
9/12/2004 P. Van Roy, BCS talk 1

Concepts, Techniques, and Models
of Computer Programming

Dec. 9, 2004

Peter Van Roy

Université catholique de Louvain

Louvain-la-Neuve, Belgium

Seif Haridi

Kungliga Tekniska Högskolan

Kista, Sweden

Invited talk, British Computer Society

Advanced Programming Specialist Group



9/12/2004 P. Van Roy, BCS talk 2

Overview
 Goals of the book

 What is programming?

 Concepts-based approach
 History
 Creative extension principle

 Teaching programming
 Examples to illustrate the approach

 Concurrent programming
 Data abstraction
 Graphical user interface programming
 Object-oriented programming: a small part of a big world

 Formal semantics
 Conclusion



9/12/2004 P. Van Roy, BCS talk 3

Goals of the book

 To present programming as a unified discipline
in which each programming paradigm has its
part

 To teach programming without the limitations
of particular languages and their historical
accidents of syntax and semantics

 Today’s talk will touch on both of these goals
and how they are realized by the book
“Concepts, Techniques, and Models of
Computer Programming”



9/12/2004 P. Van Roy, BCS talk 4

What is programming?

 Let us define “programming” broadly
 The act of extending or changing a system’s

functionality
 For a software system, it is the activity that starts with a

specification and leads to its solution as a program

 This definition covers a lot
 It covers both programming “in the small” and “in the

large”

 It covers both (language-independent) architectural
issues and (language-dependent) coding issues

 It is unbiased by the limitations of any particular
language, tool, or design methodology



9/12/2004 P. Van Roy, BCS talk 5

Concepts-based approach

 Factorize programming languages into their primitive
concepts
 Depending on which concepts are used, the different

programming paradigms appear as epiphenomena
 Which concepts are the right ones?  An important question

that will lead us to the creative extension principle: add
concepts to overcome limitations in expressiveness.

 For teaching, we start with a simple language with few
concepts, and we add concepts one by one according to
this principle

 We have applied this approach in a much broader and
deeper way than has been done before
 Using research results from a long-term collaboration



9/12/2004 P. Van Roy, BCS talk 6

History (1)
 The concepts-based approach distills the results of a long-term

research collaboration that started in the early 1990s
 ACCLAIM project 1991-94: SICS, Saarland University, Digital PRL, …

 AKL (SICS): unifies the concurrent and constraint strains of logic
programming, thus realizing one vision of the FGCS

 LIFE (Digital PRL): unifies logic and functional programming using logical
entailment as a delaying operation (logic as a control flow mechanism!)

 Oz (Saarland U): breaks with Horn clause tradition, is higher-order,
factorizes and simplifies previous designs

 After ACCLAIM, these partners decided to continue with Oz
 Mozart Consortium since 1996: SICS, Saarland University, UCL

 The current design is Oz 3
 Both simpler and more expressive than previous designs
 Distribution support (transparency), constraint support (computation

spaces), component-based programming
 High-quality open source implementation: Mozart



9/12/2004 P. Van Roy, BCS talk 7

History (2)

 In the summer of 1999, the two authors realized that they
understood programming well enough to teach it in a unified way
 We started work on a textbook and we started teaching with it
 Little did we realize the amount of work it would take.  The book was

finally completed near the end of 2003 and turned out a great deal
thicker than we anticipated.  It appeared in 2004 from MIT Press.

 Much new understanding came with the writing and organization
 The book is organized according to the creative extension principle
 We were much helped by the factorized design of the Oz language;

the book “deconstructs” this design and presents a large subset of it
in a novel way

 We rediscovered important computer science that was “forgotten”,
e.g., determinate concurrency, objects vs. ADTs
 Both were already known in the 1970s, but largely ignored afterward!



9/12/2004 P. Van Roy, BCS talk 8

Creative extension principle

 Language design driven by limitations in expressiveness
 With a given language, when programs start getting

complicated for technical reasons unrelated to the problem
being solved, then there is a new programming concept waiting
to be discovered
 Adding this concept to the language recovers simplicity

 A typical example is exceptions
 If the language does not have them, all routines on the call path

need to check and return error codes (non-local changes)
 With exceptions, only the ends need to be changed (local changes)

 We rediscovered this principle when writing the book!
 Defined formally and published in 1990 by Felleisen et al



9/12/2004 P. Van Roy, BCS talk 9

Example of
creative extension principle

proc {P1 … E1}
   {P2 … E2}
   if E2 then … end
   E1=…
end

proc {P2 … E2}
   {P3 … E3}
   if E3 then … end
   E2=…
end

proc {P3 … E3}
   {P4 … E4}
   if E4 then … end
   E3=…
end

proc {P4 … E4}
    if (error) then E4=true
    else E4=false end
end

proc {P1 …}
   try
      {P2 …}
   catch E then … end
end

proc {P2 …}
   {P3 …}
end

proc {P3 …}
   {P4 …}
end

proc {P4 …}
    if (error) then
       raise myError end
    end
end

Language
without exceptions

Language
with exceptions

Error occurs here

Error treated here

All procedures on
path are modified

Only procedures at
ends are modified

Error occurs here

Error treated here

Unchanged



9/12/2004 P. Van Roy, BCS talk 10

Taxonomy of paradigms
Declarative programming
Strict functional programming, Scheme, ML
Deterministic logic programming, Prolog

  + concurrency
  + by-need synchronization
  Declarative (dataflow) concurrency
  Lazy functional programming, Haskell

    + nondeterministic choice
    Concurrent logic programming, FCP

      + exceptions
      + explicit state
      Object-oriented programming, Java, C++

        + search
        Nondeterministic logic prog., Prolog

 

Concurrent OOP
(message passing, Erlang, E)
(shared state, Java)

+ computation spaces
Constraint programming

 This diagram shows some of
the important paradigms and
how they relate according to
the creative extension principle

 Each paradigm has its pluses
and minuses and areas in
which it is best



9/12/2004 P. Van Roy, BCS talk 11

Complete set of concepts (so far)

skip
<x>1=<x>2 
<x>=<record> | <number> | <procedure>
<s>1 <s>2
local <x> in <s> end

if <x> then <s>1 else <s>2  end
case <x> of <p> then <s>1 else <s>2 end
{<x> <x>1 … <x>n}
thread <s> end
{WaitNeeded <x>}

{NewName <x>}
<x>1= !!<x>2
try <s>1 catch <x> then <s>2 end
raise <x> end
{NewPort <x>1 <x>2}
{Send <x>1 <x>2}

<space>

<s> ::=
Empty statement
Variable binding
Value creation
Sequential composition
Variable creation

Conditional
Pattern matching
Procedure invocation
Thread creation
By-need synchronization

Name creation
Read-only view
Exception context
Raise exception
Port creation
Port send

Encapsulated search



9/12/2004 P. Van Roy, BCS talk 12

Complete set of concepts (so far)

skip
<x>1=<x>2 
<x>=<record> | <number> | <procedure>
<s>1 <s>2
local <x> in <s> end

if <x> then <s>1 else <s>2  end
case <x> of <p> then <s>1 else <s>2 end
{<x> <x>1 … <x>n}
thread <s> end
{WaitNeeded <x>}

{NewName <x>}
<x>1= !!<x>2
try <s>1 catch <x> then <s>2 end
raise <x> end
{NewCell <x>1 <x>2}
{Exchange <x>1 <x>2 <x>3}

<space>

<s> ::=
Empty statement
Variable binding
Value creation
Sequential composition
Variable creation

Conditional
Pattern matching
Procedure invocation
Thread creation
By-need synchronization

Name creation
Read-only view
Exception context
Raise exception
Cell creation
Cell exchange

Encapsulated search

Alternative



9/12/2004 P. Van Roy, BCS talk 13

Teaching programming

 How can we teach programming without being
tied down by the limitations of existing tools and
languages?

 Programming is almost always taught as a craft
in the context of current technology (e.g., Java
and its tools)
 Any science given is either limited to the current

technology or is too theoretical

 The concepts-based approach shows one way
to solve this problem



9/12/2004 P. Van Roy, BCS talk 14

How can we teach
programming paradigms?
 Different languages support different paradigms

 Java: object-oriented programming
 Haskell: functional programming
 Erlang: concurrent programming (for reliability)
 Prolog: logic programming
 …

 We would like to understand all these paradigms!
 They are all important and practical

 Does this mean we have to study as many languages?
 New syntaxes to learn …
 New semantics to learn …
 New systems to learn …

 No!



9/12/2004 P. Van Roy, BCS talk 15

Our pragmatic solution

 Use the concepts-based approach
 With Oz as the single language
 With Mozart as the single system

 This supports all the paradigms we want to teach
 But we are not dogmatic about Oz
 We use it because it fits the approach well

 We situate other languages inside our general framework
 We can give a deep understanding rather quickly, for example:

 Visibility rules of Java and C++
 Inner classes of Java
 Good programming style in Prolog
 Message receiving in Erlang
 Lazy programming style in Haskell



9/12/2004 P. Van Roy, BCS talk 16

Teaching with the concepts-
based approach (1)

 We show languages in a progressive way
 We start with a small language containing just a few

programming concepts

 We show how to program and reason in this language

 We then add concepts one by one to remove
limitations in expressiveness

 In this way we cover all major programming
paradigms
 We show how they are related and how and when to

use them together



9/12/2004 P. Van Roy, BCS talk 17

Teaching with the concepts-
based approach (2)

 Similar approaches have been used before
 Notably by Abelson & Sussman in “Structure and

Interpretation of Computer Programs”

 We apply the approach both broader and
deeper: we cover more paradigms and we
have a simple formal semantics for all
concepts

 We have especially good coverage of
concurrency and data abstraction



9/12/2004 P. Van Roy, BCS talk 18

Some courses (1)

 Second-year course (Datalogi II at
KTH, CS2104 at NUS) by Seif Haridi
and Christian Schulte
 Start with declarative programming
 Explain declarative techniques and

higher-order programming
 Explain semantics
 Add threads: leads to declarative

concurrency
 Add ports (communication channels):

leads to message-passing
concurrency (agents)

 Declarative programming,
concurrency, and multi-agent systems
 For deep reasons, this is a better

start than OOP

Declarative
programming

Declarative
concurrency

Message-passing
concurrency

+ ports

+ threads



9/12/2004 P. Van Roy, BCS talk 19

Some courses (2)
 Second-year course (FSAC1450

at UCL) by Peter Van Roy
 Start with declarative

programming
 Explain declarative techniques
 Explain semantics
 Add cells (mutable state)
 Explain data abstraction: objects

and ADTs
 Explain object-oriented

programming: classes,
polymorphism, and inheritance

 Add threads: leads to declarative
concurrency

 Most comprehensive overview in
one course

Declarative
programming

Stateful
programming and
data abstraction

Declarative
concurrency
and agents

+ threads+ cells



9/12/2004 P. Van Roy, BCS talk 20

Some courses (3)
 Third-year course (INGI2131 at

UCL) by Peter Van Roy
 Review of declarative programming
 Add threads: leads to declarative

concurrency
 Add by-need synchronization:

leads to lazy execution
 Combining lazy execution and

concurrency
 Add ports (communication channels):

leads to message-passing
concurrency
 Designing multi-agent systems

 Add cells (mutable state): leads to
shared-state concurrency
 Tuple spaces (Linda-like)
 Locks, monitors, transactions

 Focus on concurrent programming

Declarative
concurrency

Message-passing
concurrency

Shared-state
concurrency

Declarative
programming

+ threads

+ cells+ ports



9/12/2004 P. Van Roy, BCS talk 21

Examples showing the
usefulness of the approach

 The concepts-based approach gives a broader
and deeper view of programming than the more
traditional language- or tool-oriented approach

 Let us see some examples of this:
 Concurrent programming

 Data abstraction

 Graphical user interface programming

 Object-oriented programming in a wider framework

 We explain these examples



9/12/2004 P. Van Roy, BCS talk 22

Concurrent programming

 There are three main paradigms of concurrent programming
 Declarative (dataflow; deterministic) concurrency

 Message-passing concurrency (active entities that send
asynchronous messages; Erlang style)

 Shared-state concurrency (active entities that share common
data using locks and monitors; Java style)

 Declarative concurrency is very useful, yet is little known
 No race conditions; declarative reasoning techniques

 Large parts of programs can be written with it

 Shared-state concurrency is the most complicated, yet it is
the most widespread!
 Message-passing concurrency is a better default



9/12/2004 P. Van Roy, BCS talk 23

Example of
declarative concurrency

 Producer/consumer with dataflow

fun {Prod N Max}
   if N<Max then
      N|{Prod N+1 Max}
   else nil end
end

proc {Cons Xs}
   case Xs of X|Xr then
      {Display X}
      {Cons Xr}
   [] nil then skip end
end

local Xs in
   thread Xs={Prod 0 1000} end
   thread {Cons Xs} end
end

 Prod and Cons threads share dataflow
list Xs

 Dataflow behavior of case statement
(synchronize on data availability) gives
stream communication

 No other concurrency control needed

Prod Cons
Xs



9/12/2004 P. Van Roy, BCS talk 24

Data abstraction

 A data abstraction is a high-level view of data
 It consists of a set of instances, called the data, that can be

manipulated according to certain rules, called the interface

 The advantages of this are well-known, e.g., it is simpler to
use, it segregates responsibilities, it simplifies maintenance,
and the implementation can provide some behavior
guarantees

 There are at least four ways to organize a data
abstraction
 According to two axes: bundling and state



9/12/2004 P. Van Roy, BCS talk 25

Objects and ADTs

 The first axis is bundling
 An abstract data type (ADT) has separate values

and operations
 Example: integers (values: 1, 2, 3, …; operations: +, -, *,

div, …)
 Canonical language: CLU (Barbara Liskov et al, 1970s)

 An object combines values and operations into a
single entity
 Example: stack objects (instances with push, pop, isEmpty

operations)
 Canonical language: Smalltalk (Xerox PARC, 1970s)



9/12/2004 P. Van Roy, BCS talk 26

Have objects won?
 Absolutely not!  Currently popular “object-oriented” languages

actually mix objects and ADTs
 For example, in Java:

 Basic types such as integers are ADTs (which is nothing to
apologize about)

 Instances of the same class can access each other’s private
attributes (which is an ADT property)

 To understand these languages, it’s important for students to
understand objects and ADTs
 ADTs allow to express efficient implementation, which is not

possible with pure objects (even Smalltalk is based on ADTs!)
 Polymorphism and inheritance work for both objects and ADTs,

but are easier to express with objects

 For more information and explanation, see the book!



9/12/2004 P. Van Roy, BCS talk 27

Summary of data abstractions

• The book explains how to program these four
possibilities and says what they are good for

bundling

state

ObjectAbstract
data type

Stateless

Stateful Pure object

Pure ADT Declarative object

Stateful ADT

The usual one!



9/12/2004 P. Van Roy, BCS talk 28

Graphical user interface
programming

 There are three main approaches:
 Imperative approach (AWT, Swing, tcl/tk, …): maximum

expressiveness with maximum development cost

 Declarative approach (HTML): reduced development cost
with reduced expressiveness

 Interface builder approach: adequate for the part of the
GUI that is known before the application runs

 All are unsatisfactory for dynamic GUIs, which
change during execution



9/12/2004 P. Van Roy, BCS talk 29

Mixed declarative/imperative
approach to GUI design

 Using both approaches together is a plus:
 A declarative specification is a data structure.  It is

concise and can be calculated in the language.

 An imperative specification is a program.  It has
maximum expressiveness but is hard to manipulate
formally.

 This makes creating dynamic GUIs very easy

 This is an important foundation for model-based
GUI design, an important methodology for
human-computer interfaces



9/12/2004 P. Van Roy, BCS talk 30

Example GUI

W=td(lr(label(text:”Enter your name”)
        entry(handle:E))
    button(text:”Ok” action:P))

…
{Build W}
…
{E set(text:”Type here”)}
Result={E get(text:$)}

Nested record with
handler object E and

action procedure P

Call the handler object

Construct interface
(window & handler object)



9/12/2004 P. Van Roy, BCS talk 31

Example dynamic GUI

 Any GUI specification can be put in the placeholder at run-
time (the spec is a data structure that can be calculated)

W=placeholder(handle:P)

…

{P set( label(text:”Hello”) )}

{P set( entry(text:”World”) )}



9/12/2004 P. Van Roy, BCS talk 32

Object-oriented programming:
a small part of a big world

 Object-oriented programming is just one tool in a
vastly bigger world

 For example, consider the task of building robust
telecommunications systems
 Ericsson has developed a highly available ATM switch, the

AXD 301, using a message-passing architecture (more
than one million lines of Erlang code)

 The important concepts are isolation, concurrency, and
higher-order programming

 Not used are inheritance, classes and methods, UML
diagrams, and monitors



9/12/2004 P. Van Roy, BCS talk 33

Formal semantics

 It’s important to put programming on a solid
foundation.  Otherwise students will have
muddled thinking for the rest of their careers.
 Typical mistake: confusing syntax and semantics

 We propose a flexible approach, where more or
less semantics can be given depending on your
taste and the course goals
 The foundation of all the different semantics is an

operational semantics, an abstract machine



9/12/2004 P. Van Roy, BCS talk 34

Three levels of teaching
semantics

 First level: abstract machine (the rest of this talk)
 Concepts of execution stack and environment
 Can explain last call optimization and memory

management (including garbage collection)

 Second level: structural operational semantics
 Straightforward way to give semantics of a practical

language
 Directly related to the abstract machine

 Third level: develop the mathematical theory
 Axiomatic, denotational, and logical semantics are

introduced for the paradigms in which they work best
 Primarily for theoretical computer scientists



9/12/2004 P. Van Roy, BCS talk 35

Abstract machine

 The approach has three
steps:
 Full language: includes all

syntactic support to help the
programmer

 Kernel language: contains all
the concepts but no syntactic
support

 Abstract machine: execution of
programs written in the kernel
language

Full language

Kernel language

Abstract machine

Remove syntax

Execute



9/12/2004 P. Van Roy, BCS talk 36

Translating to kernel language

fun {Fact N}
if N==0 then 1
else N*{Fact N-1}
end

end

proc {Fact N F}
local B in
     B=(N==0)
     if B then F=1
     else
          local N1 F1 in
               N1=N-1
               {Fact N1 F1}
               F=N*F1
          end

          end
end

end

All syntactic aids are removed: all
identifiers are shown (locals and
output arguments), all functions
become procedures, etc.



9/12/2004 P. Van Roy, BCS talk 37

Syntax of a simple
kernel language (1)

 EBNF notation; <s> denotes a statement

<s> ::= skip
| <x>1=<x>2
| <x>=<v>
| local <x> in <s> end
| if <x> then <s>1 else <s>2 end
| {<x> <x>1 … <x>n}
| case <x> of <p> then <s>1 else <s>2 end

<v> ::= …
<p> ::= …



9/12/2004 P. Van Roy, BCS talk 38

Syntax of a simple
kernel language (2)

 EBNF notation; <v> denotes a value, <p> denotes a pattern

<v> ::= <record> | <number> | <procedure>
<record>, <p> ::= <lit>  |  <lit>(<feat>1:<x>1 … <feat>n:<x>n)
<number> ::= <int> | <float>
<procedure> ::= proc {$ <x>1 … <x>n} <s> end

 This kernel language covers a simple declarative paradigm
 Note that it is definitely not a “theoretically minimal” language!

 It is designed to be simple for programmers, not to be
mathematically minimal

 This is an important principle throughout the book!
 We want to show programming techniques
 But the semantics is still simple and usable for reasoning



9/12/2004 P. Van Roy, BCS talk 39

Abstract machine concepts

 Single-assignment store  σ = {x1=10, x2, x3=20}
 Variables and their values

 Environment E = {X → x, Y → y}
 Link between program identifiers and store variables

 Semantic statement (<s>,E)
 A statement with its environment

 Semantic stack ST = [(<s>1,E1), …, (<s>n,En)]
 A stack of semantic statements, “what remains to be done”

 Execution (ST1,σ1) → (ST2,σ2) → (ST3,σ3) → …
 A sequence of execution states (stack + store)



9/12/2004 P. Van Roy, BCS talk 40

The local statement

 (local X in <s> end, E)
 Create a new store variable x
 Add the mapping {X → x} to the environment

S2

Sn

S2

Sn

(local X in <s> end, E) (<s>,E+{X → x})

σ σ∪{x}

stack store stack store

… …



9/12/2004 P. Van Roy, BCS talk 41

The if statement

 (if <x> then <s>1 else <s>2 end, E)
 This statement has an activation condition:

E(<x>) must be bound to a value
 Execution consists of the following actions:

 If the activation condition is true, then do:
 If E(<x>) is not a boolean, then raise an error condition
 If E(<x>) is true, then push (<s>1 , E) on the stack
 If E(<x>) is false, then push (<s>2 , E) on the stack

 If the activation condition is false, then the execution does
nothing (it suspends)

 If some other activity makes the activation condition true, then
execution continues.  This gives dataflow synchronization,
which is at the heart of declarative concurrency.



9/12/2004 P. Van Roy, BCS talk 42

Procedures (closures)

 A procedure value (closure) is a pair
(proc {$ <y>1 … <y>n} <s> end, CE)

where CE (the “contextual environment”) is E|<z>1 ,…,<z>n with
E the environment where the procedure is defined and
{<z>1, …, <z>n} the set of the procedure’s external identifiers

 A procedure call ({<x> <x>1 … <x>n}, E) executes as follows:

 If E(<x>) is a procedure value as above, then push
(<s>, CE+{<y>1→E(<x>1), …, <y>n→E(<x>n)})

on the semantic stack

 This allows higher-order programming as in functional
languages



9/12/2004 P. Van Roy, BCS talk 43

Use of the abstract machine

 With it, students can work through program
execution at the right level of detail
 Detailed enough to explain many important properties
 Abstract enough to make it practical and machine-

independent (e.g., we do not go down to the machine
architecture level!)

 We use it to explain behavior and derive properties
 We explain last call optimization
 We explain garbage collection
 We calculate time and space complexity of programs
 We explain higher-order programming
 We give a simple semantics for objects and inheritance



9/12/2004 P. Van Roy, BCS talk 44

Conclusions
 We presented the concepts-based approach, one way to

organize the discipline of computer programming
 Programming languages are organized according to their concepts
 New concepts are added to overcome limitations in expressiveness

(creative extension principle)
 The complete set of concepts covers all major programming

paradigms

 We gave examples of how this approach gives insight
 Concurrent programming, data abstraction, GUI programming, the

role of object-oriented programming

 We have written a textbook published by MIT Press in 2004 and
are using it to teach second-year to graduate courses
 The textbook covers both theory (formal semantics) and practice

(using the Mozart Programming System)
 The textbook is based on research done in the Mozart Consortium

 For more information see http://www.info.ucl.ac.be/people/PVR/book.html

 See also Second Int’l Mozart/Oz Conference (Springer LNAI 3389)


