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Abstract. What will a definitive programming language look like? By
definitive language I mean a programming language that gives good so-
lutions at its level of abstraction, allowing computer science researchers
to move on and work at higher levels. Given the evolution of computer
science as a field with a rising level of abstraction, it is my belief that
a small set of definitive languages will eventually exist. But how can we
learn something about this set, considering that many basic questions
about languages have not yet been settled? In this paper, I give some
tentative conclusions about one definitive language. I present four case
studies of substantial research projects that tackle important problems in
four quite different areas: fault-tolerant programming, secure distributed
programming, network-transparent distributed programming, and teach-
ing programming as a unified discipline. All four projects had to think
about language design. In this paper, I summarize the reasons why each
project designed the language it did. It turns out that all four languages
have a common structure. They can be seen as layered, with the follow-
ing four layers in this order: a strict functional core, then deterministic
concurrency, then message-passing concurrency, and finally shared-state
concurrency (usually with transactions). This confirms the importance
of functional programming and message passing as important defaults;
however, global mutable state is also seen as an essential ingredient.

1 Introduction

This paper presents a surprising example of convergence in language design.' I
will present four different research projects that were undertaken to solve four
very different problems. The solutions achieved by all four projects are significant
contributions to each of their respective areas. The four projects are interesting
to us because they all considered language design as a key factor to achieve
success. The surprise is that the four projects ended up using languages that
have very similar structures.

! This paper was written to accompany an invited talk at FLOPS 2006 and is intended
to stimulate discussion.
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This paper is structured as follows. Section 1.1 briefly presents each of the four
projects and Section 1.2 sketches their common solution. Then Sections 2 to 5
present each of the four projects in more detail to motivate why the common
solution is a good solution for it. Finally, Section 6 concludes the paper by
recapitulating the common solution and making some conclusions on why it is
important for functional and logic programming.

Given the similar structure of the four languages, I consider that their com-
mon structure deserves to be carefully examined. The common structure may
turn out to be the heart of one possible definitive programming language, i.e.,
a programming language that gives good solutions at its level of abstraction,
so that computer science researchers can move on and work at higher levels.
My view is that the evolution of programming languages will follow a similar
course as the evolution of parsing algorithms. In the 1970s, compiler courses
were often built around a study of parsing algorithms. Today, parsing is well
understood for most practical purposes and when designing a new compiler it
is straightforward to pick a parsing algorithm from a set of “good enough” or
“definitive” algorithms. Today’s compiler courses are built around higher level
topics such as dataflow analysis, type systems, and language design. For pro-
gramming languages the evolution toward a definitive set may be slower than
for parsing algorithms because languages are harder to judge objectively than
algorithms.

1.1 The Four Projects
The four projects are the following:?

— Programming highly available embedded systems for telecommunications
(Section 2). This project was undertaken by Joe Armstrong and his col-
leagues at the Ericsson Computer Science Laboratory. This work started in
1986. The Erlang language was designed and a first efficient and stable im-
plementation was completed in 1991. Erlang and its current environment,
the OTP (Open Telecom Platform) system, are being used successfully in
commercial systems by Ericsson and other companies.

— Programming secure distributed systems with multiple users and multiple se-
curity domains (Section 3). This project was undertaken over many years by
different institutions. It started with Carl Hewitt’s Actor model and led via
concurrent logic programming to the E language designed by Doug Barnes,
Mark Miller, and their colleagues. Predecessors of E have been used to im-
plement various multiuser virtual environments.

— Making network-transparent distributed programming practical (Section 4).
This project started in 1995 with the realization that the well-factored design
of the Oz language, first developed by Gert Smolka and his students in
1991 as an outgrowth of the ACCLAIM project, was a good starting point
for making network transparent distribution practical. This resulted in the
Mozart Programming System, whose first release was in 1999.

2 Many people were involved in each project; because of space limitations only a few
are mentioned here.
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— Teaching programming as a unified discipline covering all popular program-
ming paradigms (Section 5). This project started in 1999 with the realization
by the author and Seif Haridi that Oz is well-suited to teaching program-
ming because it covers many programming concepts, it has a simple seman-
tics, and it has an efficient implementation. A textbook published in 2004
“reconstructs” the Oz design according to a principled approach. This book
is the basis of programming courses now being taught at more than a dozen
universities worldwide.

1.2 The Layered Language Structure

In all four research projects, the programming language has a layered struc-
ture. In its most general form, the language has four layers. This section briefly
presents the four layers and mentions how they are realized in the four projects.
The rest of the paper motivates the layered structure for each project in more
detail. The layers are the following:

— The inner layer is a strict functional language. All four projects start with
this layer.

— The second layer adds deterministic concurrency. Deterministic concurrency
is sometimes called declarative or dataflow concurrency. It has the property
that it cannot have race conditions. This form of concurrency is as simple
to reason in as functional programming. In Oz it is realized with single-
assignment variables and dataflow synchronization. Because Oz implements
these variables as logic variables, this layer in Oz is also a logic language.
In E it is realized by a form of concurrent programming called event-loop
concurrency: inside a process all objects share a single thread. This means
that execution inside a process is deterministic. The Erlang project skips
this layer.

— The third layer adds asynchronous message passing. This leads to a sim-
ple message-passing model in which concurrent entities send messages asyn-
chronously. All four projects have this layer. In E, this layer is used for
communication between processes (deterministic concurrency is used for
communication inside a single process).

— The fourth layer adds global mutable state.? Three of the four projects have
global mutable state as a final layer, provided for different reasons, but always
with the understanding that it is not used as often as the other layers. In the
Erlang project, the mutable state is provided as a persistent database with
a transactional interface. In the network transparency project, the mutable
state is provided as an object store with a transactional interface and as a
family of distributed protocols that is used to guarantee coherence of state
across the distributed system. These protocols are expensive but they are
sometimes necessary. In the teaching programming project, mutable state is
used to make programs modular. The E project skips this layer.

3 By global, I mean that the mutable state has a scope that is as large as necessary,
not that it necessarily covers the whole program.
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This layered structure has an influence on program design. In all four projects,
the starting point is the functional inner layer, complemented by the message-
passing layer which is just as important. In three of the four projects, the final
layer (global mutable state) is less used than the others, but it provides a critical
functionality that cannot be eliminated.

Note that the network-transparent distribution project and the teaching pro-
gramming project were undertaken by many of the same people and started
with the same programming language. Both projects were undertaken because
we had reasons to believe Oz would be an adequate starting point. Each project
had to adapt the Oz language to get a good solution. In the final analysis, both
projects give good reasons why their solutions are appropriate, as explained in
Sections 4 and 5.

2 Fault-Tolerant Programming

The Erlang programming language and system is designed for building high
availability telecommunications systems. Erlang was designed at the Ericsson
Computer Science Laboratory [5,4]. Erlang is designed explicitly to support
programs that tolerate both software and hardware faults. Note that software
faults are unavoidable: studies have shown that even with extensive testing,
software still has bugs. Any system with high availability must therefore have
a way to tolerate faults due to software bugs. Erlang has been used to build
commercial systems of very high availability [8]. The most successful of these
systems is the AXD 301 ATM switch, which contains around 1 million lines of
Erlang, a similar amount of C/C++ code, and a small amount of Java [29].

An Erlang program consists of a (possibly very large) number of processes. An
Erlang process is a lightweight entity with its own memory space. A process is
programmed with a strict functional language. Each process has a unique iden-
tity, which is a constant that can be stored in data structures and in messages.
Processes communicate by sending asynchronous messages to other processes.
A process receives messages in its mailbox, and it can extract messages from
the mailbox with pattern matching. Note that a process can do dynamic code
change by receiving a new function in a message and installing it as the new
process definition. We conclude that this structure gives the Erlang language
two layers: a functional layer for programming processes, and a message-passing
layer for allowing them to communicate.

To support fault tolerance, two processes can be linked together. When one
process fails, for example because of a software error, then the other fails as well.
Each process has a supervisor bit. If a process is set to supervisor mode, then
it does not fail when a linked process fails, but it receives a message generated
by the run-time system. This allows the application to recover from the failure.
Erlang is well-suited to implement software fault tolerance because of process
isolation and process linking.

Erlang also has a database called Mnesia. The database stores consistent
snapshots of critical program data. When processes fail, their supervisors can
use the database to recover and continue execution. The database provides a
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transactional interface to shared data. The database is an essential part of Erlang
programs. It can therefore be considered as a third layer of the Erlang language.
This third layer, mutable state with a transactional interface, implements a form
of shared-state concurrency [26].

Because Erlang processes do not share data, they can be implemented over a
distributed system without any changes in the program. This makes distributed
programming in Erlang straightforward. Using process linking and supervisors,
Erlang programs can also recover from hardware failures, i.e., partial failures of
the distributed system.

3 Secure Distributed Programming

The E programming language and system is designed for building secure dis-
tributed systems [21,19]. The E language consists of objects (functions that
share an encapsulated state) hosted in secure processes called vats that commu-
nicate through a secure message-passing protocol based on encryption. Within
the language, security is provided by implementing all language references (in-
cluding object references) as capabilities. A capability is an unforgeable reference
that combines two properties that cannot be separated: it designates a language
entity and it provides permission to perform a well-defined set of operations on
the entity. The only way to perform an operation is to have a capability for that
operation.

Capabilities are passed between language entities according to well-defined
rules. The primary rule is that the only way to get a capability is that an entity
to which you already have a capability passes you the capability (“connectivity
begets connectivity”). A system based on capabilities can support the Principle
of Least Authority (POLA): give each entity just enough authority to carry
out its work. In systems based on POLA the destructive abilities of malicious
programs such as viruses largely go away. Unfortunately, current programming
languages and operating systems only have weak support for POLA. This is why
projects such as E and KeyKOS (see below) are so important [25].

Inside a vat, there is a single thread of execution and all objects take turns
executing in this thread. Objects send other objects asynchronous messages that
are queued for execution. Objects execute a method when they receive a message.
This is a form of deterministic concurrency that is called event-loop concurrency.
Single threading within a vat is done to ensure that concurrency introduces no
security problems due to the nondeterminism of interleaving execution. Event-
loop concurrency works well for secure programs; a model based on shared-state
concurrency is much harder to program with [20]. Between two or more vats,
execution is done according to a general message-passing model.

In a system such as E that is based on capabilities, there is no ambient au-
thority, i.e., a program does not have the ability to perform an operation just
because it is executing in a certain context. This is very different from most
other systems. For example, in Unix a program has all the authority of the user
that executes it. The lack of ambient authority does not mean that E necessarily
does not have global mutable state. For example, there could be a capability
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that is given by default to all new objects. However, the current design of E does
not have global mutable state. If information needs to be shared globally, the
sharing is programmed explicitly by using message-passing concurrency.

The history of E starts with Carl Hewitt’s Actor model in the 1970s [13, 14]
and continues with Norm Hardy’s KeyKOS system [10], which is a pure capa-
bility operating system that provides orthogonal persistence. It continues with
the Concurrent Prolog family of languages [23]. The Joule language, designed
at Agorics [1], is E’s most direct ancestor. E was originally designed at Electric
Communities as an infrastructure for building a secure distributed collaborative
computing environment, secure enough that you could spend real money and sign
real contracts within it. Virtual environments now exist with currencies that are
exchangeable with real currencies; they are called virtual economies [30].

4 Network-Transparent Distributed Programming

This project was motivated by the desire to simplify distributed programming
by making a practical system that is both network transparent and network
aware. This approach was first expressed clearly by Cardelli in his work on
Obliq [6]. The idea is to make a distributed implementation of a language by
implementing the basic language operations with distributed algorithms. By
choosing the algorithms carefully, the implementation can be made efficient and
can handle partial failure inside the language [12]. A program then consists of
two separate parts: the functionality, in which distribution is ignored, and the
choice of distributed algorithms, which is used to tune network performance and
to handle partial failure. We are extending this approach to handle security [24].

Some researchers have maintained that this cannot work; that network trans-
parency cannot be made practical, see, e.g., Waldo et al [28]. They cite four
reasons: pointer arithmetic, partial failure, latency, and concurrency. The first
reason (pointer arithmetic) disappears if the language has an abstract store.
The second reason (partial failure) requires a reflective fault model, which we
designed for the Distributed Oz language. The final two reasons (latency and
concurrency) lead to a layered language design. Let us examine each of these
reasons. Latency is a problem if the language relies primarily on synchronized
operations. In the terminology of Cardelli, latency is a network awareness issue.
The solution is that the language must make asynchronous programming both
simple and efficient.

Concurrency is a problem if the language relies heavily on mutable state. To
achieve network transparency, the mutable state has to be made coherent across
all the machines of the system. It is well known that this is costly to achieve
for a distributed system. The solution is to avoid the use of mutable state as
much as possible, and to use it only when it is absolutely necessary. As a result,
most of the program is concurrent and functional. Global state is necessary only
in a few places, e.g., to implement servers and caches, and in general it can be
avoided (note that local state, which is limited to a single machine, is fine).

Our distributed programming language therefore has a layered structure. The
core has no state and is therefore a functional language. Extending the func-
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tional language with concurrency and a simple communications channel gives
multi-agent programming or actor programming: concurrent entities that send
each other asynchronous messages. The final step is to add mutable state, with
a choice of protocols for its implementation. For example, stationary state corre-
sponds to a standard server architecture. Mobile or cached state can be used to
increase performance by moving the state to where it is currently being used [27].
Other protocols are possible too. We find that a good way to add mutable state
is as part of a transactional protocol [3]. Transactions are a good way to hide
both network latency and partial failure.

The final language is organized into four layers, in this order: a strict func-
tional core, dataflow concurrency, communication channels, and mutable state.
For language entities in each layer, distributed algorithms implement the dis-
tributed behavior. Inner layers have more efficient distributed behaviors. We
implement dataflow concurrency with single-assignment variables, which are in-
termediate between no assignment (functional language) and any number of
assignments (mutable state). Single-assignment variables are implemented with
a distributed unification algorithm, which is more efficient than a state coher-
ence protocol [11]. To write an efficient distributed program, one uses the lower
layers preferentially and one chooses the appropriate distributed algorithm for
each language entity that is distributed. Partial failure is handled at the lan-
guage level by asynchronous notifications similar to the process linking provided
by Erlang.

5 Teaching Programming as a Unified Discipline

A good way to organize a programming course is to start with a simple language
and then to extend this language gradually. This organization was pioneered in
the 1970s by Holt et al, who used carefully defined subsets of PL/I [15]. The most
successful application of this organization was done by Abelson & Sussman in
1985, who use subsets of Scheme and start with a simple functional language [2].
A simple functional language is a good start for teaching programming, for many
reasons. It is easy to explain because of its simple semantics and syntax, and
yet it contains a key language concept, the lexically scoped closure, which is the
basis for many other powerful concepts.

Abelson & Sussman made the important decision to organize the subsets ac-
cording to the programming concepts they contain, and not the language features
they use as Holt did. This makes the course less dependent on the details of one
language and gives students a broader and more in-depth understanding. The
second concept introduced by Abelson & Sussman is mutable state. With mu-
table state it is possible to express the object-oriented programming style, with
an object as a collection of functions accessing a common mutable state that
is hidden through lexical scoping. Unfortunately, by introducing mutable state
early on, programs in the new language are no longer mathematical functions.
This makes reasoning about programs harder.

In 1999, the author and Seif Haridi realized that they understood program-
ming concepts well enough to teach programming in a more unified way than had
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been done before. We chose the Oz language because of its well-factored design.
We set about writing a programming textbook and organizing courses [26]. Dur-
ing this work, we “reconstructed” the design of a large subset of Oz according to
an organizing principle that states that a new concept is needed when programs
start getting complicated for reasons unrelated to the problem being solved.
More precisely, a new concept is needed in the language when programs require
nonlocal transformations to encode the concept in the language. If the new con-
cept is added to the language, then only local transformations are needed. We
call this the creative extension principle. It was first defined by Felleisen [9].

We found that it is possible to add concurrency as the second concept instead
of mutable state. The resulting language lets us write purely functional programs
as collections of independent entities (“agents”) that communicate through de-
terministic streams. This form of concurrency is called declarative concurrency.
The streams are deterministic because the writer and readers of each stream
element are known deterministically. The difference with a sequential functional
language is that the output of a function can be calculated incrementally in-
stead of all at once. Race conditions are not possible, i.e., there is no observable
nondeterminism in the language.

Declarative concurrency is a deterministic form of concurrency that is much
simpler to program with than the shared-state concurrency used in mainstream
languages such as Java [18]. It is already widely used, e.g., Unix pipes and
Google’s MapReduce [7] are just two of many examples, but it is not well-known
as a programming model. Because of its simplicity we consider that it deserves to
become more popular. For example, Morrison shows how to use it for business
software [22]. We have taught declarative concurrency as a first introduction
to concurrent programming in second-year university courses at several large
universities.

After introducing concurrency, the next concept we introduce is a simple com-
munication channel. This extends the previous model by adding nondeterminism:
the writer of the next stream element is chosen nondeterministically among the
potential writers. The resulting language is both practical and easy to program
in [16].

Finally, we introduce global mutable state. This is important for program
modularity, i.e., the ability to change part of a program without having to change
the rest. Without true mutable state, modularity is not possible [26]. State-
threading techniques such as monads are not expressive enough [17].

6 Conclusions

This paper presents four successful research projects that were undertaken to
solve quite different problems, namely fault-tolerant programming, secure
distributed programming, network-transparent distributed programming, and
teaching programming as a unified discipline. Each project had to consider lan-
guage design to solve its problem. A surprising result is that the four resulting
languages have a common structure. In the general case they are layered, with
a strict functional inner layer, a deterministic concurrency layer, a message-
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passing concurrency layer, and a shared-state concurrency layer, in that order.
I postulate that this common structure will be part of one possible definitive
programming language, i.e., a programming language that gives good enough
solutions at its level of abstraction so that computer scientists and developers
can move on to higher levels.

Given this postulate one can deduce several important consequences for func-
tional and logic programming. First, that the notion of declarative programming,
i.e., functional and logic programming, is at the very core of programming lan-
guages. This is already well-known; our study reinforces this conclusion. Second,
that declarative programming will stay at the core for the foreseeable future,
because distributed, secure, and fault-tolerant programming are essential topics
that need support from the programming language. A third conclusion is that it
is important for declarative programmers to study how declarative programming
fits in the larger scheme. A final conclusion is that message-passing concurrency
seems to be the correct default for general-purpose concurrent programming
instead of shared-state concurrency.
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