
A concepts-based approach
for teaching programming

SIGCSE 2004
Birds of a Feather Session

March 4, 2004

Peter Van Roy
Université catholique de Louvain

Louvain-la-Neuve, Belgium
pvr@info.ucl.ac.be

http://www.info.ucl.ac.be/~pvr/

The problems of
teaching programming

• For our purposes, let us define “programming” broadly as the activity
that starts with a specification and leads to its solution on a computer
– This includes designing a program and coding it in a language

• How can we teach programming without being tied down by the
limitations of existing tools and languages?
– Example: concurrency is both complicated and expensive in Java, so Java-

taught programmers get the mistaken impression that it is always so.
– Example: data abstraction is limited in pure object-oriented languages to a

single style, the “object style”, so programmers don’t realize that there are
many other styles, e.g., the “abstract data type” style, each with its own
trade-offs.

• How can we teach programming as a unified discipline with a
scientific foundation?
– Not as a set of disjoint paradigms

Our solution:
A concepts-based approach

• We start with a small language containing just a few
programming concepts
– We show how to program and reason in this language

• We then add concepts one by one to remove limitations in
expressiveness

• In this way we cover all major programming paradigms
– We show how they are related and how and when to use them

together
• Similar approaches have been used before, notably by

Abelson & Sussman in SICP
– We apply it both broader and deeper: we cover more paradigms

and we have a simple formal semantics for all concepts
– We have especially good coverage of concurrent programming

Realizing the approach
• We draw on more than a decade of research in language

design and implementation by an international group, the
Mozart Consortium
– We have a software system, Mozart, that can run all the examples
– We have a simple formal semantics for all the paradigms

• We have been writing a textbook for four years and
teaching with a draft for three and a half years
– The draft has been used in ten universities around the world
– The textbook is now available for the first time at SIGCSE 2004

from MIT Press: “Concepts, Techniques, and Models of Computer
Programming”, by Peter Van Roy and Seif Haridi

• We make available complete course materials for several
courses based on the approach

Some courses
• Here are two ways we have taught with the approach
• Single course (Datalogi II at KTH, CS2104 at NUS, second year)

– Start with functional programming
– Give declarative techniques and higher-order programming
– Add concurrency: gives dataflow programming
– Add communication channel: gives multi-agent programming

• Two course sequence (at UCL, second and third years)
– First course: similar to the SICP approach (LINF1251)

• Start with functional programming
• Give declarative techniques and higher-order programming
• Add state: lets us cover techniques for data abstraction, such as OOP
• Explain components and objects

– Second course: focus on concurrency (INGI2131)
• Give refresher on functional programming
• Add concurrency: gives dataflow programming
• Add communication channel: gives multi-agent programming
• Add state: gives locks, monitors, and transactions

• Let us give an example to illustrate dataflow concurrency …

Stream communication
with dataflow concurrency (1)

• There are two threads
• The first thread creates the stream X incrementally
• The second thread displays it using dataflow
• Transmission is asynchronous (like a pipe)

X

X = all | roads | Y
Y = lead | to | Z
Z = alexandria | nil

Display
(with Browse tool)

Stream communication
with dataflow concurrency (2)

MapX=1|2|3|…

X = 1 | 2 | 3 | Y
Y = 4 | 5 | 6 | Z
Z = 7 | 8 | 9 | nil

Display

1|4|9|…

Calculation
(with functional

operation)

• There are three threads
• The first thread creates a stream of data
• The second thread does a calculation
• The third thread displays the results

Stream communication
with dataflow concurrency (3)

Map
1|2|3|…

X = 1 | 2 | 3 | Y
Y = 4 | 5 | 6 | Z
Z = 7 | 8 | 9 | nil

Display

1|4|9|…

Calculation

• Exactly the same thing, but distributed
• The processes connect through a ticket

– A ticket is a reference that can exist outside of a process
(since it is coded as an Ascii string)

• Except for the ticket, the program is unchanged

First process Second process

ticket

Other courses

• We also cover these other paradigms
– Distributed programming (see dataflow example)
– Lazy (demand-driven) programming
– Relational programming
– Constraint programming
– Logic programming (deterministic and nondeterministic)
– Concurrent logic programming
– Graphical user interface programming

• All of these paradigms fit naturally with the rest
– They are all covered in the textbook

The exaggerated importance
of object-oriented programming

• Consider for example the task of building robust
telecommunications systems
– Ericsson has developed an extremely reliable ATM switch (the

AXD 301) using a message-passing architecture
– The important concepts are isolation, concurrency, and higher-

order programming
– Not used: inheritance, classes and methods, UML diagrams, and

monitors
• We find that inheritance especially is overused with

respect to other techniques such as composition
• Our approach is agnostic with respect to object-oriented

programming. We place it in the wider context of data
abstraction and concurrent programming.

Semantics
• It’s important to put programming on a solid foundation. Otherwise,

students will have muddled thinking for the rest of their careers.
• We propose a flexible approach, where more or less semantics can be

given depending on taste and the course goals
• Semantics can be taught at three levels:

– Informal presentation of the formal semantics. Give an outline of an
abstract machine. Explain the concepts of execution stack and
environment. This can explain last call optimization and memory
management (including garbage collection).

– Complete formal semantics using an abstract machine. The semantics is
at the service of programming: it is as simple as possible without
sacrificing rigor or coverage. Simple reasoning techniques such as
invariant assertions can be used in both declarative and procedural
programming.

– Structural operational semantics. This is the most concise way to give the
semantics of a practical language. Other approaches (axiomatic,
denotational, and logical) are introduced for the paradigms in which they
work the best.

Programming languages and paradigms

Declarative paradigm
strict functional programming, e.g., Scheme
deterministic logic programming

 + concurrency
 + by-need synchronization
 declarative concurrency
 lazy functional programming, e.g., Haskell

 + nondeterministic choice
 concurrent logic programming

 + exception handling
 + encapsulated state
 object-oriented programming

 + search
 nondeterministic LP, e.g., Prolog

concurrent OOP
(active object style, e.g., Erlang)
(shared state style, e.g., Java)

+ computation spaces
constraint programming

• We show the relationships between the
different paradigms

• Each paradigm has its own kernel
language, its own reasoning techniques,
and its own programming techniques

• The kernel languages are closely
related, e.g., the declarative paradigm is
a subset of all of them

Conclusions

• We have presented an approach for teaching programming that is
based on programming language concepts
– This covers all major programming paradigms; they are placed in a wider

framework and we show why and how to use them together
– The approach is based on more than a decade of research in language

design and implementation by the Mozart Consortium (see
http://www.mozart-oz.org for information and downloads)

• We have been teaching with this approach for more than three years
and we have written a textbook now published by MIT Press
– If you are interested in trying out the approach, we will be happy to help
– See http://www.info.ucl.ac.be/people/PVR/book.html

• Special note: the Second International Conference on Mozart/Oz will
be held on October 7-8, 2004 in Charleroi, Belgium
– There will be special emphasis on the use of Oz and Mozart for education
– See http://www.cetic.be/moz2004 for more information

