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Abstract. A new method to bound the steady-state solution of large Markov 
chains is presented. The method integrates the concepts of eigenvector 
polyhedron and of aggregation. It is specially suited for Markov chains with 
high locality and very large state spaces. 

A model of a repairable fault tolerant system with 16 millions states is used as 
an example. Bounds on its availability are obtained by considering a small 
part of its state space only. The method is potentially useful to bound other 
types of dependability requirements. 

 

1 Introduction 
This paper introduces a new technique which can be used to efficiently 
compute lower and upper bounds on reliability and availability measures in 
very large Markovian models of computer fault tolerant systems. By large 
models, we mean models that may have millions of states. Only the 
principles of the method are presented. The interested reader may find 
additional information in [Semal 1992]. 

The technique is based on decomposition and aggregation. The principle of 
aggregation is simple, but not easy to apply. Subsets of states of the model 
are replaced by single aggregated states, and the system macroscopic 
behaviour is modelled by the transitions between these aggregated states 
only. These transitions between subsets are obtained from the transitions 
between the individual states of the subsets. The objective is an economy of 
computation. The difficulty comes from the fact that, except for simple or 
degenerated cases, the transitions between two subsets are not simply 
obtained from the superposition or the addition of transitions between their 
individual states; these transitions depend on, and must be weighted by the 
relative probabilities of these individual states. These probabilities are 



  

unknown, so that, in general, approximations must be used. It is therefore 
impossible, except for very restricted cases, to obtain exact results by 
decomposition and aggregation, and the accuracy of the method is an 
important issue. 

In the 70's and 80's, much research work has been done on the estimation of 
the approximation error for different techniques of aggregation. The 
approach taken here is different. In [Courtois and Semal 1984], we found 
possible, when each subset is considered in isolation, to determine lower and 
upper bounds on the relative steady-state values of the variables and 
probabilities associated with each state of that subset.  

In this paper we apply this result to the efficient computation of bounds on 
the (un)availability or reliability of system markovian models that are too 
large to be generated and analysed in their entirety. 

2 An Example 
We shall explain the technique by applying it on a real system model taken 
from [Muntz et al.1989]. The system is a fault-tolerant and repairable data 
base and is shown on Figures 1 and 2. It is made of 24 components, each 
component (front end, processor switch, processor, memory, bus, disk unit) 
being supposed to be in one of two states, failed or operational. The system is 
assumed to remain operational as long as there exists at least one path made 
of operational components connecting one front-end to one disk unit.  

There is one single repair facility, the components being repaired on a fixed 
priority scheme in case of simultaneous failures. Repair times and inter-
failure times are assumed to be exponential random variables, with rates in 
the ranges of [1.0 - 3.0] and [1.125 10-4 - 40 10-4] respectively. 

The total number of distinct states of this model is 224 states, i.e. more than 
16 millions states. In order to compute the availability of the system, one 
needs to know the steady state probability of all those states in which the 
system is operational. The vector x which contains these probabilities is the 
steady state vector of the transition probability matrix Q of the system, and is 
solution of the equation  

x x= Q  (1) 

Grouping together the states with I failed components in block I leads to a 
block matrix Q which is block tridiagonal since, all random variables being 

 



  

exponential, the probability of more than one component failing or being 
repaired in a same transition is negligible: 
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For the same reason, all the elements of each diagonal block QII  are null 
except on the diagonal. Transitions between states are non zero between 
states of different and adjacent blocks only. The vector x is too large to be 
computed exactly; in double precision, its mere storage would already 
require 128 Mbytes. To obtain upper and lower bounds on some of its 
elements is however possible. The diagonal structure of Q and the 
differences in magnitude of the failure and repair rates are not indispensable, 
but will be useful for the computation of these bounds. 

3 A Useful Polyhedron 
A short interlude in matrix algebra is needed because the method is based on 
a fundamental result in Linear Algebra [Courtois and Semal 1984, 1985]. 
Suppose that B is a non-negative and in this case stochastic matrix of which 
we only know a lower bound matrix L. More precisely: 

RLB +=  (3) 

where L ≥ 0 is known, R ≥0 is unknown, and both have same size as B. 
Then, if ν is the steady state vector of B, we can write: 
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where β is a non negative vector whose elements sum up to one, and Σ-1 is 
the inverse of a diagonal matrix which simply normalizes the rows of (I - L)-
1 so that its resulting normalized rows ri also sum up to one. This result 
expresses the fact that the eigenvector ν of matrix B is a convex combination 
of the rows of the known matrix Σ-1 (I - L)-1 . Therefore every element νj is 
bounded by: 

{ } { }ij
i

jiji
rr maxmin ≤≤ν  (5) 

These bounds have an intuitive significance. If L is a substochastic matrix, 
and is a block embedded in a larger stochastic matrix, the element rij is the 
rate of visit to state j when the subsystem L is started in state i before the 
occurrence of a transition leading outside L. Equation (4) also means that the 
vector ν belongs to the polyhedron defined by the rows ri.  

In other words, if we are interested in the steady-state vector ν of a matrix B 
for which a lower bound matrix L only is known, then ν cannot be exactly 
determined, but it can be bounded by the space spanned by the convex 
combinations of the rows ri, i.e. by the polyhedron that we shall note 
P[(I - L)_1], and which is defined by these rows. The inequalities (5) are the 
most practical consequence of this property. Note also that the larger L is, i.e. 
the closer to B, the smaller the polyhedron and the tighter the bounds 
become. Besides, it is proved in [Courtois and Semal 1984, 1985] that, given 
L, the polyhedron and the bounds are the tightest ones that can be obtained.  

4 The Method 
How can we apply these results to compute bounds on the availability of a 
system such as the one described in Section 2 ? 

Consider again the matrix Q, defined by equation (2), where QII is the block 
of transitions between states with exactly I failed components. Apply the 
same partitioning to its steady state vector x, and define χIνI as the steady 
state vector corresponding to block QII. χI is the marginal probability of 
being in any state of the set I. νI is the vector of conditional probabilities for 
the individual states of that subset.  

First we have to compute the bounds of these conditional probabilities; 
those of the marginal probabilities will be computed in Section 7. 

 



  

The vector νI can be obtained in the following way. Rewrite the matrix Q as: 
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Then, solving Equation (1) for νI leads to: 

( ) IIII II νν  = (I)))(-)((+  -1FGIEQ  (7) 

where the matrix is called the Schurr complement of 
QII, is non-negative, and has the same size as QII. In practice, the 
computation of this Schurr complement is prohibitive, since E(I), G(I) and 
F(I) are almost the same size as the whole state space. However, it is quite 
possible to bound it from below, and, by application of Equation (4), to 
obtain the polyhedron which contains νI. For instance, if this bound is taken 
equal to 0, one would obtain that: 
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or, if one can easily compute a lower bound matrix S(I) such that: 

0 ≤ ≤S E I G F( )I I I( )( - ( )) ( )  -1 I  (9) 

one can obtain a tighter polyhedron: 
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and tighter bounds (5).  

A lower bound matrix Sp(I) similar to S(I) can be obtained at little cost by an 
iterative procedure which is explained in the following section. 

5 Iterative Procedure 
Suppose for a moment that we already have a first approximation of the 
conditional probability vectors νJ for all the blocks J others than I. Then we 
can compute the transition probabilities between any pair of blocks not 
involving I; the block transition probability between block J and K is given 

 



  

by the scalar νJ QJK1', where 1' is a column vector of one. If we keep the 
bloc QII unmodified, then Q reduces to a matrix Qp where each block except 
I corresponds to a single state:  
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Each block (K,I) in column I is replaced by a row vector νKQKI of 
probabilities out of K to each individual state of I. Each block (I,K) in row I 
is replaced by a vector QIK1' of transition probabilities out of each 
individual state of I to block K.   

If we rewrite Qp as 
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the reduced steady state vector Xp of Qp which is equal to  

( )NIIIIX χχνχχχ ...... 110p +−=  (12) 

is solution of the equation  

PQpp XX =  (13) 

and the conditional distribution νI is given by: 

 FG-I(E+ Q  p)ppIIII
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where the Schurr complement involves an inverse (I - Gp)-1 of size 

(N-1)×(N-1) only. 

 



  

Now, if we have a first set of lower bounds on the vectors νJ , J ≠ I, we can 
obtain a lower bound matrix Sp at low cost in terms of these bounds, 
compute a new polyhedron for νI, new bounds, and then a set of new 
matrices Sp, and so on. This process can be iterated indefinitely, starting with 
a set of initial values for the vectors νJ obtained for instance by equation (8), 
the initial matrices Sp being taken equal to 0. The sequence of Sp matrices is 
non-decreasing, and the sequence of polyhedra non-increasing. The process 
does not diverge. However, because matrices are at each iteration substituted 
with lower bounds only, some information is never taken into account, and 
polyhedra will not eventually reduce to a single point, nor the bounds to the 
true vector.  

An attractive possibility of this process is to restrict the analysis to the 
conditional distributions of interest, with only the corresponding parts of the 
Markov chain being needed. 

6 Tridiagonal Matrices 
The computation of the matrices Sp is further simplified when the matrix Q, 

as in our example, is block tridiagonal.  

As shown in [Semal 1992], the Schurr complements involve no inverse. 
What needs to be added to QII to obtain the bounds on νI , are the 
transitions to the two immediately adjacent blocks only. The equation (14) 
which defines νI reduces, in this case, to: 
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Therefore, bounds on νI-1and νI+1only are needed to obtain those on νI. 

7 Bounding The Marginal Distribution 
If bounds on elements of the complete vector are needed, one must also 
obtain bounds on the marginal distribution vector χ. These bounds can be 
obtained by a procedure similar to the one described above. The marginal 
distribution is the steady state solution of the matrix P of transition 
probabilities between blocks: 

NJI1QP IJIIJ ,...,,' 0==ν  (16) 

 



  

With lower bounds on the vectors νI , one can construct a lower bound 
matrix for P. If LP (≤ P) is this matrix, then one has that χ ∈ P[(I - Lp)-1], 
from which bounds on the elements of χ are readily obtained.  

Moreover, if, as it is typically the case (e.g; our example), the matrix Q is 
block tridiagonal, then the matrix P is tridiagonal., and tighter bounds can be 
obtained in the following way. A lower bound on χ0 is obtained by 
maximising the elements of the upper diagonal of P (i.e. the transitions away 
from block 0), and minimising those of the lower diagonal (the return 
transitions to block 0). This tridiagonal matrix can then be solved 
analytically. The technique can be repeated for each component of the vector 
χ. 

8 Complexity 

Thus, when bounds on the complete solution vector x are needed, the general 
method works as follows. For the conditional distributions νI of interest, 
polyhedra are computed iteratively as shown by Box 1 until some criterion of 
convergence is met.  

 

While (convergence criterion is not met) do: 

 step 1.1 Select I 

 step 1.2 Compute the lower bound matrix Sp(I) 

 step 1.3 Compute the polyhedron P[ (I - QII - Sp(I)) -1] 

 step 1.4 Derive bounds on νI from this polyhedron. 

BOX 1 

 

step 2.1 Compute the lower bound matrix Lp 
step 2.2 Compute the polyhedron P[ (I - Lp)-1] 

step 2.3 Derive bounds on χ from this polyhedron 

BOX 2 

 

 



  

Polyhedra for the marginal distribution χ are then computed as shown in Box 
2. In [Semal 1992], the computation aspects of each of these steps are 
discussed, and simplifications and optimisations are given. Some of the most 
essential ones concern the polyhedra which are all computed from matrix 
inverses of the form (I-L)-1 When the matrix L tends to a stochastic matrix , 
the polyhedron tends to a single point, which is the Perron-Frobenius 
eigenvector of L. However, the computation of the inverse becomes ill-
conditioned since an eigenvalue tends to zero. The existence of such a small 
eigenvalue (1 - ρ(L)) is however a good sign. It means that the polyhedron is 
almost uniquely defined by the eigenvector corresponding to this eigenvalue. 
The other eigenvalues and their eigenvectors introduce perturbations only, 
while in fact they are responsible for enlarging the polyhedron from a single 
point to a set.  

Attention must therefore be given to this eigenvalue (1 - ρ(L)) during the 
computation of the inverse. If it reduces to round-off errors, the best 
alternative is to consider the lower bound matrix L as being stochastic, and 
take its Perron-Frobenius vector as the exact value of the vector to be 
bounded. In all our numerical experiments, however, this eigenvalue 
remained away from zero, i.e. between 10-6 and 10-1. Note also that the 
determination of a polyhedron P[A] requires the computation of the 
normalized rows of A only. Normalisation factors can therefore be 
introduced at any stage of the polyhedron computation. 

Note that the brute force computation of an inverse of the form 
(I - QII - S)-1 requires O(nI

3) operations, where nI is the size of QII and of S. 
This amount is already prohibitive in many applications. It can be reduced 
because this inverse can be computed as a rank N update of (I - QII)-1 , 
where N is the rank of the perturbation matrix S, and because (I - QII)-1 
usually can be obtained cheaply. In many models, indeed, and in availability 
models in particular, the diagonal blocks QII are such that the matrix (I - 
QII)-1 remains very sparse. In models of repairable fault-tolerant systems for 

example, the fill ratio of this inverse is at most equal to the inverse of , 

because system states with distinct failed components do not communicate 
through QII, and thus QII is diagonal. In those cases, one can use the 
expression (see [Semal 92]): 
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where the matrices U ∈ , and V ∈  can be computed in 

O(N3 + N2nI + NdI) operations, where dI is the number of non-null 
components in ( . The number of operations remains thus linear in 
n

R NnI × R InN×

) 1−− IIQI
I. If (I - QII )-1 is not sparse, (NnI

2) operations will be necessary, which 
represents a substantial saving compared to O(nI3). Further reductions in 
complexity are possible, and discussed in [Semal,1992].  

9 The Example Revisited 
Our 224 state space example of section 2 illustrates very well how the 
method can yield interesting results at surprising low cost. Because of the 
size of this state space, our objective is to bound the marginal distribution χ 
and a few conditional distributions νI only. 

As said earlier, grouping the states with I failed components in block I leads 
to a stochastic matrix with diagonal blocks QII which are themselves 
diagonal. The inverses (I-QII)-1 are thus also diagonal. The bounds on νI 
were obtained using the equation (15). Two procedures were coded. A first 
procedure is needed for the first iteration and must assume that bounds on νI-
1 only are available when computing the bounds on νI ; the following lower 
matrix ⎯derived from (15)⎯ is used for this purpose: 
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S(I) is a rank one matrix; using (17) the rank one matrices U and V are 
determined in O(nI) operations. This matrix S(I) is also used to compute the 
bounds corresponding to the last block which is taken into consideration. 
Bounds on the elements of νI are then obtained from (4) and (5). 

In the subsequent iterations, values for both the bounds of νI-1 and νI+1 are 
available when computing those of νI , and the following lower bound 
matrix is used: 
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Using (17), the matrices U and V, which are this time of rank two, are 
obtained in O(ni2) operations.  

 



  

The conditional distribution ν0 corresponding to 0 failed components is 
degenerated to a single state, and ν0 =1. We have limited ourselves to the 
calculation of bounds for the conditional distributions ν1 to νF of the first F 
blocks. Numerical results for F=5 are given in Table 1 for ν1 and ν5 at ten 
successive iterations. Because of their lengths, the bound vectors νinf and ν
sup are given by their sums only; the closer to one these sums are, the 
tighter the bounds. 

Note that increasing the number of iterations will never reduce the polyhedra 
to single points since the influence of the blocks I, I > F, is never taken into 
account. The theory guarantees however that these bounds are the tightest 
that one can obtain under those circumstances. One can also see from Table 1 
that the neglected blocks have a larger influence on ν5 than on ν1, the 
bounds on the latter being tighter than those on the former. 

 

Iter. ν1
inf '1  ν1

sup '1  ν5
inf '1  ν5

sup '1  

0 0.97057296  1.51081352  0.66085877 10747.925 
1  0.99590078  1.07123235  0.88154804 3587.743 
2  0.99920877  1.01375111  0.94878869 1533.806 
3  0.99982092  1.00311225  0.96859991 937.785 
4  0.99995537  1.00077566  0.97425200 768.459 
5  0.99998807  1.00020725  0.97582994 721.243 
6  0.99999653  1.00006017  0.97626554 708.213 
7  0.99999879  1.00002086  0.97638519   704.634 
8  0.99999941  1.00001020  0.97641799   703.653 
9  0.99999958  1.00000729  0.97642698   703.384 

10 0.99999962  1.00000650  0.97642944   703.311 
Table 1: Quality of νI bounds for I=1 and I=5 

 

The computation of bounds for the marginal distribution χ was done by 
following the procedure of Section 7. However, this procedure, in principle, 
assumes that conditional distribution bounds have been computed for all 
blocks, while we have explicitly computed those of the first 5 blocks only. In 
this example, and in availability models in general, this is feasible because 
the aggregated matrix is tridiagonal. Non-trivial upper and lower bounds on 

 



  

the repair rate and the failure rate can be determined for each block I, I > F , 
without information on the conditional distributions of these blocks; 
minimum/maximum repair and failure rates over the states of each block can 

I χI
inf

 χI
sup

 
 0  9.7524506e-01   9.7524508e-01 
 1  2.4196310e-02   2.4196323e-02
 2  5.4713023e-04   5.4713505e-04
 3  1.1261528e-05   1.1263011e-05
 4  2.1278181e-07   2.1323658e-07
 5  3.6789961e-09   3.8219805e-09
 6  2.6455985e-11   8.3829687e-11
 7  1.2670814e-13   2.6554535e-12
 8  5.2238309e-16   8.3452321e-14
 9  1.8370472e-18   2.6017736e-15

 10  5.6948463e-21   7.8513118e-17
 11  1.5281171e-23   2.2907590e-18
 12  3.4637321e-26   6.4546184e-20
 13  6.4079044e-29   1.7541567e-21
 14  9.7186549e-32   4.5479612e-23
 15  1.1500408e-34  1.1222898e-24
 16  9.7753471e-38   2.6291623e-26
 17  5.0505960e-41   5.8306321e-28
 18  2.1885916e-44   1.1870343e-29
 19  7.6600706e-48   2.1792270e-31
 20  2.1703533e-51   3.5164800e-33
 21  4.7024322e-55   4.7952000e-35
 22  7.0536483e-59   5.2601890e-37
 23  5.8780403e-63   1.3389572e-39
 24  2.4491834e-67   1.7852763e-42  

Table 2. Bounds on χ 

be used for instance. The bounds obtained for χ using the procedure of 
Section 7 are given in Table 2. Unavailability bounds are given in Table 3, 
with SUN 4 CPU computing times, for three different values of F.  

The computational complexity of the whole algorithm is dominated by the 
computation of the bounds of the conditional distributions of the first F 
blocks, a complexity of O(nF-12). These blocks have a size nI which grows 
approximately with NI. It is thus imperative to keep F small. The difference 

 



  

in order of magnitude between repair and failure rates induces a strong 
locality ( or near-decomposability) in the system matrix structure. This is the 
main factor which allows tight bounds on system availability to be obtained 
with small F values. For example, the bounds for F=4 were obtained within 6 
CPU minutes on a SUN4 workstation. This value of F corresponds to only 
12,951 states out of 16,777,216 states. That is, less than 0.1 percent of the 
total state space is being used by the analysis. 

 

F  nF lower bound upper bound CPU(sec.) 

4    10626   4.63e-08  6.51e-07  325. 

5    42504   4.63e-08  8.02e-08  4965. 

6   134596   4.63e-08  4.98 e-08  78280.   

TABLE 3 ( Unavailability bounds) 

 

10 Conclusions 

This new iterative computation method to bound conditional and marginal 
steady-state distributions in Markov chains dispenses from generating the 
whole state space, and is specially suited - and may even be indispensable - 
when the state space is too large to use classical procedures. The bounds are 
proven to be the tightest ones that can be obtained, given the part of the state 
space being considered. Locality or near-decomposability [Courtois 1977] 
are important factors contributing to tightness . 

The method is limited by the computational requirements of matrix 
inversions. These requirements are however strongly mitigated when the 
diagonal blocks QII of the Markov chain are such that the inverses (I-QII)-1 
can be economically computed. Fortunately, this is always the case in models 
of system availability.  

Other computational complexity reductions are possible and have been 
mentioned. Further investigations are needed, however, as it seems that the 
whole bounding process could remain linear in the part of the state space 
which is considered.  
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