Parallel Agent Based Simulation on PC Cluster

Seif Haridi
Konstantin Popov
Mahmoud Rafea
Fredrik Holmgren
Swedish Institute of Computer Science
www.sics.se/~seif
seif@sics.se

Abstract Architecture

Scenario

Agents

Behavior

State

Landscape

Placeholder

Physical Space

Simulation System

Simulation Manager

Interaction

Scheduling

Workers

Behavior invocation

Monitors

Track behavior

Example simulation model

- A bottom up agent based simulation
- Agents: users, sites representing web surfers, and web sites
- Landscapes: users are connected in Small World network (social network, 1-lattice), sites are connected in a similar network
- The model of time is discrete
- The implementation system is Mozart, language is Oz (http://www.mozart-oz.org)

Oz and Mozart at a glance http://www.mozart-oz.org

Oz Language

- Multiparadigm language, strong support for compositionality and concurrency
- Component-based programming
- Simple formal semantics and efficient implementation

Strengths

- Concurrency: ultra lightweight threads, dataflow
- **Distribution**: network transparent, network aware, open, fault detection
- Inferencing: constraint, logic, and symbolic programming
- Flexibility: dynamic, no limits, first-class compiler

Web Word of Mouth Model

User characteristics:

- Have preferences for specific categories of content
- Participate in "local" social networks
- Maintain a portfolio of frequently visited sites
- Have memory about visited sites and their perceived utility
- Have an evaluation method in order to evaluate sites they visit.

User behavior

- Asks friends to propose their favorite sites and visit them.
- Visits some sites from his portfolio.
- Surf along the links of the already visited sites.
- Replace a site in the portfolio by a new site if that new site maintained a higher utility for a longer period of time.

Model dynamics

Abstract Architecture

Scenario

Agents

Behavior

State

Landscape

Placeholder

Physical Space

Simulation System

Simulation Manager

Interaction

Scheduling

Workers

Behavior invocation

Monitors

Track behavior

Component-based Programming

- Implements abstract data-types
 - Encapsulation of internal state
 - Interface of external operations
 - Instantiation (component instances, modules)
- Compositionality
 - Specifies **required** (imported) components in terms of their operations only
 - Decouples linking of the exact modules from import specification.
 - Connecting component instances are done by the component-manager at runtime (allows linking different component instances depending on runtime conditions

Component-based Programming

Sequential Simulator Components

- Landscape
 - Small World (SM) graph
 - Internet Sites (IS) graph
 - Other graphs
- Agent state collections (set of agents)
 - Users collections, and Sites collections
- Agents behaviors
 - ExploreSites, GetRecommedations, UpdatePortfolio, etc

Architecture Sequential - Simplified (component instances)

Users

- Places the User agents on the SW graph
- Provides the Ops.
 of the Users
 abstract data-type
 needed to express
 behaviors
- Sites done in similar way

Behavior Simulator

Parallel Simulator Requirements

- · Goals
- Goal: 1000000+ sites/users, 1000+steps AFAP
- Today's sequential system takes ≈1min for 10000 sites/users +100 steps on a 1Ghz processor
- WORSE: at best linear memory requirements: ≈ 0.25Gb per 100000 sites/users
- Developing techniques & tools for high performance parallel computation in Mozart
- · Study and improvement of [distributed] Mozart

Parallel Simulator

- Sites and Users collections are partitioned among N computers (N workers)
- A Manager computer is responsible for creating Sites and Users component instances and partitioning them to the workers according to their relative performance
- · The behavior-simulator component is unchanged
- The User and Sites component instances are wrapped using a distribution abstraction that allows transparent access to remote user-agents and site-agents

Architecture Parallel Simulator

Distributed Users

- Abstracts the network
- Services
 requests from
 remote
 workers
- Send requests from local worker to remote ones

Local Users Remote users proxy Small User World Collection Graph Local users State server Network

Simple set-up

- Manager partitions user and site agents according to the workers performance
- Manager initiates work at each time step
- Each worker performs the work as specified by its one-step simulator
- Workers report to manager at the end of each time step
- This process is reiterated

Ways of performing Ops. on agents (sites/users)

- Remote (operation to data)
 - A request to perform an operation on a site/user is sent to the responsible worker
- Replication (data to operation)
 - State of agent is replicated to requesting site
 - Works for stateless (immutable) data
 - Eager / Lazy
- One-Step Caching (data to operation)
 - State is cached at the worker when requested
 - State updates are done locally
 - At the end of a simulation step operations are merged/performed at the agent's worker
 - The cache is evicted (cleaned)

Sequential, 10000 sites users/time

Threading the Behavior Simulator (BS)

- Sequential BS is running a single thread
- In the Parallel Simulator, multiple threads are executed to hide network latency
- This can be done in Mozart without changing 'Behaviors' due to Mozart's dataflow property
- A thread issues operations sequentially, blocks transparently on variables until bound
- How many threads per worker? depends on network latency

Number of Threads

Scalability

- We Want to study the scalability of the example application w.r.t. Problem size.
- As can been seen on next slide 1000K agents/16 workers experiment take similar time as 62,5K agents/one worker

Scalability

Workers/Users

Speed-up

- The speed-ups are good.
- The most general case with one-step caching obtains 10 times speedup on 16 workers.
- The speedup increases with larger problem size.

Speedup

Dataflow synchronization

- A worker at step N can serve requests for steps N-1, and N
- Serving a request at step N+1 state is delayed until the worker advances to N+1
- For any worker at step N, each other worker is either in step N-1, N, or N+1

Dataflow synchronization

- At the end of step N-1, a worker sends a sync(N) message to all other workers
- The worker waits for all sync(N-1)
 messages from all other workers, before
 starting step N
- For any worker at step N, each other worker is either in step N-1, N, or N+1

Barrier vs. Dataflow Synchronization

- 10k sites, 1M users, caching, 16 workers
 - 426 sec. with dataflow synchronization
 - 500 sec. with barrier synchronization

Synchronous Garbage Collection

- 10k sites, 1M users, caching, 16 workers
 - 426 sec. with synchronous GC
 - 491 sec. with asynchronous GC

Conclusions

- Component-based programming is essential for flexible agent-based bottom-up simulation.
- It is possible to simulate large number of agents 1000k agents using the right techniques on cheap PC clusters
- Mozart's network transparency, dataflow synchronization, light-weight threads and component-based techniques eases the application development