
Using Constraints To Analyze And Generate
Safe Capability Patterns

Fred Spiessens, Yves Jaradin, and Peter Van Roy

Université catholique de Louvain
Louvain-la-Neuve, Belgium

{fsp,yjaradin,pvr}@info.ucl.ac.be

Abstract. We present a dual purpose CCP application for capability
based security. In a first setting, the application analyzes capability pat-
terns of collaboration by calculating upper bounds on the propagation
of (overt) causal influence. In this setting, all the relied upon restrictions
in the behavior of the subjects in the pattern are input and transformed
into constraint propagators.
In a second setting, the application calculates how the behavior of a (set
of) trusted subject(s) in the pattern should be restricted, given the global
safety properties that have to be respected.
From earlier theoretical results [SV05], we are confident that our ap-
proach is complete (all safety breaches are found and the proposed re-
strictions on behavior are sufficient). Because the tool is currently in a
very early stage of its implementation, we only present a small set of
preliminary quantitative results.

1 Introduction

In 1976 Harrisson, Ruzzo, and Ullman [HRU76] showed that the calculation of
safety properties in general is an intractable problem. As their modeling language
was Turing-complete, this intractability was the inevitable price to pay for its
expressive power. A few years later, Take-Grant systems [BS79] were proposed
for the analysis of capability based security problems [DH65]. In this model and
its extensions, the safety properties are tractable [LS77,FB96], but the formalism
lacks the power to express carefully restricted collaborative behavior. The need
for a more expressive model that takes such restrictions into account is explained
in [MS03,SV05].

The formal models presented in [SV05] provide the necessary expressive
power to precisely model restrictions in subject behavior relevant to the pro-
pagation of information and authority between (sets of) collaborating entities.
For finite configurations the calculation of the safety properties is tractable. The
propagation induced by newly created entities is safely approximated by accu-
mulating their behavior into the creating entity (parent). This result allows us
to safely model unknown (untrusted) entities without considering their possible
offspring. When modeling an entity’s behavior, only the behavior restrictions it
shares with all its potential children will be modeled as actual restrictions.

In the tool we present here, subject creation is restricted to this implicit
form. The development is currently in a prototype stage and has lots of other
limitations that will gradually be removed as the tool matures. Only the pro-
pagation of subjects is currently supported, and data propagation can only be
modeled by substituting the data with non-collaborative subjects.

Section 1.1 introduces the most important capability security concepts. Sec-
tion 2 gives a birds-eye overview of the tool. Design and implementation details
are discussed in Section 3. Section 4 shows an example of how the tool can be
used. The most important future extensions are listed in Section 5.

1.1 Glossary

Before explaining the goal and the approach of the tool, let us clarify the most
important terms that will be used in this paper:

Entity : A loaded instance of a programmed entity like a procedure, an object,
a process, a component or an agent. An entity can only be accessed (used)
via unforgeable references (capabilities) that combine the designation of the
entity with the authority to use the entity.

Subject : The modeled representation of an entity (possibly representing also
the set of entities created at runtime by the entity, as explained earlier).
Subjects could for instance be modeled from static analysis. Alternatively,
subjects can be specifications for entities yet to be programmed (e.g. model
based programming).

Subject behavior : The willingness of a subject to collaborate with another
subject in a certain way. A subject’s behavior should be a safe (over-) ap-
proximation of the behavior of the entity it models. If only the slightest
possibility of collaboration exists that can lead to the entity propagating in-
formation or authority, the corresponding subject should have this behavior.
There is more on subject behavior in section 2.2.

Potential Authority : The possible effects on propagation of authority and
information that could be exerted by an entity if the entity would be pro-
grammed to do so. A subject’s potential authority is a safe (over-)approximation
of the potential authority of the entity it models.

Actual Authority : The possible effects on propagation of authority and in-
formation that can be exerted by an entity, when we take into account what
is known about its actual behavior. A subject’s actual authority is a safe
(over-)approximation of the actual authority of the entity it models.

Capability rules of propagation: In pure capability systems, propagation
of authority and information is only possible via either:
1. collaboration : an entity (the invoker, indicated by the prefix i) can

initiate collaboration with another entity it has access to (the responder,
indicated by the prefix r). In such a collaboration, either of them (the
emitter) can provide data or subjects it has access to, to the other (the
collector) if the latter is willing to collaborate in that way. It is always
the emitter who decides what data or authority will be propagated, and
it is always the invoker who decides what entity to collaborate with.

2. parenthood : New entities can only be created by entities. An entity
that creates a new entity thereby gets the sole access to it.

3. endowment : The parent entity, upon creation of its child, endows the
child with a subset of its own access.

Capability systems and their rules for (overt) propagation of influence are
described in [MS03,SV05]).

Configuration : An access graph of subjects. A configuration can evolve via
collaboration between its subjects. Such collaboration is governed by the
capability rules of propagation and by the behavior of the subjects.

Capability Pattern : A useful configuration together with its well under-
stood and described safety properties (access that is prevented) and liveness
properties (access that is not prevented).

2 Overview of the Tool

2.1 The Goals

Figure 1 depicts the Caretaker pattern that will be a running example through-
out this paper. Caretaker, created and controlled by Alice, is a proxy for Carol,
to be used by Bob. Alice can order Caretaker to stop collaborating, in an at-
tempt to revoke the authority–to–invoke–Carol she has granted to Bob. The fact
that Bob and Dave are undefined subjects (modeling unknown entities and their
offspring) is indicated by a shadow.

For the pattern to really allow revocation, Bob should never get direct access
to Carol (indicated with the dashed arrow ending in a cross). Because the pattern
is to be useful in a non-trivial context, we want to also make sure that Bob will
not be prevented from getting access to Dave (indicated by the dashed arrow
from Bob tot Dave).

Fig. 1. The Caretaker Pattern for Revocation

In this paper, we use the term safety property to mean access that is effec-
tively prevented, while liveness property refers to access that is not prevented
by restrictions in the behavior of the subjects. The tool can be used for two
complementary goals:

1. Check Requirements : From the specifications for the behavior of the
trusted collaborating entities, the maximal propagation of access is calcu-
lated. The result will show directly whether or not the required safety and
liveness properties are satisfied. In the example, the behavior of Alice, Care-
taker and Carol (the trusted subjects) will be decisive.

2. Calculate Behavior Restrictions : Given a set of required safety- and
liveness properties, what minimal sets of behavior restrictions for a certain
subject can ensure the global properties? The subject(s) of which the beha-
vior restrictions are calculated will be called query-subject(s). For multiple
query subjects the minimally restrictive combinations of necessary restric-
tions in the behavior of the query subjects will be calculated.

In the example, the minimal sets of behavior restrictions for Carol can be
calculated if the behaviors of Alice and Caretaker are fixed. Alternatively one
could for instance calculate all possible combinations of Alice’s and Carol’s re-
strictions, given the proxy-behavior of Caretaker. The current version of the tool
is not ready to calculate combinations of three query subjects in a reasonable
amount of time. It is possible to give a minimum behavior to a query subject
though, which drastically speeds up the calculation of the remaining restrictions.

2.2 Monotonic and Confluent Approach

All access to subjects (and to data) that is present in an initial configuration
will be stored as simple boolean constraints in a constraint store. Every subject’s
initial knowledge about the configuration (its relations towards subjects and data
it has access to) will also be presented as boolean constraints.

Fig. 2. The propagation of access, knowledge and behavior

A set of subject-specific propagators corresponding to the subject’s inten-
tional behavior will test (ask) the subject’s current knowledge and generate new
behavior constraints in the constraint store (boolean constraints). We call these
constraints the subject’s extensional behavior. Another set of propagators will
model how access can propagate via collaboration in the configuration – gen-
erating new access constraints – and will also make sure that the collaborating
subjects are informed of the observable effects of the collaboration, generating
extra knowledge constraints.

The working of these propagators, from the point of view of a single sub-
ject, are graphically depicted in Figure 2. The system-wide propagators and
constraints are gray. The constraint store will eventually reach a fix point, rep-
resenting the maximum possible propagation of access in the configuration, from
which goal 1. can be inferred. If goal 2. is pursued, a distribute-and-search pro-
cess will search for (one or all) satisfactory solution(s) to the query-subject’s
extensional behavior.

The access constraints have the form access(S1, X) meaning that subject
S1 has access to X (X being another subject or data). The extensional beha-
vior constraints of a subject S1 have the following form (S1 is an implicit first
argument that will be made explicit when used by the access propagators) :

predicate meaning
iEmit(S2, X) Subject S1 is willing to invoke subject S2,

and pass X as a parameter to it.
iCollect(S2) Subject S1 is willing to invoke subject S2,

and accept whatever S2 provides as a return value
rEmit(X) Subject S1 is willing to return subject X

upon being invoked.
rCollect() Subject S1 is willing to accept whatever input

argument S1 is being invoked with.
rExchange(X, Y) Subject S1 is willing to accept whatever input

argument S1 is being invoked with,
and if it is X, then it is willing to return Y .

Notice that rExchange() allows S1 to differentiate its behavior towards its in-
vokers, based on a proof-of-access that these invokers can provide to S1.

The knowledge constraints generated by the access propagators toward sub-
ject S1 have the following form (S1 is now an explicit first argument that will
be made implicit when used by subject S1’s behavior propagators) :

predicate meaning
iEmitted(S1, S2, X) Subject S1 has successfully invoked S1,

and passed X as a parameter to it.
iCollected(S1, S2, Y) Subject S1 has successfully invoked subject S2, and

accepted Y as a return value from the invocation.
This means S1 has now got access to Y

rEmitted(S1, X) Subject S1 has successfully returned subject X
upon being invoked.

rCollected(S1, Y) Subject S1 has accepted input argument Y upon
being invoked. S1 has now got access to Y.

rExchanged(S1, X, Y) Subject S1 has returned Y on the basis of
having received X in the same invocation.

access(S1, X) Subject S1 has access to X, either acquired by
collecting or from initial conditions.

The other knowledge constraints are subject-specific, and only the subject’s
intentional behavior propagators will be able to read/write to them. They will
have the subject itself as an implicit first argument.

2.3 Input

The tool takes an initial configuration as input, consisting of an access graph of
named subjects of which the intentional behavior is described. The intentional
behavior of every subject is given as a set of logical implications (Horn clauses).
The condition (body) of such an implication will contain knowledge-predicates,
the conclusion (head) can contain subject-specific knowledge predicates and ex-
tensional behavior predicates.

For example, the proxy behavior that will characterize Caretaker in the Care-
taker pattern could be specified using a subject-specific knowledge predicate
isMyProxy() in the following rules:

iEmit(S, X) :- isMyProxy(S) ∧ rCollected(X)
iCollect(S) :- isMyProxy(S)
rEmit(X) :- iCollected(S, X)
rCollect()

Subjects are further initialized with a set of facts, that represent their initial
partial knowledge (predicates) of the configuration. A subject’s initial knowledge
predicates will typically represent part of its relations towards the subjects (or
data) it initially has access to. The access graph is also described as a set of
(access) facts.

A set of safety properties and liveness properties are added to the configu-
ration in the form of logical combinations of basic constraints (typically access
constraints). The safety properties will be negated before being converted into a
propagator that will cause failure upon possible violation of the property. Before
a solution is validated, the liveness properties will also be verified.

If the goal is to calculate extensional behavior, the list of query subjects
should be provided too.

2.4 Output

The tool calculates from the initial configuration, the maximal configuration
containing all possible access. When a failure is detected, it is straightforward to
construct witness traces (evidence) of how the safety properties can be violated,
from the constraints that were added to the store. Upon success, the store shows
the maximal extent to which data and capabilities (subjects) can be propagated.
It is then simple to check the liveness requirements.

If the extensional behavior of a query subject is calculated (via search), the
tool extracts for every solution, from the quiescent store corresponding to that
solution, an overview of its extensional behavior predicates that are true (ef-
fectively leading to allowed collaboration), false (collaboration could lead to a
violated safety property), or undefined (not relevant in the configuration).

3 CCP Based Implementation

In this section we describe how the constraint propagators are designed. Apart
from the propagators for intentional subject behavior and access propagation,
we present some additional propagators that will assist the calculation. We also
describe our strategy for search and distribution.

3.1 Constraint Propagators

Propagators for Access These propagators are independent of the actual
configuration and the specified behavior of the subjects. They are a direct rep-
resentation of the way how, in capability systems, information and access are
propagated via collaboration.

1. Granting: the invoker emits, the responder collects.

access(S1, S2) ∧ access(S1, X) ∧ iEmit(S1, S2, X),∧rCollect(S2)
access(S2, X) ∧ iEmitted(S1, S2, X) ∧ rCollected(S2, X)

(1)

2. Take rule: the invoker collects, the responder emits

access(S1, S2) ∧ access(S2, X) ∧ iCollect(S1, S2),∧rEmit(S2, X)
access(S1, X) ∧ iCollected(S1, S2, X) ∧ rEmitted(S2, X)

(2)

3. Exchange rule: both invoker and responder emit and collect. The responder
bases his decision to emit on (obtainable knowledge about) what he collected
during the invocation.

access(S1, S2) ∧ access(S1, X) ∧ access(S2, Y) ∧ iEmit(S1, S2, X)
∧rCollect(S2) ∧ iCollect(S1, S2) ∧ rExchange(S2, X, Y)

access(S2, X) ∧ access(S1, Y) ∧ iEmitted(S1, S2, X) ∧ rCollected(S2, X)
∧iCollected(S1, S2, Y) ∧ rExchanged(S2, X, Y)

(3)

Using the propagators (1) and (2) we can reduce (3) to:

iEmitted(S1, S2, X) ∧ access(S2, Y) ∧ iCollect(S1, S2)
∧rExchange(S2, X, Y)

access(S1, Y) ∧ iCollected(S1, S2, Y) ∧ rExchanged(S2, X, Y)
(4)

Behavior Propagators These represent the subject-specific reaction to posi-
tive knowledge about access to subjects and data, and about the way this access
was acquired. They can refine knowledge and use knowledge to generate beha-
vior. They are restricted in the sense that they cannot generate new access (that
would defy the capability rules) or knowledge of the kind that is produced by
the access propagators. To reflect the fact that subjects can only refine their
own knowledge, and generate their own behavior, these propagators will also be
restricted in scope. The first argument of every predicate is implicit and desig-
nates the subject who’s behavior is being described. It will become explicit only
for the access-propagators and for the assisting propagators.

A Horn clause that partially describes subject S1’s behavior like this:

behavior(B1, . . . Bn)← condition1(C1,1 . . . C1,k)∧. . .∧conditionj(Cj,1, . . . Cj,m)
(5)

. . . will be converted into a propagator like this:

condition1(S1, C1,1, . . . C1,k) ∧ . . . ∧ conditionj(S1, Cj,1, . . . Cj,i)
behavior(S1, B1, . . . Bn)

(6)

The behavior for an unknown (untrusted) subject S1 can be represented with
a single propagator:

true

iCollect(S1, S2) ∧ iEmit(S1, S2, X) ∧ rCollect(S1) ∧ rEmit(S1, X)
(7)

Assisting Propagators As soon as one of two ”unknown” (completely colla-
borative) subjects has direct access to the other one, they will inevitably end up
sharing the same access. Therefore, the query subject should not even consider
treating these subjects differently, as it will not have a different effect. For every
pair of unknown subjects, (S1, S2), and for every query subject Sq, we will add
the following propagators:

access(S1, S2) ∨ access(S2, S1)
iEmit(Sq, S1, X) = iEmit(Sq, S2, X)

(8)

access(S1, S2) ∨ access(S2, S1)
iEmit(Sq, S, S1) = iEmit(Sq, S, S2)

(9)

access(S1, S2) ∨ access(S2, S1)
iCollect(Sq, S1) = iCollect(Sq, S2)

(10)

access(S1, S2) ∨ access(S2, S1)
rEmit(Sq, S1) = rEmit(Sq, S2)

(11)

access(S1, S2) ∨ access(S2, S1)
rExchange(Sq, S1, X) = rExchange(Sq, S2, X)

(12)

access(S1, S2) ∨ access(S2, S1)
rExchange(Sq, X, S1) = rExchange(Sq, X, S2)

(13)

Without going into details about the implementation, it is easy to see how
these propagators can be efficiently implemented: as far as the query subjects are
concerned, their extensional behavior can consider both subjects as one aggregate
subject. This principle can also be used in a weaker form for any two subjects,
when it would be useless for the query subjects to differentiate (a particular part
of) their behavior towards the one or the other. It is a form of symmetry braking
in the constraint model.

Safety properties are mere boolean constraints that are set to false, to cause
failure when they are unified with true by a propagator. We are experimenting
with propagators for safety properties in the form (14) and (15), to promote early
failure detection. Propagating false to a query subject’s extensional behavior
constraints will decrease the depth of the search tree.

¬access(Sq, X)
¬(access(S1, Sq) ∧ access(S1, X) ∧ iEmit(S1, S2, X) ∧ rCollect(S2)

(14)

¬access(Sq, X)
¬(access(Sq, S1) ∧ access(S1, X) ∧ rEmit(S1, X) ∧ iCollect(S1, S2)

(15)

3.2 Constraint Implementations

We implement the tool in the Mozart environment [Moz03] for the multi-paradigm
language Oz [Smo95,VH04], which provides strong support for concurrent con-
straint programming [Sch02]. Because the implementation of the basic boolean
constraints can have a big impact on the efficiency of the propagators mentioned
above, we are currently experimenting with two approaches in parallel, one using
finite domain integers and the other one using finite sets of integers. We give a
short description of both.

Finite Domain Integer Constraints Every predicate is modeled as a finite
domain integer variable in a domain ranging from 0 (false) to 1 (true). Logical
connectives can now be implemented as a product (logical and) or as a sum (log-
ical or, using the appropriate domain for the sum). Propagator (16) shows how
we implement the safety property propagator (14) with finite domain integers
and the sum and <: (strictly smaller) propagators.

¬access(Sq, X)
sum([access(S1, Sq), access(S1, X), iEmit(S1, S2, X), rCollect(S2)]) <: 4

(16)

To avoid a combinatorial explosion of the number of finite domain variables,
we implement logical and with nested implications impl where appropriate. The
implication propagator will wait for its condition to be true, before telling its
conclusion. The conclusion can again be an implication. This is how we imple-
ment the access propagators in this approach. Propagator (17) gives an example
of how the granting propagator (1) is implemented.

impl(access(S1, S2),
impl(access(S1, X),

impl(iEmit(S1, S2, X),
impl(rCollect(S2),

(access(S2, X) ∧iEmitted(S1, S2, X)
∧rCollected(S2, X))))))

(17)

Finite Sets Constraints In this approach we present an n-ary predicate as the
finite set of all n-tuples of subjects that satisfy the predicate. We assign a unique
integer to each n-tuple of subjects, to represent that tuple in the set. Implications
over predicates are translated into set inclusions over the corresponding finite
sets of integers, disjunction is translated to union, and conjunction becomes
intersection. Of course, these operations should only be performed on compatible
predicates.

In (18) and (19) we consider two clauses in Caretaker’s behavior to explain
how the predicates are made compatible.

iEmit(S, X) : − isMyProxy(S) ∧ rCollected(X) (18)

rEmit(X) : − iCollected(S, X) (19)

In the body of clause (18) we cannot simply use set intersection, because
isMyProxy(S) and rCollected(X) have a different variable. First we have to
make the cartesian product in the following way:
iEmit(S, X) :- (isMyProxy(S)× isSubj(X)) ∧ (isSubj(S)× rCollected(X))
We use isSubj() as a unary predicate that is true for every subject. The clause
now translates to the finite set propagator:
iEmit ⊆ (isMyProxy × isSubj) ∩ (isSubj × rCollected).
The cartesian product of finite sets is implemented by recalculating the indivi-
dual integers (tuples) of the result set.

The head of clause (19) has one less variable than its body. Therefore we use
a projection operation P(...) that extracts a sub-tuple from every tuple in the
predicate, and we convert the clause to: rEmit(X) :- P(X)(iCollected(S, X)).
This translates to the finite set propagator: rEmit ⊆ P(2)(iCollected).

All clauses can thus be translated to finite set propagators using the proper
combination of cartesian product, projection, inclusion, union, and intersection.
Because the cartesian product is the most costly operation, we try to minimize
its use and the size of its argument sets. For instance, the actual implementation
of the clause (19) will be simplified to: iEmit ⊆ isMyProxy × rCollected.

Preliminary Comparison The current state of the tool does not yet allow us
to make quantified comparisons or draw conclusions about which of the two ap-
proaches is best suited for what kind of problems. We provide for both approahes
the preliminary benchmark results for the calculation of Carol’s restriction in
the caretaker pattern as described in Section 4. We currently believe that the
optimal overall approach will be a merge of both.

The finite domain integers approach finds the 4 solutions in 5 seconds, using
318 search nodes (not failed neither succeeded nodes), with a search tree depth
of 35.

The finite set approach finds the first three solutions after 1, 20, and 63
seconds (total time) respectively. The forth solution was not yet found after 30
minutes. The finite set approach finds the first tree solutions using 440, 6000,
and >12400 search nodes with a maximal search tree depth of 37.

All calculations were done on a 1.25 GHz PowerPC G4 with 1 GB memory.

3.3 Search and Distribution Strategies

When testing suitable behavior for query subjects, we use a depth first search
strategy. To detect failures as fast as possible, we order the extensional beha-
vior constraints of the query subject(s) by the number of concurrent constraint
propagators that are currently waiting for that basic constraint to become deter-
mined. This functionality is implemented in the FD.reflect.nbSusps built-in
procedure. The distribution stops when no more behavior aspects have at least
one propagator waiting for it, indicating that all feasible ways for propagating
access have been exhausted.

To detect the maximal solutions first, we always try the 1-alternative (true)
first (indicating willingness to collaborate).

Further symmetry breaking is done via a particular use of the branch-and-
bound facilities provided by the environment (with our thanks to Raphaël Collet
for pointing out this possibility). Whenever we find a solution, we add it to a
list of currently found solutions, and then tell a constraint that the next solu-
tion should not be a sub-solution of any solution in the list. Sub-solutions are
solutions with less-than-maximal relevant collaboration properties. The branch-
and-bound constraint works like this:

proc{NoSubSolutions Recent Next}
Recent.oldSols := (Recent.solution)|@(Recent.oldSols)
{ForAll @(Recent.oldSols)
proc{$ Traces#_}

{FD.sum {Map {Filter Traces fun{$ Tr} Tr.value==0 end}
fun{$ Tr} {GetPred Tr.subjId Tr.pred Next} end}

´>:´ 0}
end}

end

The procedure NoSubSolutions adds a propagator that ensures that there
will be at least one non-collaborative (= 0) relevant behavior predicate of every
previous solution that will be collaborative (= 1) in the next solution. Together

with the choice strategy “try the 1-alternative first”, this ensures that no sub-
solutions are found or searched for.

4 Example

As an example we calculate Carol’s necessary behavior restrictions in the ”care-
taker” pattern, introduced in Figure 1 of Section 2.

Since we don’t know the behavior of Bob and Denis, the only safe approxi-
mation is to consider them to be completely collaborative (unknown) subjects.
The intentional behavior of Alice and Caretaker is listed in table 1, together
with their initial access and knowledge.

Table 1. The behavior of Alice and Caretaker

Alice

iEmit(S, X) :- use(S) ∧ pass(X) knowledge → behavior
iEmit(S, X) :- isBob(S) ∧ isCaretaker(X)
iCollect(S) :- use(S) ∧ pass(S)
rEmit(X) :- pass(X)
rCollect() :- true

pass(X) :- rCollected(X) knowledge → knowledge
use(X) :- isCarol(X)

access(1) ∧ isSelf(1) ∧ use(1) ∧ pass(1) initial knowledge
access(2) ∧ isBob(2)
access(3) ∧ isCaretaker(3)
access(4) ∧ isCarol(4)

Caretaker

iEmit(S, X) :- isMyProxy(S) ∧ rCollected(X) knowledge → behavior
iCollect(S) :- isMyProxy(S)
rEmit(X) :- iCollected(S, X)
rCollect()

access(3) ∧ isSelf(3) initial knowledge
access(4) ∧ isMyProxy(4)

Table 2 lists the solutions found for Carol’s extensional behavior.
The first two solutions restrict Carol’s behavior towards Alice, because Alice

could inadvertently allow Carol to be collected from here by Bob. The precau-
tions taken in Alice’s behavior do not exclude this: the sixth clause in Alice’s
behavior shows that when she collects Carol upon being invoked, she will pass
her on.

The last two solutions are not very interesting, since they don’t allow Carol
to accept any capabilities upon being invoked. An inspection of the store showed
us that in these two cases, Alice (rather than Carol) is responsible for providing
Bob access to Denis (the liveness property).

Table 2. solutions

1 Carol should not rEmit herself.
Carol should not iEmit herself to Alice, Bob, or Denis.

2 Carol should not rEmit herself or Alice
Carol should not iEmit herself to Bob or Denis,
Carol should not iEmit Alice to Bob or Denis.

3 Carol should not rEmit herself
Carol should not iEmit herself to Denis,
Carol should not iCollect from Denis.
Carol should not rCollect.

4 Carol should not rEmit herself
Carol should not iEmit herself to Bob or Denis
Carol should not rCollect.

The exchange() predicate was not used in the example, because we did not
yet have a stable and reliable implementation for it.

5 Future Extensions

Expressive Power

Adding data : We will soon add support for data. The current solution uses
non-cooperative subjects as data and does not allow to reason about the more
unexpected and indirect ways in which information can flow. For instance,
when a client can influence the behavior of a server, and that behavior is
visible to another client, information can flow from one client to the other.
Our theoretical model allows to reason about this kind of data flow, and so
should our tool.

Exchange : rExchange() is a recent addition of which we have to explore
the possibilities and limitations. We would like to use it for enabling the
Caretaker proxy to decide its collaboration per invocation, but invocation-
based granularity can easily lead to a combinatorial explosion.

Derived safety properties : It is better to reason about the flow of autho-
rity than only about the effects of authority propagation. This can be done in
flow-graphs (with arcs representing the direction of the flow) that are derived
from the configuration. We will use reachability constraints [QVD05] in de-
rived flow graphs to express more elaborated safety properties. We will then
be able to express the more precise safety property for the caretaker pattern:
”Carol’s authority should be reachable for Bob only via the caretaker”.

Functionality

Calculate intentional behavior : To provide a real specification for the query
subject’s intentional behavior we have to derive such specifications from the
extensional behavior of the query subjects.

Real pattern generation : We want to experiment with adding trusted sub-
jects to a configuration in critical places, when no safe solutions can be
found in a pattern. This would allow us to generate patterns from high-level
specifications.

Performance and Scalability

Add pruning : The propagators for the safety-properties should help pruning
the search space more than they do now.

Merging the two approaches : The approach based on finite sets has not
yet been optimized to the level of the finite integer domain approach. We
need to take care of that, and then measure the performance for different
kinds of problems to find out which of the two approaches in Section 3.2 is
the most performing and scalable, and how we can merge them to get the
best of both worlds.

User Interface

Write a parser : Currently we input the problems directly in parsed form.
Web interface : The tool would be useful to the community of capability

developers. Therefore we want to wrap it into a web application.
Integrating GraphViz : We have an ad-hoc connection to the GraphViz tool

[GN00,KN93] for visualizing the graphs generated by the solutions. We will
properly integrate this visualization tool.

6 Related Work

Whereas actual applications of CCP to security are not widespread yet, we see
a few interesting opportunities that are related to model checking and pattern
generation as we describe it in our paper.

The work of Joshua Guttman et al. [Jos05] uses a datalog-like language for
secure protocol design . We believe that that by using constraints (and search)
the way we do, that approach could be enriched to also support the “generation”
of such protocols, from general descriptive rules.

Jan Jürjen’s work on security specifications in UML [J0̈5] – again a model-
based approach – could probably also benefit from extensions with constraint-
based model checking.

7 Acknowledgments

This work was partially funded by the EVERGROW project in the sixth Frame-
work Programme of the European Union under contract number 001935, and
partly by the MILOS project of the Walloon Region of Belgium under conven-
tion 114856. We thank Raphaël Collet for discussing the formal aspects of the
model. We thank Mark Miller for his advice about capability-based security. We
thank the reviewers for their useful comments and suggestions.

References

[BS79] Matt Bishop and Lawrence Snyder. The transfer of information and authority
in a protection system. In Proceedings of the seventh ACM symposium on
Operating systems principles, pages 45–54. ACM Press, 1979.

[DH65] J. B. Dennis and E. C. Van Horn. Programming semantics for multipro-
grammed computations. Technical Report MIT/LCS/TR-23, M.I.T. Labora-
tory for Computer Science, 1965.

[FB96] Jeremy Frank and Matt Bishop. Extending the take-grant protection system,
December 1996. Available at:
http://citeseer.ist.psu.edu/frank96extending.html.

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Softw. Pract. Exper., 30(11):1203–
1233, 2000.

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in
operating systems. Commun. ACM, 19(8):461–471, 1976.

[J0̈5] Jan Jürjens. Secure Systems Development with UML. Springer, Berlin, June
2005.

[JM04] Michael Jünger and Petra Mutzel. Graph Drawing Software. Mathematics and
Visualization. Springer, Dec 2004.

[Jos05] Joshua D. Guttman and Jonathan C. Herzog and John D. Ramsdell and
Brian T. Sniffen. Programming cryptographic protocols. Technical report,
The MITRE Corporation, 2005. Availalbe at
http://www.ccs.neu.edu/home/guttman/.

[KN93] Eleftherios Koutsofios and Stephen C. North. Drawing graphs with dot. Murray
Hill, NJ, 1993.

[LS77] R. J. Lipton and L. Snyder. A linear time algorithm for deciding subject
security. J. ACM, 24(3):455–464, 1977.

[Moz03] Mozart Consortium. The Mozart Programming System, version 1.3.0, 2003.
Available at http://www.mozart-oz.org/.

[MS03] Mark S. Miller and Jonathan Shapiro. Paradigm regained: Abstraction
mechanisms for access control. In 8th Asian Computing Science Conference
(ASIAN03), pages 224–242, December 2003.

[QVD05] Luis Quesada, Peter Van Roy, and Yves Deville. The reachability propagator.
Research Report INFO-2005-07, Université catholique de Louvain, Louvain-la-
Neuve, Belgium, 2005.

[Sch02] Christian Schulte. Programming Constraint Services: High-Level Programming
of Standard and New Constraint Services, volume 2302 of Lecture Notes in
Artificial Intelligence. Springer-Verlag, 2002.

[Smo95] Gert Smolka. The Oz programming model. In Computer Science Today,
volume 1000 of Lecture Notes in Computer Science, pages 324–343. Springer-
Verlag, Berlin, 1995.

[SV05] Fred Spiessens and Peter Van Roy. A practical formal model for safety ana-
lysis in Capability-Based systems, 2005. To be published in Lecture Notes in
Computer Science (Springer-Verlag). Available at
http://www.info.ucl.ac.be/people/fsp/tgc/tgc05fs.pdf. Presentation at
http://www.info.ucl.ac.be/people/fsp/auredsysfinal.mov.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. MIT Press, March 2004.

