
Invited paper for New Generation Computing 1

Programming Languages
for Distributed Applications

Seif Haridi�, Peter Van Roy†, Per Brand‡, and Christian Schulte§

June 14, 1998

Abstract

Much progress has been made in distributed computing in the areas of distribution structure,
open computing, fault tolerance, and security. Yet, writing distributed applications remains diffi-
cult because the programmer has to manage models of these areas explicitly. A major challenge
is to integrate the four models into a coherent development platform. Such a platform should
make it possible to cleanly separate an application’s functionality from the other four concerns.
Concurrent constraint programming, an evolution of concurrent logic programming, has both the
expressiveness and the formal foundation needed to attempt this integration. As a first step, we
have designed and built a platform that separates an application’s functionality from its distri-
bution structure. We have prototyped several collaborative tools with this platform, including a
shared graphic editor whose design is presented in detail. The platform efficiently implements
Distributed Oz, which extends the Oz language with constructs to express the distribution struc-
ture and with basic primitives for open computing, failure detection and handling, and resource
control. Oz appears to the programmer as a concurrent object-oriented language with dataflow
synchronization. Oz is based on a higher-order, state-aware, concurrent constraint computation
model.

1 Introduction

Our society is becoming densely interconnected through computer networks. Transferring informa-
tion around the world has become trivial. The Internet, built on top of the TCP/IP protocol family,
has doubled in number of hosts every year since 1981, giving more than 20 million in 1997. Applica-
tions taking advantage of this new global organization are mushrooming. Collaborative work, from
its humble beginnings as electronic mail and network newsgroups, is moving into workflow, mul-
timedia, and true distributed environments [25, 12, 6, 5]. Heterogeneous and physically-separated
information sources are being linked together. Tasks are being delegated across the network by
means of agents [26]. Electronic commerce is possible through secure protocols.

Yet, despite this explosive development, distributed computing itself remains a major challenge.
Why is this? A distributed system is a set of autonomous processes, linked together by a network [48,
30, 8]. To emphasize that these processes are not necessarily on the same machine, we call them
sites. Such a system is fundamentally different from a single process. The system is inherently
concurrent and nondeterministic. There is no global information nor global time. Communication
delays between processes are unpredictable. There is a large probability of localized faults. The
system is shared, so users must be protected from other users and their computational agents.

�seif@sics.se , Swedish Institute of Computer Science, S-164 28 Kista, Sweden
†pvr@info.ucl.ac.be , Dép. INGI, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
‡perbrand@sics.se , Swedish Institute of Computer Science, S-164 28 Kista, Sweden
§schulte@dfki.de , German Research Center for Artificial Intelligence (DFKI), D-66123 Saarbr¨ucken, Germany

Part of problem

Interaction between parts

with added specifications
Single modelMultiple interacting models

functionality
Application

Application
functionality

Distribution
structure Distribution structure

Fault tolerance

Open computing

Resource control
and security

Open computing

Resource control and security

Fault tolerance

These do not affect
functionality

Figure 1: The challenge: simplifying distributed programming

1.1 Identifying the issues

A distributed application should have good perceived behavior, despite the vicissitudes of the un-
derlying system. The application should have good performance, be dependable, and be easily
interfaceable with other applications. How can we achieve this?

In the current state of the art, developing a distributed application with these properties requires
specialist knowledge beyond that needed to develop an application on a single machine. For exam-
ple, a new client-server application can be written with Java RMI [33, 34]. An existing application
can be connected with another through a CORBA implementation (e.g., Orbix) [37]. Yet in both
cases the tools are unsatisfactory. Simply reorganizing the distribution structure requires rewriting
the application. Because the Java specification does not require time-sliced threads [15], doing such
a reorganization in Java may require profound changes to the application. Furthermore, with each
new problem that is addressed, e.g., adding a degree of fault tolerance, the complexity of the ap-
plication increases. To master each new problem, the developer must learn a complex new tool in
addition to the environment he or she already knows. A developer experienced only in centralized
systems is not prepared.

Some progress has been made in integrating solutions to different problem areas into a sin-
gle platform. For example, the Ericsson Open Telecom Platform (OTP) [11], based on the Erlang
language [4, 54], integrates solutions for both distribution structure and fault tolerance. Erlang is
network-transparent at the process level, i.e., messages between processes (a form of active objects)
are sent in the same way independently of whether the processes are on the same or different sites.
The OTP goes far beyond popular platforms such as Java [33, 34] and is being successfully used in
commercial telephony products, where reliability is paramount.

The success of the Erlang approach suggests applying it to the other problem areas of distributed
computing. We identify four areas, namely distribution structure, open computing, fault tolerance,
and security. If the application functionality is included, this means that the application designer has
five concerns:

� Functionality : what the application does if all effects of distribution are disregarded.

� Distribution structure : the partitioning of the application over a set of sites.

2

� Open computing: the ability for independently-written applications to interact with each
other in interesting ways.

� Fault tolerance: the ability for the application to continue providing its service despite partial
failures.

� Security: the ability for the application to continue providing its service despite intentional
interference. An important part of fault tolerance and security isresource control.

A possible approach is to separate the functionality from the other four concerns (see Figure 1). That
is, we would like the bulk of an application’s code to implement its functionality. Models of the four
other concerns should be small and orthogonal additions. Can this approach work? This is a hard
question and we do not yet have a complete answer. But some things can be said.

The first step is to separate the functionality from the distribution structure. We say that the
system should be both network-transparent and network-aware. A system isnetwork-transparentif
computations behave in the same way independent of the distribution structure. Applications can
be almost entirely programmed without considering the network. A system isnetwork-awareif the
programmer maintains full control over localization of computations and network communication
patterns. The programmer decides where a computation is performed and controls the mobility and
replication of data and code. This allows to obtain high performance.

1.2 Towards a solution

We have designed and implemented a language that successfully implements the first step, i.e.,
it completely separates the functionality from the distribution structure. The resulting language,
Distributed Oz, is a conservative extension to the existing centralized Oz language [10]. Porting
existing Oz programs to Distributed Oz requires essentially no effort. Why is Oz a good foundation
for distributed programming? Because of three properties [46]:

� Oz has a solid formal foundation that does not sacrifice expressiveness or efficient implemen-
tation. Oz is based on a higher-order, state-aware, concurrent constraint computation model.
Oz appears to the programmer as a concurrent object-oriented language that is every bit as
advanced as modern languages such as Java (see Section 3). The current emulator-based im-
plementation is as good or better than Java emulators [20, 19]. Standard techniques for con-
current object-oriented design apply to Oz [28]. Furthermore, Oz introduces powerful new
techniques that are not supported by Java [16].

� Oz is a state-aware and dataflow language. This helps give the programmer control over
network communication patterns in a natural manner (see Section 4). State-awareness means
the language distinguishes between stateless data (e.g., procedures or values), which can safely
be copied to many sites, and stateful data (e.g., objects), which at any instant must reside
on just one site [52]. Dataflow synchronization allows to decouple calculating a value from
sending it across the network [17]. This is important for latency tolerance.

� Oz provides language security. That is, references to all language entities are created and
passed explicitly. An application cannot forge references nor access references that have not
been explicitly given to it. The underlying representation of language entities is inaccessible
to the programmer. Oz has an abstract store with lexical scoping and first-class procedures
(see Section 7). These are essential properties to implement a capability-based security policy
within the language [49, 53].

Allowing a successful separation of functionality from distribution structure puts severe restrictions
on a language. It would be almost impossible in C++ because the semantics are informal and unnec-
essarily complex and because the programmer has full access to all underlying representations [47].
It is possible in Oz because of the above three properties. So far, it has not been necessary to update

3

the language semantics more than slightly to accommodate distribution.1 This may change in the
future. Furthermore, work is in progress to separate the functionality from the other three concerns.
Currently, Distributed Oz provides the language semantics of Oz and complements it in four ways:

� It has constructs to express the distribution structure independently of the functionality (see
Section 4). The shared graphic editor of Section 2 is designed according to this approach.

� It has primitives for open computing, based on the concept oftickets(see Section 5). This
allows independently-runningapplications to connect and seamlessly exchange data and code.

� It has primitives for orthogonal failure detection and handling, based on the concepts ofhan-
dlersandwatchers(see Section 6). This allows to build a first level of fault tolerance.

� It supports a capability-based security policy and has primitives for resource control based on
the concept ofvirtual site(see Section 7).

In Distributed Oz, developing an application is separated into two independent parts. First, only
the logical architecture of the task is considered. The application is written in Oz without explicitly
partitioning the computation among sites. One can check thesafetyandlivenessproperties2 of the
application by running it on one site. Second, the application is madeefficientby specifying the
network behavior of its entities. In particular, the mobility of stateful entities (objects) must be
specified. For example, some objects may be placed on certain sites, and other objects may be given
a particular mobile behavior (such as state caching).

The Distributed Oz implementation extends the Oz implementation with four non-trivial dis-
tributed algorithms. Three are designed for specific language entities, namely logic variables, object-
records, and object-state. Logic variables are bound with avariable bindingprotocol (see Sec-
tion 4.2). Object-records are duplicated among sites with alazy replicationprotocol (see Sec-
tion 4.3). Object-state moves between sites with amobile stateprotocol (see Section 4.4). The
fourth protocol is a distributed garbage collection algorithm using a credit mechanism (see Sec-
tion 4.5). Garbage collection is part of the management of shared entities, and it therefore underlies
the other three protocols.

1.3 Outline of the article

The rest of this article consists of six parts. Section 2 gives the design of a shared graphic editor in
Distributed Oz. It shows how the separation between functionality and distribution works in practice.
Section 3 gives an overview of the Oz language and its execution model. Oz has deep roots in the
logic programming and concurrent logic programming communities. It is illuminating to show these
connections. Section 4 presents Distributed Oz and its architecture, and explains how it separates
functionality from distribution structure. The four protocols are highlighted, namely distributed
logic variables, lazy replication of object-records, mobility of object-state, and distributed garbage
collection. Finally, Sections 5, 6, and 7 discuss open computing, failure detection and handling, and
resource control and security. These three sections are more speculative than the others since they
describe parts of the system that are still under development.

2 Shared graphic editor

Writing an efficient distributed application can be much simplified by separating the functionality
from the distribution structure. We have substantiated this claim by designing and implementing a
prototype shared graphic editor, an application which is useful in a collaborative work environment.
The editor is seen by an arbitrary number of users. We wish the editor to behave like a shared
virtual environment. This implies the following set of requirements (see Figure 2). We require

1For example, ports have been changed to model asynchronous communication between sites [52].
2A fortiori, correctness and termination for nonreactive applications.

4

Informal specification:

All users see
the same design

Users are not bothered
by the network

●

●

Network

Intranets + Internet Contractor B

Consultant
Study bureau

Contractor A

R

A2

A1 B1

B2

C

Figure 2: A shared graphic editor

CM
WM
GS Graphics subsystem

Window manager
Client manager

DB Display broadcaster
UM User manager

Graphic entitiesGE

WM CM

UM

DB

WM CMGS

GE

GS...
...

Figure 3: Logical architecture of the graphic editor

that all users be able to make updates to the drawing at any time, that each user sees his or her
own updates without any noticeable delays, and that updates must be visible to all users in real time.
Furthermore, we require that the same graphic entity can be updated by multiple users. This is useful
in a collaborative CAD environment when editing complex graphic designs. Finally, we require that
all updates are sequentially consistent, i.e., each user has exactly the same view of the drawing. The
last two requirements is what makes the application interesting. Using IP multicast to update each
user’s visual representation, as is done for example in the LBL Whiteboard application,3 does not
satisfy the last two requirements.

2.1 Logical architecture

Figure 3 gives the logical architecture of our prototype. No assumptions are made about the distri-
bution structure. The drawing state is represented as a set of objects. These objects denote graphic
entities such as geometric shapes and freehand drawing pads. When a user updates the drawing,
either a new object is created or a message is sent to modify the state of an existing object. The
object then posts the update to a display broadcaster. The broadcaster sends the update to all users
so they can update their displays. The execution path from user input to display update is shown by
the heavy curved line. The users see a shared stream, which guarantees sequential consistency.

New users can connect themselves to the editor at any time using the open computing ability of
Distributed Oz. The mechanism is based on “tickets”, which are simply text strings (see Section 5).
Any Oz process that knows the ticket can obtain a reference to the language entity. The graphic
editor creates a ticket for the User Manager object, which is responsible for adding new users. A
new user is added by using the ticket to get a reference to the User Manager. The two computations

3Available athttp://mice.ed.ac.uk/mice/archive .

5

WM CM

UM

DB

WM CMGS

GE

GS...
...

Client 1 site

Server site

Client n site

Figure 4: Editor with client-server structure

GE

WM CM

DB

WM CMGS GS...
Client 1 site Client n site

UM

...

Server siteCached
objects

Figure 5: Editor with cached graphic state

then reference the same object. This transparently opens a connection between two sites in the two
computations. From that point onward, the computation space is shared. When there are no more
references between two sites in a computation, then the connection between them is closed by the
garbage collector. Computations can therefore connect and disconnect seamlessly.

2.2 Client-server structure

To realize the design, we have to specify its distribution structure. Figure 4 shows one possibility:
a client-server structure. All objects are stationary. They are partitioned among a server site and
one site per user. This satisfies all requirements except performance. It works well on low-latency
networks such as LANs, but performance is poor when a user far from the server tries to draw free-
hand sketches or any other graphic entity that needs continuous feedback. This is because a freehand
sketch consists of many small line segments being drawn in a short time. In our implementation, up
to 30 motion events per second are sent from the graphics subsystem to the Oz process. Each line
segment requires updating the drawing pad state and sending this update to all users. If the state is
remote, then the latency for one update is often several hundred milliseconds or more, with a large
variance.

6

2.3 Cached graphic state

To solve the latency problem, we change the distribution structure (see Figure 5). We refine the
design to represent the graphic state and the display broadcaster as freely mobile (“cached”) objects
rather than stationary objects. The effect of this refinement is that parts of the graphic state are
cached at sites that modify them. Implementing the refinement requires changing some of the calls
that create new objects. In all, less than 10 lines of code out of 500 have to be changed. With
these changes, freehand sketches do not need any network operations to update the local display, so
performance is satisfactory. Remote users see the sketch being made in real time, with a delay equal
to the network latency. How is this magic accomplished? It is simple: whenever an object is invoked
on a site, then the mobile state protocol first makes the object’s state pointer local to the site (see
Section 4.4). The object invocation is therefore a local operation.

2.4 Push objects and transaction objects

More refined editor designs can take advantage of additional distribution behaviors of objects. For
example, the design with cached objects suffers from two problems:

� Users who simultaneously modify different graphic entities will interfere with each other
through the display broadcaster. The latter will bounce between user sites, causing delays
in updating the displays. This problem can be solved by using apush object, which multicasts
state updates to all sites that reference the object. One possibility is to make the display broad-
caster into a push object, thus maintaining sequential consistency while taking advantage of
a multicast network protocol. Another possibility is to make each graphic entity into a push
object. In this case, the users may see inconsistent drawings.

� If a user wishes to modify a graphic entity, there is an initial delay while the graphic entity’s
state is cached on the user site. This problem can be solved by using atransaction object,
which does the state update locally, while requesting a global lock on the object. The state
update will eventually be confirmed or rejected.

Both push and transaction objects maintain consistency of object updates: the object is defined by
a sequence of states. It follows that there is still one graphic state and updates to it are sequentially
consistent. The editor therefore still supports collaborative design. What changes is how the state
sequence is seen and how it is created.

Updating the editor to use either or both of these object types may require changing its spec-
ification or logical architecture. For example, the specification may have to be relaxed slightly,
temporarily allowing incorrect views. This illustrates the limits of network-transparent program-
ming. It is not possible in general to indefinitely improve the performance of a given specification
and logical architecture by changing the distribution structure. At some point, one or both of the
specification and architecture must be changed.

2.5 Final comments

Designing the shared graphic editor illustrates the two-part approach for building applications in
Distributed Oz. First, build and test the application using stationary objects. Second, reduce latency
by carefully selecting a few objects and changing their mobility behavior. Because of transparency,
this can be done with quite minor changes to the code of the application itself. This can give good
results in many cases. To obtain the very best performance, however, it may be necessary to change
the application’s specification or architecture.

In both the stationary and mobile designs, fault tolerance is a separate issue that must be taken
into account explicitly. It can be done by recording on a reliable site a log of all display events.
Crashed users disappear, and new users are sent a compressed version of the log. Primitives for fault
tolerance are given in Section 6.

7

Contains variables & bindings
Only allows operations that are

Not physical memory!●

●

●Y=person(age:25)

...S1 S2 Sn Execute statement sequences
Block on data availability●

●

legal for the entities involved

Z
X=23

Dataflow
threads

Abstract
store

Figure 6: Computation model of OPM

S ::= S S Sequence
j X=f(l1: Y1 ... ln: Yn) j Value

X=<number> j X=<atom> j {NewName X}

j local X1 ... Xn in S end j X=Y Variable
j proc { X Y1 ... Yn} S end j { X Y1 ... Yn} Procedure
j {NewCell Y X} j {Exchange X Y Z} j {Access X Y} State
j case X==Y then S else S end Conditional
j thread S end j {GetThreadId X} Thread
j try S catch X then S end j raise X end Exception

Figure 7: Kernel language of OPM

In general, mobile objects are useful both for fine-grained mobility (caching of object state)
as well as coarse-grained mobility (explicit transfer of groups of objects). The key ability that
the system must provide is transparent control of mobility, i.e., control that is independent of the
object’s functionality. Sections 3.2 and 4 explain briefly how this is done in Distributed Oz. A full
explanation is given in [52].

3 Oz

Oz is a rich language built from a small set of powerful ideas. This section attempts to situate Oz
among its peers. We summarize its programming model and we compare it with Prolog and with
concurrent logic languages.

The roots of Oz are in concurrent and constraint logic programming. The goal of the Oz project
is to provide a firm foundation forall facets of computation, not just for a declarative subset. The
semantics should be fully defined and bring the operational aspects out into the open. For example,
concurrency and stateful execution make it easy to write programs that interact with the external
world [19]. True higher-orderness results in compact, modular programs [1]. First-class computation
spaces allow to program inference engines within the system. For example, it is easy to program
multiple concurrent first-class Prolog top levels, each with its own search strategy [41].

Section 3.1 summarizes the Oz programming model, including the kernel languages and the
abstractions built on top of it. Section 3.2 illustrates Oz by means of a nontrivial example, namely
the implementation of remote method invocation. Section 3.3 compares Oz and Prolog. Finally,
Section 3.4 gives the history of Oz from a concurrent logic programming viewpoint.

8

3.1 The Oz programming model

The basic computation model is an abstract store observed by dataflow threads (see Figure 6). A
thread executes a sequence of statements and blocks on the availability of data. The store is not
physical memory. It only allows operations that are legal for the entities involved, i.e., no type
casting or address calculation. The store has three compartments: the constraint store, containing
variables and their bindings, the procedure store, containing procedure definitions, and the cell store,
containing mutable pointers (“cells”). The constraint and procedure stores are monotonic, i.e., in-
formation can only be added to them, not changed or removed. Threads block on availability of data
in the constraint store.

The threads execute a kernel language called Oz Programming Model (OPM) [44]. We briefly
describe the OPM constructs as given in Figure 7. Statement sequences are reduced sequentially
inside a thread. Values (records, numbers, etc.) are introduced explicitly and can be equated to vari-
ables. All variables are logic variables, declared in an explicit scope defined by thelocal construct.
Procedures are defined at run-time with theproc construct and referred to by a variable. Proce-
dure applications block until their first argument refers to a procedure. State is created explicitly by
NewCell , which creates acell, an updatable pointer into the constraint store. Cells are updated by
Exchange and read byAccess . Conditionals use the keywordcase and block until the condition
is true or false in the constraint store.4 Threads are created explicitly with thethread construct and
have their own identifier. Exception handling is dynamically scoped and uses thetry andraise

constructs.
Full Oz is defined by transforming all its statements into this basic model. Full Oz supports

idioms such as objects, classes, reentrant locks, and ports [44, 52]. The system implements them
efficiently while respecting their definitions. We define the essence of these idioms as follows. For
clarity, we have made small conceptual simplifications. Full definitions may be found in [16].

� Object. An object is essentially a one-argument procedure{Obj M} that references a cell,
which is hidden by lexical scoping. The cell holds the object’s state. The argumentMindexes
into the method table. A method is a procedure that is given the message and the object state,
and calculates the new state.

� Class. A class is essentially a record that contains the method table and attribute names. When
a class is defined, multiple inheritance conflicts are resolved to build its method table. Unlike
Java, classes in Oz are pure values, i.e., they are stateless.

� Reentrant lock. A reentrant lock is essentially a one-argument procedure{Lck P} used for
explicit mutual exclusion, e.g., of method bodies in objects used concurrently.P is a zero-
argument procedure defining the critical section. Reentrant means that the same thread is
allowed to reenter the lock. Calls to the lock may therefore be nested. The lock is released
automatically if the thread in the body terminates or raises an exception that escapes the lock
body.

� Port. A port is an asynchronous channel that supports many-to-one communication. A port
P encapsulates a streamS. A stream is a list with unbound tail. The operation{Send P M}

addsMto the end ofS. Successive sends from the same thread appear in the order they were
sent.

3.2 Oz by example

It is not the purpose of this article to give a complete exposition of Oz. Instead, we present Oz
by means of a nontrivial example program that is interesting in its own right. We show how to
implement active objects in Oz, and as a corollary, we show that the same program implements
remote method invocation in Distributed Oz. An active object is an object with an associated thread

4The keywordif is reserved for constraint applications.

9

proc {NewStationary Class Init ?StatObj}
Obj={New Class Init}
S P={NewPort S}
N={NewName}

in
thread

{ForAll S
proc {$ M#R}

thread
try {Obj M} R=N
catch E then R=E end

end
end }

end
proc {StatObj M}

R in
{Send P M#R}
case R==N then skip
else raise R end
end

end
end

Figure 8: RMI part 1: Create a stationary object from any class

class Counter
attr i
meth init i<-0 end
meth inc i<- @i+1 end
meth get(X) X=@i end
meth error raise some_error end end

end

Obj={NewStationary Counter init}
{Obj inc}
{Obj inc}
{Print {Obj get($)}}
try {Obj error} catch X then {Print X} end

Figure 9: RMI part 2: A stationary counter object

10

SICStus Prolog Oz
Constraints Incremental solver with tell Incremental solver with ask, tell
Control Backtracking and coroutining Explicit dataflow threads, encapsu-

lated search
Higher-order Call, assert First-class procedures with lexical

scoping
State Objects, mutables, assert Objects, cells

Table 1: Oz and Prolog

(or process), much like an actor or concurrent logic process. Invoking a method in an active object is
done by explicitly sending a message to the associated thread. As we will see, this kind of object has
a well-defined distribution behavior in Distributed Oz. Because threads are stationary in Distributed
Oz, the objects also are stationary and reside on their creation site. Invoking the object from a remote
site behaves exactly like a remote method invocation.

In Distributed Oz, objects are mobile by default and will execute on the invoking site, inside
the invoking thread. This is implemented by a lightweight mobility protocol that serializes the path
of the object’s state pointer among the invoking sites (see Section 4). One way to make an object
stationary is to wrap it inside a port and create a thread that invokes the object with messages read
from the port’s stream. The object is accessed only from this thread, so the object is stationary.

Figure 8 defines the procedureNewStationary that implements stationary objects by wrapping
them inside a port. It takes a classClass and initialization messageInit , and returns a procedure
StatObj . The “?” is a comment that denotes an output argument. InsideNewStationary , an
objectObj is created, as well as a portP and its associated streamS. A thread is created that serves
each message appearing onS. This is done using the higher-order procedure{ForAll S Proc}

whereProc is a one-argument procedure. The thread waits until a messageM#Rappears on the
streamS and then executes the procedure call{Proc M#R} . The procedure starts a thread that
invokes the object with{Obj M} and bindsR either to a unique nameN denoting normal execution
or to an exceptionE. The use of the lexically-scoped new nameN avoids conflicts with existing
exceptions. Let us now consider the procedureStatObj . A thread executingStatObj sends on the
port P the pairM#RwhereMis the message andR is a logic variable for the answer. It suspends on
R until the corresponding method is executed successfully or an exception is returned. In the latter
case the exception is reraised in the thread executingStatObj .

We see that Oz allows the programmer to provide generic abstractions that can be used later
without concern for their implementation. It is not necessary to understandNewStationary in
order to use it. This is because the objects it creates have the same Oz semantics as objects created
by the standard procedureNew.

Figure 9 defines aCounter class, creates a stationary instance,Obj , and sends several messages
to Obj . WhetherObj is created byNewStationary or New, its language behavior is the same.
TheCounter class does not have any ancestors, therefore no inheritance declaration appears. Each
instance ofCounter has one attributei and four methods. An attribute is a mutable part of the object
state that can be accessed and modified from within a method. A method is defined by a method
head, which is a record, and a method body, which is a statement. Dynamic binding is supported
through the use ofself inside a method body. Accessing the value of an attribute is done by the
operator “@”. Assigning a new value to an attribute is done by the operator “<- ”. Therefore, the
methodinit initializesi to 0, the methodinc incrementsi , the methodget gets the current value
of i , and the methoderror raises the somewhat unusual exceptionsome_error . Oz has syntactic
support for embedding statements in expressions. A statement can be used as an expression by using
a “$” to mark the result. Therefore{Print {Obj get($)}} is equivalent tolocal X in {Obj

get(X)} {Print X} end .

11

Concurrent logic programming Oz
Constraints None, except in AKL Incremental solver with ask, tell
Control Fine-grained concurrency Explicit dataflow threads, encapsu-

lated search
Higher-order Restricted First-class procedures with lexical

scoping
State Stream-based objects Objects, cells

Table 2: Oz and concurrent logic programming

3.3 Oz and Prolog

There is a strong sense in which Oz is a successor to Prolog (see Table 1). The Oz system can be
used for many of the tasks for which Prolog and constraint logic programming are used today [32,
41, 21, 45]. Like Prolog, Oz has a declarative subset. Like Prolog, Oz has been generalized to
arbitrary constraint systems (currently implemented are finite domains and open feature structures).
Oz is fully defined and has an efficient implementation competitive with the best emulated Prolog
systems [19, 35, 50]. Even though Oz has much in common with Prolog, it is not a Prolog superset.
Oz does not have Prolog’s reflective syntax (i.e., data and programs have the same syntax), nor does
it have the meta-programming facilities (likecall/1 , assert/1) or the user-definable syntax
(operator declarations).

The foundation of Prolog’s success is the high abstraction level of its declarative subset, namely
first-order Horn clause logic with SLDNF resolution [29]. What’s missing from Prolog is that little
attempt is made to give the same foundation to anythingoutsidethe declarative subset. Two decades
of research have resulted in a solid understanding of the declarative subset and only a partial un-
derstanding of the rest.5 This results in two main flaws of Prolog. First, the operational aspects are
too deeply intertwined with the declarative. The control is naive (depth-first search) and eager. The
interactive top level has a special status: it is lazy, but unfortunately inaccessible to programs. It is
lazy because new solutions are calculated upon user request. It is inaccessible to programs, i.e., a
program cannot internally set up a query and request solutions lazily. To provide a top level within
a program requires programming a meta-interpreter, thus losing an order of magnitude in efficiency.
Second, to express anything beyond the declarative subset requires ad hoc primitives that are lim-
ited and do not always do the right thing. Thefreeze/2 provides coroutining as a limited form
of concurrency. Thecall/1 andsetof/3 provide only a limited form of higher-orderness. All
these problems are solved in Oz.

3.4 Oz and concurrent logic programming

Oz is the latest in a long line of concurrent logic languages. Table 2 compares Oz with concurrent
logic programming languages. First experiments with concurrency were done in the venerable IC-
Prolog system where coroutining was used to simulate concurrent processes. This led to the Parlog
language and Concurrent Prolog. The advent of GHC simplified concurrent logic programming
considerably by introducing the notion ofquiet guards. A clause matching a goal will fire only
if the guard is entailed by the constraint store. This formulation and its theoretical underpinning
were pioneered by the work of Maher and Saraswat as they gave a solid foundation to concurrent
logic programming [31, 40]. On the practical side, the flat versions of Concurrent Prolog and GHC,
called FCP and FGHC respectively, were the focus of much work [13, 43]. The KL1 language,
derived from FGHC, was implemented in the high-performance KLIC system. This system runs
on sequential, parallel, and distributed machines [14]. A number of implementation techniques in
the current Distributed Oz system have been borrowed from KLIC, notably the distributed garbage
collection algorithm.

5The non-declarative aspect has received some attention, e.g., [36, 39, 3].

12

Kind of entity Protocol Entity
Stateless Replication Eager record, procedure, class

Lazy object-record
Single assignment Binding Eager logic variable

Lazy logic variable
Stateful Localization Mobile cell, object-state

Stationary port, thread

Table 3: Semantics of Distributed Oz

An important subsequent development was AKL (Andorra Kernel Language) [23], which added
explicit state in the form of ports and provided the first synthesis of concurrent and constraint logic
programming. AKL encapsulates search by using nested computation spaces. A computation space
is a constraint store with its associated goals. Search is done by allowing procedures to be defined by
a sequence of don’t-know guarded clauses. These definitions denote disjunctions. When local propa-
gation cannot choose between different disjuncts, then the program is free to try them by cloning the
computation space. The initial Oz system, Oz 1, was largely derived from AKL, but added the no-
tions of higher-order procedures, more controllable search by making computation spaces first class,
compositional syntax, and the cell primitive for mutable state. Concurrency in Oz 1 is fine-grained.
When a statement suspends, a new thread is created that contains only the suspended statement. The
main thread is not suspended but continues with the next statement.

All concurrent logic languages up to and including Oz 1 were designed for fine-grained con-
currency and implicit exploitation of parallelism. The current Oz language, Oz 2, abandons this
model in favor of explicit control over concurrency by means of a thread creation construct. Thread
suspension and resumption is still based on dataflow using logic variables. Our experience shows
that explicit concurrency makes it easier for the user to control application resources. It allows the
language to have an efficient and expressive object-oriented model without sequential state threading
within method definitions. It also allows easy incorporation of a conventional exception handling
construct into the language, and last but not least a simple debugging model. In the current Oz
system concurrency is used mostly to model logical concurrency in the application rather than to
increase potential parallelism.

4 Distributed Oz

Distributed Oz has the same language semantics as Oz. Distributed Oz separates application func-
tionality from distribution structure by defining a distributed semantics for all language entities [52,
51, 17, 18]. The distributed semantics extends the language semantics to take into account the no-
tion of site. It defines the network operations invoked when a computation is partitioned on multiple
sites. We classify the language entities into three basic types (see Table 3):

� Stateless entities are replicated eagerly (records, procedures, classes) or lazily (object-record).

� Single assignment entities (logic variables) are bound eagerly or lazily [17].

� Stateful entities are localized and are either mobile by default (cell, object-state) or stationary
by default (port, thread) [52]. What moves is not the state, but the site that has the right to
create the next state. We say that this site has thestate pointer.6

For each of these entities, network operations7 are predictable, which gives the programmer the
ability to manage network communications. In the rest of this section, we present the four distributed
algorithms used to implement the language entities. Section 4.1 introduces the concept ofaccess

6In [52] it is called thecontent-edge.
7In terms of the number of network hops.

13

structure, which models a language entity that is accessible from more than one site. The distributed
behavior of a language entity is defined as a protocol between the nodes of its access structure, i.e., as
a distributed algorithm. Sections 4.2 explains the uses of distributed logic variables and shows how to
bind them with avariable bindingprotocol. Sections 4.3 and 4.4 show how to build mobile objects
that have predictable network behavior by using alazy replicationprotocol for the object-record
(explained in Section 4.3) and amobile stateprotocol for the object-state (explained in Section 4.4).
The network behavior of logic variables and objects highlights most clearly the design philosophy
of Distributed Oz. Finally, Section 4.5 explains the distributed garbage collection algorithm, which
underlies the management of access structures.

Variable (when unbound)

Cell (state pointer)

Record (with fields) Thread (with references)

Procedure (with external references)

Figure 10: Language entities as nodes in a graph

4.1 The distribution graph

We model distributed execution in a simple but precise manner using the concept ofdistribution
graph. We obtain the distribution graph in two steps from an arbitrary execution state of the sys-
tem. The first step is independent of distribution. We model the execution state by a graph, called
language graph, in which each language entity except for an object corresponds to one node (see
Figure 10). Objects are compound entities and are explained in Section 4.3.

In the second step, we introduce the notion ofsite. Assume a finite set of sites and annotate each
node by its site (see Figure 11). If a node, e.g.,N2, is referenced by at least one node on another
site, then map it to asetof nodes, e.g.,fP1,P2,P3,Mg. This set is called theaccess structureof
the original node. An access structure consists of oneproxy nodePi for each site that referenced
the original node and onemanager nodeMfor the whole structure. The resulting graph, containing
both local nodes and access structures where necessary, is called thedistribution graph. Most of the
example protocol executions in this article use this notation.

Each access structure is given a global address that is unique system-wide. The global address
encodes various pieces of information including the manager site. Proxy nodes are uniquely identi-
fied by pairs (global address,site). On each site, the global address indexes into a table that refers to
the proxy. This allows to enforce the invariant that each site has at most one proxy. Messages are
sent between nodes in access structures. In terms of sites, a message is sent from the source node’s
site to the destination node’s site. In the message body, all references are to nodes on the destination
site. These nodes are identified by the global addresses of their access structures. When the message
arrives, the nodes are looked up in the site table.

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

N1 P1 P2 P3 N3N3N2N1

Site 1 Site 2 Site 3 Site 1 Site 3Site 2

M

access structure for N2

Language graph Distribution graph

Figure 11: Access structure in the distribution graph

14

M

P

P

Site 1 Site 2 Site 3

P T

3
3

3
2

4

1

1
2
3
4

Proxy requests binding
Thread initiates binding and blocks

Manager grants binding & multicasts to all proxies
Proxy informs thread, allowing thread to continue

Figure 12: Binding a logic variable

Procedures and other values (records and numbers, etc.) are copied eagerly, i.e., they never
result in an access structure.8 A procedure is only sent once to any site9 and has only one copy on
the site. A procedure consists of a closure and a code block, each of which is given a global address.
Messages contain only the global addresses, and upon arrival the missing code blocks and closures
are requested immediately.

4.2 Distributed logic variables

Logic variables express dependencies between computations without imposing an execution order.
This property can be exploited in distributed computing:

� Two basic problems in distributed computing are latency tolerance and third-party indepen-
dence. Using logic variables instead of explicit message passing can improve these two aspects
of an application with little programming effort.

� Using logic variables, common distributed programming idioms can be expressed in a network-
transparent manner that results in optimal or near-optimal message traffic.

These benefits are realized due to a practical distributed algorithm for rational tree unification, which
is used to bind logic variables [17]. The algorithm is efficiently implemented in the Distributed Oz
system as two parts: a local algorithm and a distributed algorithm. Most of the work of unification
is done locally. The distributed algorithm does only variable binding. We briefly describe it here.

The two basic operations on logic variables are binding and waiting until bound. A logic variable
X can be bound to a data structure or to another variable. The algorithm is the same in both cases. If
many bindings toX are initiated concurrently (from one or more sites), then only one will succeed.
The other bindings are then retried with the entity to whichX is bound. By default, binding iseager.
That is, the new value is immediately sent to all sites that know aboutX. This means that a bound
variable is guaranteed to eventually disappear from the system.

We illustrate the binding algorithm with an example. In the distribution graph, a logic variable
shows up as an access structure. Figure 12 shows a variable that exists on three sites. A thread
on site 2 initiates a binding of the variable by informing its proxy (message 1) and then blocking.
The proxy asks the manager to bind the variable (message 2). The manager informs all proxies of

8In [52] there is a variant design in which objects are procedures and all procedures are copied lazily.
9Unless a garbage collection removes it.

15

the binding (message 3), thus binding the variable eagerly. When a proxy receives the binding, it
informs all waiting threads (message 4). The threads then continue execution.

Logic variables can have different distributed behaviors, as long as network transparency is sat-
isfied in each case. A logic variable iseagerby default. This gives maximal latency tolerance and
third-party independence. However, this may cause the binding to be sent to sites that do not need
it. We say that a logic variable islazy if its value is only sent to a site when the site requests it (e.g.,
when a thread needs the value). A lazy variable has better message complexity, i.e., fewer messages
are used. In some cases, e.g., implementing barrier synchronization using a short-circuit technique,
lazy variables are preferable. Eager and lazy variables obey the same distributed unification algo-
rithm, differing only in the scheduling of one reduction rule [17]. Distributed Oz currently only
implements eager variables; with a minor change it can do both. A programmer annotation can then
decide whether a variable is eager or lazy.

class Account
 attr bal:0

 meth getBal(B)
 B = @bal
 end
end

 meth trans(Amt)
 bal<- @bal+Amt
 end

theClass

state

cl
st id

100

record
State

Object-record

trans getBal

theName

A

A={New Account trans(100)}
bal

Class record
and object
identifier

pointer
State

Cell

Figure 13: An object with one attribute and two methods

4.3 Mobile objects

Objects in Distributed Oz obey a lightweight object migration protocol that preserves centralized
object semantics and allows for precise prediction of network behavior. Existing systems with mo-
bile objects do not use such an algorithm. They move the objects by creating a chain of forwarding
references [34, 24, 7]. This chain is short-circuited when a message is sent or after a given time
delay. This gives good average-case number of network hops when moving an object, but very bad
worst-case number of hops. A design principle of Distributed Oz is for third-party dependencies to
disappear quickly. Using chains is therefore unacceptable. Instead, we have designed the mobility
protocol presented here, which has a much-improved worst-case behavior.

In the distribution graph, an object shows up as a compound entity consisting of an object-record,
a class record containing procedures (the methods), a cell (containing the state pointer), and a record
containing the object-state. The distributed behavior of the object is derived from the behavior of
its parts. Figure 13 shows an objectA that has one attribute,bal , and two methods,trans and
getBal . The object is represented as an object-record with three fields. Thest field contains a cell,
whose state pointer refers to the object’s state record. Thecl field contains the class record, which
contains the procedurestrans andgetBal that implement the methods. Theid field contains
the object’s unique identifiertheName . The object-record and the class record cannot be changed.
However, by giving a new content to the cell (i.e., updating the state pointer), the object-state can be
updated.

Figure 14 shows an objectA that is local to Site 1. There are no references toA from any other
sites. Figure 15 shows an objectA with one remote reference. The object is now part of an access
structure whose manager is on Site 1 and that has one proxy on Site 2. A local objectA is transformed
to a global (i.e., remotely-referenced) object when a message referencingA leaves Site 1. A manager
nodeMa is created on Site 1 when the message leaves. When a message referencingA arrives on
Site 2, then a proxy nodePa2 is created there.

Figure 16 shows what happens when threadT invokesA from Site 2. At first, only the proxyPa2

16

State1

Class

A

Site 1 Site 2

pointer
State

Figure 14: A local object

State1

Class

A Pa2

Site 1 Site 2

Ma

pointer
State

Figure 15: A global object with one remote reference

is present on Site 2, not the object itself. The proxy asks its manager for a copy of the object-record.
This causes an access structure to be created for the cell, with a managerMc and one proxyPc1.
The class record is copied eagerly and does not have a unique global address. A message containing
the class record and a cell proxy is sent to Site 2. The object’s state remains on Site 1.

Figure 17 shows what happens when the message arrives. A second proxyPc2 is created for
the cell. The class record is copied to Site 2 and proxyPa2 becomes the object-recordA. The site
table now refers to the object-record. The mobile state protocol (see Section 4.4) then atomically
transfers the cell’s state pointer to Site 2. Because of the site table, any further messages to Site
2 containing references to the object will immediately refer to the local copy of the object-record,
without requiring any additional network operations.

Figure 18 shows what happens after the state pointer is transferred to Site 2. The new state,
State2 , is created on Site 2 and will contain the updated object-state after the method finishes.
The old state,State1 , may continue to exist on Site 1 but the state pointer no longer points to it.

Figure 19 shows what happens if Site 1 invokes the object again. The state pointer is transferred
back to Site 1. The new state,State3 , is created on Site 1 and will contain the updated object-
state after the method finishes. The old state,State2 , may continue to exist on Site 2 but the state
pointer no longer points to it.

There are several interesting things going on here. First, the object is always executed locally.
The cell’s state pointer is always localized before the method starts executing and it is guaranteed
to stay local during the method execution while the object is locked. Second, the class code is only
transferred once to any site. Only the state pointer is moved around after the first transfer. This
makes object mobility very lightweight. Third, all requests for the object are serialized by the cell’s
manager node. This simplifies the protocol but introduces a dependency on the manager site. A
more complicated protocol (not shown here) can remove this dependency [52].

4.4 Mobile state

The freely mobile objects shown in Section 4.3 are composite entities that use several distributed
algorithms. The object-record is copied once lazily (when the object is first invoked), the methods

17

Pa2 Thread T

State1

Class

Pc1
Class

Site 2Site 1

MaMc

Pc

A

Figure 16: The object is invoked remotely (1)

Thread T

Class

State1

Class

A

Mc

A

Pc1 Pc2

Site 1 Site 2

Figure 17: The object is invoked remotely (2)

are copied along with it, and the object’s state pointer is moved between sites that request it. At
all times, the state pointer of the object’s cell access structure exists at exactly one proxy, or is in
transit between two proxies. The protocol that moves the state pointer, themobile stateprotocol, is
particularly interesting. This protocol must guarantee consistency between consecutive states. If the
consecutive states are on different sites, this requires an atomic transfer of the state pointer between
the sites. A site that wants the state pointer requests it from the cell manager, and the latter sends a
forwarding command to the site that has the state pointer. Therefore the manager needs to store only
one piece of information, namely the site containing the state pointer [52].

Figure 20 shows a cellC referenced from two sites. The cell’s state pointer is on Site 1 and Site
2 requests it when threadT does the operationfExchange C X Yg. It suffices to know that the
exchange is an atomic swap that sets the new state toY (i.e., toState2) and initiates a binding of
X to the old stateState1 .

Figure 21 shows (a) proxyPc2 requesting the state pointer by sending aGet message to man-
agerMc, and (b) the manager sending aForward message to the proxy that has (or will eventually
have) the state pointer, namelyPc1. Therefore the manager can accept another request immediately;
it does not need to wait until the state pointer’s transfer is complete.

Figure 22 showsPc1 sending toPc2 a Content message containing the old state,State1 .
The old state may still exist on Site 1 butPc1 no longer has a pointer to it. Figure 23 shows the final
situation.Pc2 has the state pointer, which points toState2 . X is bound toState1 .

This protocol provides a predictable network behavior. There are a maximum of three network
hops for the state pointer to change sites; only two if the manager is on the source or destination site;
zero if the state pointer is on the requesting site. The protocol maintains sequential consistency, that
is, cell exchanges (updates of the state pointer) are done in a globally consistent order.

4.5 Distributed garbage collection

Access structures are built and managed automatically when language entities become remotely
referenced. This happens whenever messages exchanged between nodes on different sites contain
references to other nodes. If the reference is to a local node, then the memory management layer

18

Thread T

ClassClass

A

Mc

A

Pc1 Pc2

State1 State2

Site 1 Site 2

Figure 18: The object is invoked remotely (3)

Thread T

ClassClass

A

Mc

A

Pc1 Pc2

State3 State2

Site 1 Site 2

Figure 19: The object moves back to Site 1

converts the local node into an access structure. We say the local node isglobalized. While the
message is in the network, the access structure consists of a manager and one proxy. When the
message arrives at the destination site, then a new proxy is created there. Access structures can
reduce in size and disappear completely through garbage collection.

Distributed garbage collection is implemented by two cooperating mechanisms: a local garbage
collector per site and a distributed credit mechanism to reclaim global addresses. A local garbage
collector informs the credit mechanism when a node is no longer referenced on its site. Conversely,
the credit mechanism informs the local garbage collector when a node is no longer remotely refer-
enced. Local collectors can be invoked at any time independently of other sites. The roots of local
garbage collection are all nodes on its site that are reachable from non-suspended thread nodes or
are remotely referenced.

A global address is reclaimed when the node that it refers to is no longer remotely referenced.
This is done by the credit mechanism, which is informed by the local garbage collectors. This
scheme recovers all garbage except for cross-site cycles. The only cross-site cycles in our system
occur between different objects or cells. Since records and procedures are both replicated, cycles
between them will be localized to single sites. The credit mechanism does not suffer from the
memory or network inefficiencies of previous reference-counting schemes [38].

We summarize briefly the basic ideas of the credit mechanism. Each global address is created
with an integer (itsdebt) representing the number ofcreditsthat have been given out to other sites
and to messages. Any site or message that contains the global address must have at least one credit
for the global address. The creation site is called theowner. All other sites are calledborrowers. A
node is remotely referenced if and only if its debt is nonzero.

Initially there are no borrowers, so the owner’s debt is zero. The owner lends credits to any site
or message that refers to the node and increments its debt each time by the number of credits lent.
When a message arrives at a borrower, its credits are added to the credits already present. When a
message arrives at the owner, its credits are deducted from the owner’s debt. When a borrower no
longer locally references a node then all its credits are sent back to the owner. This is done by the
local garbage collector. When the owner’s debt is zero then the node is only locally referenced, so

19

State1

Mc
{Exchange C X Y}

TPc2Pc1

State2 XY

Site 1 Site 2

Figure 20: A cell referenced from two sites

State1

Mc

TPc2Pc1

State2 XY

(b) Forward (a) Get

Site 1 Site 2

Figure 21: (a) Site 2 requests the state pointer; (b) Site 1 is asked to forward it

its global address will be reclaimed.
Consider the case of a cell access structure. The manager site is the owner, and all other sites

with cell proxies are borrowers. A proxy disappears when no longer locally referenced. It then
sends its credit back to the manager. If the proxy contains the state pointer, then the state pointer
is transferred back to the manager site as well. Remark that this removes a cross-site cycle within
the cell access structure. When the manager recovers all its credit then it disappears, and the cell
becomes a local cell again. When the local cell has no local references, then it is reclaimed. If the
local cell becomes global again (because a message referring to it is sent across the network), then a
new manager is created, completely unrelated to the reclaimed one.

5 Open computing

We say a distributed system isopenif independently-running applications can interact in interesting
ways [9]. In general, this means that the system must have common ground, in the form of common
frameworks or languages, that applications can use to interact. Typical examples are common in-
formation formats for exchanging information, common protocols for electronic commerce, etc. As
a first requirement, applications must be able to establish connections with computations that have
been started independently across the net. A second requirement is that applications should be able
to initiate new distributed computations.

5.1 Connections and tickets

Distributed Oz uses a ticket-based mechanism to establish connections between independent sites.
In the final system, both the tickets and the connections must be implemented in a secure way (see
Section 7). In this section, we explain the basic mechanism without discussing security issues. One
site (called the server site) creates a ticket with which other sites (called client sites) can establish a
connection. The ticket is a character string which can be stored and transported through all media
that can handle text, e.g., phone lines, electronic mail, paper, and so forth.

20

Mc

TPc2Pc1

State2State1 XY

Site 1 Site 2

Content

State1

Figure 22: Site 1 has sent the state pointer to Site 2

Mc

TPc2Pc1

State2 State1State1 Y X

Site 1 Site 2

Figure 23: Site 2 has the state pointer

The ticket identifies both the server site and the language entity to which a remote reference will
be made. Independent connections can be made to different entities on the same site. Establishing
a connection has two effects. First, the sites connect by means of a network protocol (e.g., TCP).
Second, in the Oz computation space, a reference is created on the client site to a language entity
on the server site. The second effect can be implemented by various means, i.e., by passing a zero-
argument procedure, by unifying two variables, or by passing a port which is then used to send
further values. Once an initial connection is established, then further connections as desired by
applications can be built from the programming abstractions available in Oz. For example, it is
possible to define a classC on one site, passC to another site, define a classD inheriting fromC on
that site, and passDback to the original site. This works because Distributed Oz is fully transparent.

Oz features two different types of tickets: one-shot tickets that are valid for establishing a single
connection only (one-to-one connections), and many-shot tickets that allow multiple connections to
the ticket’s server (many-to-one connections). One-to-one connections are useful when connecting
to newly-started compute servers (see Section 5.2). Many-to-one connections are useful in collab-
orative applications such as the shared graphic editor of Section 2. Multiple users connect to this
application in order to contribute to a common design.

We sketch a small example for one-to-one connections:

Server Client

STkt={Connection.offer X}
{PutOnWebPage STkt}
{ProcessData X}

CTkt={QueryUser}
X={Connection.take CTkt}
X=data(� � �)

The server offersX with the system procedureConnection.offer , which is part of the module
Connection . This procedure takes the offered value and returns a new one-shot ticketSTkt , which
is made available on a Web page. The user reads the page, retrieves the ticket, and types it in at the
client site, which puts it in variableCTkt . The system procedureConnection.take then returns a
reference toX, which becomes a shared reference between the client and server. In this example,X

is a shared logic variable. It could have been any language entity, e.g., an object or a port. The client
bindsX and the server reads its value. This passes information from the client to the server.

21

5.2 Remote compute servers

Distributed applications mainly fall into two categories. In the first category, applications involve
geographically-distributed resources. For example, in the shared graphic editor of Section 2 the
users are the distributed resources. In the second category, applications use multiple networked
computers to increase computation speed. These applications are often structured as a single master
computation that coordinates a set of slave computations. The actual computation is carried out by
the slaves.

To support the second category, Oz provides the ability to create remote compute servers, which
are accessible as Oz objects. This is implemented using the ticket mechanism. After the compute
server has been set up, it can be given tasks to do in the form of procedures. The following example
shows one way to use a compute server:

S={New RemoteServer init(´ wallaby.ps.uni-sb.de ´)}
{Print {S run(fun {$} 4+5 end $)}}

The remote server site is started on the computer with Internet address´ wallaby.ps.uni-sb.de ´ .
Therun method takes a zero-argument function that is executed at the remote server. In the example,
two numbers are added and the result9 is returned to the original site, where it is printed.

Setting up a remote server is done in two steps. Assume that a site wishes to create a remote
server and then become a client to the server. First, the potential client creates an independently-
running Oz site with the help of the operating system.10 Second, a connection is established between
the potential client and the remote server. This is done by passing a one-shot ticket from the potential
client to the server. The server takes a logic variable that has been offered by the client and binds it
to a stationary object (see Section 3.2). This stationary object is used on the client side to implement
therun method shown in the example above.

As an application of this idea, we are currently investigating distributed search engines for solv-
ing combinatorial constraint problems. First experiments show encouraging speedup. Oz supports
the two aspects of distributed search engines in a powerful way: search engines can be easily pro-
grammed in Oz [42], and the language supports distributed computing well.

6 Failure detection and handling

An application isfault-tolerantif it can continue to fulfill its specification despite accidental failures
of its components. How can one write such applications in Distributed Oz? The theory of fault-
tolerant systems explains how to construct such systems as layers of abstractions [22]. Very little
work has been done to integrate these abstractions into a language platform so that (1) a fault-tolerant
system can be built within the platform, and (2) the integration is orthogonal to the language entities.
Most of the language work has been concentrated in the areas of persistence and transactions, by
adding models of these concepts to an existing language. It is possible, however, to support fault
tolerance in a much simpler way.

We extend the system to support partial failure of sites and individual language entities, and to
detect and handle failure of language entities. We provide the means for the programmer to decide
what action to take upon failure. This is done by installing “handlers” or “watchers” on individual
language entities (see below). These are invoked when a failure occurs. No irrevocable decision is
taken by the system; the handlers and watchers are free to take any course of action. In this way,
we intend to build a first fault-tolerant layer using the redundancy that comes from having multiple
sites in the system. This gives fault tolerance even in the absence of persistence. More refined fault
tolerance based on persistence and transactions will be added later.

10In the current system, a remote site is started by the Unix remote shell command (rsh).

22

6.1 The containment principle

Fault tolerance is a property that crosses abstraction boundaries [27]. An example will make this
clear. Most existing systems (we include applications) do not handletimecorrectly. What they do is
let a lower layer make an irrevocable decision, in the form of atime-outthat does not let the system
continue. Say there is a time-out in a lower layer, for example in the transport layer (TCP) of the
network interface. This time-out crosses all abstraction boundaries to appear at the top level, i.e., to
the user. Usually, a window is opened asking confirmation to abort the application. The user does
not have the possibility to communicate back to the timed-out layer. This greatly limits the flexibility
of the system. It should be possible to build a system where the user can decide to wait, avoiding
an abort, or to abort immediately without waiting. In most cases, neither of these possibilities is
offered. Sometimes one possibility is offered, thus improving the perceived quality of the system. A
hard-mounted resource in the NFS file system offers the first possibility. The Stop button in a Web
browser offers the second possibility.

This leads to a principle of containment: “abnormal” behavior of any layer should be containable
by a higher layer. Therefore the abnormal layer should not make any irrevocable decisions, such as
aborting execution, unless this is desired by the programmer. The programmer decides which higher
layer is competent to handle the problem. The higher layer should be able to take any reasonable
course of action. In our example, this means that time-out should not be a wired-in property of a
system. The programmer should decide whether or not to have a time-out, and what to do after a
given time has elapsed (one of the possibilities being to continue waiting).

Site A Site B Site C

Site D Site E Site F

M

M

M
P

P
P

P

P

P

P

P

Failed site

Normal site

Affected node

Normal node

Figure 24: Remote detection of site failure in Distributed Oz

6.2 Failures in the distribution graph

The external cause of a failure in Distributed Oz is the failure of one or more sites or of part of the
network. This shows up in the distribution graph at the level of access structures. We say an access
structure isaffectedif it has at least one node on a failed site or if it has at least one link across
a failed network. An affected access structure can in many cases continue to work normally, e.g.,
an object can still be used even if it has a remote reference on a failed site. An access structure is
failed if normal sites can no longer do operations on it. This happens if a crucial part of the access
structure, e.g., the manager node, is inaccessible because it is on a failed site or across a failed
network. Figure 24 shows a system that covers six sites. Site B has failed; sites A, C, E, and F
have affected nodes; and site D has only normal nodes. We assume that sites are designed to satisfy
the fail-stop property, i.e., site failures happen instantly and are permanent. Networks may have
temporary failures, i.e., the network may return to normal. An access structure can therefore have
both temporary and permanent failures.

23

6.3 Handlers and watchers

Distributed Oz detects failure at the level of access structures, which shows up in the language as
single language entities, e.g., objects, variables, and ports. The default behavior is that an attempted
operation on an entity blocks indefinitely if there is a problem in doing the operation. Any other
behavior must be specified explicitly by the programmer. We propose to do this by installing handlers
and watchers on the entity. Ahandleris invoked if an error is detected when trying to do an operation
on the entity (lazy detection). Awatcheris invoked when an error is detected for an entity, even if
no operation is attempted on the entity (eager detection).

The semantics of handlers and watchers is simple. If an operation is attempted on a failed entity,
then the operation is replaced by a call of the handler, if one exists with a valid trigger condition. If
the system discovers that an entity has failed, then every watcher with a matching trigger condition is
immediately made runnable in a newly-created thread. Handlers and watchers have two arguments,
namely the failed entity itself and information about the type of error.

Handlers may be installed on entities per site and per thread. Per site and per entity, there is at
most one site-based handler and at most one thread-based handler per thread. Thread-based han-
dlers override site-based handlers, i.e., where both apply only the thread-based handler is invoked.
Watchers may be installed on entities per site. There may be any number of watchers per entity on a
given site.

Handlers and watchers are installed by builtins with the following three arguments: the entity,
control information, and the handler or watcher itself, which is a two-argument procedure. The
control information gives the type of error for which the handler or watcher should be invoked. In
the case of handlers, the control information also stipulates whether the handler is installed on a site
or thread basis, and whether after handler invocation the operation should be retried.

6.4 Classifying possible failures

Failure detection distinguishes between four classes of failure. A failure can be either temporary
or permanent. These are further subdivided into home and foreign failures. Home failures prevent
the current site from performing operations on the entity, while foreign failures indicate that there
is a problem among other sites sharing the entity preventing some or all of them from performing
operations on the entity. Handlers are triggered on home failures. Watchers may be triggered on
home as well as foreign failures. Foreign failures give the site an indication that there is more than
network latency behind a lack of activity by other sites.

6.5 Distributed garbage collection with failures

If a site fails, then credit is lost for all affected access structures whose manager is still working.
These access structures will not be reclaimed unless we introduce another idea. A technique that is
successfully being used in existing systems, e.g., Java RMI [34], is alease-basedreference-counting
mechanism. This technique can also be used together with the credit mechanism. Any site that has
credit for an access structure must periodically renew its lease by sending a message to the manager.
If the manager does not receive at least one renewal message within a given time period, then the
manager can be reclaimed.

7 Resource control and security

An application issecureif it can continue to fulfill its specification despite intentional (i.e., mali-
cious) failures of its components. Resource control and security are global issues, i.e., they cross
abstraction boundaries [2], just like fault tolerance. The issues must therefore be addressed at each
layer. We briefly discuss what can be done in Distributed Oz. Fault tolerance and security have
much in common [27], including the reliance on containment and redundancy. But they focus on
very different classes of failures. For example, a crucial part of security is resource control because

24

Network

Operating system

Network interface

OS interface

Emulator

Operating system

Emulator

User

Oz program

Bytecode program

User

Oz program

User

Oz program

Bytecode Bytecode

Distributed Oz
shared space

Emulator interface

Oz compiler
Implementation

security

Language
security

(i.e., emulator)
Run-time system

OS and network
security

Site 2 (virtual)Site 1 Site 3 (virtual)

Figure 25: Security issues in Distributed Oz

exhausting resources is a common technique to provoke intentional failures (“denial of service”
attacks). Although important, resource control is less critical for fault tolerance.

Resources are conveniently divided into site and network resources. Site resources include com-
putational resources (memory/processor) and other resources such as file systems and peripherals.
The same site resources normally appear in some form at each site layer, i.e., Oz program, emulator,
and operating system. In a similar way, security issues appear at each layer (see Figure 25):

� Language securityis a property of the language. It guarantees that computations and data are
protected from adversaries that stay within the language.

� Implementation security is a property of the language implementation in the process. It
protects computations and data from adversaries who attempt to interfere with compiled pro-
grams, i.e., with the Oz bytecode.

� Operating system and network securityare properties of the operating system and network.
They protect computations and data from adversaries who attempt to interfere with the inter-
nals of the Oz emulator and run-time system within an operating system process, and who
attempt to interfere with the operating system and the network. Network security is available
through secure TCP/IP.

7.1 Language security

We provide language security by giving the programmer the means to restrict access to data. Data
are represented as references to entities in an abstract shared computation space. The space isab-
stractbecause it provides a well-defined set of basic operations. In particular, unrestricted access to
memory is forbidden.11 One can only access data to which one has been given an explicit reference.

A reference to a procedure or an object behaves as a capability. Because of lexical scoping and
first-class procedures [1], it is possible to create new capabilities that encapsulate existing ones, thus

11For example, both examining data representations (type casts) and calculating addresses (pointer arithmetic) are forbid-
den.

25

% Create new module ROpen that looks like the standard Open
% but allows only reading and only in the given directory Dir:
proc {NewReadInDir Dir ROpen}

class ROpenF
attr fd
meth init(name:FN)

% Should verify absence of ’..’ and ’/’ in FN!
fd <- {New Open.file init(name:Dir#FN)}

end
meth read(list:CL)

{@fd read(list:CL)}
end

end
in

ROpen=open(file:ROpenF)
end

% Give limited rights to the untrusted object UntrustedObj:
SandboxOpen = {NewReadInDir "/usr/home/untrusted_foreign/"}
{UntrustedObj setopenmodule(SandboxOpen)}

Figure 26: Capabilities in Oz

possibly limiting their rights. For example, Figure 26 shows how to give an object limited rights to
a file system. Calling{NewReadInDir Dir ROpen} creates a new moduleROpen, which behaves
exactly like the system moduleOpen, except that it only allows to read files and only in the given
directoryDir .

Capabilities do not solve all problems in security [53]. They have inherent weaknesses. First, the
authorization to do something is given very early, namely when the capability is given and not when
the operation is attempted. Second, a capability can be forwarded to anyone and it will continue
working. Therefore, a capability-based mechanism needs to be extended–for example with access
control based on the identity of the capability’s current possessor.

7.2 Implementation security

Two important issues in implementation security are site integrity and resource control. These issues
appear when code is directly or indirectly passed between sites. For example, sending a procedure
to a compute server to execute it (direct) or invoking a method of a mobile object (indirect). The
foreign code is not necessarily trustworthy. The importing site should be protected from being
corrupted by malicious foreign code, i.e., by invalid Oz bytecode. This is very difficult in general.
Typical techniques are bytecode verification and authenticating compilers [49].

The foreign code should be limited in its ability to use the site’s computational resources. Mo-
nopolizing the processor may starve the site’s other concurrent activities. Excessive memory use
may exhaust the site’s memory, which being extremely difficult to recover from, would effectively
crash the site.

The foreign code should be given controlled access to other site resources. Obviously, untrusted
code cannot be given unlimited access to site-specific resources such as file systems. It is possible,
but not practical, to forbid access to all site-specific resources (just as it is not practical to forbid all
access to basic computational resources!). Better is to provide limited capabilities.

26

7.3 Virtual sites

To partially provide implementation security in Distributed Oz, we propose the mechanism ofvirtual
sites(see Figure 25). A site can spawn slave virtual sites, which behave exactly like standard sites
except that the master monitors and controls the slaves. If the slave crashes then the master is notified
but not otherwise affected. The master controls slaves’ resources, including their computational
resources and other resources such as access to file systems. For example, the slave site might be
given the possibility to create and delete files in one specific directory but nowhere else.

Within the limitations imposed by the master, a virtual site behaves almost exactly the same as
an ordinary site. It may share Oz entities with the master site or any other site. The difference is that
the virtual site shares the same machine. Communication is more efficient since there is no network
layer. To take advantage of the protection and resource control mechanisms of the operating system,
a slave site will normally live in a different process than its master.

Virtual sites can be used to exploit the computational resources of shared-memory multiproces-
sors. Simply allocate one virtual site per processor. Because communication overheads are lower,
this is more efficient than parallelism over the network. Whether the parallelism leads to an effective
speedup of course still depends on these overheads.

8 Conclusion

Distributed programming is of major importance today, yet it remains difficult. We present a design
for a distributed programming language, Distributed Oz, that fully separates an application’s func-
tionality from its distribution structure. Distributed Oz is a conservative extension to the existing
centralized Oz language. Oz is a concurrent object-oriented language that is state-aware and that has
dataflow synchronization. Oz programs can be ported almost immediately to Distributed Oz, which
is implemented and publicly available. We are experimenting with distributed applications including
collaborative tools, compute servers, and techniques for using centralized applications in distributed
settings [6].

Distributed Oz is very much work in progress. We present preliminary designs that conserva-
tively extend the language with models for open computing, fault tolerance, and resource control.
These designs are being implemented and extended.

Acknowledgements

We thank the numerous people at SICS, DFKI, and UCL that have contributed to Distributed Oz and
the referees for useful comments. We thank Donatien Grolaux for suggesting transaction objects.
Seif Haridi and Per Brand are supported by the Swedish national board for industrial and technical
development (NUTEK) and SICS. Christian Schulte is supported by the Bundesminister f¨ur Bildung,
Wissenschaft, Forschung und Technologie (FKZ ITW 9601) and the Esprit Working Group CCL-II
(EP 22457).

References

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman.Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, Mass, 1985.

[2] Edward G. Amoroso.Fundamentals of Computer Security Technology. Prentice-Hall, 1994.

[3] James Andrews. The logical semantics of the Prolog cut. InInternational Logic Programming
Symposium (ILPS 95), December 1995.

[4] J. Armstrong, M. Williams, C. Wikstr¨om, and R. Virding.Concurrent Programming in Erlang.
Prentice-Hall, Englewood Cliffs, N.J., 1996.

27

[5] Tomas Axling, Seif Haridi, and Lennart Fahlen. Concurrent constraint programming virtual
reality applications. In the2nd International Conference on Military Applications of Synthetic
Environments and Virtual Reality(MASEVR 95), Stockholm, Sweden, 1995. Defence Material
Administration.

[6] Per Brand, Nils Franzen, Erik Klintskog, and Seif Haridi. A platform for constructing virtual
spaces. InVirtual Worlds and Simulation Conference (VWSIM ’98), January 1998.

[7] Luca Cardelli. A language with distributed scope.ACM Transactions on Computer Systems,
8(1):27–59, January 1995. Also appeared in POPL 95.

[8] Randy Chow and Theodore Johnson.Distributed Operating Systems and Algorithms. Addison-
Wesley, San Francisco, Calif., 1997.

[9] Jon Crowcroft. Open Distributed Systems. University College London Press, London, U.K.,
1996.

[10] DFKI Oz version 2.0, 1998. Available athttp://www.ps.uni-sb.de .

[11] Ericsson.Open Telecom Platform—User’s Guide, Reference Manual, Installation Guide, OS
Specific Parts. Telefonaktiebolaget LM Ericsson, Stockholm, Sweden, 1996.

[12] François Fluckiger. Understanding Networked Multimedia: Applications and Technology.
Prentice-Hall, 1995.

[13] Institute for New Generation Computer Technology, editor.Fifth Generation Computer Sys-
tems 1992, volume 1,2. Ohmsha Ltd. and IOS Press, 1992. ISBN 4-274-07724-1.

[14] Tetsuro Fujise, Takashi Chikayama, Kazuaki Rokusawa, and Akihiko Nakase. KLIC: A
portable implementation of KL1. InFifth Generation Computing Systems (FGCS ’94), pages
66–79, December 1994.

[15] James Gosling and Henry McGilton. The Java language environment. White paper, Sun Mi-
crosystems, Mountain View, Calif., May 1996.

[16] Seif Haridi. Tutorial of Oz 2. Available athttp://www.sics.se/˜seif/oz.html ,
1996.

[17] Seif Haridi, Peter Van Roy, Per Brand, Michael Mehl, Ralf Scheidhauer, and Gert Smolka.
Using logic variables in distributed computing. Submitted to ACM TOPLAS, February 1998.

[18] Seif Haridi, Peter Van Roy, and Gert Smolka. An overview of the design of Distributed Oz.
In Proceedings of the Second International Symposium on Parallel Symbolic Computation
(PASCO ’97), pages 176–187, Maui, Hawaii, USA, July 1997. ACM Press.

[19] Martin Henz. Objects for Concurrent Constraint Programming, volume 426 ofThe Kluwer
International Series in Engineering and Computer Science. Kluwer Academic Publishers,
Boston, November 1997.

[20] Martin Henz.Objects in Oz. PhD thesis, Universit¨at des Saarlandes, Fachbereich Informatik,
Saarbr¨ucken, Germany, June 1997.

[21] Joxan Jaffar and Michael Maher. Constraint logic programming: A survey.J. Log. Prog.,
19/20:503–581, May/July 1994.

[22] Pankaj Jalote.Fault Tolerance in Distributed Systems. PTR Prentice-Hall, 1994.

[23] Sverker Janson and Seif Haridi. Programming paradigms of the Andorra Kernel Language. In
International Symposium on Logic Programming, pages 167–183, October 1991.

28

[24] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mobility in the
Emerald system.ACM Transactions on Computer Systems, 6(1):109–133, February 1988.

[25] Setrag Khoshafian and Marek Buckiewicz.Introduction to Groupware, Workflow, and Work-
group Computing. J. Wiley and Sons, 1995.

[26] Michael Knapik and Jay Johnson.Developing Intelligent Agents for Distributed Systems.
McGraw-Hill, 1998.

[27] J. C. Laprie. Dependability: A unifying concept for reliable computing and fault tolerance. In
7th International Conference on Distributed Computing Systems, pages 129–146, September
1987.

[28] Doug Lea.Concurrent Programming in Java. Addison-Wesley, 1997.

[29] John Lloyd.Foundations of Logic Programming, Second Edition. Springer-Verlag, 1987.

[30] Nancy Lynch.Distributed Algorithms. Morgan Kaufmann, San Francisco, Calif., 1996.

[31] Michael Maher. Logic semantics for a class of committed-choice programs. InInternational
Conference on Logic Programming (ICLP 87), pages 858–876, May 1987.

[32] Martin Müller, Tobias Müller, and Peter Van Roy. Multiparadigm programming in Oz. In
Workshop on the Future of Logic Programming, International Logic Programming Symposium
(ILPS 95), December 1995.

[33] Sun Microsystems.The Java Series. Sun Microsystems, Mountain View, Calif., 1996. Avail-
able athttp://www.aw.com/cp/javaseries.html .

[34] Sun Microsystems.The Remote Method Invocation Specification. Sun Microsystems, Moun-
tain View, Calif., 1997. Available athttp://www.javasoft.com .

[35] Michael Mehl, Ralf Scheidhauer, and Christian Schulte. An Abstract Machine for Oz. In
Programming Languages, Implementations, Logics, and Programming (PLILP ’95), 1995.

[36] Lee Naish.Negation and Control in Prolog. Springer-Verlag, 1986. Lecture Notes in Computer
Science, vol. 238.

[37] Randy Otte, Paul Patrick, and Mark Roy.Understanding CORBA: The Common Object Re-
quest Broker Architecture. Prentice-Hall PTR, Upper Saddle River, N.J., 1996.

[38] David Plainfoss´e and Marc Shapiro. A survey of distributed garbage collection techniques. In
theInternational Workshop on Memory Management, Lecture Notes in Computer Science, vol.
986, pages 211–249, Berlin, September 1995. Springer-Verlag.

[39] Andreas Podelski and Gert Smolka. Operational semantics of constraint logic programs with
coroutining. InInternational Conference on Logic Programming (ICLP 95), pages 449–463,
1995.

[40] Vijay Saraswat and Martin Rinard. Concurrent constraint programming. InPOPL, pages 232–
245, January 1990.

[41] Christian Schulte. Oz Explorer: A visual constraint programming tool. In Lee Naish, editor,
Proceedings of the Fourteenth International Conference on Logic Programming, pages 286–
300, Leuven, Belgium, July 1997. The MIT Press.

[42] Christian Schulte. Programming constraint inference engines. In Gert Smolka, editor,Proceed-
ings of the Third International Conference on Principles and Practice of Constraint Program-
ming, volume 1330 ofLecture Notes in Computer Science, pages 519–533, Schloß Hagenberg,
Austria, October 1997. Springer-Verlag.

29

[43] Ehud Shapiro. The family of concurrent logic programming languages.ACM Computing
Surveys, 21(3):413–510, September 1989.

[44] Gert Smolka. The Oz programming model. InComputer Science Today, Lecture Notes in
Computer Science, vol. 1000, pages 324–343. Springer-Verlag, Berlin, 1995.

[45] Gert Smolka, Christian Schulte, and J¨org Würtz. Finite Domain Constraint Program-
ming in Oz: A Tutorial. Programming Systems Lab, German Research Center for Ar-
tificial Intelligence (DFKI), January 1998. In Oz 2 system documentation. Available at
http://www.ps.uni-sb.de .

[46] Gert Smolka, Christian Schulte, and Peter Van Roy. PERDIO—Persistent and distributed pro-
gramming in Oz. BMBF project proposal. Available athttp://www.ps.uni-sb.de ,
February 1995.

[47] Bjarne Stroustrup.The C++ Programming Language, Third Edition. Addison-Wesley, 1997.

[48] Gerard Tel. An Introduction to Distributed Algorithms. Cambridge University Press, Cam-
bridge, United Kingdom, 1994.

[49] Tommy Thorn. Programming languages for mobile code.ACM Computing Surveys, 29(3):213–
239, September 1997.

[50] Peter Van Roy. 1983–1993: The wonder years of sequential Prolog implementation.J. Log.
Prog., 19/20:385–441, May/July 1994.

[51] Peter Van Roy, Seif Haridi, Per Brand, and Gert Smolka. Three moves are not as bad as a fire.
In theWorkshop on Internet Programming Languages, International Conference on Computer
Languages (ICCL 98), May 1998.

[52] Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and Ralf Scheidhauer.
Mobile objects in Distributed Oz.ACM Transactions on Programming Languages and Systems,
19(5):804–851, September 1997.

[53] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten. Extensible security archi-
tectures for Java. In16th Symposium on Operating System Principles, October 1997.

[54] Claes Wikstr¨om. Distributed programming in Erlang. In the1st International Symposium
on Parallel Symbolic Computation(PASCO 94), pages 412–421, Singapore, September 1994.
World Scientific.

30

Contents

1 Introduction 1
1.1 Identifying the issues . 2
1.2 Towards a solution . 3
1.3 Outline of the article 4

2 Shared graphic editor 4
2.1 Logical architecture . 5
2.2 Client-server structure . 6
2.3 Cached graphic state . 7
2.4 Push objects and transaction objects . 7
2.5 Final comments . 7

3 Oz 8
3.1 The Oz programming model . 9
3.2 Oz by example . 9
3.3 Oz and Prolog . 12
3.4 Oz and concurrent logic programming . 12

4 Distributed Oz 13
4.1 The distribution graph . 14
4.2 Distributed logic variables . 15
4.3 Mobile objects . 16
4.4 Mobile state . 17
4.5 Distributed garbage collection . 18

5 Open computing 20
5.1 Connections and tickets . 20
5.2 Remote compute servers . 22

6 Failure detection and handling 22
6.1 The containment principle . 23
6.2 Failures in the distribution graph . 23
6.3 Handlers and watchers . 24
6.4 Classifying possible failures . 24
6.5 Distributed garbage collection with failures . .. 24

7 Resource control and security 24
7.1 Language security .. 25
7.2 Implementation security . 26
7.3 Virtual sites . 27

8 Conclusion 27

31

