
The Importance of Concepts
when Teaching Programming

Peter Van Roy
Université catholique de Louvain

Louvain-la-Neuve, Belgium

Position statement
SIGCSE 2003 Panel

“The Role of Language Paradigms In Teaching Programming”
Feb. 21, 2003

The Elephant
Six blind sages were shown an elephant and met
to discuss their experience. “It's wonderful,”
said the first, “an elephant is like a rope: slender
and flexible.” “No, no, not at all,” said the
second, “an elephant is like a tree, sturdily
planted on the ground.” “Nonsense,” said the
third, “an elephant is like a wall.” “Incredible,”
said the fourth, “an elephant is a tube filled with
water.” “What a strange and piecemeal beast
this is,” said the fifth. “Strange indeed,” said the
sixth, “but there must be some underlying
harmony. Let us investigate the matter further.”

– Freely adapted from a traditional Hindu fable

Elephant photo © Wayne Matthews 2001

 Côte d’Or Elephant
Six blind sages were shown an elephant and met
to discuss their experience. “It's wonderful,”
said the first, “an elephant is like a rope: slender
and flexible.” “No, no, not at all,” said the
second, “an elephant is like a tree, sturdily
planted on the ground.” “Nonsense,” said the
third, “an elephant is like a wall.” “Incredible,”
said the fourth, “an elephant is a tube filled with
water.” “What a strange and piecemeal beast
this is,” said the fifth. “Strange indeed,” said the
sixth, “but there must be some underlying
harmony. Let us investigate the matter further.”

– Freely adapted from a traditional Hindu fable

Elephant logo © Côte d’Or

As a Belgian and a Côte d’Or chocolate lover, let me continue with their logo!

Programming paradigms

• Why are there so many programming paradigms?
– Each is based on a different mathematical theory
– Each is good for certain kinds of problems
– Are all these paradigms really that different?

• Look closely and you will see that paradigms have much in common.
Two examples among many:

– Object-oriented programming is functional programming plus state (and different syntax)
– Logic programming is functional programming with relations instead of functions

• Research shows that there is a fundamental set of concepts underlying all these
paradigms, a kernel language

– There are many possible such sets. Because we focus on practical programming, we
consider a set of programmer-significant concepts, not a minimal set for theoreticians.

– Each paradigm uses a different subset of the kernel language
– Let’s look at a couple of concepts to see how this can work

Example: closures

• The concept of a procedure value with captured environment (also
known as a lexically-scoped closure) is the basis for many derived concepts,
e.g., in object-oriented programming:
– Abstraction: turn a piece of code into a procedure, method, or class
– Instantiation: make instances of a class or a component
– Genericity: parameterize a class (abstract class, inner class, template) or a

component
– Components: group related operations together

• With closures, these apparently different concepts are just programming
techniques!
– Popular languages give them syntactic support, to enforce the right invariants
– It is easy to use them together

• Why not teach it this way instead of teaching these concepts as completely
different?

Example: concurrency

• Concurrency can be added to other paradigms as a separate concept
• There are three main paradigms for practical concurrent programming
• Declarative concurrency: add concurrency to functional programming (no state)

– Gives pipes, streams, dataflow, and much more (no race conditions!)
– A little-known but very nice paradigm

• Message-passing concurrency: use concurrency together with asynchronous
communication channels (a simple form of state)

– Gives active objects (like in Erlang)
– Great for applications with multiple agents (independent entities that cooperate)

• Shared-state concurrency: use concurrency together with mutable variables (state)
– Gives locks and monitors (like in Java), and also transactions
– Great for applications with a central data repository (like databases)
– It’s the best-known paradigm, but paradoxically also the hardest to reason in!

• These three paradigms seem very different but are actually closely related

Program design:
the kitchen analogy

• Let’s say something about program design
– So far, we have rather focused on concepts and paradigms

• Let’s compare programming to what a chef does in his/her kitchen
– Concepts are like ingredients (closures and concurrency are like flour and eggs)
– Techniques are like “tricks of the trade” (e.g., divide-and-conquer, how to make a sauce

thicker)
– Algorithms are like recipes (a set of instructions that gives a result in finite time)
– Paradigms are like national styles (Indian, Chinese, Italian, Tex-Mex, etc.): each one

favors certain ingredients and recipes
– Design is the planning you need to prepare a three-course meal: carefully choosing dishes

that go well together, finding the recipes, selecting the right ingredients, and timing the
preparation so that all dishes are ready at the right time (nontrivial!)

• Concepts (ingredients) can’t be introduced in a vacuum; they must be introduced
together with their design principles (how to cook with the ingredients)

– Concepts and design principles must be taught together

Teaching with “concepts first”
• Programming paradigms are not what really matters

– What matters is the concepts they are made of
– Concepts and design principles must be taught together

• Teaching programming with concepts is completely natural
– Paradigms appear like styles
– Complicated paradigms can be explained in a simple way
– Traditional paradigm boundaries are seen as artificial
– Student understanding transcends traditional paradigm boundaries

• We have been using this approach for almost three years
– In courses at UCL and KTH, but also NMSU and Cairo University
– We have teaching materials (textbook, software, slides, etc.)

• The approach is based on more than a decade of research in language
design and implementation by many people
– In the Mozart Consortium, which groups labs in Sweden, Germany, and

Belgium (see http://www.mozart-oz.org)

Why we need people
with different backgrounds

• In a team project, you need people with different
backgrounds
– If they have the same backgrounds, their total

knowledge is only as much as one person’s
– Good companies know this: they search for people

with complementary skills
– Knowledge must overlap a little, though, otherwise

people can’t talk with each other!
• This is why it’s bad if a computer science curriculum

is too homogeneous
– Diversity is essential
– It’s good for students to learn more than one paradigm
– It’s good for schools to have different curricula

Bad

Good

During the panel discussion: a comment from Joe Armstrong

