\

Algorithmic Aspects of
Distributed k-ary System

Seif Haridi
Ali Ghodsi

KTH/Royal Institute of Technology

Swedish Institute of Computer Science
(SICS)

Dvnamo Workshob. Seif Haridi and Ali Ghodsi

WA,

« DHT Introduction
— What is a DHT

« DKS Algorithms

10/27/06

Dynamo Workshop, Seif Haridi and Ali Ghodsi

TR T

—Whatis a Distributed Hash Table (DHT)? 1/2

« An infrastructure that enables the distribution of an
ordinary hash table onto a set of cooperating nodes

node A

CS10 Algorithms } O node B

CS15 Networking O

CS30 | Distributed Sys. |} = dn el
CS100 | Peerto-Peer |} only stores
CS250 | Operating Sys. } node D node C part of the
CS310 | Grid Computing O O hash table

« The DHT provides a basic /ookup service, which allows any node
to find the value associated with a given key

« Example:
lookup(“CS30”), at any node should return: “Distributed Sys.”

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

COLLLLELEEREEEREEEREERLLLEEEY

—Whatis a Distributed Hash Table (DHT)? 2/2

« To provide the lookup service, the nodes must be

interconnected
CS10 Algorithms
CS15 Networking
CS30 Distributed Sys.
CS100 | Peer-to-Peer
CS250 | Operating Sys.
CS310 | Grid Computing

—_— e ——

Example:
node A node D, lookup(”CS15”)

Answer: ”Networking”

- Each node maintains a routing table with pointers to some other
nodes such that lookup requests can be routed to the node
storing the requested key/value-pair (a.k.a. item)

10/27/06

Dynamo Workshop, Seif Haridi and Ali Ghodsi

TR

« DHT Introduction

— Chord: How to partition the data

« DKS Algorithms

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

CULLLELEEREEEEEELLLELELELEER

« Use a logical name space called the identifier space, consisting
of identifiers {0,1,2,..., N-1}

- The identifier space can be perceived as a logical ring modulo N

- Every node is assigned an identifier using a function /.

- Items are mapped to the identifier space using a function 7/,
every node knows /-

- The items are stored at their successor,
15 __o 1 i.e. the first node encountered moving in
, the clockwise direction

« Example: N=16, nodes {a,b,c,d,e}, and 5 items

* Node a gets identifier O since /,(a)=0, the other nodes
4 b, ¢, d, e, get identifiers 2, 5, 6, 11 the same way

 Item ("cs15”, “networking”) is mapped to identifier
13 since H, (es15”) = 13, other items are similarly to
15,2,4,5

9 7 Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06 8

GO LT

« DHT Introduction

— Chord: How to interconnect nodes

« DKS Algorithms

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

T

- Each node maintains a routing pointer to the
successor in the ring

 The successor of a
node 7 is the first
node met going in
clockwise direction
starting at n +1

Successor of Node 0 — Node 2
Successor of Node 2 — Node 5
Successor of Node 5 — Node 6
Successor of Node 6 — Node 11
Successor of Node 11 — Node 0

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

U

1(CS10)

Algorithms

4 (CS15)

Networking

5 (CS30)

Distributed
S.

- Lookups can be resolved in by following the
successors sequentially

Example: A lookup is made at

Respond(5,”Peer-to-Peer”)

13 (CS90)

Peer-to-Peer|

15 (CS95)

Operating
Sys.

10/27/06

node 5 to get the value of key
“CS90”, identifier H(“CS90)=13

Any lookup can be resolved in
maximum O(N) hops. Too slow!

Lookup(13)

Forward(6)

Dynamo Workshop, Seif Haridi and Ali Ghodsi

U

« DHT Introduction

— Chord: How to speed up search

« DKS Algorithms

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

—_—

RUEEEEEETA .

Speeding up lookups

« Each node, n, not only points to its successor
but to the successors of
n+2, n+22, nt23,.. ., n+2L (all arithmetic operations modulo N)

« At each step in the routing, the distance between the
currrent node and destination is halved (worst case).

* Yields hops at worst s 0
— N being the number of nodes

Example: node n=15 ;| strtofthe intervals | 13

Successor of 15+2%40| — Node 2
Successor of 15+2'1 | = Node 2
Successor of 15+2243] — Node 3
Successor of 15+2347] — Node 13

12

11

Dynamo Workshop, Seif Haridi and Ali Ghodsi 9
10/27/06 8 1

LLLLLLEEERRERERT T

« DHT Introduction

— Chord: How to maintain pointers
« DKS Algorithms

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

—

TR

« Each node periodically stabilizes

Algorithm 1 Chord’s periodic stabilization protocol

I: procedure n. STABILIZE()

2: p = succ.GetPredecessor()
3. if p £ (n, succ) then

4 SHCC =

5 end if

[y

suce.Not i.:'r' (7]
7. end procedure

-

8. pr‘lJEEdl.ITE‘ .*.i.'GEfTI-’REf::JEfL'Ef*:":'.‘vi."?.{]
9 return pred
10: end procedure

procedure n.NOTIFY(p)
if p £ (pred, n] then

o -

pred == p
end if
end procedure

F

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

TR LR LT

—_—

« Each node periodically stabilizes

OK, node 11 is my
predecessor

15 0.°..

1
14

13 1. Who is your predecessor?
R / | L,
- Node 3. I'(node 11) am your
 predecessor?
11 >

OK, node 0 is my
successor

10/27/06

1. Ask successor ”“who
is your
predecessor”

2. Successor answers,

if the answer is
more “suitable”
change my successor
pointer

3. Tell the current

successor about my
\ identifier /

Dynamo Workshop, Seif Haridi and Ali Ghodsi

@abilization Algoritha

TR

—_—

* A joining node, only notifies its successor about its existence

: Node 13 joins
and stabilizes

10/27/06

2. Node 11

: et : AHA, node 13 ismy :
Pt 0, : new predecessor :

. \/L/\/Vho is your predecessor?
| L,

. 3. I (node 13) am your
predecessor?

Dynamo Workshop, Seif Haridi and Ali Ghodsi

Stabilization Algorithm:
& gorthm:\

Ask successor “who
is your
predecessor”
Successor answers,
if the answer is
more “suitable”
change my successor
pointer

Tell the current

successor about my
identifier /

—_—

TR LR LT

* A joining node, only notifies its successor about its existence

2. Node 13

Node 11
stabilizes

10/27/06

AHA, node 11 is my
new predecessor

15 o 0 1

.

1. Who is your predecessor?

L

. 3.1I(node 11) am your
predecessor?

+ AHA, node 13 is my
New successor

Dynamo Workshop, Seif Haridi and Ali Ghodsi

@abilization Algoritha

1.

Ask successor “who
is your
predecessor”
Successor answers,
if the answer is
more “suitable”
change my successor
pointer

Tell the current

successor about my
identifier /

—_—

O LT

Handling dynamism: successor-lists

- Every node in the system maintains additional routing pointers
to its fsuccessors

Example: f=2

15 4 1 Every node knows its =2
successors

Node 0 : Node 2 and Node 5

13 Node 2 : Node 5 and Node 6

4 Node 5 : Node 6 and Node 11
Node 6 : Node 11 and Node 0
Node 11 : Node 0 and Node 2

12

11

3 7

 If node n detect that its successor has failed, it replaces it with
the first alive successor node it knows

Dynamo Workshop, Seif Haridi and Ali Ghodsi

M

10/27/06

—_—

* A joining node, only notifies its successor about its existence

E.....................:” et E AHA, node 13 haS Crashed
Node 13 :: i and node 11 is my new
CRASHES : } 15 0. 5 predecessor .

13 1. Who is your predecessor?

/ | L.

2 Hode 12 3. I (node 11) am your real
- predecessor?
1% 5
.o 9 7
seceresasesttasanens T 3
: Node 11 :
: replaces node : :
: 13 withthe : T gescesscercetcetiincinines
: next successor: : ""**: AHA, heiswrong, :
node 0 : : node 13 is down
°°°°°°°°°°°°°°°°°°°°° g — E)glr;a;r;u.) .V\.léri(;ﬁo.p; .S.e.lf.I-Ta:ndl and Ali Ghodsi

10/27/06

TR LT

—_—

DHT Summary

« Completely decentralized
- Self-organizes as nodes join, leave, and fail

- Maximum log,(N) number of hops to find items, where
N is the number of hops

Bl

- Each node only stores a small amount of items, on
average D/N (D is the number of items)

- Each node only maintains a small amount of routing
information log,(N)

- Each join/leave/failure event requires D/N items to
be reshuffled

- Each join/leave/failure event requires (log,(N))?
messages to restore the routing state

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

—_—

« DHT Introduction

« DKS Algorithms
— K-ary Search

10/27/06

Dynamo Workshop, Seif Haridi and Ali Ghodsi

N

R

K-ary Search:

e Goal:

— At most log, (V) hops per lookup
* k being a configurable parameter
e N being the number of nodes

— Instead of only log,(NV)

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

LLLLLLEEERRERERT T

N

Achieving log, N lookup effiency

 Each DKS node maintains log, N /evels, and each

level contains & intervals with pointers to the first
node encountered in the interval

- Example, k=4, N=64 (4°), node 0

 level 1, 4 intervals

(TR LR LT

10/27/06

N

Achieving log, N lookup effiency

 Each DKS node maintains log, N /evels, and each

level contains & intervals with pointers to the first
node encountered in the interval

- Example, k=4, N=64 (4°), node 0

4 intervals
4 intervals

evel 1
evel 2

~

~

Interval 2 .

Interval 3

10/27/06 32

TR LR LT T

N

Achieving /og,N lookup effiency

 Each DKS node maintains log, N /evels, and each

level contains & intervals with pointers to the first
node encountered in the interval

» Example, k=4, N=64 (4%), node 0
evel 1, 4 intervals
evel 2, 4 intervals
evel 3, 4 intervals

10/27/06 32

RN

N

Arity can matter

‘Maximum number of hops can be configured
1

k=N"

[/ 1\")

log,(N)=1log ,(N)=log ,||N"| |=r
N* N”\\) /

TR LT

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

N

e For the desired based k, the identifier space N
iIs a power of k
— N = kL

e L =log,N is the number of levels

e RT is of size (k-1)L

e Views

e Level 1: V(1) = [n, n+N)

e Level 2: V(2) = [n, (n+N)/k)

e Level¢ : V() =[n, (n+N)/k¢)

e Intervals: at any level(e _, V(¢) is
partitioned into k intervals I (¢,i), for O<i<k-1

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

N

TR LR LT

Routing Table for node 21
Views, Levels [k = 1)

V(1)

[21 37 53 5 21[
| SO i ® —e—O i)
k ~~ e — D ~ < ~ -

; (1,0) I(1,1) e 1(1,2) I(1,3)
vey T
[£1 25 29 BT 37[
o o—+ O | | =
k ~ S N - N 7
g 1(2,0) 2,1) e 1(2,2) 1(3,3)
v T
[2i| 22 23 e 25[
® N | | Oo—
& = — N = AN - S
1(3,0) 1(3,1) 1(3,2) 1(3,3)

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

M

Routing Tahle for node 21

Views, Levels (k=4)

V(1)

[21 24 27 37 48 53 57 63 5 21

oo 2 S S, S— .
NG A J\ J

- 11,0) i1 11,2) 11,3)

V(2)

[21 2425 27 29 33 T~ 37

[O—= 0 5 5 —a

N PN A J\ J

12,0 21 12,2) 13,3)

V(3)

! 24 e

[21 22 23 247~ 25

[B o o 1

A A J\ J
I(3,0) 13,1) 1(3,2) 1(3,3)

R(,i) = (n +i(N/k-), succ(n + i(N/k-)))
R(,i).start =n + i(N/k¢)

(21,21)

(37,48)

(53,57)

(5,21)

(21,21)

(25,27)

(29,48)

(33,48)

(21,21)

(22,24)

(23,24)

(24,24)

R(,1).node = succ(n + i(N/k-)) or any other

node in the interval

Dynamo Workshop, Seif Haridi and Ali Ghodsi

10/27/06

TR

N

"« The routing table can be organized as a
monotonically increasing set of pointers

- Each pointer refers to a node In
corresponding interval [f(i), f(i+1))

- Start of each interval 1, 1<i<(k-1)log,N :
—f(i) = n + (1 + (i-1) mod (k-1)) k L(-1)/(k-1)]

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

N
RUEEEEEEmm.

Dynamo Workshop, Seif Haridi and Ali Ghodsi

10/27/06

W

REEEEEEE

10/27/06

Algorithm 11 Recursive Lookup Algorithm

l: procedure n.LOOKUP(i, OP)

1f TERMINATE(1)

then

p:=NEXT_HOP(1]

2

it res = p.OP|]
5 return res

6 else

I m =NEXT_H

> OF could carry parameters

OP(1)

return m. LOOKUP(1)

g endif
10: end procedure

Dynamo Workshop, Seif Haridi and Ali Ghodsi

w

LLLLLLELERRERERE T

-Greedy Routing

Algorithm 14 Greedy Lookup

10/27/06

I
A,
-
3

b

L |

LI

=

o

-\._l B

Tt

¥
—

o

. procedure n. TERMINATE(i)
return @ £ (n, succ)
- end procedure

. procedure n. NEXT_HOP(i)
if TERMINATE(z) then
return suce
else
= suee
fory:=1 to K do
if rt{7) € (n,i) then

Node has K pointers

ro=rtlj]
end if

end for

return r

end if
end procedure

Dynamo Workshop, Seif Haridi and Ali Ghodsi

w

TR LT

Jopology Maintenance

- Pointers in the routing table are
monitored by an inaccurate failure
detectors, and reset (nil) if a node is
suspected

 Failed pointers leads to a lookup to the
start of the corresponding entry

 The result is the successor and its
successor list

« A suitable node is installed

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

TR LR T

« DHT Introduction

« DKS Algorithms

— Atomic Join and Leaves

TR R

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

w

Atomic Join and Leave

- Goal
— Key or Lookup Consistency

- Informally

— At any time, at most one node responsible for any
key

— Joins/leaves should “not affect” functionality of
lookups/inserts/updates/deletes

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

w

TR LR LT

Tookup consistency is not guaranteed in

traditional DHTSs: lookup(4)

10/27/06

T

il

_.-"'f..) _- ~,

o) | | SN T
ny: | | | ' | ;J_'J_
, 4
.-.--.__.-' - -\._&
= | | | P
\E | | | e T O
.-.-.__. = . N _ _] .__H.

..-' ; _~ — .:'\._C-L -I.

oy | ey I - T
_|'M.3 I J I e | ,,.h' I-‘]—
e o - H""_

= | o | Vet
RS2 SOaa. Or—"1—=r

Dynamo Workshop, Seif Haridi and Ali Ghodsi

wW

TR LT

Tocking to achieve atomicity

« Problem partly reduced to dining philosophers
— Each node has a fork and a lock queue

— Current node’s fork and successor’s fork acquired
before modifying the ring

— Avoiding deadlocks
« Asymmetric Locking: one node
acquires locks in reverse order

« Probabilistic Locking:
preempt locks

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

M

Tocking to achieve atomicity

« Pitfalls:

— Join adds a “philosopher”

« Solution: some requests in the lock queue forwarded to
to new node

— Leave removes a “philosopher”
« Problem:

if leaving node gives its lock queue to its successor,
some nodes will get a worse position in queue

starvation!

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

w

TR LT

Torrectness Properties

e Safety
- Deadlock freedom
- Termination (trivial)

e Liveness
- Livelock freedom (always some progress)
- Starvation freedom (every node makes progress)

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

w

REEEEEEE

100king Consistency with Locking

e Lookup Consistency with Joins
- Successor forwards requests to new node

e Lookup Consistency with Leaves
- Leaving node forwards requests to successor

« Proving Lookup Consistency
— Configuration is the pointers of all nodes

— Show: any reachable configuration, only one node
responsible for a key, starting lookup anywhere

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

A

RUEEEEEEE

« DHT Introduction

« DKS Algorithms

— Broadcast Algorit

10/27/06

hms

Dynamo Workshop, Seif Haridi and Ali Ghodsi

A

LLLLLEEEERREE LT LLEEEED

__?Broallcasting
« Broadcast to all nodes in the DHT

 Fast dissemination
— Broadcasting proceeds in parallel

— Time complexity O(log N) , N is number of nodes

« Efficient
— No redundancy, full coverage

— O(N) message complexity, N is number of nodes

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

A

TR LT

Lorrectness of Broadcast

e Safety

- Non-redundancy: A node never receives the
same message more than once

e Liveness

- Termination: every broadcast eventually
terminates

- Coverage: every node eventually gets the
message

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

A

TR LR T

Algorithm 17 Simple Broadcast Algorithm

1: event n.STARTSIMPLEBCAST(msg) from m
2: sendto n.SIMPLEBCAST(msg, n) = Local message to itself
3 end event

1: event n.SIMPLEBCAST(msg, limat) from m

2; Deliver(msg) = Deliver msg to application
3: for: := W downto 1do Mode has M unique pointers
4: if w(i) € [, limit) then

5: sondto u(z). SIMPLEBCAST{msg, limit)

f: limit .= uli)

7 end if

3 end for

o: end event

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

A

LR

« DHT Introduction

« DKS Algorithms

— Multicasting

10/27/06

Dynamo Workshop, Seif Haridi and Ali Ghodsi

A

TR LT

— Multicasting

«All nodes in the system are
members of an instance of

«Group creation:
—Create a DKS instance
—Make it available in O
—Joins the group

*Multicasting TN 1

—Broadcasting withinthe ¢| % %¢
group

U

s T e = 4

« DHT Introduction

« DKS Algorithms

— Bulk Operations

10/27/06

Dynamo Workshop, Seif Haridi and Ali Ghodsi

A

TR T

e Background

- Assume building filesystem on-top of DHT
- 4mb file of 4kb block -> 4000 blocks

o Making 4000 lookups expensive
- Marshaling/unmarshaling (XML?)

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

A

TR LT

. Bulk(I)
— I is a set of identifiers
— Reach every node with identifier in I

Bulk_Owner(I)

— T'is a set of identifiers
— Reach node responsible for every id in I

Bulk_Feedback(I)

— Same as BULK, but gets feedback through the virtual dissemination
tree

Bulk_Owner_Feedback(I)

— Same as BULK, but gets feedback through the virtual dissemination
tree

No redundant messages sent
» Max log(n) messages, RSk o s rocs

10/27/06

A

REEEEEEE

« Extreme Case 1
— I is all identifiers
— N messages to reach N nodes
— Completed in log(N) time
— Identical to broadcast

« Extreme Case 2
— I is a singleton with one identifier
— log(n) messages to perform lookup
— Completed in log(N) time
— Identical to

10/27/06

Dynamo Workshop, Seif Haridi and Ali Ghodsi

o)

TR

Bulk lookup
— Fetch all values associated with keys {x1, x2,...}

« Pseudo reliable broadcast

— Broadcast with feedback, use time outs to avoid hanging, retransmit message
with bulk to those not covered

« Range queries
— Cover all nodes in range Ji, j]

« Replication
— Replicate item x to following responsible nodes {x1,x2,...}
— Symmetric Replication

« Topology maintenance

— Update all nodes with identifiers in range {x1,x2,...}
— Correction-on-change

Dynamo Workshop, Seif Haridi and Ali Ghodsi

LLLLLLEEERRERERT T

10/27/06

9)]

« DHT Introduction

« DKS Algorithms

— Replication

10/27/06

Dynamo Workshop, Seif Haridi and Ali Ghodsi

&)

TR LR LT

« DKS used to use Successor-lists, like Chord,
Pastry, Koorde etcetera.

« This was abandoned in favor of Symmetric
Replication because ...

ALY

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

9)]

slccessor-lists and Leaf sets

« If a node joins or leaves
— f'replicas need to be updated

o O Color
ts
o o ®) represen
O O‘ O O O data item
O
%%
Replication degree 3
O

Every color replicated three times

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

LR

9,

stccessor-lists and Leaf sets

« If a node joins or leaves
— f'replicas need to be updated
— Without central coorgination epidemics are used

0 2 —0
represents a
node’s item

Node leaves

Yellow, blue, grey need to be
re-distributed

TR LR T

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

&)

..dll

Goal of Symmetric Replication:
— Simplicity!

— Enable concurrent requests
Do load-balancing
 Increase robustness (high failure rates)

— Use with erasure codes
« Given a k/n erasure used
 Replicate n times
« Fetch k replicas with bulk operations

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

o)

TR

Idea:

— Partition the identifier space into m
equivalence classes such that

— The cardinality of each class is /
- m=N/f

— Each node replicates the equivalence class
of every identifier it is responsible for

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

9]

M

Symmetric replication

Replication degree =4, Id={0,...,15}

« Congruence classes modulo 4:

0, 4,8, 12

1,5,9, 13

2, 6,10, 14

3,7,11, 15

10/27/06

—
14
©13
O 12
o 11
10

A
errro—rrordhop, Seif Haridi arfOA Ghodsy

= O

O N

FERRRREEEEERRn i

9)]

Symmetric replication

Replication degree =4, Id={0,...,15}

« 4 equivalence classes:

0, 4,8, 12

1,5,9, 13

2, 6,10, 14

3,7,11, 15

10/27/06

—
14
©13
O 12
o 11
10

s O 8
hop, Seif Haridi arffOAl Ghodsb

= O

O N

ROLEEEEEEERRn

o))

Symmetric replication:

Replication degree =4, Id={0,...,15}

« 4 equivalence classes:

0, 4,8, 12

1,5,9, 13

2, 6,10, 14

3,7,11, 15

10/27/06

—_
@)
14
913
Data: 11, 12, 7,
8,3,4,0,15
|'>. 12 Get items
o 11
10

-
errro—rrordhop, Seif Haridi arfOA Ghodgiy

7/
O

T

)]

« DHT Introduction

« DKS Algorithms

— Topology Maintenance

LLLLLEEEERREE LT LLEEEED

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

o

« MyriadStore
— Distributed Backup
— Use DKS for metadata storage

 Keso
— Distributed File System

« DOH
— Replicated Web Servers

« Delegent
— Decentralized Trust Management Systems

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

o

TR LT

- 10/27/06

 Thank Youl!

http://dks.sics.se
http:/ /www.sics.se/ ~ali/dissert.pdf

Dynamo Workshop, Seif Haridi and Ali Ghodsi

il

« DHT Introduction

« DKS Algorithms

10/27/06

Dynamo Workshop, Seif Haridi and Ali Ghodsi

o2}

L

1P multicast vs Overlay Multicast

e Idea
— Utilize IP multicast where available

 Before joining
— IP multicast to discover local
nodes
— Use same identifier as local nodes

— Otherwise join as usual

« Whenever receive a message
— IP multicast to all local nodes

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

o

TR LR LT

Topology Maintenance
« Chord:

— Extra pointers to successor of intervals

n+2!, n+22, nt23,... n+2L
(arithmetic modulo N)

« DKS:
— Extra pointers to predecessor of intervals
— Ring kept as Chord

— Responsibility as Chord
« Items stored on successor

« Consequence:
— DKS: Cost of maintenance O(1) if no churn
— Chord Cost of maintenance O(log N) if no churn

Dynamo Workshop, Seif Haridi and Ali Ghodsi
10/27/06

6

o2}

UL

