure criterion and a 
maximum reaction time - required for these operations, although some of the system 
components may not have been originally specified and designed for this purpose.  COTS 
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components used in systems important to safety are another case where dependability claims 
usually do not coincide with the system specifications. 
Another difference is that system requirements and design specifications focus on system 
fonctionality while dependability claims focus on system hazards [Wong 1998].  For 
example, a system specification for our monitoring system is “to display the pressurizer 
coolant temperature and level values”.  In contrast a dependability claim states that 
“pressurizer coolant temperature and level values must be displayed if and only if validated 
measurements are available”.  A system may satisfy the system specification, while failing to 
satisfy the dependability claim.  
  
A clear distinction must also be made between what to demonstrate (the dependability 
claims) and how to demonstrate (the evidence). Practical experience, also supported by the 
formal approach discussed later, has shown that in general an application dependability 
claim and its supporting evidence can be organised in a three-dimensional structure. 
This observation - fundamental to this work - is based on the fact that a claim for prevention 
or for mitigation  of a hazard at the application level is necessarily composed of claims - we 
shall call them subclaims - which are of three types: subclaims of adequate functional and/or 
non-functional design specifications to deal with the hazard, subclaims of correct design and 
implementation of these specifications, and subclaims that these specifications are 
maintained in operation. The supporting evidence for a dependability claim made at the 
application level can be organised along the same structure. 
 
Thus, every application-dependent dependability claim and its supporting evidence consists 
of subclaims and evidence components along the following three dimensions: 
 
1. Environment-system interface:  subclaims and evidence of the adequacy of the set of 
functional and non-functional requirement and design specifications to satisfy the 
dependability claim and deal with the environment/system constraints and exceptions; 
 
2. Design:  subclaims and evidence that the embedded computer system is designed and 
implemented so as to perform according to the above specifications; 
 
3. Operations-environment interface:  subclaims and evidence that the dependability 
claim and the environmental constraints will remain satisfied during the whole life-time of 
the computer based system - in the way it is integrated and operated in its environment. This 
includes evidence that this system does not display behaviours unanticipated by the 
specifications, or that such behaviours outside the design basis will be detected and their 
consequences mitigated. 
 
A dependability claim for the monitoring system of our example is expanded into subclaims 
along these three dimensions on figure 1. 
 
Environment - system subclaims and their supporting evidence components pertain to the 
adequacy of the specification of the algorithm chosen to detect the pressurizer abnormal 
behaviour - by observing the coolant in core temperature T and the pressurizer coolant level 
L - and of the specifications of the actions to be taken in the presence of out of range data or 
failure of the computer and communication system. 
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The demonstration that these system specifications are “right”, i.e. that they correspond to 
the intention of the dependability claim, is an essential and usually hard part of a 
dependability case.  In our example it turned out to be one of the most difficult step - 
currently not yet fully resolved.  The corresponding supporting evidence - see figure 2 - 
depends in this example on the predictions of plant simulation models, the results of a failure 
mode analysis, and the competence of plants engineers. 
 

Dependability 
Claim: 

Abnormal pressurizer behaviour is detected and signalled to 
operators within 6 minutes 

 
Environment-

System 
Subclaims: 

Adequacy of parameter ranges, unit conversion, accuracy. 
Adequacy of the system specification: 

 if [-(∆T/∆t) > 5°C/h and (∆L/∆t >5%/min)  
and (3 primary pumps stopped ) ]   

then <send alarm>; 
Adequate specifications of detection mechanisms and fail-states for T and L out 
of range values, data link failures, and  computer system failures. 
. 

 
Design  

Subclaims 

Adequate A/D input conversion, number representation and algorithms for 
temperature (T) and water level (L) gradients.   
Adequate auto-tests, exception and error procedures  
Correct executable code. 
Correct hardware implementation. 
 

 
Operations-

Environmentl 
Subclaims: 

Adequate and Robust (e.g. to operators’ errors) in-service Procedures  
for T and L (re-)calibration, periodic testing, maintenance. 
Adequate anticipation of failure modes of computer hardware, sensors, power 
supplies and plant interfacing instrumentation. 
Absence of spurious alarms in operations. 
  

 
Figure 1: Structure of subclaims of the dependability claim: pressurizer abnormal behaviour detection. 

T: coolant in-core temperature; L: coolant level in pressurizer. 
 
 
Design subclaims and evidence components are similarly summarised in figure 1 and 2 
respectively.  They support a correct integrated hardware and software implementation of 
the specifications.   
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Dependability 
Claim: 

Abnormal behaviour of the pressurizer is detected and signalled 
to operators within 6 minutes. 

Environment and 
system evidence: 

- Predictions from thermo-dynamic plant behaviour computer model. 
- Competence and past experience of plant engineers. 
- FMECA report and operational feedback from other plant incidents. 

Design  
Evidence: 

- Quality of specifications. 
- Formal or mechanical correctness proofs.  Results of code unit tests. 
- Competence and past experience of programmers, of supplier of 
 instrumentation. 

Operation-
environment 

Evidence: 

- Operational experience on thermocouple and gauges equipment; 
- Integrated on site tests; 
- Conclusions from probation period, operator reports, other similar 
 installations. 

 
Figure 2.  Evidence components for dependability claim on pressurizer behaviour. 

 
 
Operations - environment subclaims and evidence address the behaviour of the system while 
in operations in its real environment.  In fine they form the most essential and conclusive 
part of a dependability case, especially when COTS components are involved.  And yet they 
are almost always ignored by software engineers, inclined to believe that this third 
dimension is superfluous because these claims should be part of the system and design 
specifications.  This dimension includes all the subclaims which cannot be established 
otherwise than by evidence that the integrated system operates correctly in every mode and 
in its real environment.  For the monitoring system, operational evidence must for instance 
give assurance that operator in-service interventions such as (re)calibrations and periodic 
tests are feasible and do not cause spurious alarms; that there is no undesirable interference 
with existing instrumentation, that post-accidental conditions and failure modes have been 
comprehensively anticipated and lead to safe states.   
 
Operational evidence is in part experimental, and obtained by environment simulation, 
integrated tests, probation periods or operational feedback.  It is also the evidence that the 
the continuous monitoring functions and periodic tests of the system, while in operations, 
adequately anticipate and cover all undesirable behaviours.  Such evidence can greatly 
contribute to the confidence one has in the system.  Often, it can be obtained only after the 
system or its prototype has been installed and tried in real conditions. 
 
This three dimension organisation is applicable to non-functional dependability claims.  
Figure 3 shows for instance the subclaims which correspond to the requirement that the 
monitoring system should be acceptable for post accidental conditions (PAM function). 
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Dependability 
Claim  

(non-functional): 

Abnormal pressurizer behaviour detection & signalling  
is available as a PAM (post accidental monitoring) function. 

 
Environment/ 

System 
Subclaims: 

Adequate set of selected design criteria, namely : 
- quadruple HW redundancy; 
- physical isolation of I/O and of power supplies; segregation from non-safety 
 functions; 
- single failure criterion; fail-safe behaviour of detection and signalling function; 
 

 
Design  

Subclaims: 

Fail-safe computations for input data validation / invalidation, causing no 
 spurious alarms; 
Single failure network architecture and protocols; 
 

 
Operations-
environment 
Subclaims: 

Adequate anticipation of impact of post-accidental conditions on the embedded 
 system; 
Adequate anticipation of input devices and computer failure modes; 
Robust (re-)calibration, periodic test and resetting in-service procedures. 
 

 
Figure 3.  Non-functional dependability claim. 

 
 
4 Convergence of Evidence 
 
The term “dimension” which is used to introduce the three types of subclaims and evidence 
components is intended to convey the notion that a particular dependability claim at the 
application level and its supporting evidence can be viewed as two projections of subclaims 
and evidence components respectively on one or more of these three dimensions.  Along 
each dimension, evidence can of course be of different nature - for instance deterministic or 
probabilistic.  It is likely to be mainly deductive in the first two dimensions and empirical in 
the third one.  Evidence can also offer different levels of confidence.  The quantitative 
evaluation of the confidence achieved - for instance by probabilistic measures - is an 
important issue not directly addressed in this paper, but the model proposed could integrate 
this evaluation. 
 
We argue that the three dimensions are both necessary (in terms of subclaims) and sufficient 
(in terms of evidence components).  
 
They are necessary in the sense that one cannot ignore subclaims in any one dimension for a 
dependable application.  This is rather obvious for environment/system and operational 
subclaims.  The necessity of design subclaims, perhaps less obvious, is supported by the 
same arguments which require that not only the product, but also the development process 
needt to be assessed for dependable software based systems, or at least cannot be ignored 
without justifications.   
 
Note that the dimensions are not mutually independent.  A dependability claim is translated 
and expanded into system subclaims that certain system requirements specifications are 
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adequate.  In turn, every system subclaim for the adequacy of a system requirement induces 
and is expanded into design and operational subclaims for, respectively, the correct 
implementation and maintenance of these specifications.  This expansion process of 
(sub-)claims of one dimension into the next one will be formally analysed in section 7. 
 
The three dimensions are also sufficient in the sense that a body of precise, pertinent and 
converging components of evidence in these dimensions is sufficient to claim a dependability 
property of a system behaviour.  This notion of converging components of evidence implies 
the possibility that stronger evidence in one dimension may compensate for weaker evidence 
in another; for instance, system/environment or operational evidence that in operations a 
particular event never (or always) occurs can supplement a lack of evidence on the adequacy 
of the design or the implementation of a COTS component.  

 
 
 

Every: is supported by 
components of : 

is expanded into a 
set of: 

Dependability Claim - - - system subclaims 
Environment-System 

subclaim  
Environment evidence design subclaims 

Design subclaim Design evidence operational subclaims 
Operations-

Environment subclaim 
Operational evidence - - - 

 
Figure 4:  Structure of relations between subclaims and evidence components 

 
 
Convergence of distinct components of evidence cannot be established without a structure in 
which the logical relations between these components and their respective roles to support 
the claims can be expressed.  Figure 4 summarises the basic structure of these relations.  
Section 7 uses this structure as an axiomatic basis for a model in which the convergence of 
evidence components can be formally defined and established. 
 
 
5 Interpretations 
 
We observed in the introduction that dependability claims are abstract properties, necessarily 
formulated in some language, more or less formalised.  They are necessarily related to the 
real implementation system and to its environment through models and interpretations of the 
real world.  Besides, demonstration of dependability for complex digital systems cannot be 
strictly experimental.  Central to a dependability case is a logical analysis based on mental 
representations of the real system and of its interactions with the environment. 
 
The other main aspect of this work is therefore an attempt to give formal and logical 
foundations to a dependability case.  The purpose is to clarify the linguistic and logical 
implications and to identify the nature of the relations that exist between the three 
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dimensions of subclaims and evidence.  The intention is of course not to cover formally all 
practical details of an industrial dependability case, nor to provide methods for mechanical 
analysis.  Only basic notions of model theory (see e.g. [Bell 1977]) shall be needed. 
 
As said earlier, the issue of completeness and consistency of the set of dependability claims 
is application dependent and outside the scope of this paper.  What, however, we are 
concerned are the means to ensure that: 
 

- the translation of a dependability claim into subclaims in each dimension is “right”, 
 i.e. corresponds to what is intended and expected from a real system;  
- the evidence components are “true”, i.e. reflect what a real system and its 
 environment are; 
- the evidence components support the subclaims. 

 
The first two issues must clearly be answered through a process of validation, as there is no  
higher level formal specifications against which to conduct a verification of the subclaims 
and evidence components.  The understanding and the semantic aspects of the real system 
are primordial in this process. 
 
The third issue is one of logic.  If subclaims and evidence components are properly 
formalised in some system, the former could be logically derived from the latter. 
 
The connection between “valid” and “provable” - as clearly explained in [Rushby 1993] - is 
of the same nature as between semantics and syntax.  This connection, in model theory, is 
established by interpretations that associate a true or a false (informal) statement about some 
real world domain with each formula of a formal system.  The purpose is to make the 
syntactical notions of theorem and proof coincide with the semantic notions of truth and 
model.  If the axioms and assumptions correspond to true informal statements about the real 
domain - i.e. the system and its environment - then the theorems - the subclaims - that can be 
proven will also correspond to true informal statements about the real domain.  And these 
true facts are deduced from given true facts simply - like correctness proofs - by following 
the rules of a formal system.  No understanding of the real domain is required to carry out 
these syntactic operations. 
 
The understanding of the real domain, however, is needed to select the non logical axioms 
and the assumptions, and to interpret the theorems (subclaims).  Then, the difficulty - and 
the frustration when risk and dependability assessment are at stake - is that we cannot exhibit 
and directly deal with real entities.  We are limited to use descriptions only.  This 
fundamental limitation makes a “true” validation of real dependability claims impossible.  
Carefully defined interpretations of  the real entity behaviours must be defined, and we must 
restrict ourselves to a demonstration - in terms of these interpretations -  that the 
decomposition of an application  dependability claim into distinct interrelated dimensions of 
subclaims and evidence components is “right”, i.e. consistent and complete. 
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6  Structures 
 
We have adopted the structural viewpoint that one can regard the real entities as being 
associated to (mathematical) structures (see e.g. [Bell 1977]).  This choice - as opposed to a 
constructive or intuitionistic approach in which proofs would be based on feasible 
constructions rather than on structures - is not arbitrary.  It reflects the fact that in a 
dependability case some structures, like some of those defined by environment or 
implementation constraints are given to us as existing “out there”, finished and completed 
before we use them in our semantic analysis. 
 
The notion of a structure is intended to be of the most elementary kind and of the most 
general applicability in order to capture all aspects of a real system with hopefully no - or a 
minimal set of - restrictive assumptions .   
 
Informally, a structure merely consists of (1) a non-empty class called the universe or the 
domain of the structure, the members of which are the individuals of the structure, (2) 
possibly various basic operations and (3) various basic relations on the domain. 
 
As an example, elementary arithmetic can be defined as the study of a particular structure, 
that of individuals which are the natural numbers, basic operations being the addition and the 
multiplication, and the only relation being the identity relation.  Set theory is also concerned 
with a structure whose individuals are all sets, identity and membership being the only 
relations.  Elementary Euclidean geometry can be regarded as the study of a structure: the 
elementary Euclidean plane whose individuals are points and straight lines, with the 
properties (unary relations) of being a point, a straight line, and the ternary relation of 
collinearity.   
 
For a dependability case we need descriptions of the three real domain entities involved, one 
in each dimension:  the Hw-Sw implementation, its physical environment, its modes of use 
and operations.   
 
Examples of structures which are relevant to the subclaims of the monitoring system (cfr. 
figure 1) are given in figure 5. The design structure can  be regarded as a time - independent 
description of the computer system functionality, while the behavioural model captures the 
time-dependent interactions of the system with the environment (including the users). 
 
D.L. Parnas’s [Parnas et al. 1991] functional relations are a particular type of structures that 
are adequate for the description and interpretation of the design and -in part- environment 
dimensions.  These relations provide a description of natural and environmental constraints 
(NAT) of system functional requirements (REQ), of system input-output (IO), of software 
specifications (SOFT). 
 
Because dependability claims can be dealt with separately, the structures can differ from one 
claim to the other in a same dependability case. 
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7 Formal Model 
 

“Le formel pur est stérile et sans intêrêt... 
La valeur de la forme commence  

lorsqu’un peu de matière la leste et la gauchit.” 
Michel Tournier, “Petites Proses” , 1986. 

 
The notions introduced in the two previous sections indicate that a dependability case spans 
three distinct domains: 

• A real domain D which consists of three entities: (i) the actual system (hardware and 
software) implementation, (ii) its physical and user environment, and (iii) its mode of 
use, operations and maintenance; 

• The semantic domain of interpretations: Interpretations of the real entities, i.e. 
mappings between structures associated with these three entities and three languages 
L1 L2 and L3 respectively. 

• The formal and logical domain: The syntax of the languages Li and a logical 
system - for instance first order logic - used to formulate claims, statements of 
evidence, and rules of inference. 

 

Dependability 
claim: 

Abnormal behaviour of the pressurizer detected and signalled 
to operators within 6 minutes; no automatic control action 
generated. 

 
Environment-system 

structure: 
 

Domain:   - Set of postulated Initiating Events (PIE set); 
     - Plants components: vessel, pressurizer;  
Basic Relations: - P, T and L flow and thermodynamic equations; 
     - PIE effects on T, L values 

 
Design 

Structure 

Domain:   - States of sensors, of A/D converters, of input- 
     output registers;  
Basic Relations: - input data conversion and validation;  
     - input-ouput register relations;      
     - software functional relations. 

 
Operations-
environment 

Structure 

Domain:   - States of: sensors, calibration and test    
      equipment, power supplies, other interfacing 
       plant instrumentation, operator;  
     - PIE set. 
Basic Relations: - operator actions, plant procedures; 
     - effects of: PIE’s, accident scenarii, failures. 

 

Figure 5:  Structures for pressurizer behaviour dependability claim. 

 
 
In practice, these three levels are always present in a dependability case.  To make them 
properly coincide, however, is a major issue.  Misinterpretations between the real domain 
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where failures actually occur, and the two other domains where dependability is specified 
and demonstrated are major causes of undetected faults and incidents. 
 
Let us briefly recall some of the basic notions we shall need to deal with the formal and 
semantic domains. 
 
The formal domain is needed because a proof pre-supposes the existence of a formal system 
or language L of assumptions, axiom schemes and rules of inference. The proof in L of a 
formula ϕ from a set of formulas Γ is then a finite sequence ϕ1,...,ϕn of formulas such that 
ϕn = ϕ, and where each formula is either an axiom, a formula from Γ, or else follows from 
earlier formulas by rules of inference. The formula ϕ is said to be provable from the 
formulas Γ (written: Γ ├ ϕ ).  
A sentence ψ is a formula without free occurences of variables, i.e. where all variable 
occurences are bound by the scope of a universal quantifier naming that variable. A theory 
in L is a set of L sentences Γ which is closed under deducibility, i.e. such that for each 
sentence ψ, if Γ├ψ, then ψ∈Γ.  A system is consistent if it contains no formula ψ such that 
both ψ and ¬ψ are theorems.  
 
The structural viewpoint bases the semantic domain on the concept of structure which in 
model theory - see e.g. [Bell 1977] - is regarded as an ordered triple 
U = <A, {Ri}i∈I, {cj}j∈J> 

where A is a nonempty set called the domain of U, {Ri} i∈I is the set of all basic λ(i)-ary 
relations on A, {cj} j∈J is the set of designated members of A that are constants of U, and I 
and J are sets indexing the relations and the constants. 
 
An L-interpretation (or an L-structure) can then be defined as a structure U with a domain 
and a set of constants associated with (corresponding to a perception of) a real world domain 
D, and a mapping which assigns the basic elements of the structure to those of the language 
L. This mapping allows values, basic operations and basic relations of U to be assigned to, 
respectively, the variable, function and predicate symbols of L.  Terms of L which do not 
contain variables denote the constants of U.  We shall always use bold type letters to denote 
language symbols and plain letters to denote structure elements. 
 
An L-valuation is an L-interpretation together with a particular assignment of values of its 
domain to each variable in L, so that every formula in L acquires a true or false truth value. 
 
In terms of these concepts, it results from the previous sections that every single 
dependability claim of a case must be formalised by: 
 

• Three  structures U1(environment), U2(design), U3 (operational behaviour) 
• Three languages (L1, L2, L3) to express sentences and formulas corresponding, 

respectively,  to statements of system, design and operational subclaims and evidence 
components.  
A logical system of rules of inference to make formal proofs in these languages. 
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• Li- Interpretations, i.e. mappings <Ui - Li> which allow values, basic operations and 
relations of Ui to be assigned to variable, function and predicate symbols of Li. 

 
If an L-valuation σ valuates a formula ϕ to true, we say that this valuation satisfies ϕ.  If 
every valuation satisfying a set Γ of formulas also satisfies a formula ϕ, we say that ϕ is a 
logical consequence of Γ, or that Γ logically implies or entails ϕ, and we write “Γ╞ϕ“. 
 
A sentence ψ  in L, i.e. a formula without free occurrence of variable, is logically valid or 
holds in an L-structure U, or this structure U is a model for ψ, if it valuates ψ to true (we 
write U╞ψ).  
An L-structure is said to be a model for a set of sentences Γ if and only if it is a model for 
every sentence in Γ. 
 
A formal system is sound if Γ╞ϕ whenever Γ├ ϕ . It is complete if Γ├ϕ whenever Γ╞ϕ.  
Thus soundness guarantees that every provable formula or sentence is semantically true.  
Semantic truth is of course essential in the demonstration of safety.  An inconsistent system 
cannot be sound.  Mathematics and formal systems are sound systems.  Thus, whenever we 
shall require a proof in those systems, the proof implies soundness.  Completeness on the 
other hand ensures that every true fact is provable.  Most formal systems of practical interest 
are not complete.  This is why we cannot expect provability whenever we require semantic 
truth, and not every sound and necessary claim of a dependability claim can be expected to 
be provable within the same formal system. 
 
 
8  Entailment and Proof obligations 
 
An Li-interpretation together with its structure Ui is the formal connection between the 
informal statements describing the claims and the evidence associated with the real domain 
entity i, i=1,2,3, and the formulae of the formal language Li used to formulate proofs and 
rules of inference.  In terms of these notions, the claims and evidence components of a 
dependability case must satisfy to the following obligations: 
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Entailment obligations 

Every: is entailed by: is expanded and provable 
from: 

Dependability Claim - - - environment-system 
subclaims  

Environment-System 
subclaim  

Environment evidence 
components 

Design subclaims 

Design subclaim Design evidence 
components 

Operational-
environmentsubclaims 

Operational-
environment subclaim 

Operational evidence 
components 

 
- - - 

   
    Items supported by structure U1 and language L1 
    Items supported by structure U2 and language L2  
    Items supported by structure U3 and language L3  
 

Figure 6: Structure and Language Inter-relations 

To be successful, a dependability case requires that, in each dimension i, i=1,2,3, 
every subclaim be the logical consequence of evidence components in this 
dimension, i.e. that these evidence components entail the subclaim.  Besides, the 
subclaim and the evidence components must reflect actual properties of the real 
entities. 
Therefore, in order to establish this semantic truth, in each dimension, an Li-structure 
must exist such that all Li-valuations which satisfy the evidence component formulae 
also satisfy the subclaim formula.  If the subclaim is a sentence, there must exist an 
Li-structure which is a model for this subclaim. 
 
Proof obligations 
Moreover, as we have seen in section 4, in each dimension i, each subclaim is 
expanded into (i.e. tanslated into) subclaims of the next dimension (i + 1).  The 
demonstration that this expansion is “right” - i. e. consistent and complete - requires  
the existence of a formal system in which each subclaim of dimension i can be 
derived (proven) from a set of subclaims of dimension (i+1).   

 
In other words, semantic truth is required for the use of evidence components to support 
subclaims, and a formal sound derivation of claims from subclaims is required to establish 
completeness and consistency of the subclaims.  These entailment and proof obligations are 
summarised in figure 6, and formally expressed in the following sections.  It is important to 
note that this table identifies logical relations only, and does not specify a top to bottom 
sequence in which subclaims have to be stated, evidence found and proof obligations 
discharged.   
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 L1 - Interpretations (environment - system) and obligations 
 
For a given dependability claim, say a formula or a sentence ϕa, there must exist an L1-
interpretation, i.e. an U1 structure which allows the valuation of the sets of L1- formulas 
and/or sentences: 

ϕa , Γenv-evidence and Γes-subclaims.  
 

where Γenv-evidence and Γes-subclaims are the expression of the environment evidence 
components and the environment-system subclaims of ϕa.   
At the semantic level, every L1-valuation which satisfies the set Γenv-evidence must also satisfy 
the set Γes-subclaims : 
 

Γenv-evidence ╞ Γes-subclaims 

 
In more intuitive terms, there must exist a body of environment-system evidence which, 
when true in an environment-system structure U1, makes also true the system subclaim.  If 
both the evidence components and the environment-system subclaims are sentences, it 
means that U1 must be a model of both. 

 
At the syntactic level, ϕa must be provable from Γes-subclaims :  

 
Γes-subclaims ├ ϕa . 

 
Thus, for every dependability claim ϕa, one must have: 
 

∀ϕa : ∃ U1, L1    ⇒   (Γenv-evidence ╞ Γes-subclaims ├ ϕa ), 
 
and also, because of the soundness of the the formal system: Γes-subclaims ╞ ϕa . 
 
Assume, as an example, that ϕa is the dependability claim of figure 1.  Then, the above 
condition states that there must exist a structure - e.g. equations or a simulation model -
corresponding to the thermodynamic behaviour of the coolant in the plant relevant parts 
(vessel, primary circuit, pressurizer).  In this structure, every set of values of T (temperature) 
and L (coolant level) corresponding to a steam bubble occurrence must valuate to true the 
condition expressed in the environment-system subclaim of figure 1.  Moreover, a language 
is needed to interpret this structure, to formulate ϕa and the environment-system subclaims 
from which it must be proved. 
 
 L2 - Interpretations (design) and obligations  
 
Similarly, for every environment-system subclaim, i.e. for every L1 formula, say 
ϕs ∈ Γes_subclaims, there must exist a design structure U2 and an L2-interpretation which 
allows the valuation of the L2 formulas and sentences:  
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ϕs , Γd-subclaims , and  Γd-evidence .  
 

where Γd-subclaims, and Γd-evidence  are, respectively, the design subclaims from which ϕs is 
provable, and design evidence components.  At the semantic and syntactic levels, one must 
have for every environment-system subclaim ϕs: 
 

∀ϕs ∈ Γes-subclaims :  ∃ U2, L2 ⇒  (Γd-evidence ╞ Γd-subclaims ├ ϕs), 
 
and also, because of the soundness of the formal system: Γd-subclaims ╞ ϕs. 
 
In the case of the monitoring system, assume ϕs is the second environment-system subclaim 
of figure 1.  “Correct executable code“ is then a design subclaim, call it ϕd, from which, if 
true, ϕs must be provable.  Evidence to support ϕd may, for instance, be provided by a tool 
which dissassembles binary code into a higher level language.  In this case the individuals 
and the relations of the structure U2 and the L2-interpretation should be, respectively, the 
elements of the binary code, the relations of the disassembling process and a L2 formulation 
of the disassembled code.  The L1 original formulation of ϕs should be provable from the L2 
disassembled formulation of ϕs.  Sections 9 and 10 will discuss the relations between the two 
pairs, U1, L1 and U2, L2, required by this type of proof obligation. 
 
 
 L3 - Interpretations (operational behaviour) 
 
For every design subclaim, i.e. for every L2 formula, say ϕd ∈ Γd-subclaims , there must exist an 
operational behaviour-environment structure U3 and an L3-interpretation to allow the 
valuation of the L3 formulas and sentences: 
 

ϕd , Γo-evidence , and  Γoe-subclaims , 
 

where Γo-evidence, and Γoe-subclaims  are the expressions of the operational evidence and of the 
operational-environment subclaims from which ϕd. is provable At the semantic and 
syntactical levels, one must have for every design subclaim: 
 

(∀ϕd ∈ Γd-subclaims ): ∃ U3, L3   ⇒   (Γo-evidence ╞ Γoe-subclaims ├ ϕd), 
 
and also, because of the soundness of the formal system: Γoe-subclaims ╞ ϕd. 
 
For example, assume that ϕd is the non-functional design subclaim that the monitoring 
system computations are fail safe in case of invalid input data and cause no spurious alarms 
(cfr. figure 3).  This subclaim is provable from different operational subclaims: 
 
(i) adequate anticipation of post accidental conditions impact on input device and computer 
equipment 
(ii) adequate anticipation of input devices and computer  failure modes 
(iii) robust (re-)calibration, periodic test and resetting in-service procedures 
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Evidence for these operational subclaims is provided by: 
- operational experience of plant, and accident scenarii, 
- operational experience of input device, computer hardware, power supplies and operator 
behaviour,  
- results of integrated tests, probation period, and operators reports.   
 
Individuals of the domain of the operational structure U3  should be the states of the operator 
and of the equipments mentioned above.  The U3 relations are determined by accident 
scenarii, failure modes, operator procedures.  Data provided by operational experience and 
integrated tests must valuate to true the operational subclaims formulated in an L3-
interpretation of this structure. 
 
 
9 Substructures and Embeddings 
 
Next, in order to understand how the structures Ui and the languages Li are inter-related, and 
the properties that they must satisfy with respect to each other, we shall need the notions of 
substructure and embedding. 
 
Let L’ be a language which is an extension of L, i.e. every L symbol is also a L’ symbol, 
and, in addition to the predicate symbols and constant symbols of L, L’ contains a set 
{Ri: i∈I’} of predicate symbols and a set {cj:j∈J’} of constant symbols.  
 
Given a L’-structure 

U’ = <A, {Ri} i∈I∪I’, {cj} j∈J∪J’ >, 
the L-structure 

U = <A, {Ri}i∈I, {cj}j∈J > 
is called [Bell 1977] the L-reduction of U’, and U’ the L’-extension of U. 
 
Next, let 

U = <A, {Ri}i∈I, {cj}j∈J > 
U‘ = <A’, {R’i}i∈I, {cj’}j∈J >. 

 
be L-structures.  We say that U is a substructure of U’, and we write U ⊆ U’, if A ⊆ A’, for 
each j∈J: cj = cj’, and, for each i∈I, Ri is the restriction of Ri’ to A, i.e. Ri = Ri’∩Aλ(i), where 
Aλ(i) is the set of λ(i)-tuples of A. 
 
For example, if L contains only the predicate symbol = , the function symbols {+, ×}, and 
the constants 0 and 1, then the set of integers is a L-substructure of the set of rational 
numbers. 
 
An L-embedding of U into U‘ is a one to one mapping T of A into A’ such that 
 
      (i)  <cj, cj’> ∈ T 
      (ii)  <a1,...,aλ(i) > ∈ Ri   ⇔  <a1’,...,aλ(i)’> ∈ Ri’, 
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for all i∈I, and for a1,...,aλ(i) ∈ A, where <a1,...,aλ(i) > is an ordered sequence of members of A 
which is an assignment of values to variables v1, v2, v3,... of  L, and for all pairs ai, ai’ such 
that  <ai, ai’> ∈ T.  An isomorphism of U onto U’is an embedding of U onto U’. 
 
Stronger relations between interpretations are useful in model theory.  U is said to be an 
L-elementary substructure of U‘, and U‘ an L-elementary extension of U if U ⊆ U’ and for 
any L-formula ϕ all of which free variables are assigned values from the domain of U, we 
have: 

U ╞ ϕ    ⇔    U’ ╞ ϕ 
 

for all possible value assignments of those free variables, and we write U p U’.  In other 
words, a formula (or sentence) ϕ is satisfied (holds) in U, if and only if it is also satisfied 
(holds) in U‘. 
 
An L-elementary embedding is an embedding T of U into U’ if for any L-formula ϕ all of 
which free variables are among v0,...,vn, we have  
 

U ╞ ϕ[a0,...,an]  ⇔  U’ ╞ ϕ[a0
’,...,an

’] 
 
for all a0,...,an ∈ A. 
 
It is obvious that if U p U’, then U ⊆ U’, but the converse is not true.  For instance 
[Mendelson 1987], if L has the predicate symbol =, the function symbol + and the individual 
constant symbol 0, then the structure U2I of even integers is a L-substructure of the structure 
UI of integers, but is not an L-elementary substructure: if φ[y] = (∃x)(x+x=y), then UI ╞ 
φ[2], but not U2I ╞ φ[2].  Note that U2I is embedded in UI with the function g such that 
g(x)=2x for all x in I.  So, an isomorphic substructure is not necessarily an elementary 
substructure nor an elementary embedding. 
 
Now, let us see how these concepts apply to our dependability case model? 
 
Assume ϕa is a dependability claim sentence, and U1 the structure in which ϕa is provable 
from the set Γes-subclaims of environment-system subclaims.  We have seen in section 8 that an 
environment-system subclaim, ϕs ∈ Γes-subclaims , must be satisfied in U1. ϕs must also be 
provable in a sound formal system from design subclaims, and therefore must also be 
satisfiable in a structure U2 through a L2-interpretation.   
Therefore, every ϕs ∈ Γes-subclaims which must be satisfied in U1, must also be satisfied in U2.  
By the same argument, every ϕd ∈ Γd-subclaims which must be satisfied in U2, must also be 
satisfied in U3. 
 
For these conditions to be fullfilled, it is obviously sufficient that U1 p U2, and U2 p U3.  
Sufficient, but not necessary, because all formulas that must be satisfiable and provable in 
U2 (U3) need not be satisfiable or provable in U1 (U2).   
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Two propositions on substructures provide tighter conditions.  It is possible to demonstrate 
(see e.g. exercise 2.99 in [Mendelson 1987]) that if U ⊆ U’, then: 

(i)  Let ϕ[v0,...vn] be a formula of the form (∀y0)...(∀ym) ψ[v0,...vn, y0,...,ym] where ψ 
has no quantifiers.  Then, for any a0,...,an in the domain of U, if U’ ╞ ϕ[a0,...,an], then U ╞ 
ϕ[a0,...,an].  In particular, U is a model for any sentence (∀y0)...(∀ym) ψ[y0,...,ym] where 
ψ contains no quantifier, if U’ is a model for this sentence. 
(ii)  Let ϕ[v0,...vn] be a formula of the form (∃y0)...( ∃ym) ψ[v0,...vn, y0,...,ym] where ψ 
has no quantifiers.  Then, for any a0,...,an in the domain of U, if U ╞ ϕ[a0,...an], then 
U‘╞ ϕ[a0,...an].  In particular, U’ is a model for any sentence (∃y0)...(∃ym) ψ[y0,...,ym] 
where ψ contains no quantifier, if U is a model for this sentence. 

 
In other words, universal (existential) assertions true in the expansion (in the substructure) 
are also true in the substructure (in the expansion) if they have no free variables, or if all 
their free variables receive values from the domain of the substructure [remember that 
(∃y)ψ(y,v) is an abbreviation for ¬(∀y)¬ψ(y,v)]. 
 
Corresponding propositions can also be demonstrated for embedded structures.   
 
Translated into our dependability claim model, conditions (i) and (ii) appear to be sufficient 
for all practical needs.  Therefore, it is sufficient that U1 ⊆ U2, and U2 ⊆ U3, or that these 
structures be embedded into each other. 
 
Thus, the environment-system structure U1 of a dependability claim should be the root 
structure of a tree of structure extensions. At the next level of this tree, there should be at 
most one distinct design extension U2 per environment subclaim, and one distinct 
operational extension U3 per design subclaim at the third operational level.  The domain of 
an extension contains the domain its substructure.  The relations of a substructure are the 
restrictions to its domain of the relations of its extension.  Substructures may be embedded, 
that is related to their extensions by means of a relation T between their domains, constants 
and relations.  These T relations express sufficient conditions for maintaining traceability 
between a dependability claim, its subclaims and their entail and proof obligations. 
 
 
10  Language Inter-relations 
 
Alike structures, the languages involved in the demonstration that a dependability claim is 
satisfied or holds in a L1-elementary substructure U1 are not independent. 
 
Let L’ be a language which is an extension of L, i.e. every L-symbol is also a L’-symbol.  
Then for each L’-valuation σ’, there is a unique L-valuation σ which agrees with σ’ on all L 
symbols. We say that σ is the L-reduction of σ’, and σ’ is said to be an L’-expansion of σ.  
In general an L-valuation has more than one L’-expansion. 
 
Let ϕ be an L-formula.  
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An S-form for ϕ (short for satisfiability form) is a formula ϕ‘ in some extension L’ of L, 
such that any L-valuation σ satisfies ϕ iff σ  has an L’-expansion σ‘ satisfying ϕ‘.  
A V-form for ϕ (short for validity form) is a formula ϕ‘ in some extension L’ of L, such that 
any L-valuation σ satisfies ϕ iff every L’- expansion σ‘ of σ satisfies ϕ‘. 
 
It results from section 8 that the language L2 should be an extension of L1. More precisely, 
for every dependability claim ϕa, the language L2, in which are expressed the design 
subclaims Γd-subclaims from which an environment-system subclaim ϕs is provable, should be 
an “extension” of the language L1 in which ϕs is expressed.  Moreover, the formula ϕs 
should have a satifiability expansion inL2. 
 
Similarly, L3 in which are expressed the operational subclaims from which a design 
subclaim ϕd is provable, should be an extension of L2 in which this design subclaim ϕd is 
expressed. 
Moreover, the formula ϕd should have a satifiability expansion in L3. Clearly, 
satifiabilityforms are necessary and sufficient to guarantee that subclaims remain satisfied in 
their expanded structures. 
 
These relations among structures and languages across subclaim dimensions are indicated by 
shaded areas in figure 6. 
 

 

11  Validation and Design  
 
Ideally, the techniques used in practice for the design and the validation of dependable 
computer systems should conform to the formal notions introduced in the previous sections.  
However, for real systems of reasonable complexity, the demonstration that the 
implementation satisfies the dependabilty claims, especially their non-functional 
requirements, is quite hard.  Design criteria, and requirement refinement are some of the 
classic concepts used to circument the difficulty.  More recently, object oriented techniques 
like reflection and meta-object protocols have also been proposed (see [Fabre 1998]).  The 
relationship between these concepts and the formal model outlined in the previous sections 
is briefly discussed below. 
 
• Design Criteria 
 
The real domain (D) designers have to start from in practice, consists of informal statements 
on: (i) the environmental properties and constraints that exist and must be maintained by the 
system; (ii) the application dependability requirements (probabilistic or deterministic), and 
(iii) evidence provided by the environment and the application (in terms of possible pre-
existing safe states, lines of defense, redundancy or diversity, operational procedures at the 
application level).  
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From these elements, designers usually infer appropriate design criteria (see e.g. [Börger 
1997]), in certain industrial sectors called design assumptions or safety design principles.  If 
satisfied by the real system implementation, the selected criteria are assumed to somehow 
guarantee the prescribed dependability requirements, especially the non-functional ones.  
Instances of design criteria are:  the single failure criterion, stable interfaces in time or value 
domains [Kopetz 1998], fail silent behaviour, isolation between safety and non-safety 
functions, safety margins.  In practice, the selected criteria are used to translate non 
functional requirements of the application into requirements for the design and the 
implementation. 
 
In many fields of application, the adopted design criteria result from a general engineering 
consensus and are imposed by standards.  They are sometimes taken - rather arbitrarily - as 
deterministic substitutes for non-functional system requirements.  Design criteria, however, 
are and should be considered as proper environment-system subclaims (as in the example of 
figure 3) from which the satisfaction of dependability claims needs to be demonstrated.  An 
environment-system structure or model, and a language interpretation are needed for this 
proof obligation which, contrary to practice, should be considered as an essential part of the 
dependability case.  Formally, the valuation of this structure should show that the design 
criteria are the logical consequence of environment-system evidence.  The language 
interpretation should allow the dependability claim to be proven from the design criteria.   
 
• Refinement Process 
 
In practice, because of the complexity of the design and its implementation, the 
demonstration that the design criteria are satisfied by the implementation should be - like the 
design itself - carried out in several steps.  A first specification of the design is shown to be a 
model for the selected design criteria.  This specification can then be refined into an 
implementation through successive reification stages.  The concepts of substructure and 
embedding can be used to formalise the syntactic and semantic aspects of these refinement 
stages, and also the conditions under which they preserve the design criteria. At the syntactic 
level, the successive language expansions used at each stage should then be shown to 
preserve satisfiability forms of the initial design specification and of the design evidence. 
 
• Reflection and Metaobjects 
 
The use of object-oriented techniques such as reflection and meta-object protocols has 
recently been proposed for implementing non functional requirements and fault tolerant 
mechanisms into a dependable application (see, e.g., [Fabre 1998]).  These generic 
mechanisms have their advantages but also their limits due, in particular, to the difficulty of 
the validation of their behaviour within a particular application (see e.g. [DeLemos, 
Romanovsky, 1997]).  This debate is outside the scope of this paper; but it is interesting to 
note that the formal model of section 8 may provide a formal description of these concepts. 
 
As an example, consider the non-functional dependability claim of figure 3.  The different 
attributes a PAM (post accident monitoring) function must enjoy - which are listed as design 
criteria in figure 3 - may be associated to a class of metaobjects.  At the semantic level, the 
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valuation of an environment-system structure, say U1, by environment evidence components 
must establish that an application object (function) specification together with these 
metaobjects specifications will behave as intended by the dependability claim.  At the 
syntactic level, this dependability claim should be provable through a language 
interpretation from the object and meta-object external specifications.  The structure U1 must 
be expanded into the design structure U2 of the functional object and of the meta objects.  In 
this design structure, design evidence must valuate to true the design specifications from 
which the external specifications of the functional object and the metaobject must be proven.  
The embedding T1,2 of the elementary structure U1 into a structure U2 is a relation which is a 
formal representation of the metaobject design reflection mechanism.  The domain of U1 is 
the domain of the reflection mechanism T1,2, the domain of U2 is the range of the reflection.   
 
Similarly, a design structure U2 could be extended into an operational structure U3 of the 
run-time behaviour of the functional object and of the metaobjects.  The embedding T2,3 of 
U2 into U3 formally corresponds to a run-time metaobject reflection mechanism. 
 
An issue is whether each of these structures U1, U2, U3 can be constructed as a set of separate 
substructures, one associated with a functional object, and one associated with each 
metaobject applied to the functional object.  If not, the metaobject protocol does not enjoy 
the semantic property of composability which is essential to the usefulness of the concept.  
The conditions that substructures must satisfy for composability could presumably be 
explored with model theory.  The properties required from metaobject and reflection 
mechanisms in order to be validatable might also be identifiable.  This work is in progress 
but preliminary results already raise interesting questions.   
 
Suppose, for instance, that U° is a structure corresponding to some functional object: 
U° = <{A, E, B}, {Ri

a}i∈I
a {Ri

b}i∈I
b, {cj}j∈J> 

where the elements of A are the non-faulty states of the object, E is a set of fault conditions, 
B is a set of faulty states, {Ri

a} is the set of relations corresponding to transitions between 
states of A, and {Ri

b}the set of relations corresponding to transitions from {A∩E} to B, and 
{cj} a set of constants. 
 
We would like to construct a meta-object which, when applied to (reflected upon) a 
functional object transforms this object into a fault tolerant object which, instead of moving 
to states of B when faults are activated, moves to a set of safe states, say S. The fault tolerant 
L-environment-system structure which should result from the application of the meta-object 
on U° should be: 
U1 = <{A,E,S}, {Ri

a, Rk
s}i∈I

a
  k∈I

s, {ck}k∈K> 
where {Rk

s}is the set of transitions from {A∩E} to S and has the same domain as {Ri
b}, and 

where {ck}k∈K  contains {cj}j∈J . 
 
The meta-object structure, say Umo, should be applicable independently from the specific 
functionality of U°, essentially defined by A and {Ri

a}i∈I
a.  It should therefore be restricted 

to: 
Umo = <{E,S}, {Rk

es}k∈I
es, {cq}q∈Q> 
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where the domain and the range of {Rk
es} are E and S, respectively, and {cq}q∈Q is a subset 

of {ck}k∈K .  
 
First, we observe that the structure Umo is a substructure of U1 iff Rk

es is the restriction of Rk
s 

to E.  In other words, the transitions to B or S must depend on E only, and the safe states in 
the fault tolerant metaobject must be independent from the current operational state in A.  
This may be a serious restriction in practice. 
 
A second observation is that U° is neither a substructure nor an L-embedding of U1.  The 
domain of U° is not contained in U1, and the relations of U1 cannot be restricted to those of 
U°.  Therefore, formulas or sentences which are satisfied in U° are not necessarily satisfied 
in U1 and conversely.   
 
A third observation is that U1 is not the result of a direct product construction of U° by Umo.  
The direct product is defined as followed for a simple case (see e.g. [Bell 1977]).  Let for 
each i∈I, where I is an arbitrary non empty index set, Ui = <Ai,Ri> be an L-structure with a 
non-empty domain Ai and a single binary relation Ri.  Let Πi∈I Ai = A be the cartesian 
product of the sets Ai.  Let f,g denote elements of A. The direct product Πi∈I Ui of the family 
{Ui : i∈I} is the structure <Πi∈I Ai,Q>, where Q is the set of all pairs <f,g> such that 
<f(i),g(i)>∈Ri.  It is clear that, in the case of the metaobject, the domain of U1 is not the 
cartesian product of that of U° by Umo . 
 
Conditions for the composability of structures remain to be explored.  With the use of 
ultrafilters, fundamental results in model theory like the Los’ theorem on ultraproducts (see 
e.g; [Bell 1977, Mendelson 1987]) might provide a way to identify the conditions under 
which given formulas which are satisfied in U° and Umo are also satisfied in U1. 
 
 
12  Open Issues and Concluding Remarks. 
 
This work is only a preliminary step towards the identification of structures, interpretations 
and languages necessary for the semantic, syntactic and logical treatment of an application 
dependability claim, and for the analysis of the convergence of its associated evidence 
components.  Further work is needed to explore the properties of these structures; but the 
mere fact that this first step was feasible is encouraging in itself.  Models of the kind we 
have discussed should contribute to more reliable and efficient dependability cases, in 
particular by helping licensors, designers and licensees to better understand each other. 
 
On the other hand, the proof obligations and the language properties required by the theory 
appear to be quite constraining, and probably difficult to realise in practice.  These 
obligations and properties should therefore be essentially regarded as guidance for reforming 
and improving design and validation practices, at least for systems in need of a strict 
validation and licensing process. 
 
The simple axiomatic model outlined here offers of course various possibilities for 
enrichement and further investigation. 
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First, the model implicitly shows that each dependability claim of an application can be 
expanded into subclaims and dealt with separately from other claims on the same 
application.  This separation of concerns contributes to traceability, and - although not in 
current usage - should be recommended in practice.  It also allows for the “reuse” of 
subclaims and evidence components for different claims, and in principle allows systems to 
be composed of subsystems “imported” with claims transposed as subclaims in the 
dependability case of the composed system. 
 
Secondly, we have dealt with deterministic and positive evidence only, but the approach 
could be extended to integrate plausibility or probabilistic measures of confidence associated 
with components of evidence, and possibly components of counter-evidence.  At any rate, 
the topology - nodes and edges - of a belief bayesian net for an application claim (see e.g. 
[Courtois 1998]) - instead of being arbitrarily or subjectively derived - could be more 
formally based on a three dimensional structure. 
 
Third, the separate treatement of claims, however, leaves aside the issue of demonstrating 
the completeness and consistency of the set of claims which compose a dependability case.  
Another dimension added to the model - i.e. an application based structure and interpretation 
like a complete and consistent set of postulated initiating events (PIE’s)- is a possible way to 
integrate this demonstration. 
 
Finally, for the simplicity of the analysis, we have considered the dependability case as a 
static, complete case, all evidence components being available.  In reality, of course, the case 
evolves as the project progresses.  In the earlier phases, environment and system evidence 
only is available.  Then design evidence accumulates as the hardware and software are being 
developed.  Once (parts of) the system can execute, operational evidence of actual 
experience and maintainability becomes available.  The structure of a dependability case, as 
shown in figure 6, with its successive subclaim expansions and proof obligations is suitable 
to allow this progression. 
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