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1. Introduction Springer Verlag.

The Markov chain remains one of the most useful and flexible techniques for the
evaluation of the performances and of the reliability characteristics of models of communi-
cation and computer systems.

Often, however, in order to attain a sufficient level of realism in the model, a large
number of states need to be taken into account. Models with 10.000 states and more are
not unusual (see e.g. [7]). The definition, construction and manipulation of the correspond-
ing large transition matrix may then be far from easy.

These large state spaces are especially frustraling as one is often interested in charac-
teristics ot the system thal are primarily related to the behavior of a subchain only, and
that depend only indirectly on the other states of the model. It becomes interesting in this
case 1o restrict the analysis to the subchain of interest, even at the cost of an approxima-
tion, provided that the the accuracy of this isolated analysis remains known and tolerable.

This paper outlines the principles of a simple method suggested by my colleague P.
Semal and mysell (see [2,3] for more details) to alleviate these difficulties. The method
consists essentially in computing lower and upper bounds on the visiting rates and on the
equilibrium state probabilities of a subset of states of a chain when the submatrix of transi-
tion probabilities between the states of that subset only is accessible. These bounds, based
on recent results [3] in Linear Algebra, have been shown to be the tightest ones that exist
in that case; a more intuitive presentation of their properties will be given here in terms of
probability arguments.

The method should be especially useful in the steady state analysis of large or infinite
maltrices that can have many identical diagonal submatrices, such as those encountered in
queueing models. To illustrate this point we will use the method to compute bounds on the
probabilities of blocking in a network of finite capacity queues.
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2. Bounds on Steady State Probabilities

Let us consider a Markov process described- by the following matrix of transition pro-
babilities
[Qlnn [Bluxm

. (.1)
[Flnxn [Glmxm

where the states of interest are supposed to be collected in the aggregate S the transition
probabilities of which are given by the submatrix Q. We are interested in that part of the
equilibrium probability vector of the Markov chain which corresponds to the states of S. If
Q is irreducible, this equilibrium subvector, say v, is also solution of the matrix equation
(see [6] for instance):

=l Q+ E(I—G)-lF]iuTﬁ, (2.2

where G is stochastic and E(I-G) ! F> 0, so that Q> Q, elementwise.

If only the block Q is available, and not E, G, and F, equation (2.2) cannot be used to
evaluate v. But lower and upper bounds on v can be obtained in the following way.

It follows from a theorem in [3] that the Perron-Frobenius vector v of any non-negative
matrix @ which is of the same size as a non-negative irreducible matrix @, and which is ele-
ment wise equal or larger than @ ie. (§= Q), is a convex linear combination of the normal-

ized rows of (I - Q)~! ; more precisely:
A
M=(1-@), (2.3)
and let Z be the row normalized version of M :

Zij’i M"J léijﬁn-

k

(2.4)

Since @, like @, is irreducible, v is unique up to a multiplicative constant and v is a convex
linear combination of the rows of Z, i.e. :

JpTert, pT1=1: vV'=677, (2.5)

where 1 is a column vector of 1, and where % is defined by (2.4). An immediate consequence
of this convex linear combination is that the component of the equilibrium probability vec-
tor v are bounded by

o B e
(V); = min By < v; < maz Ty = (v°0); (26)

3. Probabilistic Interpretation.

These bounds may receive a probabilistic interpretation[4]. Consider the absorbing
Markov chain associated with matrix @ and obtained by replacing G by one absorbing state:

[Qlrsn [Ellax
(3.1)

(0] [1lia



For any pair (1.7) of states of S, let M;; denote the average number of times that the tran-
sient process defined by Q started in state 4, is in stale j before being absorbed by the
{n+1)* absorbing state. By definition, these quantities satisfy the following recurrence

equations :

ui;=6ﬁ+§qun;,-, (3.2)

which can be rewritten in matrix form as :
M =I+QM ={I-Q)". (3.3)

The matrix M* is thus identical to the matrix M defined in (2.3), and the element (i,5) of the
matrix Z, defined in (2.4),

7 = Z’Lﬂ’w 2 ‘i‘:ﬂ , (3.4)

is the relative rate of visit to state j, when the process defined by Q is started in state i.
The sum o; is the average total number of transitions before absorption when Q is started

in state 1i; and the row vector

%= (T Tz Hen) (3.5)

is the vector of relative visit rates to the states of S when the process is started in state <.

The bounds (2.8) have therefore the following meaning. The steady slate conditional
probability of being in a state 7, given that j belongs to a subspace 5, is comprised between
the maximum and the minimum relative visit rate to state j before absorption when every
state of 5 is considered as a possible starting state.

The inequalities {2.8), together with the meaning attached to (3.5), have several other
interesting consequences. Assume that in the decomposition (2.1), the matrix F has only
one non-null column, say the i one. Then, the only state by which subset S can be entered
from outside is state i. In this case, the vector % is precisely equal to the vector v. More
generally : if matrix F has two non-zero columnns, say columns i and j, then the solution v
will be a convex combination of Z, and %; ; and if all the columns of matrix F are non-null
then v will be a convex combination of all the % ,i=1,...,n. A proof of this property is given
in [2].

We have also proved in [2] that the relative visit rate to a state j is maximum when the
process is started from that state j. Inequalities (2.6) can therefore be rewritten as :

(me)j:mg;n(zc;;')ﬁ?/jﬁméﬂ(zij)zzjj=(VsuP)jv (3.6)

Note that the state i which minimizes the relative visit rate to a state j cannot in general
be characterized more precisely; in each case, it will depend on the relative values of the
visit numbers M; and on the absorption times o;. However, as described in the following
section, more precise characterizations can sometimes be obtained.

Finally, it is proven in [2,3] that these bounds are the best ones that can be obtained

from the submatrix Q in the sense that a sfochastic matrix Q Q= Q, with an equilibrium
state vector which attains these bounds always exists. No conditions on the matrices E, F



and G are required for the existence of the bounds. However, the smaller the elements of E
are, the closer Q is to Q and, of course, the tighter the bounds are. A detailed analysis of
their accuracy can be found in [2]; some essential aspects will be mentioned at the end of
the next section.

4. An Example : Two Coupled Finite Queues with Coxian Service Distributions.

A major application of the bounds (2.6) is the analysis, with known accuracy, of the
behavior of a subsystem in isolation of the remainder of the system of which it is a part.

4.1. The Model
A simple but rather typical example which can illustrate this type of application is pro-

vided by the subsystem shown on Figure 1. 1-5
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Figure 1.

This subsystem consists of two finite queues, each with a two-stage coxian server. The
total number of customers in service or in queue at each server is al most M, and M,
respectively. Customers arrive from the rest of the network with Poisson arrivals A; and ig;
upon service complelion, they join the other queue with probability 8, or 8y, or leave the
subsystem with probabilities (1-8;), (1-8;). This model can be viewed as a simplified version
of a message switching node with finite capacity buffers, and with two input and two output
communication lines.

The state of the subsystem is defined by the quadruple (¢y, 54, 1z, 53), Where 4; ,(i; < M)
is the number of customers at server j, and s; (s; = a or ) is the stage of the customer in
service at server j, j=1,2.

Ii all states with same value (ip s;) for server 2 are grouped together and if these
groups of states are arranged in the order (igsg) = (0}, (1a), (1b), (2a), (2b), - - - {(Mzb), the
matrix of transition probabilities has the regular structure shown on Figure 2.

The diagonal of D consists of (2M, + 1) blocks each of which comprises all the transi-
tions at server 1 for a given state (izsp). These diagonal blocks D{0), D(1a), D{1d), H2e), - -
are all identical except for their main diagonal elements (x) which are the complements to
one of the corresponding rowsums of the off-diagonal elements in D ; each block has size
(2#, + 1) and an internal structure very similar to that of D (see Fig. 3).
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The transition rate between the two coxian stages at server 1 is ¢, = uP{l—a,);
2% = ufa{1-8,) and =% = uf(1-4,) are the probabilities of a departure from the subsystem
at these stages.

The off-diagonal blocks L, correspond to a service completion at the stage a of server 2,
with 2% = u#(1-6,) and k$ = 8, uf a; (see figure 4); the blocks Iy, are identical with 2§ and R}
elements instead.

The blocks U correspond to an arrival al server 2 and are independent ol Lthe stage of
that server (see figure 5.).

The blocks C in the matrix D correspond to transitions from stage o Lo stage & at
server 2; these blocks are diagonal matrices with ¢, = uf(1-a5) on their diagonal.

4.2. Blocking Probabilities.

Suppose that we are interested in estimating the steady-state probability of a custo-
mer being rejected al queue 1 when this queue is full Without solving the entire matrix D,
bounds on this probability can be derived from bounds on marginal probabilities in the fol-
lowing way.
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Figure 5. An Upper Block U, (h§ =6, pfa,, Rt =6, uba,)

The probability of rejection at queue 1 is equal to :
[ hE X Prob(i,=M,,i370,55=a } | 4+ [ A8 x Prob (i,=M,15#0,5.=8 ) ] + [A;x Prob (i,=M,) ]
We will show how bounds can be obtained on the first of these three terms; the procedure is

quite similar for the two other terms.

s
Let X® = Prob(iz=j,sz=a or b ), and let also

A
nkmmlj)=Prob (i, =k,s,=m,s;=nliz =), m.n,=a,b ,

where the variables s,, s; are missing when i,, iz =0 respectively.

According to the results presented in Section 2, upper and lower hounds on
v, (k.m,n l7) are provided by the maximum and the minimum element of the column
corresponding to state (i, =k, s; = m, 4z = j, s = n) of the normalized inverse of the diago-
nal block of {I — D) which corresponds to states {i; = 7).

If v; (k,m.nlj) and v, (k.m,nl|j) are these upper and lower bounds, we have
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For j=1,..M-1, all (¥, s. e 14} are equal since the corresponding diagenal blocks of D
are identical. Thus

Prob{i,= My, iz # 0,5, =a)< {1 — X§® M, s al
ob{i, = M), iz 2 y={( 5 >J(M 13Mz(s,§by1( 1.8y, i),

while a lower bound on X§? is given by

ée’azxm Y v (0 s||1)> min (5 a0, silg)).

=0 8y=e.b My §=a.b

In the same way, a lower bound is given by

E
Prob(i; = H, iz # 0, sg=n)= % X Y El(Ml,Sl.mu),

j=1 §y=a.b

= (1 - X§) ml}l} (Y wMy s als),
1 sy=a,b
with

2
X < e (312 ) 7a(0, 5117) .

Upper and lower bounds on the marginal probabilities v, are obtained from the normalized

rows of inverses of the form
-1

1-D, .C
(4.1)
o 1-D
such inverses reduce te
(1 — Da )_1 B
(4.2)

0 (1-Dy)"

whith B=(I-D, ) 'C{I-D,)?, since C are diagonal matrices. Thus, the computation com-
plexity for bounding the probability of rejection at queue 1 reduces in this example to the
computation of a few inverses of order (# + 1) or (M, + 1); their total number is actually
five here, three of order (M,+1) and two of order {#,+1).

4.3. Accuracy.

The quality of the bounds depends mainly on three facters: (1) the existence of com-
paratively small values for the probabilities of leaving the subsystem state space, (R) the
distribution over the subsystem states of the probabilities of return to the subsystem, and
(3) the similarity of the subsystem visit rates to any given state of its subspace. Let us dis-
cuss the influence of these three factors in the context of our example.

As stated earlier, the smaller the elements outside the diagonal blocks are, the tighter
the bounds will be. In this example the accuracy will thus be better when L, Is and U have
comparatively small elements, and especially small non-diagonal elements. Indeed, the
diagonal elements in these blocks correspond to tramsitions which leave the subsystem



under analysis in the same marginal state, and have thereby less influence on the varia-
tions of the marginal equilibrium vector from block to block. The accuracy of the bounds
will therefore depend primarily in this example on 8, 8, up and A, being small compared to
the other parameters.

The second factor affects the tighiness of the bounds in this example through lhe spe-
cial tridiagonal block structure of the whole matrix D. Upon leaving a subsystem through a
state belonging to a subset D, or Iy, the probability of returning to a state of D, is much
higher than the probability of returning to a state of D,. The computation of the bounds
which is based on the assumption that all states of the subsystem may have probability one
of first return does not take that special structure of the entire matrix into account. For-
tunately such block structures often mekes possible to obtain a better lower bound matrix
for Q in equation (2.2). A first approximation of E{(#! —G) 'F can be easily computed. If the
entire matrix has the form

a lower bound matrix for the exact stochastic matrix Q, which is defined by (2.2) and which
corresponds to @ , is given by

Qo+ (T-Qu) i + L {1-Q) Ui (4.3)

This technique is applicable in the example above, but the normalized inverses do not
keep Lhe structure (4.1) and, therefore, cannot be reduced to (4.2).

As for the last factor, it is clear that the bounds on the equilibrium probability to a
given state of a subsystem will be far apart if the visit rates to that state before absorption
differ much depending on the state of departure. As explained in [2], this is typical of sub-
matrices with a poor separation of the modules of the dominant eigenvalues, like, for
instance, reducible or nearly reducible matrices. For the same reason, as we shall see In
the mext section, tridiagonal matrices may also lead to visit rates which differ substantially

from one another.

5. Concluding Remarks

This example shows how bounds on particular performance measures can be obtained
at lower computational cost by restricting the analysis to the state subspace of interest.

The discussion in Section (4.3) reveals, however, that matrices representing queueuing
networks do not have necessarily the best characteristics to guarantee thight bounds. But,
as shown by some numerical examples in [5], the accuracy may often be sufficient in prac-
tice. Moreover, it should be possible to exploit more thoroughly the possibilities mentioned
in Section (4.3) to construct better lower bound matrices for the diagonal blocks of certain
typical queueing network matrices.



The bounds are sometimes easy to compute. The case when the submatrix Q in (2.1) is
tridiagonal is of special interest because many gqueueing submodels involve such matrices.
It is possible in this case [5] to obtain a formal definition of the elements of Z, the normal-
ized version of (I — @)™}, as well as recurrence relations to compute these elements. More-
over, it is then proved that in every column of Z, the largest element is always on the diago-
nal and the smallest one is always either on the first or last row. This result yields a more
precise formulation of the bounds since (2.6) become in this case

min{Zyy, Zng) < vy = 2y

The intuitive meaning of this result is clear. In a Lridiagenal Markovian process, a state
is reachable from another state only by passing through all "intermediary” states. The rela-
tive visit rate to a state is thus minimum when starting from the "most distant” state
which, in this case, is either state 1 or state n.

When the tridiagonal submatrix reduces to the model of a random walk with two bar-
rier states, it is even possible to express the bounds as explicit functions of the size of the
submatrix and of its upper and lower diagonal.

Since the bounds presented here are the tightest ones that can be derived from a
given transition subrnatrix corresponding to a subsystem, and since many subsystems have
structural properties that can be exploited to compute these bounds efficienitly or even for-
mally, the method is likely to have much practical interest.
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