
© 2002 P. Van Roy and S. Haridi

1

Teaching Programming with
the Kernel Language Approach

October 7, 2002

Functional and Declarative Programming in Education (FDPE02)

Workshop at PLI 2002

Peter Van Roy
Université catholique de Louvain (UCL)

Louvain-la-Neuve, Belgium

Seif Haridi
Royal Institute of Technology (KTH)

Kista, Sweden

© 2002 P. Van Roy and S. Haridi

2

Overview
• Programming needs both technology and science

– Current approaches to teach programming are lacking

• Example: concurrent programming
– Monitors in Java
– The broad view

• The kernel language approach
– A family of kernel languages
– Formal semantics for the practicing programmer
– Creative extension principle

• Teaching experience
– Textbook and software
– Courses taught
– Curriculum recommendations

• Conclusions

© 2002 P. Van Roy and S. Haridi

3

What is programming?

• We defineprogramming broadly as the step from specification to
running program, which consists in designing the architecture and its
abstractions and coding them into a programming language

• Doing programming well requires understanding two topics:
– A technology: a set of practical techniques, tools, and standards
– A science: a scientific theory that explains the technology

• Teaching programming well therefore requires teaching both the
technology and the science
– Surprisingly, programming is almost never taught in this way. It is almost

always taught as acraft in the context of current technology (e.g., Java
and its tools). If there is any science, it is either limited to the tools or too
theoretical.

• We propose a remedy,the kernel language approach

© 2002 P. Van Roy and S. Haridi

4

Concurrent programming:
monitors in Java

• Concurrent programming with shared state and monitors
(as done in Java) isso complicatedthat it is taught only in
advanced courses (upper level undergraduate)

• The implementation of concurrency in Java isexpensive
• Java-taught programmers therefore reach the conclusion

that concurrency isalwayscomplicated and expensive
• But this iscompletely false: there are useful forms of

concurrency (e.g., dataflow, streams, active objects) that
are easy to use and can be implemented efficiently

• Therefore programmers should be taught about
concurrency in a broader way

© 2002 P. Van Roy and S. Haridi

5

Concurrent programming:
the broad view

• We distinguishfour forms of practical concurrent programming(in order of
increasing difficulty):

– Sequential programming + variants
– Declarative concurrency (lazy and eager):add threads to a functional language

and usedataflow to decouple independent calculations

– Message passing between active objects:Erlang style, each thread runs a
functional program, threads communicate through asynchronous channels

– Atomic actions on shared state:Java style, using monitors and transactions

• The Java style is the most popular, yet it is the most difficult to program

• Declarative concurrencyespecially is quite useful, yet is not widely known
– Programming with streams and dataflow

– All the programming and reasoning techniques of sequential declarative
programming apply (concurrent programs give the same results as sequential ones)

– Deep characterization: lack of observable nondeterminism

© 2002 P. Van Roy and S. Haridi

6

Approaches to
teach programming

• As acraft
– Most popular; single paradigm and language

• As abranch of mathematics
– Usually too theoretical

– Dijkstra has done this successfully, but with only a small language

• In terms ofconcepts
– Start with simple concepts and gradually introduce more

sophisticated ones, as they are needed

– The concepts are not limited to single languages or paradigms

– Abelson & Sussman and its successors use this approach

© 2002 P. Van Roy and S. Haridi

7

The kernel language approach

• How can we teach programming as a unified discipline?
– There are too many languages

– Teaching a few carefully-selected languages, say one per paradigm, does not solve
the problem: it multiplies the effort of student and teacher but does not show the
deep relationships between the paradigms

• A better approach would be based on concepts, not languages, as done by
Abelson & Sussman

• We organize the concepts into simple languages calledkernel languages
– A wide varietyof languages and programming paradigms can be translated into a

small set of closely-related kernel languages

– We give anoperational semanticsin terms of a simple abstract machine at a high
level of abstraction

– We try to be ascomprehensiveas possible, incorporating all of the most important
concepts. In particular, we have a comprehensive treatment ofconcurrency.

– We organize the concepts according to thecreative extension principle

© 2002 P. Van Roy and S. Haridi

8

Related work

• By far the closest books are “Structure and Interpretation of Computer
Programs”, by Abelson & Sussman, and its successor “Essentials of
Programming Languages”, by Friedman et al.
– Both these books and ours are based onconcepts: they“liberate

programming from the tyranny of syntax” (Felleisen et al)

• Our approach differs in four major ways:
– Translation:

• We translate into kernel languages instead of writing interpreters

– Formal semantics:
• We give a simple but precise abstract machine that allows reasoning about time

and space complexity.

– Breadth:
• We go deeper into concurrency, capabilities, and logic programming. We

apply the approach to user interfaces, distributed computing, and constraint
programming. All concepts are fully implemented in the Mozart system.

– Methodology:
• We organize the concepts according to thecreative extension principle, which

indicates when new concepts are needed and gives a criterium for judging them

© 2002 P. Van Roy and S. Haridi

9

The kernel language approach (2)

• Kernel languages have a small
number ofprogrammer-significant
elements

• Their purpose is to understand
programming from the
programmer’s viewpoint

• They are given a semantics which
allows the practicing programmer
to reason aboutcorrectnessand
complexityat a high level of
abstraction

Full
language

Kernel
language

Foundational
calculus

Virtual
machine

For
mathematicians

For
programmers

For
implementors

© 2002 P. Van Roy and S. Haridi

10

The kernel language approach (3):
analogy with classical mechanics

• Classical mechanics is a branch of
physics that is widely used in
engineering

• Classical mechanics is based on a
small set of physical laws

• These laws can be formulated in
three basically different ways,
which are useful for different
communities

• For engineers, the formulation
based on Newton’s laws (and its
derivations) is the most useful in
practice (back of envelope)

Classical
mechanics

Newton’s
laws

Foundational
formulation

Computational
formulation

For
theoretical
physicists

For
engineers

For doing
simulations

© 2002 P. Van Roy and S. Haridi

11

What concepts should be
in the kernel languages?

• There are many possibilities
– We propose amethodologyto design kernel languages
– The methodology underlies our textbook and pedagogy

• Creative extension principle
– Start from a simple base language
– Programming with this language exposes limitations in expressiveness

• Programs become complex for reasons independent of the application
• This means that there is a new concept waiting in the wings!
• Examples: exceptions, capabilities, concurrency, laziness, search, state

– There is always a choice:
• To encode the conceptin the language, which makes programs complicated but

keeps the language semantics simple
• To add the conceptto the language. If the concept is chosen well, the program

becomes simple and the language semantics is extended in a modular way.
– Can always program in the original subset to get original semantics back

– Iterating this process gives afamily of kernel languages

© 2002 P. Van Roy and S. Haridi

12

A family of kernel languages
Declarative model
strict functional programming, e.g.,Scheme
deterministic logic programming

+ dataflow concurrency
+ by-need synchronization
declarative concurrency
lazy functional programming, e.g.,Haskell

+ nondeterministic choice
concurrent logic programming

+ explicit state
+ exception handling
object-oriented programming

+ encapsulated search
nondeterministic LP, e.g.,Prolog

concurrent OOP
(active object style, e.g.,Erlang)
(shared state style, e.g.,Java)

+ monotonic assignment
constraint programming

• The kernel languages are closely related

• Each kernel language has its own
reasoning techniques and its own
programming techniques

• These techniques can also be used in
extended kernel languages

• There are many more kernel languages
than are listed here

© 2002 P. Van Roy and S. Haridi

13

Most general language (so far)

skip
<s>1 <s>2
local <x> in <s>end
<x>1=<x>2
<x>=<v>

{<x> <y>1 … <y>n}
if <x> then <s>1 else<s>2 end
case<x> of <p> then <s>1 else<s>2 end
thread <s>end
{ByNeed <x>1 <x>2}

(choice+ search)

{NewName <x>}
try <s>1 catch <x> then <s>2 end
raise <x> end
{NewCell <x>1 <x>2}
{Exchange <x>1 <x>2 <x>3}

<s> ::=
Empty statement
Statement sequence
Variable creation
Variable-variable binding
Value creation

Procedure application
Conditional
Pattern matching
Thread creation
Trigger creation (laziness)

Encapsulated search

Name creation (security)
Exception context
Raise exception
Cell creation
Cell exchange

© 2002 P. Van Roy and S. Haridi

14

Most general language (2)

<v> ::= <number> | <record> | <procedure>

<number> ::= <int> | <float>

<record>, <p> ::= <lit>(<feat>1:<x>1 … <feat>n:<x>n)

<procedure> ::=proc {$ <x>1 … <x>n} <s> end

<lit> ::= <atom> | <bool>
<feat> ::= <atom> | <bool> | <int>
<bool> ::=true | false

• There are three kinds of values in the language:
numbers, records, and procedures

© 2002 P. Van Roy and S. Haridi

15

Formal semantics (1)

• We define a simple but precise abstract machine
– Other semantics tie on to this (SOS, axiomatic, logical)

• Basic concepts:
– A single-assignment storeσ is a set of store variablesx1, …, xk,

that are partitioned into sets of equal unbound variables and
variables bound to a number, record, or procedure

– An environmentE is a mapping from variable identifiers to store
variables, {<x>1 → x1 , …, <x>n → xn}

– A semantic statementis a pair (<s>,E) where <s> is a statement
andE is an environment

– An execution stateis a pair (ST, σ) whereSTis a stack of semantic
statements

– A computationis a sequence of execution states starting from an
initial state: (ST0, σ0) → (ST1, σ1) → (ST2, σ2) → ...

© 2002 P. Van Roy and S. Haridi

16

Formal semantics (2)

• Program execution
– Theinitial execution state is ([(<s>,φ)], φ). The initial semantic

statement is (<s>,φ) with an empty environment, and the initial
store is empty.

– At each execution step, thefirst element ofSTis popped and
execution proceeds according to the form of the element

– Thefinal execution state (if it exists) is one in which the semantic
stack is empty.

• A semantic stack can be in one of three run-time states:
– running: STcan do an execution step

– terminated: STis empty

– suspended: STis not empty but cannot do a step

© 2002 P. Van Roy and S. Haridi

17

Example: thelocal statement

• The semantic statement is (local <x> in <s>end, E)

• Execution consists of the following actions:
– Create a new variablex in the store
– Push (<s>,E+{<x>→x}) on the stack

• Students clearly see the difference betweenidentifiers(bits
of syntax, like <x>) andvariables in memory(entities that
take part in the computation, likex)

© 2002 P. Van Roy and S. Haridi

18

Example: theif statement

• The semantic statement is (if <x> then <s>1 else<s>2 end, E)

• This statement has anactivation condition: E(<x>) must bedetermined,
i.e., bound to a number, record, or procedure

• Execution consists of the following actions:
– If the activation condition istrue, then do the following actions:

• If E(<x>) is not a boolean (true or false), then raise an error condition

• If E(<x>) is true, then push (<s>1, E) on the stack

• If E(<x>) is false, then push (<s>2, E) on the stack

– If the activation condition isfalse, then execution suspends

• If some other activity in the system makes the activation condition true,
then execution can continue. This does dataflow programming, which is
at the heart ofdeclarative concurrency.

© 2002 P. Van Roy and S. Haridi

19

Example: procedures

• A procedure valueis a pair (proc {$ <y>1 … <y>n} <s> end, CE)
whereCE (the « contextual environment ») isE|{<z>1, …, <z>m}, whereE
is the environment where the procedure is defined and
{<z>1, …, <z>m} is the set of external identifiers of the procedure

• In a procedure call({<x> <x>1 … <x>n}, E):
– if E(<x>) has the form (proc {$ <y>1 … <y>n} <s> end, CE) , then
– push (<s>,CE+ {<y>1→E(<x>1), …, <y>n →E(<x>n)})

• This allowshigher-order programmingas in functional languages
– A basic building block for abstraction, genericity, instantiation, and

embedding, the techniques that underlie objects and components

© 2002 P. Van Roy and S. Haridi

20

Programming paradigms
as epiphenomena

• The kernel approach lets us organize programming in three levels:
– Concepts: compositionality, encapsulation, lexical scoping, higher-

orderness, capability property, concurrency, dataflow, laziness, state,
inheritance, ...

– Techniques: how to write programs with these concepts
– Computation models(« paradigms »): each model contains a fixed set of

concepts and is realized with data entities, operations, and a language

• Programming paradigmsemerge in a natural waywhen programming
(as a kind of epiphenomenon), depending on which concepts one uses
in a model and which properties hold of the resulting model
– Reasoning techniquesdepend on paradigm. Paradigms with fewer

concepts are less expressive but simplify reasoning.

• It is often advantageous for programs to use several paradigms
together (examples: concurrency, user interfaces, …)

© 2002 P. Van Roy and S. Haridi

21

Teaching experience
• Materials

– Textbook: “Concepts, Techniques, and Models of Computer Programming”
• See:http://www.info.ucl.ac.be/people/PVR/book.html

• Work in progress since early 2000; recently sent to publisher

– Software:Mozart Programming System
• See:http://www.mozart-oz.org/

• Open source system used in many R&D projects; active development since 1991
• Implements the Oz language (fits well the kernel language approach)
• Developed by the Mozart Consortium (groups in Germany, Sweden, Belgium)

– Transparencies, lab sessions, interactive demos

• Courses taught (at UCL, KTH, NMSU, Cairo University)
– Audiences covered so far: second to fourth year CS majors, graduate CS majors,

second-year engineering (both CS and non CS majors)
– Course topics: introduction to programming, algorithmic programming concepts,

semantics, concurrent programming, distributed computing, declarative programming

• Not intended as a first course
– The approach could likely be adapted; we have not done this

© 2002 P. Van Roy and S. Haridi

22

Curriculum recommendations

• We propose the following division of the discipline of programming into
three topics:
– Concepts and techniques
– Algorithms and data structures
– Program design and software engineering

• We recommend teaching thefirst and third topics together, introducing
concepts and design principles concurrently
– Textbook treats topic 1 in depth and gives introductions to the others

• At UCL, each topic is given 8 semester-hours (lectures + lab sessions)
– All three together takeone full semester, spread out over the complete

curriculum
– The complete curriculum hasthree full years of CS topicssupplemented with

one or two full years of non-CS topicsfor the licentiate and engineering
degrees respectively

© 2002 P. Van Roy and S. Haridi

23

Conclusions
• The kernel language approach focuses on concepts and programming

techniques, not on programming languages or paradigms
• Practical languages are translated into simplekernel languagesbased on

small sets ofprogrammer-significantconcepts
– The kernel languages have much in common, which allows them to show

clearly thedeep relationshipsbetween different languages and programming
paradigms

– We give asemanticsat the right level of abstraction for the practicing
programmer, to allow reasoning aboutcorrectnessandcomplexity

• We support the approach with a textbook, teaching materials, and a
software platform
– We are teaching with the textbook in four universities (F 2001, Sp 2002,

…), from second-year to graduate courses
– The textbookextends the concepts-first approachof Abelson & Sussman

with formal semantics, wider coverage, and a justifiable choice of concepts
– The software platform is high quality and runs all programs in the book

• Based on our experience, we giverecommendationson how to teach
programming in the CS curriculum

