
10/27/06 Dynamo Workshop, Seif Haridi and Ali Ghodsi 1

Algorithmic Aspects of
Distributed k-ary System

Seif Haridi
Ali Ghodsi
KTH/Royal Institute of Technology
Swedish Institute of Computer Science
(SICS)

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

2

Outlook

• DHT Introduction
– What is a DHT
– Chord: How to partition the data
– Chord: How to interconnect nodes
– Chord: How to speed up search
– Chord: How to maintain pointers

• DKS Algorithms
– K-ary Search
– Atomic Join and Leaves
– Broadcast Algorithms
– Multicasting
– Bulk Operations
– Replication
– Topology Maintenance

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

3

What is a Distributed Hash Table (DHT)? 1/2
• An infrastructure that enables the distribution of an

ordinary hash table onto a set of cooperating nodes

AlgorithmsCS10

NetworkingCS15

Distributed Sys.CS30

Peer-to-PeerCS100

Operating Sys.CS250

Grid ComputingCS310

ValueKey

• The DHT provides a basic lookup service, which allows any node
to find the value associated with a given key

• Example:
lookup(“CS30”), at any node should return: “Distributed Sys.”

node A

node D

node B

node C

Each node
only stores
part of the
hash table

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

4

What is a Distributed Hash Table (DHT)? 2/2

• To provide the lookup service, the nodes must be
interconnected

AlgorithmsCS10

NetworkingCS15

Distributed Sys.CS30

Peer-to-PeerCS100

Operating Sys.CS250

Grid ComputingCS310

ValueKey

• Each node maintains a routing table with pointers to some other
nodes such that lookup requests can be routed to the node
storing the requested key/value-pair (a.k.a. item)

node A

node D

node B

node C

node A

node D

node B

node C

Example:
node D, lookup(”CS15”)

Answer: ”Networking”

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

5

Outlook
• DHT Introduction

– What is a DHT
– Chord: How to partition the data
– Chord: How to interconnect nodes
– Chord: How to speed up search
– Chord: How to maintain pointers

• DKS Algorithms
– K-ary Search
– Atomic Join and Leaves
– Broadcast Algorithms
– Multicasting
– Bulk Operations
– Replication

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

6

• The identifier space can be perceived as a logical ring modulo N

0
1

2

3

4

5

6

7
8

9
10

11

15

14

13

12

• Example: N=16, nodes {a,b,c,d,e}, and 5 items

How do we distribute the hash table?
• Use a logical name space called the identifier space, consisting

of identifiers {0,1,2,…, N-1}

• Every node is assigned an identifier using a function H.

• Node a gets identifier 0 since H1(a)=0, the other nodes
b, c, d, e, get identifiers 2, 5, 6, 11 the same way

• The items are stored at their successor,
i.e. the first node encountered moving in
the clockwise direction

• Items are mapped to the identifier space using a function H,
every node knows H

• Item (”cs15”, ”networking”) is mapped to identifier
13 since H2 (”cs15”) = 13, other items are similarly to
15, 2, 4, 5

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

7

Outlook
• DHT Introduction

– What is a DHT
– Chord: How to partition the data
– Chord: How to interconnect nodes
– Chord: How to speed up search
– Chord: How to maintain pointers

• DKS Algorithms
– K-ary Search
– Atomic Join and Leaves
– Broadcast Algorithms
– Multicasting
– Bulk Operations
– Replication
– Topology Maintenance

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

8

How do we interconnect the nodes?
• Each node maintains a routing pointer to the

successor in the ring

• The successor of a
node n is the first
node met going in
clockwise direction
starting at n +1

0
1

2

3

4

5

6

7
8

9
10

11

15

14

13

12

Successor of Node 0 → Node 2

Successor of Node 2 → Node 5

Successor of Node 5 → Node 6
Successor of Node 6 → Node 11

Successor of Node 11 → Node 0

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

9

Simple lookup Example
Algorithms1 (CS10)

Networking4 (CS15)

Distributed
S.

5 (CS30)

Peer-to-Peer13 (CS90)

Operating
Sys.

15 (CS95)

ValueKey

0
1

2

3

4

5

6

7
8

9
10

11

15

14

13

12

115

13

4

5

Any lookup can be resolved in
maximum O(N) hops. Too slow!

Example: A lookup is made at
node 5 to get the value of key
“CS90”, identifier H(“CS90”)=13

Lookup(13)

Forward(6)

Forward(11)

Forward(15)

Respond(5,”Peer-to-Peer”)

• Lookups can be resolved in by following the
successors sequentially

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

10

Outlook
• DHT Introduction

– What is a DHT
– Chord: How to partition the data
– Chord: How to interconnect nodes
– Chord: How to speed up search
– Chord: How to maintain pointers

• DKS Algorithms
– K-ary Search
– Atomic Join and Leaves
– Broadcast Algorithms
– Multicasting
– Bulk Operations
– Replication
– Topology Maintenance

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

11

• At each step in the routing, the distance between the
currrent node and destination is halved (worst case).

• Yields O(log2N) hops at worst
– N being the number of nodes

Speeding up lookups
• Each node, n, not only points to its successor

but to the successors of

n+21, n+22, n+23,…, n+2L (all arithmetic operations modulo N)

12

0
1

2

3

4

5

6

7
8

9

10

11

15

14

13

Successor of 15+20=0 → Node 2

Example: node n=15

Successor of 15+21=1 → Node 2

Successor of 15+22=3 → Node 3

Successor of 15+23=7 → Node 13

Start of the Intervals

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

12

Outlook
• DHT Introduction

– What is a DHT
– Chord: How to partition the data
– Chord: How to interconnect nodes
– Chord: How to speed up search
– Chord: How to maintain pointers

• DKS Algorithms
– K-ary Search
– Atomic Join and Leaves
– Broadcast Algorithms
– Multicasting
– Bulk Operations
– Replication
– Topology Maintenance

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

13

Checking for new joins and departures
• Each node periodically stabilizes

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

14

Checking for new joins and departures

0
1

2

3

4

5

6

7
8

9
10

11

15

14

13

12

• Each node periodically stabilizes

1. Who is your predecessor?

2. Node 11
3. I (node 11) am your

predecessor?

OK, node 0 is my
successor

OK, node 11 is my
predecessor

Stabilization Algorithm:
1. Ask successor ”who

is your
predecessor”

2. Successor answers,
if the answer is
more ”suitable”
change my successor
pointer

3. Tell the current
successor about my
identifier

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

15

Stabilization: join

0
1

2

3

4

5

6

7
8

9
10

11

15

14

13

12

• A joining node, only notifies its successor about its existence

1. Who is your predecessor?

2. Node 11
3. I (node 13) am your

predecessor?

He’s outdated, I’ll ignore that

AHA, node 13 is my
new predecessor

Node 13 joins
and stabilizes

Stabilization Algorithm:
1. Ask successor ”who

is your
predecessor”

2. Successor answers,
if the answer is
more ”suitable”
change my successor
pointer

3. Tell the current
successor about my
identifier

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

16

Stabilization: join

0
1

2

3

4

5

6

7
8

9
10

11

15

14

13

12

• A joining node, only notifies its successor about its existence

1. Who is your predecessor?

2. Node 13
3. I (node 11) am your

predecessor?

AHA, node 13 is my
new successor

AHA, node 11 is my
new predecessor

Node 11
stabilizes

Stabilization Algorithm:
1. Ask successor ”who

is your
predecessor”

2. Successor answers,
if the answer is
more ”suitable”
change my successor
pointer

3. Tell the current
successor about my
identifier

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

17

Handling dynamism: successor-lists

0
1

2

3

4

5

6

7
8

9
10

11

15

14

13

12

• Every node in the system maintains additional routing pointers
to its f successors

Example: f=2

Every node knows its f=2
successors

Node 0 : Node 2 and Node 5

Node 2 : Node 5 and Node 6

Node 5 : Node 6 and Node 11

Node 6 : Node 11 and Node 0

Node 11 : Node 0 and Node 2

• If node n detect that its successor has failed, it replaces it with
the first alive successor node it knows

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

18

Stabilization: failure

0
1

2

3

4

5

6

7
8

9
10

11

15

14

13

12

• A joining node, only notifies its successor about its existence

1. Who is your predecessor?

2. Node 13
3. I (node 11) am your real

predecessor?

AHA, he is wrong,
node 13 is down

AHA, node 13 has crashed
and node 11 is my new

predecessor
Node 13
CRASHES

Node 11
replaces node
13 with the

next successor:
node 0

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

19

DHT Summary
• Completely decentralized
• Self-organizes as nodes join, leave, and fail
• Maximum log2(N) number of hops to find items, where

N is the number of hops

• Each node only stores a small amount of items, on
average D/N (D is the number of items)

• Each node only maintains a small amount of routing
information log2(N)

• Each join/leave/failure event requires D/N items to
be reshuffled

• Each join/leave/failure event requires (log2(N))2

messages to restore the routing state

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

20

Outlook
• DHT Introduction

– What is a DHT
– Chord: Distributing a hash table
– Chord: How to partition the data
– Chord: How to interconnect nodes
– Chord: How to speed up search
– Chord: How to maintain pointers

• DKS Algorithms
– K-ary Search
– Atomic Join and Leaves
– Broadcast Algorithms
– Multicasting
– Bulk Operations
– Replication
– Topology Maintenance

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

21

K-ary Search: intuition

• Goal:
– At most logk (N) hops per lookup

• k being a configurable parameter

• N being the number of nodes

– Instead of only log2(N)

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

22

Achieving logkN lookup effiency
• Each DKS node maintains logkN levels, and each

level contains k intervals with pointers to the first
node encountered in the interval

• Example, k=4, N=64 (43), node 0

• level 1, 4 intervals

Interval 1Interval 2

Interval 3 Interval 0

0

32

48

4

8

12

16

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

23

Interval 2

Interval 1

Interval 3

Interval 0

Achieving logkN lookup effiency
• Each DKS node maintains logkN levels, and each

level contains k intervals with pointers to the first
node encountered in the interval

• Example, k=4, N=64 (43), node 0

• level 1, 4 intervals
0

32

48

4

8

12

16

• level 2, 4 intervals

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

24

Achieving logkN lookup effiency
• Each DKS node maintains logkN levels, and each

level contains k intervals with pointers to the first
node encountered in the interval

• Example, k=4, N=64 (43), node 0

• level 1, 4 intervals
0

32

48

4

8

12

16

• level 2, 4 intervals
• level 3, 4 intervals

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

25

Arity can matter

•Maximum number of hops can be configured

rNNN

Nk
r

r

NN
k

r

rr

=

==

=

1

1

11 log)(log)(log

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

26

Routing table
• For the desired based k, the identifier space N

is a power of k
– N = kL

• L = logkN is the number of levels
• RT is of size (k-1)L
• Views
• Level 1: V(1) = [n, n+N)
• Level 2: V(2) = [n, (n+N)/k)

• Level ℓ : V(l) = [n, (n+N)/kℓ)

• Intervals: at any level ℓ∈ _, V(ℓ) is
partitioned into k intervals I (ℓ ,i), for 0≤i≤k-1

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

27

Routing Table for node 21
Views, Levels (k = 4)

[21 37 53 5 21[

V(1)

25 29 33 37[

I(1,0) I(1,1) I(1,2) I(1,3)

[21

V(2)

I(2,0) I(2,1) I(2,2) I(3,3)

22 23 24 25[[21

I(3,0) I(3,1) I(3,2) I(3,3)

V(3)

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

28

Routing Table for node 21
Views, Levels (k = 4)

[21 37 53 5 21[

V(1)

25 29 33 37[

I(1,0) I(1,1) I(1,2) I(1,3)

[21

V(2)

I(2,0) I(2,1) I(2,2) I(3,3)

22 23 24 25[[21

I(3,0) I(3,1) I(3,2) I(3,3)

V(3)

24

24

24

27

27

48 57 63

(24,24)(23,24)(22,24)(21,21)

(33,48)(29,48)(25,27)(21,21)

(5,21)(53,57)(37,48)(21,21)

R(_,i) = 〈n + i(N/k_), succ(n + i(N/k_)) 〉
R(_,i).start = n + i(N/kℓ)
R(_,i).node = succ(n + i(N/k_)) or any other
node in the interval

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

29

Routing

• The routing table can be organized as a
monotonically increasing set of pointers

• Each pointer refers to a node in
corresponding interval [f(i), f(i+1))

• Start of each interval i, 1≤i≤(k-1)logkN :
– f(i) = n + (1 + (i-1) mod (k-1)) k (i-1)/(k-1)

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

30

Monotonically Increasing Pointers

Interval 1Interval 2

Interval 3 Interval 0

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

31

 Simple Recursive Routing

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

32

 Greedy Routing

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

33

Topology Maintenance

• Pointers in the routing table are
monitored by an inaccurate failure
detectors, and reset (nil) if a node is
suspected

• Failed pointers leads to a lookup to the
start of the corresponding entry

• The result is the successor and its
successor list

• A suitable node is installed

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

34

Outlook
• DHT Introduction

– What is a DHT
– Chord: How to partition the data
– Chord: How to interconnect nodes
– Chord: How to speed up search
– Chord: How to maintain pointers

• DKS Algorithms
– K-ary Search
– Atomic Join and Leaves
– Broadcast Algorithms
– Multicasting
– Bulk Operations
– Replication
– Topology Maintenance

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

35

Atomic Join and Leave

• Goal
– Key or Lookup Consistency

• Informally
– At any time, at most one node responsible for any

key
– Joins/leaves should “not affect” functionality of

lookups/inserts/updates/deletes

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

36

Lookup consistency is not guaranteed in
traditional DHTs: lookup(4)

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

37

Locking to achieve atomicity

• Problem partly reduced to dining philosophers
– Each node has a fork and a lock queue
– Current node’s fork and successor’s fork acquired

before modifying the ring

– Avoiding deadlocks
• Asymmetric Locking: one node

acquires locks in reverse order

• Probabilistic Locking:
preempt locks

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

38

Locking to achieve atomicity

• Pitfalls:
– Join adds a “philosopher”

• Solution: some requests in the lock queue forwarded to
to new node

– Leave removes a “philosopher”
• Problem:

if leaving node gives its lock queue to its successor,
some nodes will get a worse position in queue
starvation!

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

39

Correctness Properties

• Safety
– Deadlock freedom
– Termination (trivial)

• Liveness
– Livelock freedom (always some progress)
– Starvation freedom (every node makes progress)

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

40

Looking Consistency with Locking
• Lookup Consistency with Joins

– Successor forwards requests to new node

• Lookup Consistency with Leaves
– Leaving node forwards requests to successor

• Proving Lookup Consistency
– Configuration is the pointers of all nodes
– Show: any reachable configuration, only one node

responsible for a key, starting lookup anywhere

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

41

Outlook
• DHT Introduction

– What is a DHT
– Chord: How to partition the data
– Chord: How to interconnect nodes
– Chord: How to speed up search
– Chord: How to maintain pointers

• DKS Algorithms
– K-ary Search
– Atomic Join and Leaves
– Broadcast Algorithms
– Multicasting
– Bulk Operations
– Replication
– Topology Maintenance

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

42

Broadcasting

• Broadcast to all nodes in the DHT

• Fast dissemination
– Broadcasting proceeds in parallel

– Time complexity O(log N) , N is number of nodes

• Efficient
– No redundancy, full coverage

– O(N) message complexity, N is number of nodes

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

43

Correctness of Broadcast
• Safety

– Non-redundancy: A node never receives the
same message more than once

• Liveness
– Termination: every broadcast eventually

terminates

– Coverage: every node eventually gets the
message

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

44

Simple Best-Effort Broadcast

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

45

Outlook
• DHT Introduction

– What is a DHT
– Chord: How to partition the data
– Chord: How to interconnect nodes
– Chord: How to speed up search
– Chord: How to maintain pointers

• DKS Algorithms
– K-ary Search
– Atomic Join and Leaves
– Broadcast Algorithms
– Multicasting
– Bulk Operations
– Replication
– Topology Maintenance

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

46

Multicasting

•All nodes in the system are
members of an instance of

•Group creation:
–Create a DKS instance
–Make it available in O
–Joins the group

•Multicasting
–Broadcasting within the
group

10

25

19
15

11

28 4

7

6

1
0 1

3

a) O

 Group 1

Group 2

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

47

Outlook
• DHT Introduction

– What is a DHT
– Chord: How to partition the data
– Chord: How to interconnect nodes
– Chord: How to speed up search
– Chord: How to maintain pointers

• DKS Algorithms
– K-ary Search
– Atomic Join and Leaves
– Broadcast Algorithms
– Multicasting
– Bulk Operations
– Replication
– Topology Maintenance

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

48

Bulk Operations: motivation
• Background

– Assume building filesystem on-top of DHT
– 4mb file of 4kb block -> 4000 blocks

• Making 4000 lookups expensive
– Marshaling/unmarshaling (XML?)

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

49

Bulk Operations
• Bulk(I)

– I is a set of identifiers
– Reach every node with identifier in I

• Bulk_Owner(I)
– I is a set of identifiers
– Reach node responsible for every id in I

• Bulk_Feedback(I)
– Same as BULK, but gets feedback through the virtual dissemination

tree

• Bulk_Owner_Feedback(I)
– Same as BULK, but gets feedback through the virtual dissemination

tree

• No redundant messages sent
• Max log(n) messages per node

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

50

Bulk Properties
• Extreme Case 1

– I is all identifiers
– N messages to reach N nodes
– Completed in log(N) time
– Identical to broadcast

• Extreme Case 2
– I is a singleton with one identifier
– log(n) messages to perform lookup
– Completed in log(N) time
– Identical to lookup

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

51

Bulk Applications

• Bulk lookup
– Fetch all values associated with keys {x1, x2,…}

• Pseudo reliable broadcast
– Broadcast with feedback, use time outs to avoid hanging, retransmit message

with bulk to those not covered

• Range queries
– Cover all nodes in range]i, j]

• Replication
– Replicate item x to following responsible nodes {x1,x2,…}
– Symmetric Replication

• Topology maintenance
– Update all nodes with identifiers in range {x1,x2,…}
– Correction-on-change

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

52

Outlook
• DHT Introduction

– What is a DHT
– Chord: How to partition the data
– Chord: How to interconnect nodes
– Chord: How to speed up search
– Chord: How to maintain pointers

• DKS Algorithms
– K-ary Search
– Atomic Join and Leaves
– Broadcast Algorithms
– Multicasting
– Bulk Operations
– Replication
– Topology Maintenance

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

53

Background of Symmetric Replication

• DKS used to use Successor-lists, like Chord,
Pastry, Koorde etcetera.

• This was abandoned in favor of Symmetric
Replication because …

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

54

Successor-lists and Leaf sets

• If a node joins or leaves
– f replicas need to be updated

Color
represents
data item

Replication degree 3

Every color replicated three times

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

55

Successor-lists and Leaf sets

• If a node joins or leaves
– f replicas need to be updated
– Without central coordination epidemics are used f2

Color
represents a
node’s item

Node leaves

Yellow, blue, grey need to be
re-distributed

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

56

Symmetric Replication

Goal of Symmetric Replication:
– Simplicity!

– Enable concurrent requests
• Do load-balancing
• Increase robustness (high failure rates)

– Use with erasure codes
• Given a k/n erasure used
• Replicate n times
• Fetch k replicas with bulk operations

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

57

Symmetric Replication

Idea:
– Partition the identifier space into m

equivalence classes such that

– The cardinality of each class is f
• m=N/f

– Each node replicates the equivalence class
of every identifier it is responsible for

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

58

Symmetric replication

Replication degree f=4, Id={0,…,15}
• Congruence classes modulo 4:

0 1
2

15

14

13 3

12

11

4

5

6

9 8
7

10

Data: 15, 0

Data: 1, 2, 3

Data: 4, 5

Data: 14, 13, 12, 11

Data: 6, 7, 8, 9, 10

0, 4, 8, 12

1, 5, 9, 13

2, 6, 10, 14

3, 7, 11, 15

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

59

Symmetric replication

Replication degree f=4, Id={0,…,15}
• 4 equivalence classes:

0 1
2

15

14

13 3

12

11

4

5

6

9 8
7

10

Data: 15, 0

Data: 1, 2, 3

Data: 4, 5

Data: 14, 13, 12, 11

Data: 6, 7, 8, 9, 10

0, 4, 8, 12

1, 5, 9, 13

2, 6, 10, 14

3, 7, 11, 15

Data: 10, 9, 8, 7

Data: 11, 12

Data: 13, 14, 15

Data: 0, 1

Data: 2, 3, 4, 5, 6

Data: 6, 5, 4, 3

Data: 2, 1, 0, 15
Data: 7, 8

Data: 3, 4

Data: 9, 10, 11

Data: 5, 6, 7

Data: 12, 13

Data: 8, 9

Data: 14, 15, 0, 1, 2

Data: 10, 11, 12, 13, 14

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

60

Symmetric replication: joins

Replication degree f=4, Id={0,…,15}
• 4 equivalence classes:

0 1
2

15

14

13 3

12

11

4

5

6

9 8
7

10

Data: 15, 0

Data: 1, 2, 3

Data: 4, 5

Data: 14, 13,

Data: 6, 7, 8, 9, 10

0, 4, 8, 12

1, 5, 9, 13

2, 6, 10, 14

3, 7, 11, 15

Data: 10, 9

Data: 11, 12

Data: 13, 14, 15

Data: 0, 1

Data: 2, 3, 4, 5, 6

Data: 6, 5

Data: 2, 1
Data: 7, 8

Data: 3, 4

Data: 9, 10, 11

Data: 5, 6, 7

Data: 12, 13

Data: 8, 9

Data: 14, 15, 0, 1, 2

Data: 10, 11, 12, 13, 14

Data: 11, 12

Data: 7, 8

Data: 3, 4

Data: 0, 15

Get items

Data: 11, 12, 7,
8, 3, 4, 0, 15

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

61

Outlook
• DHT Introduction

– What is a DHT
– Chord: How to partition the data
– Chord: How to interconnect nodes
– Chord: How to speed up search
– Chord: How to maintain pointers

• DKS Algorithms
– K-ary Search
– Atomic Join and Leaves
– Broadcast Algorithms
– Multicasting
– Bulk Operations
– Replication
– Topology Maintenance

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

62

Applications ontop of DKS
• MyriadStore

– Distributed Backup
– Use DKS for metadata storage

• Keso
– Distributed File System

• DOH
– Replicated Web Servers

• Delegent
– Decentralized Trust Management Systems

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

63

The End

• Thank You!

http://dks.sics.se
http://www.sics.se/~ali/dissert.pdf

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

64

Outlook
• DHT Introduction

– What is a DHT
– Chord: How to partition the data
– Chord: How to interconnect nodes
– Chord: How to speed up search
– Chord: How to maintain pointers

• DKS Algorithms
– K-ary Search
– Atomic Join and Leaves
– Broadcast Algorithms
– Multicasting
– Bulk Operations
– Replication

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

65

IP multicast vs Overlay Multicast
• Idea

– Utilize IP multicast where available

• Before joining
– IP multicast to discover local

nodes
– Use same identifier as local nodes
– Otherwise join as usual

• Whenever receive a message
– IP multicast to all local nodes

2
5

1
9 1

5

1
1

2
8

4

10/27/06
Dynamo Workshop, Seif Haridi and Ali Ghodsi

66

Topology Maintenance
• Chord:

– Extra pointers to successor of intervals

n+21, n+22, n+23,…, n+2L
(arithmetic modulo N)

• DKS:
– Extra pointers to predecessor of intervals
– Ring kept as Chord
– Responsibility as Chord

• Items stored on successor

• Consequence:
– DKS: Cost of maintenance O(1) if no churn
– Chord Cost of maintenance O(log N) if no churn

12

0 1
2

3

4

5

6
7

89
10

11

15
14

13

12

0 1
2

3

4

5

6
7

89
10

11

15
14

13

