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The Elephant
Six blind sages were shown an elephant and met
to discuss their experience.  “It's wonderful,”
said the first, “an elephant is like a rope: slender
and flexible.”  “No, no, not at all,” said the
second, “an elephant is like a tree, sturdily
planted on the ground.”  “Nonsense,” said the
third, “an elephant is like a wall.”  “Incredible,”
said the fourth, “an elephant is a tube filled with
water.”   “What a strange and piecemeal beast
this is,” said the fifth.  “Strange indeed,” said the
sixth, “but there must be some underlying
harmony.  Let us investigate the matter further.”

– Freely adapted from a traditional Hindu fable
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Six blind sages were shown an elephant and met
to discuss their experience.  “It's wonderful,”
said the first, “an elephant is like a rope: slender
and flexible.”  “No, no, not at all,” said the
second, “an elephant is like a tree, sturdily
planted on the ground.”  “Nonsense,” said the
third, “an elephant is like a wall.”  “Incredible,”
said the fourth, “an elephant is a tube filled with
water.”   “What a strange and piecemeal beast
this is,” said the fifth.  “Strange indeed,” said the
sixth, “but there must be some underlying
harmony.  Let us investigate the matter further.”

– Freely adapted from a traditional Hindu fable
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As a Belgian and a Côte d’Or chocolate lover, let me continue with their logo!



Programming paradigms

• Why are there so many programming paradigms?
– Each is based on a different mathematical theory
– Each is good for certain kinds of problems
– Are all these paradigms really that different?

• Look closely and you will see that paradigms have much in common.
Two examples among many:

– Object-oriented programming is functional programming plus state (and different syntax)
– Logic programming is functional programming with relations instead of functions

• Research shows that there is a fundamental set of concepts underlying all these
paradigms, a kernel language

– There are many possible such sets.  Because we focus on practical programming, we
consider a set of programmer-significant concepts, not a minimal set for theoreticians.

– Each paradigm uses a different subset of the kernel language
– Let’s look at a couple of concepts to see how this can work



Example: closures

• The concept of a procedure value with captured environment (also
known as a lexically-scoped closure) is the basis for many derived concepts,
e.g.,  in object-oriented programming:
– Abstraction: turn a piece of code into a procedure, method, or class
– Instantiation: make instances of a class or a component
– Genericity: parameterize a class (abstract class, inner class, template) or a

component
– Components: group related operations together

• With closures, these apparently different concepts are just programming
techniques!
– Popular languages give them syntactic support, to enforce the right invariants
– It is easy to use them together

• Why not teach it this way instead of teaching these concepts as completely
different?



Example: concurrency

• Concurrency can be added to other paradigms as a separate concept
• There are three main paradigms for practical concurrent programming
• Declarative concurrency: add concurrency to functional programming (no state)

– Gives pipes, streams, dataflow, and much more (no race conditions!)
– A little-known but very nice paradigm

• Message-passing concurrency: use concurrency together with asynchronous
communication channels (a simple form of state)

– Gives active objects (like in Erlang)
– Great for applications with multiple agents (independent entities that cooperate)

• Shared-state concurrency: use concurrency together with mutable variables (state)
– Gives locks and monitors (like in Java), and also transactions
– Great for applications with a central data repository (like databases)
– It’s the best-known paradigm, but paradoxically also the hardest to reason in!

• These three paradigms seem very different but are actually closely related



Program design:
the kitchen analogy

• Let’s say something about program design
– So far, we have rather focused on concepts and paradigms

• Let’s compare programming to what a chef does in his/her kitchen
– Concepts are like ingredients (closures and concurrency are like flour and eggs)
– Techniques are like “tricks of the trade” (e.g., divide-and-conquer, how to make a sauce

thicker)
– Algorithms are like recipes (a set of instructions that gives a result in finite time)
– Paradigms are like national styles (Indian, Chinese, Italian, Tex-Mex, etc.): each one

favors certain ingredients and recipes
– Design is the planning you need to prepare a three-course meal: carefully choosing dishes

that go well together, finding the recipes, selecting the right ingredients, and timing the
preparation so that all dishes are ready at the right time (nontrivial!)

• Concepts (ingredients) can’t be introduced in a vacuum; they must be introduced
together with their design principles (how to cook with the ingredients)

– Concepts and design principles must be taught together



Teaching with “concepts first”
• Programming paradigms are not what really matters

– What matters is the concepts they are made of
– Concepts and design principles must be taught together

• Teaching programming with concepts is completely natural
– Paradigms appear like styles
– Complicated paradigms can be explained in a simple way
– Traditional paradigm boundaries are seen as artificial
– Student understanding transcends traditional paradigm boundaries

• We have been using this approach for almost three years
– In courses at UCL and KTH, but also NMSU and Cairo University
– We have teaching materials (textbook, software, slides, etc.)

• The approach is based on more than a decade of research in language
design and implementation by many people
– In the Mozart Consortium, which groups labs in Sweden, Germany, and

Belgium (see http://www.mozart-oz.org)



Why we need people
with different backgrounds

• In a team project, you need people with different
backgrounds
– If they have the same backgrounds, their total

knowledge is only as much as one person’s
– Good companies know this: they search for people

with complementary skills
– Knowledge must overlap a little, though, otherwise

people can’t talk with each other!
• This is why it’s bad if a computer science curriculum

is too homogeneous
– Diversity is essential
– It’s good for students to learn more than one paradigm
– It’s good for schools to have different curricula

Bad

Good

During the panel discussion: a comment from Joe Armstrong


