
1

Parallel Agent Based
Simulation on PC Cluster

Seif Haridi
Konstantin Popov
Mahmoud Rafea
Fredrik Holmgren

Swedish Institute of Computer Science
www.sics.se/~seif

seif@sics.se

2

Abstract Architecture

Scenario
Agents

Behavior

State

Landscape
Placeholder

Physical Space

Simulation System
Simulation Manager

Interaction

Scheduling

Workers
Behavior invocation

Monitors
Track behavior

3

Example simulation model

• A bottom up agent based simulation

• Agents: users, sites representing web surfers, and
web sites

• Landscapes: users are connected in Small World
network (social network, 1-lattice), sites are
connected in a similar network

• The model of time is discrete

• The implementation system is Mozart, language is
Oz (http://www.mozart-oz.org)

4

Oz and Mozart at a glance
http://www.mozart-oz.org

• Oz Language
– Multiparadigm language, strong support for
compositionality and concurrency

– Component-based programming
– Simple formal semantics and efficient implementation

• Strengths
– Concurrency: ultra lightweight threads, dataflow
– Distribution: network transparent, network aware, open,
fault detection

– Inferencing: constraint, logic, and symbolic programming
– Flexibility: dynamic, no limits, first-class compiler

5

Web Word of Mouth
Model

User characteristics:
• Have preferences for
specific categories of
content

• Participate in “local” social
networks

• Maintain a portfolio of
frequently visited sites

• Have memory about visited
sites and their perceived
utility

• Have an evaluation method
in order to evaluate sites
they visit.

User behavior

• Asks friends to propose
their favorite sites and
visit them.

• Visits some sites from his
portfolio.

• Surf along the links of the
already visited sites.

• Replace a site in the
portfolio by a new site if
that new site maintained a
higher utility for a longer
period of time.

6

Model dynamics

LEFT: Distribution of web sites by size

RIGHT: Progressive evolution of the histogram
“number of sites/number of users” towards a power-
law distribution

7

Abstract Architecture

Scenario
Agents

Behavior

State

Landscape
Placeholder

Physical Space

Simulation System
Simulation Manager

Interaction

Scheduling

Workers
Behavior invocation

Monitors
Track behavior

8

Component-based Programming

• Implements abstract data-types
– Encapsulation of internal state
– Interface of external operations
– Instantiation (component instances, modules)

• Compositionality
– Specifies required (imported) components in
terms of their operations only

– Decouples linking of the exact modules from
import specification.

– Connecting component instances are done by the
component-manager at runtime (allows linking
different component instances depending on
runtime conditions

9

Component-based Programming

Interface

Component instance

External
world

10

Sequential Simulator Components

• Landscape
– Small World (SM) graph

– Internet Sites (IS) graph

– Other graphs

• Agent state collections (set of agents)
– Users collections, and Sites collections

• Agents behaviors
– ExploreSites, GetRecommedations,
UpdatePortfolio, etc

11

Architecture Sequential - Simplified
(component instances)

UsersSites

(One-step)
Behavior Simulator

Simulator
Control

A uses Ops of B

A B

12

Users

• Places the User
agents on the SW
graph

• Provides the Ops.
of the Users
abstract data-type
needed to express
behaviors

• Sites done in
similar way

Users

Small
World
Graph

User
Collection
State

13

Behavior Simulator

UsersSites

One-step behavior
Simulator

-Iterates over
agents (users)
behaviors as
specified by CB

Beh n

Beh 1

Composed
Behaviors
CB

14

Parallel Simulator Requirements

• Goals

• Goal: 1000000+ sites/users, 1000+steps AFAP
• Today's sequential system takes ≈1min for 10000
sites/users +100 steps on a 1Ghz processor

• WORSE: at best linear memory requirements: ≈
0.25Gb per 100000 sites/users

• Developing techniques & tools for high
performance parallel computation in Mozart

• Study and improvement of [distributed] Mozart

15

Parallel Simulator

• Sites and Users collections are partitioned among
N computers (N workers)

• A Manager computer is responsible for creating
Sites and Users component instances and
partitioning them to the workers according to
their relative performance

• The behavior-simulator component is unchanged
• The User and Sites component instances are
wrapped using a distribution abstraction that
allows transparent access to remote user-agents
and site-agents

16

Architecture Parallel Simulator

Users#nSites#n

One-step
Simulator

Simulator
Control

Users#1Sites#1

One-step
Simulator

Manager

17

Distributed Users

• Abstracts the
network

• Services
requests from
remote
workers

• Send requests
from local
worker to
remote ones

Local Users

Small
World
Graph

User
Collection
State

Remote users
proxy

Local users
server

Network

18

Simple set-up

• Manager partitions user and site agents
according to the workers performance

• Manager initiates work at each time step

• Each worker performs the work as
specified by its one-step simulator

• Workers report to manager at the end of
each time step

• This process is reiterated

19

Ways of performing Ops. on
agents (sites/users)

• Remote (operation to data)
– A request to perform an operation on a
site/user is sent to the responsible worker

• Replication (data to operation)
– State of agent is replicated to requesting site
– Works for stateless (immutable) data
– Eager / Lazy

• One-Step Caching (data to operation)
– State is cached at the worker when requested
– State updates are done locally
– At the end of a simulation step operations are
merged/performed at the agent’s worker

– The cache is evicted (cleaned)

20

Sequential, 10000 sites
users/time

0

100

200

300

400

500

600

62500 125000

time sec

users

21

Threading the Behavior Simulator
(BS)

• Sequential BS is running a single thread
• In the Parallel Simulator, multiple threads
are executed to hide network latency

• This can be done in Mozart without
changing ‘Behaviors’ due to Mozart’s
dataflow property

• A thread issues operations sequentially,
blocks transparently on variables until
bound

• How many threads per worker? depends on
network latency

22

Number of Threads

0

100

200

300

400

500

600

700

800

900

3 6 12 24 49 98 19
6

39
1

78
2

15
64

31
90

62
54

12
50

8
25

01
5

50
02

9

Threads

Ti
m

e
(s

ec
.)

23

Scalability

• We Want to study the scalability of
the example application w.r.t. Problem
size.

• As can been seen on next slide 1000K
agents/ 16 workers experiment take
similar time as 62,5K agents/one
worker

24

Scalability

0

100

200

300

400

500

600

1W
/6

25
00

2W
/1

25
00

0

4W
/2

50
00

0

8W
/5

00
00

0

16
W

/1
00

00
00

Workers/Users

Ti
m

e
(s

ec
.)

Replication

Lazy Replication

Caching

Remote

25

Speed-up

• The speed-ups are good.

• The most general case with one-step
caching obtains 10 times speedup on
16 workers.

• The speedup increases with larger
problem size.

26

Speedup

0

2

4

6

8

10

12

14

16

1 2 4 8 16

Workers

S
p

ee
du

p

Replication (125K users)

Replication (250K users)

Replication (500K users)

Replication (1000K users)

Caching (125K users)

Caching (250K users)

Caching (500K users)

Caching (1000K users)

27

Dataflow synchronization

• A worker at step N can serve requests
for steps N-1, and N

• Serving a request at step N+1 state is
delayed until the worker advances to
N+1

• For any worker at step N, each other
worker is either in step N-1, N , or
N+1

28

Dataflow synchronization

• At the end of step N-1, a worker sends a
sync(N) message to all other workers

• The worker waits for all sync(N-1)
messages from all other workers, before
starting step N

• For any worker at step N, each other
worker is either in step N-1, N , or N+1

29

Barrier vs. Dataflow
Synchronization

• 10k sites, 1M users, caching, 16
workers
– 426 sec. with dataflow synchronization

– 500 sec. with barrier synchronization

30

Synchronous Garbage Collection

• 10k sites, 1M users, caching, 16
workers
– 426 sec. with synchronous GC

– 491 sec. with asynchronous GC

31

Conclusions

• Component-based programming is essential
for flexible agent-based bottom-up
simulation.

• It is possible to simulate large number of
agents 1000k agents using the right
techniques on cheap PC clusters

• Mozart’s network transparency, dataflow
synchronization, light-weight threads and
component-based techniques eases the
application development

