
Capability confinement by membranes

Yves Jaradin, Fred Spiessens and Peter Van Roy
Université catholique de Louvain

{yjaradin, fsp, pvr}@info.ucl.ac.be

March 22, 2005

Abstract

In capability systems it can be hard to assert confinement from static
analysis only. In this paper we propose membranes as an extension for
capability secure languages to help ensure confinement at runtime. We
apply the extension to a subset of the multi-paradigm language Oz and
provide the operational semantics of the extended language.

1 Problem context

Secure systems aim at providing privacy of information and confinement of
services. Systems based on Access Control Lists (ACLs) rely on a special
module called the ”reference monitor”, to force an access-control policy.
Designation of a resource doesn’t imply access to that resource.

Systems based on Capabilities [MSC+01] have no reference monitor :
designation is equivalent to access. The language runtime ensures that
references are unforgeable. References to resources and services are called
capabilities. A process X that has access to a service C can transfer that
access to another process Y , only if X has access to Y (via capability).
The programmer implements the access policy directly, by carefully refin-
ing and distributing capabilities amongst the processes on a need-to-use
base. Capability secure languages [MSC+01, SV05, Ree96] are specially
designed to assist the programmer in this task.

The major drawback of ACL systems is their inherent vulnerability
to the confused deputy attack. This is a simple attack – explained in
[Har89, MS03, SV05] – that can effectively counter the reference monitor’s
attempts to confine the services provided by a server. Consider a server
that uses access rights delegated by a client, to perform a service on
behalf of that client. Such a server is called a deputy. A rogue client able
to designate a resource only the deputy is allowed to use, can lure the
deputy into using that resource on its behalf. For instance, a deputy that
writes information into a client provided file, can be tricked into overriding
its own files.

Because capabilities indivisibly combine the right to use a service with
the designation of that service, confused deputies can be avoided. The

1



trouble is that, even in carefully designed capability secure languages, it
is not obvious for a programmer to check if his/her program is conform
to the access policy he/she is supposed to implement. We see two ap-
proaches to solve this problem. One is the introduction of tools for static
analysis and model checking. This approach is being investigated by one
of the authors. A second one is the introduction of a new language con-
struct, compatible with the capability approach, that dynamically guards
confinement strategies. This paper concentrates on the second approach,
and introduces a language construct called ”membrane”.

Inevitably, such constructs re-separate designation from the ability to
use the designated resource or service. We therefor only recommend mem-
branes as an additional fall-back, not as a replacement for careful design
and implementation. Being aware of the risk of re-introducing confused
deputies , we are confident that we will be able to identify safe abstractions
and patterns for using membranes, that avoid this vulnerability.

We investigated the addition of language constructs for confinement
by extending the Mozart[Con] implementation of the multi-paradigm lan-
guage Oz. The name for our construct was inspired by the interception
mechanism of the Kell calculus[BS03].

2 Design guidelines

In this section we elaborate on the security principles described by Saltzer
and Schroeder in [SS75] that need specific attention in the context of
confinement.

• Simplicity and ease of use. Programmers should not require special
skills to use membranes. The confining effects of membranes should
be easy to infer. Therefor the semantic model will be kept as sim-
ple as possible, and seamlessly integrate with the semantics of the
language.

• Fail-safety. Careful distribution of capabilities on a need-to-use base
is the preferred way to confine resources. Membranes are a mecha-
nism to enhance the fail-safety of capability systems rather than to
replace capability-based confinement.

• Fine granularity. To provide the finest possible granularity, mem-
branes will confine individual unforgeable references.

• Dynamic control. The confinement boundary of membranes can be
adjusted at runtime.

3 Membranes

A membrane is an execution context associated with a set of token values,
called the membrane’s content. Token values are unforgeable and there-
fore unique values. An instruction executed in the context of a membrane
can only use references to values in the set associated with that membrane.

When a token value is created, it is automatically placed in (the content
of) the membrane of the creating instruction. Values that were not created

2



inside the membrane context have to be explicitly exported to (the content
of) the membrane to become available.

Every instruction is executed in the context of exactly one membrane,
by default the current one. To run an instruction in another membrane,
it has to be explicitly executed in the context of that membrane.

Only the values in the static scope can be designated and only the
values in the membrane context can be accessed. An instruction can
therefore only use values in the intersection of the static scope and the
current membrane’s content.

Lexical scope

Usable values

Content of the current membrane

Values that can be designated but not used

Values that will become usable
as soon as they are available in the lexical scope

There are three new language primitives directly involving membranes:
membrane creation, exporting a token value to a membrane, and invoking
execution inside a membrane.

NewMembrane This primitive creates a new membrane and returns its
identification token (Id ), its export token (Exp) and its execution
token (Exe).

Export This primitive takes an export token and a token value. If both
are present in the current membrane, then the value is made also
available in the membrane designated by the export token.

3



Membrane A

Membrane B

Lexical scope

ExpB

X

export to

Membrane A

Membrane B

Lexical scope

ExpB

export to

X

{Export X ExpB}

Exec This primitive takes an execution token and a zero-argument pro-
cedure (a token value). If both are present in the current membrane
then the procedure is executed in the context of the membrane des-
ignated by the execution token.

3.1 Formal semantics

In this section, we present the semantic of a simplified version of Oz fea-
turing membranes. Extension to full Oz is straightforward. This section
is adapted from chapter 13 of [VH04].

The general computation model consists of a multiset of threads inter-
acting with one shared store. A thread is a list of membrane statements.
A membrane statement is a pair membrane, statement. (In Oz, a thread
is a list of statements.)

The store consists of two parts : a single-assignment store and a pred-
icate store. The single-assignment store contains the bindings between
variables and between variables and values. The single-assignment store
is strictly monotonic : bindings can only be added.

The predicate store contains relations over variables, values and clo-
sures. The following predicates are used:

4



(´ : ´ (ξ proc {$ ...} S end )) binds the procedure name ξ to the clo-
sure proc {$ ...} S end

(exp(π µ)) binds the export token π to it’s membrane µ

(exe(ε µ)) binds the execution token ε to it’s membrane µ

(in(α µ)) tells that the token-value α is in the content of membrane µ.

3.1.1 Notations

We will use the infix notation x : y for the ´ : ´ (x y) predicate. We will
use the infix notation x = y for the bindings in the single-assignment store.
We will denote the store as a conjunction of predicates and bindings.

An empty thread is denoted 〈〉. A non-empty thread T is denoted
〈µ(S) T ′〉 where µ(S) is the first membrane statement and T ′ is the
rest of the thread. Multisets of threads are denoted with curly font (T )
without braces or union symbols. A roman font (T ) is used for threads.
A membrane statement is denoted µ(S) where µ is a membrane and S is
a statement.

3.1.2 Abstract syntax

S is a statement, X is a variable identifier, α is a structural value (integer,
atom or record).

S ::= skip empty statement
| S1 S2 sequential composition
| thread S end thread introduction
| {NewMembrane X1 X2 X3} membrane introduction
| {Export X 1 X2} membrane exportation
| {Exec X 1 X2} membrane execution
| local X in S end variable introduction
| X1=X2 variable–variable binding
| X=α variable–value binding
| if X then S1 else S2 end conditional statement
| {NewName X} name introduction
| proc {X X 1 . . . Xn} S end procedural value introduction
| {X X 1 . . . Xn} procedure call

3.1.3 Configurations and reduction rules

A configuration is a couple (T , σ), where T is a multiset of threads and
σ is a store.

Reduction rules are denoted:
T T ′

σ σ′ if C

The rule transforms a configuration that matches the pattern (T , σ)
into a configuration that matches the pattern (T ′, σ′) if condition C holds.

Reduction rules that depend on a single membrane statement are de-
noted by:

µ(S) µ(S′)

σ σ′ if C

rather than by:

5



〈µ(S) T 〉 〈µ(S′) T 〉
σ σ′ if C

3.1.4 Sequential and concurrent execution

Concurrency
T U T ′U
σ σ′ if

T T ′

σ σ′

Equivalence
T T ′

σ σ′ if the configuration (T , σ) is equivalent to the configura-

tion (T ′, σ′) by α-renaming, name bijection and equivalence of bindings.

Elimination of terminated threads
〈〉
σ σ

Empty statement
〈µ(skip ) T 〉 T

σ σ

Sequential composition
〈µ(S1 S2) T 〉 〈µ(S1) 〈µ(S2) T 〉〉

σ σ

Thread introduction
〈µ(thread S end ) T 〉 〈µ(skip ) T 〉 〈µ(S) 〈〉〉

σ σ

3.1.5 Membrane specific statements

Membrane introduction
µ({NewMembrane xexp xexe xid} ) µ(xexp = π xexe = ε xid = µ2)

σ
σ ∧ in(π, µ) ∧ exp(π, µ2)
∧in(ε, µ) ∧ exe(ε, µ2)

∧in(µ2, µ)
if π, ε and µ2 are fresh names.

This statement creates a new membrane and binds it’s export token
π to xexp, it’s execution token ε to xexe and it’s identification token µ2 to
xid. NewMembrane never fails.

Exporting a value from the current membrane to another
membrane

µ({Export xtok xexp} ) µ(skip )

σ σ ∧ in(α, µ2)
if ∃σ′ : σ ≡ σ′∧xtok =

α ∧ in(α, µ) ∧ xexp = π ∧ in(π, µ) ∧ exp(π, µ2) where α is a token-value.
For this rule to reduce xtok has to be bound to a token value that is in

the current membrane’s content and xexp has to be bound to an export
token that is in the current membrane’s content. When reduced, the value

6



bound to xtok is added to the content of the membrane with export token
π.

Executing a statement in a membrane
µ({Exec xproc xexe} ) µ2(S)

σ σ
if ∃σ′ : σ ≡ σ′ ∧ xproc = ξ ∧

in(ξ, µ) ∧ xexec = ε ∧ in(ε, µ) ∧ exe(ε, µ2) ∧ ξ : proc {$} S end
For this rule to reduce xproc has to be bound to a zero-argument

procedure value that is in the current membrane and xexe has to be bound
to an execution token that is in the current membrane. This rule reduces
to a membrane statement, the membrane being µ2 and the statement
corresponding to the application of the procedure designated by ξ (see
next section).

3.1.6 Other statements

Variable introduction
µ(local X in S end ) µ(S{X → x})

σ σ
if x is a fresh vari-

able and S{X → x} is S with all free occurrences of X substituted by
x.

Bindings
µ(x = y) µ(skip )

σ σ ∧ x = y
if σ ∧ x = y is consistent.

µ(x = α) µ(skip )

σ σ ∧ x = α
if σ ∧ x = α is consistent.

Conditional execution
µ(if x then S1 else S2 end ) µ(S1)

σ ∧ x = true σ ∧ x = true

µ(if x then S1 else S2 end ) µ(S2)

σ ∧ x = false σ ∧ x = true

Name introduction
µ({NewName x} ) µ(x = ξ)

σ σ ∧ in(ξ, µ)
if ξ is a fresh name.

Procedural value introduction
µ(proc { x x1 . . . xn} S end ) µ(x = ξ)

σ σ ∧ in(ξ, µ) ∧ ξ : proc {$ X 1 . . . Xn} S end
if ξ is a fresh name.

Procedure call
µ({ x x1 . . . xn} ) µ(S{X1 → x1, . . . , Xn → xn})
σ ∧ x = ξ ∧ in(ξ, µ)

∧ξ : proc {$ X 1 . . . Xn} S end
σ ∧ x = ξ ∧ in(ξ, µ)

∧ξ : proc {$ X 1 . . . Xn} S end

7



3.2 Using membranes

We are still investigating different ways of using the expressive power of
membranes to program confinement. The following example of a versatile
sandbox illustrates how membranes can be used to build abstractions for
confinement.

3.2.1 Example of a versatile sandbox

Problem
In a capability system we have an untrusted procedure that we want
to run. We want the procedure to have access to certain capabilities
(e.g. to display information on the screen) and we also want to confine
other capabilities (e.g. no access to the file system) from the procedure.
The usual solution consists of an iterative process of reachability analysis
followed by improving confinement. This can become impractical if the
application is big. With membranes, usability analysis can be significantly
simpler than reachability analysis.

Solution with membranes
We first create a membrane (C) that will confine the export and exec
tokens of the sandbox membrane (S). We make C’s export and exec tokens
available in C for the sole purpose of being able to export these tokens to
the sandbox membrane (S). For the same reason, we export MkModule
(the sandbox utility library) and the confined procedure P to C. We make
the policy functions InCtrl and OutCtrl available in C or the sole
purpose of being able to export these tokens to the test membrane (T).
We instantiate the sandbox library that will allow to export tokens to the
sandbox mediated by the InCtrl policy.

In the context of membrane C, we create the sandbox membrane (S)
and export the necessary values to S. In the context of membrane C, we
also create the test membrane (T) and export the policy functions to T.
In the context of membrane S,We instantiate the sandbox library that
will allow to export tokens from the sandbox mediated by the OutCtrl
policy and we apply the confined procedure to this library.

The sandbox library is created by MkModule from a boolean policy
function Ctrl . It consists of:

• The tryExport function. This function exports a token-value Tok
to a membrane with export token designated by Exp, only if Tok is
not an export token and the export is allowed by the policy function
Ctrl . Exp has to be in C’s content but not necessarily in the current
membrane’s content. The policy function will be applied in the
context of the test membrane T.

• The register procedure. This procedure takes an export token
(present in the current membrane’s content) for a membrane µ and
makes the library usable from µ’s context. It exports it’s argument
to membrane C so that the argument can receive values exported by
tryExport .

• The exportToTest procedure. This is a utility to make values
usable by the policy functions.

8



• The exportToken value. This is the export token of the sandbox
membrane (S).

A membrane is part of the internal world (what is inside the sandbox)
if it is S or it has been created by code running in the context of an
internal world membrane.

A membrane is part of the external world (what is outside the sandbox)
if it is not in the internal world, not C and not T.

The abstraction guards the following invariant : If a value is present in
an internal and an external membrane, then it is present in C and T and
either InCtrl or OutCtrl approved the export. The only exceptions to
this rule are the export and exec tokens for C and the procedure to con-
fine. These values are normally present in the internal and external world
without being in T or being approved by either InCtrl or OutCtrl .

The following diagram gives an overview of the membrane configura-
tion. Plain arrows point to the membrane of which the export token is
available when the sandbox is created. Dashed arrows point to the mem-
brane of which the export token can become available later. The test
IsExportToken guarantees that no other arrows exist.

The proof that the invariant is respected is based on inspection of the
code running in C’s context. This inspection is straightforward because
of the lexical confinement of C’s exec token.

9



External world

C T

Internal world

Membrane

Set of membranes

Contains the export token to

May contain the export token to
Here is an implementation using the actual Oz syntax, extended with

membranes.

10



proc {VersatileSandBox InCtrl OutCtrl P ?M}
ExpC ExeC ExpT ExeT ExpS ExeS
fun {MkModule Ctrl}

module(tryExport: fun {$ Tok Exp}
if {IsExportToken Tok} then false
else Res in

{Export Tok ExpC}
{Exec proc {$}

{Export Tok ExpT}
{Exec proc {$}

Res={Ctrl Tok}
end ExeT}

if Res then
{Export Tok Exp}

end
end ExeC}

Res
end

end
register: proc {$ Exp}

{Export [ExeC ExpC] Exp}
{Export Exp ExpC}

end
exportToTest: proc {$ Tok}

if {Not {IsExportToken Tok}} then
{Export Tok ExpC}
{Exec proc {$}

{Export Tok ExpT}
end ExeC}

end
end

exportToken:ExpS
)

end
in

{NewMembrane ExpC ExeC _}
{Export [ExpC ExeC MkModule P InCtrl OutCtrl]

ExpC}
M={MkModule InCtrl}
{Exec proc {$}

{NewMembrane ExpS ExeS _}
{Export [ExpC ExeC ExpS MkModule P]

ExpS}
{NewMembrane ExpT ExeT _}
{Export [OutCtrl InCtrl]

ExpT}
{Exec proc {$}

{P {MkModule OutCtrl}}
end ExeS}

end ExeC}
end

11



To keep the example short and readable we used IsExportToken as if
it was a primitive. We used a version of Export that allows its first
argument to be a list of token values rather than a single value.

3.2.2 Discussion

Safe defaults
A newly created membrane is completely confined from the rest of the
world. Only export can change this situation. Confinement proofs are
simplified because usability depends only on a single language construct.

Dynamic control of confinement
Confinement by membranes can be refined at runtime, values can be ex-
ported depending on runtime conditions, membranes can be created, etc.
This enables the creation of a vast diversity of abstractions.

Interaction with capability-based security
Confinement depends on liveness properties as well as on safety properties.
The caretaker (revocable forwarder) pattern[MS03] is a good example in
which revocation of one functionality relies on the availability of another
functionality (the revoker itself).

An attacker can try to use membranes to defy revocation by confining
the revoker.

Such an attack can be repelled in the following way : create a new name
which is only exported to the membranes which are known to provide all
the needed values and check for it’s presence before doing anything which
requires the use of some value to guarantee security.

Just like in pure capability systems, the designation is unforgeable.

Conditions on execution
Upon Exec , procedures are checked for presence in the current membrane.
We considered also the stricter behavior of checking them for presence
in the destination membrane. In general, this was too restrictive as it
would force the programmer to export the procedure before executing it,
requiring control of the export token. The programmer can always make
an abstraction on top of Exec to control the use of the exec token.

3.3 Guidelines for extended semantics in Oz

The semantics presented before is sufficient to have a Turing-complete
language, but lacks many important concepts such as state or exceptions.
Other concepts can be added but some care must be taken to ensure that
membranes keep their good properties.

The need for a value extends to the need for the presence
of that value in the current membrane. Oz operations that
block when a variable is unbound should also block when the variable is
bound to a token value that is absent from the current membrane.

12



Values are created in the current membrane Oz operations
that create a token value should add the value to the current membrane
but not to another membrane. This ensures that every value can be used
in the context of the membrane it was created in, and is automatically
confined to the current membrane.

Consequent confinement An operation should only require the
presence of a value in the current membrane if the language can guarantee
that the effects of the operation can only be reached via operations that
have the same requirements.

4 Related work

4.1 Confinement at the OS level

Operating systems traditionally provide several mechanisms for confine-
ment. Apart from the memory isolation between processes (implemented
by special hardware in the MMU), there is also file confinement between
users, nearly always implemented with Access Control Lists (ACLs) or
derivatives (e.g. Unix permissions). This provides for provable confine-
ment of files.

4.2 Early approaches

Some earlier systems augmented the OS with primitives intended to make
intra-application confinement possible. KeyKOS[Fra88] added factories
and Multics[Sal74] added rings. These primitives allow a form of confine-
ment that is very different from the pure OS confinement we mentioned
above. These systems did not survive but the principles are still useful.

4.3 Language design work

Lexical scoping can help confinement but the intricacies of nested scoping
can complicate reachability analysis. Encapsulation simplifies the scoping
mechanism and therefore also the reachability analysis. Membranes are
an effort to improve confinement in Oz, and therefore are related to the
work of securing the Oz language [SV05, Con] (the Oz-E project) The
concept can then be compared to similar constructs in other capability
systems such as E [MSC+01].

4.4 Consequent Interposition

The e-lang community has been discussing an alternative approach also
called ”membranes” [Mil03]. The original rationale for this abstraction
was generalized revocability, rather than confinement. While capability
systems cannot revoke access, they can effectively revoke authority (the
potential effects of having access) if the accessed entity can be instructed
to stop providing its service to its clients. Any capability can be made
”revocable” by wrapping it in a proxy that can be deactivated this way.

13



The general principle of inter-positioning an allied proxy is useful for con-
finement too.

Generalized revocability provides for subjects in one group to offer
only revocable authority to subjects in another group (both groups are
assumed to be disjunct, and subjects in the second group have no direct
access to subjects in the first group). A ”membrane” between these groups
will automatically wrap all capabilities in a suitable wrapper to avoid
direct access between any to subjects in the subgroup. The generated
wrappers will act exactly as the membrane, so that interposition is assured
consequently. The general principle use is still inter-positioning and thus
useful for helping to ensure generalized confinement. At the moment of
writing, no detailed design or implementation of this mechanism is yet
available.

Consequent Interposition has the advantage of never introducing con-
fused deputies. The designation of an inter-positioned (possibly revoked)
proxy is different from the designation of the original capability, and
should not confuse a deputy who has access to the original capability.

4.5 Process Calculi

This research started from the M-calculus [SS03] and Kell-calculus [BS03]
but diverted rapidly from these formalisms. We kept the notion of an
ambient as a context of execution. We add no use for the mobility concept
but we consider adopting the hierarchical structure of ambients in future
work.

5 Future plans

We are continuing this work in three directions:

• Resolving confused deputies. By separating designation from au-
thority, membranes introduce confused deputies. The fundamental
reason is that authorization has to be decided not only based on the
subject and object but also on the relation between the two. The
advantage we have over traditional ACL systems is that our designa-
tions are unforgeable. We will consider recombination of designation
and authority as an additional primitive in future work.

• Distributing membranes. Confinement is extremely important for
distributed applications. The membranes described here would be
a great tool to prove distributed confinement. We plan to develop
cryptographic protocols to implement them on untrusted networks.
We also have to add support for the inherently hierarchical structure
of the trust on networks. Because we don’t want false security (as
in point 3 of the guidelines), membranes should not allow to express
confinement of a resource on a node that we don’t trust. Hierarchical
membranes are possible, and the ambient calculi shows the way.

• Abstraction building. Using the primitives presented here is awk-
ward because of the extremely fine level of confinement that they
provide. We need abstractions to take care of most of the export

14



work. We can build abstractions as demonstrated by the versatile
sandbox (Section 3.2.1). Other abstractions like the powerbox[SM02]
and its variant will become available. We intend to build a complete
framework to facilitate programming with membranes.

6 Conclusion

How do the membranes fulfill their goals? The definitions are simple and
reasoning about them is simple but their use isn’t as simple as we would
like, mainly because of the numerous values which have to be exported
before anything useful can be executed in a different membrane. The
provided defaults are indeed very safe as a newly created membrane is a
perfect sandbox. The granularity is as fine as possible : it is at the level
of the individual values. The new primitives provide for dynamic control
of membranes but are not part of the actual confinement mechanism.
Confinement itself is enforced by the membrane sensitive conditions of
the reduction rules.

7 Acknowledgements

This research was partially funded by the MILOS project (Walloon Region
of Belgium, Convention 114856), the PEPITO project (European Union
Fifth Framework Programme, Global Computing IST-2001-33234), and
the EVERGROW project (European Union Sixth Framework Programme,
Project number 001935).

References

[BS03] Philippe Bidinger and Jean-Bernard Stefani. The kell cal-
culus: operational semantics and type system. In Proceed-
ings 6th IFIP International Conference on Formal Methods for
Open Object-based Distributed Systems (FMOODS 03), Paris,
France, November 2003.

[Con] The Mozart Consortium. Mozart/Oz website.
http://www.mozart-oz.org.

[Fra88] Bill Frantz. KeyKOS - A Secure, High-Performance Environ-
ment for S/370. In Proceedings of SHARE 70 I (SHARE Inc,
Chicago)., pages 465–471, February 1988.

[Har89] Norm Hardy. The confused deputy. ACM SIGOPS Oper.
Syst. Rev, 22(4):36–38, 1989.
http://www.cap-lore.com/CapTheory/ConfusedDeputy.html.

[Mil03] Mark S. Miller. [e-lang] Revoking Capabilities, January 2003.
Mail posted at e-lang mailing list, available at
http://www.eros-os.org/pipermail/e-lang/2003-January/008434.html.

15



[MS03] Mark S. Miller and Jonathan Shapiro. Paradigm regained: Ab-
straction mechanisms for access control. In 8th Asian Comput-
ing Science Conference (ASIAN03), pages 224–242, December
2003.

[MSC+01] Mark Miller, Marc Stiegler, Tyler Close, Bill Frantz, Ka-
Ping Yee, Chip Morningstar, Jonathan Shapiro, Norm Hardy,
E. Dean Tribble, Doug Barnes, Dan Bornstien, Bryce Wilcox-
O’Hearn, Terry Stanley, Kevin Reid, and Darius Bacon. E:
Open source distributed capabilities, 2001. Available at
http://www.erights.org.

[Ree96] Jonathan A. Rees. A security kernel based on the lambda-
calculus. Technical report, MIT, 1996.

[Sal74] Jerome H. Saltzer. Protection and the control of information
sharing in multics. Commun. ACM, 17(7):388–402, 1974.

[SM02] Marc Stiegler and Mark S. Miller. A capability based client:
The darpabrowser. Technical Report Focused Research Topic
5 / BAA-00-06-SNK, Combex, Inc., June 2002. Available at
http://www.combex.com/papers/darpa-report/index.html.

[SS75] J. H. Saltzer and M. D. Schroeder. The protection of informa-
tion in computer systems. In Proceedings of the IEEE, volume
63:9, pages 1278–1308, September 1975.

[SS03] Alan Schmitt and Jean-Bernard Stefani. The m-calculus: A
higher-order distributed process calculus. In In Proceedings of
the 30th Annual ACM Symposium on Principles of Program-
ming Languages (POPL’03), New Orleans, LA, USA, January
15-17 2003.

[SV05] Fred Spiessens and Peter Van Roy. The Oz-E project: De-
sign guidelines for a secure multiparadigm programming lan-
guage. In Multiparadigm Programming in Mozart/Oz: Ex-
tended Proceedings of the Second International Conference
MOZ 2004, volume 3389 of Lecture Notes in Artificial Intelli-
gence. Springer-Verlag, 2005.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and
Models of Computer Programming. MIT Press, March 2004.

16


