
2004 S. Haridi & P. Van Roy 1

Concepts, Techniques,
and Models of Computer

Programming

Seif Haridi

& Peter Van Roy

haridi@comp.nus.edu.sg

2004 S. Haridi & P. Van Roy 2

The Problems of
Teaching Programming

 For our purposes, let us define
“programming” broadly as the activity
that starts with a specification and
leads to its solution on a computer

 This includes designing a program and
coding it in a language

2004 S. Haridi & P. Van Roy 3

The Problems of
Teaching Programming

 How can we teach programming without
being tied down by the limitations of
existing tools and languages?

 Example: concurrency
 is both complicated and expensive in

Java, so Java-taught programmers
get the mistaken impression that it is
always so

2004 S. Haridi & P. Van Roy 4

The Problems of
Teaching Programming

 How can we teach programming without
being tied down by the limitations of
existing tools and languages?

 Example: data abstraction
 is limited in pure object-oriented languages to

a single style, the “object style”,
 Programmers don’t realize that there are

many other styles, e.g., the “abstract data type”
style, each with its own trade-offs.

2004 S. Haridi & P. Van Roy 5

The Problems of
Teaching Programming

 How can we teach programming
as a unified discipline with a
scientific foundation?

 Not as a set of disjoint paradigms

2004 S. Haridi & P. Van Roy 6

Our Solution
A Concepts-based Approach

 We start with a small language containing just
a few programming concepts

 We show how to program and reason in this
language

 We then add concepts one by one to remove
limitations in expressiveness

 In this way we cover all major programming
paradigms

 We show how they are related and how and
when to use them together

2004 S. Haridi & P. Van Roy 7

Our Solution
A Concepts-based Approach

 Similar approaches have been used
before, notably by Abelson & Sussman
in SICP

 We apply it both broader and deeper:
we cover more paradigms and we have
a simple formal semantics for all
concepts

 We have especially good coverage of
concurrent programming

2004 S. Haridi & P. Van Roy 8

Realizing the Approach

 We draw on more than a decade of
research in language design and
implementation by an international group,
the Mozart Consortium

 We have a software system, Mozart,
that can run all the examples

 We have a simple formal semantics for
all the paradigms

2004 S. Haridi & P. Van Roy 9

Realizing the Approach

 We have been writing the textbook for four years
and teaching with a draft for three and a half years
 The draft has been used in ten universities around

the world
 The textbook is now available for the first time at

SIGCSE 2004 from MIT Press: “Concepts,
Techniques, and Models of Computer
Programming”, by Peter Van Roy and Seif Haridi

 We are making available for free complete course
materials for several courses based on the
approach

2004 S. Haridi & P. Van Roy 10

Some Courses

 Here are two ways we have taught with the
approach

 Single course (Datalogi II at KTH, CS2104
at NUS, second year)
 Start with functional programming

 Give declarative techniques and higher-order
programming

 Add concurrency: gives dataflow programming

 Add communication channel: gives multi-agent
programming

2004 S. Haridi & P. Van Roy 11

Some Courses
 Two course sequence

 (at UCL, second and third years)

 First course: similar to the SICP approach
(LINF1251)
 Start with functional programming
 Give declarative techniques and higher-order

programming
 Add state: lets us cover techniques for data

abstraction, such as OOP
 Explain components and objects

2004 S. Haridi & P. Van Roy 12

Some Courses

 Two course sequence
 (at UCL, second and third years)

 Second course: focus on concurrency
(INGI2131)
 Give refresher on functional programming
 Add concurrency: dataflow programming)
 Add communication channel: multi-agent

programming
 Add state: gives locks, monitors, and

transactions

2004 S. Haridi & P. Van Roy 13

Stream Communication
with Dataflow Concurrency

 There are two threads
 The first thread creates the stream X incrementally
 The second thread displays it using dataflow
 Transmission is asynchronous (like a pipe)

X

X = all | roads | Y
Y = lead | to | Z
Z = alexandria | nil

Display
(with Browse tool)

2004 S. Haridi & P. Van Roy 14

Stream Communication
with Dataflow Concurrency

MapX=1|2|3|…

X = 1 | 2 | 3 | Y
Y = 4 | 5 | 6 | Z
Z = 7 | 8 | 9 | nil

Display

1|4|9|…

Calculation
(with functional

operation)

 There are three threads
 The first thread creates a stream of data
 The second thread does a calculation
 The third thread displays the results

2004 S. Haridi & P. Van Roy 15

Stream Communication
with Dataflow Concurrency

Map
1|2|3|…

X = 1 | 2 | 3 | Y
Y = 4 | 5 | 6 | Z
Z = 7 | 8 | 9 | nil

Display

1|4|9|…

Calculation

 Exactly the same thing, but distributed
 The processes connect through a ticket

 A ticket is a reference that can exist outside of a
process (since it is coded as an Ascii string)

 Except for the ticket, the program is unchanged

First process Second process

ticket

2004 S. Haridi & P. Van Roy 16

Other Courses

 We also cover these other paradigms
 Distributed programming (see dataflow example)

 Lazy (demand-driven) programming

 Relational programming

 Constraint programming

 Logic programming (deterministic and nondeterministic)

 Concurrent logic programming

 Graphical user interface programming

 All of these paradigms fit naturally with the rest
 They are all covered in the textbook

2004 S. Haridi & P. Van Roy 17

The Exaggerated Importance
of Object-oriented Programming

 Consider for example the task of building robust
telecommunications systems

 Ericsson has developed an extremely reliable
ATM switch (the AXD 301) using a message-
passing architecture

 The important concepts are isolation,
concurrency, and higher-order programming

 Not used: inheritance, classes and methods,
UML diagrams, and monitors

2004 S. Haridi & P. Van Roy 18

The Exaggerated Importance
of Object-oriented Programming

 We find that inheritance especially is
overused with respect to other techniques
such as composition

 Our approach is agnostic with respect to
object-oriented programming

 We place it in the wider context of data
abstraction and concurrent programming

2004 S. Haridi & P. Van Roy 19

Semantics

 It’s important to put programming on a
solid foundation. Otherwise, students will
have muddled thinking for the rest of their
careers.

 We propose a flexible approach, where
more or less semantics can be given
depending on taste and the course goals

2004 S. Haridi & P. Van Roy 20

Semantics can be Taught at
Three Levels

 Informal presentation of the formal
semantics

 Give an outline of an abstract machine.
Explain the concepts of execution stack
and environment.

 This can explain last call optimization and
memory management (including garbage
collection)

2004 S. Haridi & P. Van Roy 21

Semantics can be Taught at
Three Levels

 Complete formal semantics using an
abstract machine

 The semantics is at the service of
programming: it is as simple as possible
without sacrificing rigor or coverage

 Simple reasoning techniques such as
invariant assertions can be used in both
declarative and procedural programming

2004 S. Haridi & P. Van Roy 22

Semantics can be Taught at
Three Levels

 Structural operational semantics

 This is the most concise way to give the
semantics of a practical language

 Other approaches (axiomatic, denotational,
and logical) are introduced for the
paradigms in which they work the best

2004 S. Haridi & P. Van Roy 23

Programming Languages and
Paradigms

 We show the relationships between the
different paradigms

 Each paradigm has its own kernel
language, its own reasoning techniques,
and its own programming techniques

 The kernel languages are closely related,
e.g., the declarative paradigm is a subset
of all of them

2004 S. Haridi & P. Van Roy 24

Programming languages and
paradigms

Declarative paradigm
strict functional programming, e.g., Scheme, ML
deterministic logic programming

 + concurrency
 + by-need synchronization
 declarative concurrency
 lazy functional programming, e.g., Haskell

 + nondeterministic choice
 concurrent logic programming

 + exception handling
 + encapsulated state
 object-oriented programming

 + search
 nondeterministic LP, e.g., Prolog

concurrent OOP
(active object style, e.g., Erlang)
(shared state style, e.g., Java)

+ computation spaces
constraint programming

2004 S. Haridi & P. Van Roy 25

Conclusions

 We have presented an approach for teaching
programming that is based on programming language
concepts
 This covers all major programming paradigms; they are

placed in a wider framework and we show why and how
to use them together

 We have been teaching with this approach for more than
three years and we have written a textbook now
published by MIT Press
 If you are interested in trying out the approach, we will

be happy to help
 See http://www.info.ucl.ac.be/people/PVR/book.html

