
Designing BGP-based outbound traffic engineering
techniques for stub ASes

Steve Uhlig
Computer Science and Engineering Department

Université catholique de Louvain, Belgium

suh@info.ucl.ac.be

Olivier Bonaventure
Computer Science and Engineering Department

Université catholique de Louvain, Belgium

Bonaventure@info.ucl.ac.be

ABSTRACT
Today, most multi-connected autonomous systems (AS) need to
control the flow of their interdomain traffic for both performance
and economical reasons. This is usually done by manually tweak-
ing the BGP configurations of the routers on an error-prone trial-
and-error basis. In this paper, we demonstrate that designing sys-
tematic BGP-based traffic engineering techniques for stub ASes are
possible. Our approach to solve this traffic engineering problem is
to allow the network operator to define objective functions on the
interdomain traffic. Those objective functions are used by an op-
timization box placed inside the AS that controls the interdomain
traffic by tuning the iBGP messages distributed inside the AS. We
show that the utilization of an efficient evolutionary algorithm al-
lows to both optimize the objective function and limit the number
of iBGP messages. By keeping a lifetime on the tweaked routes, we
also show that providing stability to the interdomain path followed
by the traffic is possible. We evaluate the performance of solution
based on traffic traces from two stub ASes of different sizes. Our
simulations show that the interdomain traffic can be efficiently en-
gineered by using not more than a few iBGP advertisements per
minute.

Our contribution in this paper is to demonstrate that by carefully
thinking the design of the interdomain traffic engineering technique,
stub ASes can engineer their outbound traffic over relatively short
timescales, by exclusively tweaking their BGP routes, and with a
minimal burden on BGP. Systematic BGP-based traffic engineer-
ing for stub ASes is thus possible at a very limited cost in terms of
iBGP messages.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols—Routing Protocols; C.2.3 [Computer-Communication Net-
works]: Network Operations—Network Management, Network Mon-
itoring; C.2.5 [Computer-Communication Networks]: Local and
Wide-Area Networks

Keywords
BGP, interdomain traffic engineering, multiple-objectives optimiza-
tion

1. INTRODUCTION
The current state-of-the-art in interdomain traffic engineering is
primitive [6]. Traffic engineering techniques today mainly target
transit ISPs [6]. The main problem tackled up to now in the traf-
fic engineering literature is the one of optimizing the traffic inside
large transit ASes. Two main techniques exist for that. The first
technique relies on a full mesh of tunnels established inside the AS
and traffic engineering is implemented by changing these tunnels
[7, 5, 66]. The other way to traffic engineering the traffic inside an
AS is to tune the IGP weights [27, 65, 26]. At the interdomain level,
the situation is not better. Operators change their routing policies
and the BGP attributes of the routes manually without a proper un-
derstanding of such changes on the flow of the traffic. Many prob-
lems arise due to misconfigurations in the routers [37]. The current
practice in BGP-based traffic engineering is often "trial-and-error"
[24], i.e. an operator changes the BGP attributes of some routes
that were observed to carry a large amount of traffic and observes
the effect on the interdomain traffic. For large transit ISPs, interdo-
main traffic engineering is a complex problem even for outbound
traffic due to interactions between BGP and the IGP [1]. In the
case of stub ASes on the other hand, the reason for the absence of
a proper engineering of BGP is mainly a lack of understanding of
the working of BGP and its effect on the traffic. The aim of this
paper is to demonstrate that properly tuning BGP to engineer the
outbound traffic without having to destabilize the BGP routing of
a stub AS is possible, even on relatively short timescales of a few
minutes.

1.1 Related work
Recently, commercial BGP-based solutions commonly referred as
route optimization techniques [47, 18, 58, 40] have been deployed.
These solutions work on relatively short timescales and target multi-
connected networks. Their principle is to find, based on active and
passive measurements, the "best" route to reach a destination or/and
to be reached by an external hosts [4, 33]. These techniques work
on timescales in the order of a round-trip time or more and adapt the
traffic flow to the current conditions of the network, i.e. they try to
find the best upstream provider to send or receive traffic. Route op-
timization techniques seem to target paths performance rather than
obtaining a particular distribution of the traffic among the egress
links [39], although they seem to be able to deal with load bal-
ancing the outbound traffic. It is unclear how load-balancing is
performed, whether these techniques try to minimize the impact

on BGP and if so how it is done. Still, two types of route op-
timization techniques seem to be used [39]: DNS-based [47, 40]
ones and BGP-based [18, 58] ones. DNS-based techniques [47, 40]
rely on smart NAT coupled with very small DNS TTL’s to choose
the best-performing upstream provider for both outbound and in-
bound connections. NAT-based solutions however are not scalable
to large networks such as ISPs, with many hosts behind the NAT.
BGP-based techniques [18, 58] mainly deal with outbound traffic
and seem to be better suited to optimize the trade-off between paths
performance and the cost of the traffic [39]. It is however not clear
how BGP-based route optimization techniques deal with the tweak-
ing of the BGP routes, nor what burden they require on the access
routers in terms of the BGP updates. However, as these solutions
mainly aim at adapting the best BGP route choice to the real-time
performance of the interdomain paths, they incur the risk of requir-
ing many BGP route changes depending on the network conditions.
Similarly to route optimization techniques, [28] studied the trade-
off between traffic cost and performance for multihoming. The off-
line and on-line algorithms proposed in [28] optimize either traffic
cost or performance or both, but without caring about the cost in
terms of BGP changes.

Note that the objectives of route-optimization techniques are much
centered on user’s perspective of network performance. In this pa-
per, we rather focus on stub ASes who care more about aspects re-
lated to the distribution of the traffic over egress points than end-to-
end properties. As route optimization techniques are rather black-
box techniques over which the network manager as limited control,
these solutions target smaller networks that have not enough ex-
perience with BGP to deploy themselves their BGP-based traffic
engineering techniques. Also, evaluating BGP-based traffic engi-
neering techniques that care about the end-to-end properties of the
traffic would need to actually implement the technique and moni-
tor the end-to-end path properties. We leave this aspect as further
work.

On router vendors’ side, several features exist in BGP implementa-
tions to engineering the traffic. Cisco’s BGP multipath [55] allows
to load-balance outgoing traffic when several equal cost (only the
router-id differs) eBGP routes are learned from a neighboring AS.
Per-packet or per-destination load balancing is then performed by
the router among the multiple paths. Unequal cost load-balancing
is also possible by relying on the extended community attribute
[51]. However, Cisco’s BGP load-sharing techniques [56] are lim-
ited to multiple links on a single router and do not work well with
multiple routers. In addition, these techniques are rather limited in
their scope: outgoing load-balancing (packet-based or destination-
based) and static incoming traffic distribution based on static rela-
tive available link bandwidth. The same features are also available
on Juniper routers [41].

Very few papers dealt with designing techniques for BGP-based
traffic engineering [67, 61]. [67] proposed a random search algo-
rithm, called recursive random search, to deal with the problem of
finding the right value of the parameters for the configuration of
large networks. The principle of [67] is to rely on random search
and restart the search to converge towards the optimal parame-
ter’s values. The problem tackled in [61] consisted in modifying
the LOCAL-PREF attribute of the BGP routes in an off-line man-
ner (once every day) to balance (or minimize a cost function) the
outbound traffic among several BGP neighbors of a stub AS. The
purpose of [61] was to try to minimize the router’s configuration
changes to be performed for traffic engineering purposes by work-

ing on "BGP filters" defined at different topological aggregation
levels, i.e. regular expressions defined on the AS path of the BGP
routes. [61] showed that the reduction of the number of BGP routes
that need to be tweaked is limited while working on BGP filters
instead of BGP routes increases the search space by a large factor.
Note that the technique proposed in [67] could be used for the prob-
lem of this paper. Recursive random search however was designed
to work on the paremeter’s space, it focusses on the values of the
parameters to be changed to the network. Our technique is differ-
ent in that the value of the parameters (BGP route attributes) to be
changed are fixed in advance and the traffic engineering problem
as we define it concerns the choice of which BGP routes should
be tweaked to optimize an objective function defined on the out-
bound traffic of a stub AS. Furthermore, it is unclear how recursive
random search is able to cope with several traffic engineering ob-
jectives. Our technique on the other hand has been designed to deal
with multiple-objective problems, our algorithm is able to find a
whole front of non-dominated solutions.

1.2 Problem statement
Assume that a multi-connected stub AS receives a full BGP routing
table on each of its border BGP routers. To control the flow of its
outbound traffic, this stub AS can rely on the information found in
these BGP routing tables. BGP is a path vector routing protocol.
Each BGP router sends BGP advertisements to its peers. A route
advertisement sent by an AS through BGP means that the AS ad-
vertising the route agrees to forward IP packets to the destinations
corresponding to this route. In addition, the AS PATH attribute [53]
contained in this route advertisement tells through which ASes the
IP packets will transit to reach their destination.

Upon receiving a BGP route, an AS may modify the value of some
of the BGP attributes of this route through BGP filters [30]. For
instance, it is possible to apply a BGP filter that changes the value
of the LOCAL-PREF attribute of some route to prefer the route to-
ward some destination received through one particular BGP peer
over other routes for the same destination received through other
BGP peers.

Even if a relatively small number of popular destinations receive
most of the traffic [49, 62], this small number of destinations to
be taken into account can grow as large as hundreds of destination
prefixes whose routes need to be tweaked [46, 24]. The combinato-
rial nature of the interdomain traffic engineering problem makes it
difficult in practice for even a limited number of destinations [61].
When the number of choices in the BGP routes that can be tweaked
grows, finding the best BGP routes to be tweaked to optimize the
traffic becomes more difficult. Having much choice in the prefixes
that can be tweaked does not make the problem easier. More de-
tailed treatments of interdomain traffic engineering with BGP can
be found in [46, 24]. We do not deal in this paper with engineering
the inbound traffic received by stub ASes. The main reason con-
cerns the fact that modifying the flow of the inbound traffic with
BGP requires changing how remote ASes choose their best BGP
route to reach the local AS. BGP-based outbound traffic engineer-
ing for stubs only changes the traffic pattern, it should not change
the BGP advertisements outside of the local domain. Inbound traf-
fic engineering for stubs on the other hand requires to announce
the tweaked routes and might affect a large fraction of the Internet.
Inbound interdomain traffic engineering should thus be more of a
collaborative nature [2] than selfish BGP tweaking as for outbound
interdomain traffic engineering.

0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5 6

T
ra

ffi
c

(M
bp

s)

Time (days)

Traffic evolution per provider (UCL)

provider 1
provider 2
provider 3

Figure 1: Example time evolution of interdomain traffic for a
campus network.

Another aspect of the interdomain traffic engineering problem con-
sidered in this paper concerns the dynamics of the interdomain traf-
fic. Figure 1 shows an example of how the outbound traffic of a
stub AS for a description of this might be split among its three
providers. The purpose of Figure 1 is to illustrate the variability
of the traffic of a stub AS as well as to show the uneven way in
which default BGP routing distributes the total traffic over several
providers. On this figure, we took the whole outgoing traffic of the
Université catholique de Louvain (see section 3.2) and BGP rout-
ing tables from Oregon route-views [38]. We simulated the pres-
ence of three would-be providers that the university could have.
We show the amount of traffic that would be sent if the BGP tables
over the six days were those the university used, using 10 minutes
bins. Traffic variability is important at these timescales and ran-
dom traffic surges happen on the three providers. The main issue
appears for the first would-be provider because the ROUTER-ID of
its routes are the lowest. The BGP decision process hence system-
atically favors the routes learned from the first provider. If the local
AS does not rely on the LOCAL-PREF attribute to differentiate the
routes of its providers, it is the AS path length that differentiates
the BGP routes among the providers during the BGP decision pro-
cess. Therefore, the first provider carries the traffic for all routes
excepted for those that have a shorter AS path length through the
other two providers. Simulations have shown that this situation is
actually quite common with stub ASes [9].

While transit ASes that care about both the distribution of their traf-
fic inside their AS and among their interdomain links, stub ASes
mainly need to select among the available access links which one
to use to reach some destination prefix. The main traffic engineer-
ing problem of stub ASes is to be able to manage how to choose
the access link to reach some destination prefix, to react on traffic
disruptions or on random traffic surges that happen on their ac-
cess links. The goal of the traffic engineering technique presented
in this paper is to track an optimal distribution of the outbound
interdomain traffic on timescales of several minutes. Eventhough
engineering the interdomain traffic on such short timescales as min-
utes might not make sense from an interdomain traffic engineering
viewpoint, our purpose in relying on such a fine time-granularity
is to demonstrate the feasibility of working on timescales at which
BGP convergence takes places [29, 35] to tweak the BGP routes
while keeping the burden on BGP very small. The problem we
address would thus allow stub ASes to have a more reactive BGP

routing under changes of the traffic pattern or of routing failure,
only by tweaking the BGP routes. In this paper we chose to work
with time intervals of 10 minutes. Although this choice might seem
questionable, we feel that in practice this choice is an operational
problem. For our algorithm to work, the choice of the time inter-
val is an issue. We think that in practice the most crucial problem
will be to obtain the traffic statistics on time to compute how to
tweak the BGP routes. The choice of the time interval depends on
how frequently the network operator is willing to change its BGP
routes, and how adaptive he wants such a kind of traffic engineer-
ing to be. In this paper, we address the question of the feasibility of
optimizing traffic engineering objectives for stubs without creating
a burden on BGP.

The traffic objectives to be optimized by stub ASes might differ de-
pending on their size and their main business. In this paper, we use
two illustrative objectives. The first is to evenly distribute the total
traffic over the available providers, specified as min(max(tri)),
i = 1, ..., n, n being the number of available providers and tri

denotes the amount of traffic sent to provider i. Because traffic
balancing might be too simple an objective, we also evaluate the
optimization of a second objective of minimizing the cost of the
traffic, specified as min

Pn

i=1
ci × tri where ci denotes the cost

of one unit of traffic sent to provider i. The second traffic objective
models the volume-based billing performed by transit ISPs.

Contrary to route optimization techniques that might require an ar-
bitrarily number of iBGP changes to adapt the the real-time perfor-
mance of the paths used for each destination prefix, our technique
aims at providing stability to the path followed by the traffic and to
minimize the number of BGP path changes that the traffic will have
to undergo. In this paper, we do not take into account performance
metrics as the end-to-end delay or available bandwidth of the flows
as done by route optimization techniques. For these reasons, our
technique is very different in scope to route optimization techniques
as our purpose is mainly to prevent changes in the choice of the best
BGP route as much as possible when performing interdomain traf-
fic engineering. We do not discuss real-time objectives like using
the smallest RTT interdomain route or the one having largest avail-
able bandwidth, as these objectives require real-time monitoring of
the paths having most of the traffic. As the quality of the inter-
domain paths might change drastically over small time periods of
minutes, adapting to the real-time conditions along the paths could
require to tweak a large number of BGP routes. Such a kind of
traffic engineering is performance-centered, while the traffic engi-
neering we focus on in this paper is rather of trying to improve the
flow of the interdomain traffic by changing the best BGP route at
the timescales at which BGP reacts to topological changes.

1.3 Context
The ASes we mainly focus on in this paper are stub ASes that con-
stitute the majority of the ASes in the Internet [54]. At the date
of June 19, 2004 more than 86% (15141 over 17443) of the ASes
were considered as stub ASes by APNIC’s BGP routing table [52].
Among these stub ASes, we focus on ASes connected to the Inter-
net through several different providers. Because stub ASes do not
offer transit service, they do not advertise via eBGP the routes they
learn from their peers. In the case of a stub AS, there is no interac-
tion between the local BGP route tweaking performed on the eBGP
routes learned from the peers and the rest of the Internet.

Figure 2 plots the distribution of the number of providers stub ASes
have according to the BGP tables gathered from several vantage

points on December 12, 2003 [54]. On Figure 2, we only consider
the ASes from the gathered BGP routing tables that were not clas-
sified as provider for any of their peering according to the heuristic
proposed in [54]. According to the data of [54], 14287 ASes were
stub ASes. Among these stubs ASes, 5671 (40%) are single-homed
and 6748 (47%) dual-homed. The average number of providers
(distinct ASes) per stub is 1.87. Multi-homing is not only used
for backup purposes, but a trend toward more multi-homing has
been recorded during the last few years [2]. Although the AS-level
topology inferred from [54] is not representative of the AS-level
Internet, it is likely to be representative of customer-provider rela-
tionships as these peering relationships are not hidden by BGP as
are peer-peer peerings [15]. Because [54] relied on BGP routing
tables, the AS-level topology seen by [54] does not see some pri-
vate peer-peer peerings. ASes that are multi-connected for other

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 s

tu
b

A
S

es

Number of providers

Distribution of stub AS’s providers

Figure 2: Number of providers for stub ASes.

reasons than solely backup purposes need to distribute their inter-
domain traffic among several interdomain links. Almost all ASes
have to pay large ISPs to get a global connectivity on the Internet.
The cost of the traffic on these links can become significant. These
ASes would find interest in redistributing some traffic from more
expensive providers towards less expensive ones or simply better
balancing their traffic among the various available access links. We
do not expect that the number of providers per stub to grow much
in the future since [3] has shown the limited value in terms of per-
formance metrics of going beyond three providers.

The remainder of this paper is structured as follows. In section 2 we
discuss the issues raised by short-timescales outbound interdomain
traffic engineering. In section 3 we provide simulations to evaluate
the feasibility of short-timescales outbound traffic engineering with
BGP. Section 4 evaluates the contributions of this paper. Finally,
section 5 summarizes the content of this paper and discusses the
various paths this work has opened for further research.

2. COMPLEXITY OF INTERDOMAIN TRAF-
FIC ENGINEERING

The problem we tackle in this paper consists in controlling the dis-
tribution of the interdomain traffic in time by tweaking the BGP
routes. This problem is discrete and the control of the traffic is indi-
rect, by tweaking the BGP routes. Furthermore, tracking the traffic
dynamics makes the problem even harder. Finally, as we assume
that stub AS are likely to want to optimize several objectives at the
same time, we place the context of this paper within the framework

of multiple-objectives optimization.

In this paper, we rely on an evolutionary algorithm (EA) to perform
such on-line traffic engineering. The choice of evolutionary algo-
rithms lies in their ability to solve complex problems and particu-
larly multi-objective optimization problems [17, 19]. Because our
problem is a dynamic multiple-objectives one, a population-based
heuristic makes the search easier [13].

The principles of our scheme are as follows. For each time interval
(typically a few minutes), the current choice of the best BGP routes
drives the distribution of the outbound interdomain traffic. During
each time interval, the algorithm must find a non-dominated front
of solutions (with respect to the objectives defined in section 1.2)
that will be used for the next short-term time interval. What we
call a solution is a set of best BGP routes that differ from those best
routes found by BGP. There are three main issues to be tackled dur-
ing the design of the algorithm: 1) tracking the traffic distribution
for the next time interval, 2) finding non-dominated solutions and
3) choosing the next solution among the non-dominated ones.

For the third issue, the choice of the solution to use during the next
time interval among the possible non-dominated solutions is an is-
sue whenever large trade-offs exist between the number of BGP
advertisements and the value of the traffic objective. The results of
the next sections will show that even if these two objectives are con-
flicting, permitting more and more BGP advertisements provides a
decreasing marginal gain in the traffic objective. Henceforth, very
few BGP advertisements are required in practice and network op-
erators will only have to choose the upper bound on the number of
BGP advertisements allowed.

Pareto-optimality The concept of Pareto-optimality is related to
the set of solutions whose components cannot be improved
in terms of one objective without getting worse in at least one
of the other objectives. More formally, a multiple-objectives
search space is partially ordered in the sense that two solu-
tions are related to each other in two possible ways: either
one dominates or neither dominates. Consider the multiple-
objectives minimization problem:
Minimize y = f(x) = (f1(x), ..., fn(x))
where x = (x1, ..., xm) ∈ X

y = (y1, ..., yn) ∈ Y

x is called the decision vector, y the objective vector, X the
parameter space and Y the objective space. In the context of
this paper, the parameter space is the attributes of the BGP
routes and the objective space is the values of the traffic ob-
jective.

A decision vector x1 ∈ X is said to dominate another deci-
sion vector x2 ∈ X (x1 � x2), iff
∀i ∈ 1, .., n : fi(x1) ≥ fi(x2) ∧
∃j ∈ 1, .., n : fj(x1) > fj(x2).

Let us define now what a Pareto-optimal decision vector is: a
decision vector x is said Pareto-optimal iff x is non-dominated
regarding X , i.e. @x′ ∈ X : x′ � x.

A Pareto-optimal decision vector cannot be improved in any
objective without degrading at least one of the other objec-
tives. These are global optimal points. In this paper, we are
not interested in global optima but optimal points in some
neighborhood for some of the objectives. More precisely, we

aim at finding the Pareto-optimal points with respect to the
traffic objective and the number of BGP route changes, but
within a distance of one BGP route tweaked inside the AS.
Hence we do not search for globally Pareto-optimal decision
vectors but locally Pareto-optimal decision vectors:

Consider a set of decision vectors X ′ ⊆ X .
1. The set X’ is denoted as a local Pareto-optimal set iff
∀x′ ∈ X ′ : @x ∈ X : x � x′ ∧ ||x − x′|| < ε ∧ ||f(x) −
f(x′)|| < δ

where ||.|| denotes a distance metric, ε > 0 and δ > 0.
2. The set X ′ is called a global Pareto-optimal set iff
∀x′ ∈ X ′ : @x ∈ X : x � x′.

In this paper, we often use the term front (non-dominated
front or Pareto-optimal front) to mean a set of solutions. Be-
cause in this paper we rely on heuristics, we have no guar-
antee about the optimality of the solutions found. These
solutions can thus only be said non-dominated, not Pareto-
optimal. The reader may regard the terms non-dominated
and Pareto-optimal as roughly equivalent although this is not
true from an optimization viewpoint.

2.1 Tracking interdomain traffic
An issue to be tackled by the traffic engineering scheme is the track-
ing of the amount of traffic that will be sent towards each destina-
tion prefix during the next time interval. Network traffic is known
to be bursty (see [42] and references therein), so that predicting the
amount that will be sent through any provider could be critical to
be able to find a good solution. In this section, we show that the
complexity of the predictor used does not fundamentally improve
the prediction error. Henceforth, the choice of the best performing
predictor is not critical in the traffic engineering context. In addi-
tion, as the focus of the paper is not to find out which predictor
works best over some traffic type, we demonstrate our point on a
single traffic trace. The current section is thus mainly illustrative
and is not generalizable to other traffic traces. Note that traffic pro-
visioning schemes like [22, 34] are intended to limit resource over-
provisioning, they are not aimed at tracking the traffic dynamics.
For the algorithm to work in most practical situations, not having
to rely on a particular model for the data is desirable, since different
stubs may have very different user profiles and thus different traffic
types.

Several works have dealt with the predictability of network traffic
[50, 44]. [50] studied the multi-step ahead predictability of network
traffic relying on the ARMA and MMPP models, to evaluate the
possibility of multi-step ahead prediction for traffic control. The
main result of [50] was that both smoothing and traffic aggrega-
tion help the prediction. [44] studied the multiscale predictability
of network traffic, for one step ahead prediction. [44] confirmed
the results of [50] concerning the benefits of smoothing. However,
[44] also found by studying many different traffic traces that the
predictability of network traffic highly depends on the considered
trace. [44, 50] both evaluated the performance of predictability
based on the ratio of mean squared error to variance. The results of
[44] indicated that the performance of different predictors does not
improve much with their increasing complexity. Relying on the last
value of the time series or a simple moving average is as efficient
as AR, ARIMA, and ARFIMA models [12].

Since smoothing might provide some benefits while complex pre-
dictors do not, we compare in this paper the performance of adap-

tive exponential smoothing with a simple predictor: the previous
value. The purpose of this section is not to find the optimal predic-
tor for our particular trace, but to determine whether prediction is
practically useful at all in the context of interdomain traffic engi-
neering.

[14] compared several versions of adaptive exponential moving av-
erages for bandwidth prediction. The predictor the authors of [14]
found ideal for Internet traffic is an adaptive EMA algorithm: the
low pass EMA (LpEMA). The basic idea is to modify the classical
EMA formula

ei = (1 − α) × ei−1 + α × tri (1)

where ei is the estimate at time i, α the weight of the moving av-
erage and tri the traffic at time i. Instead of a fixed weight α, the
weight is made adaptive and computed as follows:

αi = αmax ×
1

1 + |mi|
mnorm

(2)

where αmax is the maximum weight, mi is the gradient of the traf-
fic at time i (tri−tri−1

ti−ti−1

) and mnorm a normalizing gradient. In this
paper, we computed mnorm as the mean gradient over a time win-
dow of one hour (six 10 minutes intervals). We chose to rely on a
time granularity of 10 minutes in this paper.

Let us have a closer look at the working of the LpEMA predic-
tor. First, compute mnorm as the mean gradient (in absolute value)
over the last 6 time intervals. The adaptive EMA weight, αi, is
computed according to Formula 2. The name Low pass EMA is
due to the behavior of αi that reduces the impact of large changes
in the traffic by smoothing out the time-series, having as reference
the mean gradient as an indication of the mean variability. If on
the other hand a relatively limited change in the time-series oc-
cur during the current time interval, then the value of αi comes
closer to αmax and the EMA better tracks the short-term changes.
The rationale behind this adaptive behavior is that large changes
in the traffic should not be followed unless they are longer-term
trends. The greater adaptation of the EMA whenever the shifts in
the traffic correspond more closely to the average behavior of the
signal (mean gradient) are meant to follow these short-term varia-
tions that better match the dynamics of the traffic. The main reason
for the smoothing behavior of the LpEMA concerns the burstiness
of Internet traffic, as tracking large shifts in the traffic is useless for
prediction purposes. Unless these changes are longer-term trends,
adapting the prediction based on traffic shifts will merely destabi-
lize the prediction while not help in predicting such random traffic
surges.

To assess the benefit of the LpEMA predictor to track the traffic of
each provider, Figure 3 provides both the mean and the standard
deviation of the prediction error for different values of αmax and
each provider. On Figure 3, the prediction error has been computed
for each time interval as the relative error between the predictor and
the true value of the traffic. Each graph of Figure 3 plots the mean
and standard deviation of this prediction error over the 6 days of
the trace. Both the mean and the standard deviation of the error for
the LpEMA predictor exhibits a first decreasing part but increase
after some value of αmax. The "last value" predictor has a lower
mean error than the LpEMA one (no matter the value of αmax)
for the three providers. The standard deviation of the "last value"
predictor is not always lower than the one of the LpEMA predictor.
Only for provider 2 has the "last value" predictor a smaller mean
and standard deviation than those of the LpEMA predictor for all

values of αmax. The behavior of the LpEMA predictor can be
explained in the following way. Increasing the value of αmax first
allows the predictor to adapt to the natural variability of the traffic.
Then, as the value of αmax increases beyond some value, both the
mean and the standard deviation of the error increase. This is due
to a more adaptive behavior of the LpEMA predictor for increasing
values of αmax.

0

10

20

30

40

50

60

0.5 1 1.5 2 2.5

P
re

di
ct

io
n

er
ro

r
(%

)

alpha_max

Impact of alpha_max on LpEMA prediction error (provider 1)

last value (mean)
last value (st_dev)

LpEMA (mean)
LpEMA (st_dev)

0

10

20

30

40

50

60

0.5 1 1.5 2 2.5

P
re

di
ct

io
n

er
ro

r
(%

)

alpha_max

Impact of alpha_max on LpEMA prediction error (provider 2)

last value (mean)
last value (st_dev)

LpEMA (mean)
LpEMA (st_dev)

0

10

20

30

40

50

60

0.5 1 1.5 2 2.5

P
re

di
ct

io
n

er
ro

r
(%

)

alpha_max

Impact of alpha_max on LpEMA prediction error (provider 3)

last value (mean)
last value (st_dev)

LpEMA (mean)
LpEMA (st_dev)

Figure 3: Effect of αmax value on prediction error: provider 1
(top), provider 2 (middle) and provider 3 (bottom).

The results of this section indicate that there is no benefit at
relying on adaptive EMA predictors since their mean error is
always larger than the one of the last value. Adaptive EMA

schemes also require some tuning of their parameters, whose
ideal values seem to depend on the particular traffic trace [44].
The last value predictor already constitutes an accurate pre-
dictor whose performance is comparable to an adaptive expo-
nential moving average, both in its average and standard devi-
ation. The simulations of section 3.3 will confirm that the last
value predictor performs better than adaptive EMA when used
by our traffic engineering technique.

2.2 Searching the Pareto front
Once the method used to predict the traffic distribution during the
next time interval has been chosen, we need to choose how to
search for the best BGP route changes. For each time interval, the
algorithm must find which BGP routes to tweak to optimize the
traffic objective. At each time interval, the goal is to find a non-
dominated front representing the trade-off between the number of
BGP routes to be tweaked and the value of the traffic objective. The
main issue with these two objectives is their conflicting nature: the
larger the number of BGP routes tweaked, the better the expected
value of the traffic objective. In the case where one knows the traf-
fic demand, increasing the number of BGP routes tweaked will al-
ways allow to improve the traffic objective. When the traffic pattern
changes with time however, having to find how to tweak the BGP
routes under constraint that a set of BGP routes have been tweaked
during the last time interval might lead to problematic situations.
If some traffic from a previously heavily loaded provider has been
moved to another (previously lightly loaded) provider, it could be
necessary to undo the concerned traffic move to improve the traffic
objective if more traffic has now carried over the previously lightly
loaded provider.

We have several options concerning how the search can take place.
We can start at each time interval with the previously used set of
BGP route changes and search for the Pareto-optimal front for the
next time interval. Another option is to start with the default BGP
routing (no BGP route tweaked by the optimization) and search
for the Pareto-optimal front from scratch during each time interval.
Finally, we can also start with the whole non-dominated front found
during the last time interval in search for the new Pareto-optimal
front.

Figure 4: Search of the Pareto front from one time interval to
another.

The first option has the drawback of requiring to potentially undo
BGP route changes that are not suitable anymore due to changes in
the traffic demand. By having to start the search with a set of BGP

changes, there is a risk of having to undo some of these changes
that were good during the previous time interval but need to be
removed for the current time interval to be able to find a good so-
lution. To illustrate what happens on the objective plane, Figure 4
shows the two Pareto-optimal fronts for two consecutive time inter-
vals, n − 1 and n. Time is not explicitly represented on Figure 4,
but each Pareto-optimal front represents a different time interval.
The x-axis of Figure 4 represents the number of BGP routes to be
tweaked by the optimization and the y-axis gives the value of the
traffic objective of the best possible solution requiring a given num-
ber of BGP routes tweaked. Figure 4 shows the two Pareto-optimal
fronts for the two consecutive time intervals, containing both the
default BGP solution (0 BGP route change) and the set of BGP
route changes chosen at each time interval. Suppose that we have
to start the search with the solution chosen at time n−1, containing
a few BGP route changes. To find the Pareto-optimal front for time
interval n, we need to undo some tweaking we did during the last
time interval n − 1. On Figure 4, we show the value of the traffic
objective at time n of the solution used at time n − 1. Because the
traffic pattern changes, a good solution during the last time interval
might have a relatively large value of the traffic objective during the
next time interval.

Figure 4 for instance shows that the search path between the solu-
tion at time n − 1 and the Pareto-optimal front at time n requires
undoing some tweaking of the BGP routes. The effect of undoing
this tweaking is to improve the traffic objective, but undoing the
tweaking of some BGP routes might worsen the traffic objective as
well in practice.

In the case of the second option, we start from the default BGP rout-
ing, and build the Pareto-optimal front from scratch at each time
interval. This solution has the advantage of limiting the size of the
search space because the algorithm can iterate by only tweaking
additional BGP routes to find the Pareto-optimal front. The draw-
back of this method is that one does not leverage the knowledge of
potentially good solutions found during previous time intervals.

The last option consists in building the next Pareto-optimal front
by starting from the last front. This solution has the same poten-
tial drawback as the first option, in that the size of the search space
is very large because the search must allow to do and to undo the
tweaking of BGP routes. Actually, the most annoying issue con-
cerns having to work with a set of potential solutions from which
we start the search. This requires that the search effort be dis-
tributed over the different points of the front. Some of the points
of the old Pareto-optimal front however will not easily join the new
Pareto-optimal front, so that valuable computational time may be
wasted.

Experience with the search heuristics indicated that allowing to
undo BGP route changes or starting with a whole front of solu-
tions when searching for the next front had problems to sample the
Pareto-optimal front, without providing a gain in terms of the solu-
tions found by the heuristic. In the remainder of the paper, we do
not allow to undo BGP route changes and always start with a single
solution at each time interval in search of the Pareto-optimal front.
In practice anyway, one starts with a given state of the best BGP
routes and needs to find which routes should be changed for the
next time interval. Initializing the search at some time interval with
a front is not useful as one wants to find the set of changes to be
applied to the BGP routes with respect to the current configuration
of the routers, not to start from an arbitrary configuration that does

not match the actual one.

It must be noted that heuristics only provide a non-dominated front.
To have guarantees about the optimality of these heuristics, further
work needs to be done to obtain the actual Pareto-optimal front.

2.3 Search algorithm
The previous section discussed the choice of the search heuristic.
In this section, we sketch the working of the heuristic. A more
detailed description of this search algorithm is given in Chapter 6
of [59].

In the previous discussion, we limited the traffic objective to be a
single-value function. In practice, one of the interesting features
of our algorithm is that it has been designed so as to be able to
work with several traffic objectives at the same time. The principle
is to rely on a random search to find improvements in any traf-
fic objective by tweaking additional BGP routes and maintaining
a non-dominated front of the improved solutions throughout the
search. At each time interval, we run the algorithm a number of
times bounded by the maximal number of BGP tweaks to be added
during the current time interval. In the remainder of this section we
focus on the working of a single iteration of the heuristic that tries
to improve the current non-dominated front by adding one BGP
tweak. An iteration where a population is improved by trying an
additional change to the individuals of the population is called a
"generation" in the evolutionary algorithms jargon as it generates a
new population from the old one. We kept the name "generation"
in the description below to be consistent with the evolutionary al-
gorithms literature.

Depending on the relationships between the traffic objectives which
might be conflicting, harmonious or neutral [43], the search on the
non-dominated front should have to be different. Recall that we
do not know beforehand the relationship between the traffic objec-
tives. This means that our search method must be as lightly biased
as possible towards any of the traffic objectives to sample in the
best possible manner the search space. Because sampling the whole
search space would make the search space grow very large, we de-
cided that the heuristic would iterate over the BGP routing changes
by trying to add one BGP routing change at each generation of the
algorithm. Doing this puts additional pressure on the population by
forcing improvements in the traffic engineering objectives to have
as few BGP route changes as possible early on during the optimiza-
tion. This does not guarantee that the solutions found will contain
the smallest set of BGP tweakings to optimize the traffic objectives.
However, as shown in [60, 59] optimizing the cost of the traffic of
a stub AS on daily timescales while balancing the traffic over the
available providers over timescales of minutes seems to be con-
flicting objectives. This suggests that in practice if traffic engineer-
ing needs care about several objectives the optimization problem is
likely to be a multiple-objective one where the core of the problem
will be to correctly sample a non-dominated front to find a good
trade-off between the optimized objectives. The aspect of whether
the algorithm finds the optimal set of BGP tweaks is hence likely
to be of limited practical importance. Note that there is no known
way of sampling a Pareto-optimal front without incurring the cost
of having to explore a large number of potential solutions. As many
relevant multiple-objectives problems are NP-hard, this problem is
unlikely to be solved in the near future.

Figure 5 provides a pseudo-code description of the search proce-
dure for a single generation. The principle of the search for each

1 accepted = 0
2 iter = 0
3 while ((accepted < MAXPOP) AND (iter == MAXITER)){
4 foreach individual k {
5 // Try a random BGP route change
6 BGP_change.prefix = rand_int_uniform(1,NUM_PREFIXES)
7 BGP_change.exit = rand_int_uniform(1,NUM_EXIT_POINTS)
8 // If effect of BGP change is improvement accept it
9 if (improved(k,BGP_change)){
10 accept(k,BGP_change)
11 // Update counter for accepted improved individuals
12 accepted++
13 } // end if
14} // end foreach individual
15// update iteration counter
16iter++
17 } // end while

Figure 5: Pseudo-code of search procedure for a single genera-
tion.

time interval is as follows. At the first generation, we start with
a population of individuals initialized at the default solution found
by BGP routing (taking into account the BGP filters that are used
by the border routers of the AS). Hence at generation zero all in-
dividuals have the same values of the traffic objectives and con-
tain no BGP routing change (default best BGP routes). At each
generation, we use a random local search aimed at improving the
current population by applying an additional BGP routing change
(a <prefix, exitpoint> pair). Each individual of the population
is non-dominated with respect to the other members of the popula-
tion for what concerns the traffic objectives. In addition, the current
population is always made of individuals having the same number
of BGP routing changes. At each generation, we parse the whole
population and for each individual we try to apply an additional
randomly chosen BGP routing change. Whenever a BGP routing
change provides improvement with respect to at least one of the
traffic objectives, we accept this improved individual and put it in
the set of accepted individuals. We iterate this procedure until we
find a target number of improved individuals or stop when we have
performed a target number of tries (the variable ITER). Note that
the pseudo-code given at Figure 5 concerns only one generation,
and that the purpose of variable ITER is not to count the genera-
tions but to ensure that the search will not loop indefinitely during
the current generation.

2.3.1 Sampling the non-dominated front
Up to now, we described the procedure to search for BGP rout-
ings changes that improve the individuals of the previous popula-
tion with respect to any of the traffic objectives. These improved
individuals however are not non-dominated. Some of them can be
dominated since we did not check for non-domination when ac-
cepting an improved individual. Improvement was sufficient to ac-
cept an individual. The next step just after the random search at
each generation is to check for non-domination on this population
of improved individuals to obtain a non-dominated front. For that
purpose, we rely on the fast non-domination check procedure in-
troduced in [20]. This procedure has time complexity 0(MN 2)
where M is the number of objectives and N the size of the pop-
ulation. We do not describe this procedure in details but refer to
[20] for the original idea and to [19] for an thorough explanation.
Let us only mention the main points here. Let P denote the set of
non-dominated individuals found so far at the current generation.
P is initialized with anyone of the individuals among the accepted

ones. Then try to add individuals from the set of accepted ones one
at a time in the following way:

• temporarily add individual k to P

• compare k with all other individuals p of P :

– if k dominates any individual p, delete p from P

– else if k is dominated by other members of P remove
k from P

This procedure ensures that only non-dominated individuals are left
in P . The number of domination checks is in the order of 0(N 2)
while for each domination check M comparisons are necessary
(one for each objective). The time complexity is thus 0(MN 2).

Having found the non-dominated front for a given number of BGP
routing changes (the current population), we are left with selecting
the individuals of the population for the next generation. Actually,
the number of non-dominated individuals from the set of improved
ones is due to be smaller than the size of the population we use
during the search process (MAXPOP). To constitute the population
for the next generation, we have to decide how many individuals
in the next population each non-dominated solution will produce.
Because non-dominated individuals are not comparable between
one another, we must choose a criterion that will produce MAX-
POP individuals from the set of non-dominated ones. On the one
hand, we would like to include at least every non-dominated indi-
vidual in the population. On the other hand, depending on the way
the accepted solutions are spread over the non-dominated front, we
must sample differently different regions of the front for a given
number of BGP routing changes. This notion of sampling the non-
dominated front is close to an idea of distance between neighbor-
ing individuals in the objective space. Maintaining diversity on the
non-dominated front requires that individuals whose neighbors are
farther apart be preferred over non-dominated individuals whose
neighbors are close. The rationale behind this is that less crowded
regions should require more individuals to be correctly explored
than regions having more non-dominated individuals. The com-
putation of the crowding distance for each individual is done ac-
cording to [19] pp. 248. First the non-dominated individuals are
sorted according to each objective. Then the individuals having the
smallest and largest value for any objective are given a crowding
distance dm of ∞ to ensure that they will be selected in the popula-
tion. For each objective m, the crowding distance of any individual
i, 1 ≤ i ≤ (|P | − 2), is given by

d
m
i =

˛

˛

˛

˛

fm
i+1 − fm

i−1

fm
max − fm

min

˛

˛

˛

˛

(3)

where fm
i denotes the value of individual i for objective m, fm

max

(respectively fm
min) denotes the maximum (respectively minimum)

of the objective value m among individuals of the set P of non-
dominated individuals. The global crowding distance for all objec-
tives is the sum of the crowding distance for all objectives. For our
two objectives, this crowding distance represents half the perimeter
of the box in which individual i is enclosed by its direct neighbors
in the objective space.

The performance of the search algorithm is sufficient to be used
as an on-line traffic engineering scheme. Finding the set of BGP
routes to be tweaked during the next time interval requires n iter-
ations of the algorithm. This set contains at most n BGP routes

to tweak. To find the non-dominated population with an additional
BGP route change, the algorithm has linear complexity with the
population size and the non-domination check quadratic time with
respect to the number of accepted individuals. Although our search
technique does not ensure that we find the optimum, the low time
complexity ensures that a non-dominated solution will be found
within a short amount of time. Finding the optimal set of BGP
routes to change at a given time interval would be far more com-
plex (exponential time complexity) as the problem is NP-hard in the
strong sense [61]. The current prototype Perl version of the algo-
rithm takes in the order of one second per iteration on a P4 2.4 GHz.
A C version would probably be at least an order of magnitude faster.
All Perl scripts used for the simulations of section 3 are available at
http://www.info.ucl.ac.be/~suh/. Note that it is un-
clear whether recursive random search [67] could be used to solve
the same problem since it is not population-based and would hence
have problems to sample the non-dominated front.

3. PERFORMANCE EVALUATION
This section studies the performance of the our interdomain traf-
fic engineering solution introduced in section 2. Section 3.1 first
presents the typical context in which our solution is to be used in
practice. Section 3.2 presents the traffic traces used for the simu-
lations of the paper. Section 3.3 then discusses the impact of the
traffic variability on the quality of the solutions found. Section 3.4
proposes a modification to the basic traffic engineering solution that
reduces the number of required iBGP advertisements. Section 3.5
then goes on to show that relying on the MED attribute of the BGP
routes performs almost as well as relying on the LOCAL-PREF at-
tribute. Finally, section 3.6 evaluates the performance of our solu-
tion for the second traffic objective introduced in section 1.2.

3.1 Scenario
Figure 6 illustrates the typical scenario of a multi-homed stub. It
consists of a stub AS connected to several providers. The local stub
AS shares one or more physical links with each provider. We as-
sume that for each interdomain link, there is a corresponding eBGP
session between the local egress router and the remote AS. A TE-
route reflector [11, 23] centralizes the traffic statistics [36, 16, 57]
as well as the BGP routes from the border routers of the domain.
Two solutions can be envisioned to allow the TE-route reflector to
know about all external routes known by the border routers. The
first consists in establishing eBGP multihop sessions between the
TE-route reflector and the border routers of the neighboring ASes.
In that case, there must be one eBGP multihop session for each
eBGP session between the border routers of the domain and the
neighboring ASes for the TE-route reflector to know exactly the
same BGP routes as all the border routers of the domain. Another
solution would be to force the border routers of the domain to ad-
vertise all the routes they have learned from the neighboring ASes
to the TE-route reflector, for instance by relying on [64]. Note
that a solution like [64] will force each border router to adver-
tise all its BGP routes present in the Adj-RIB-in’s, not just one or
two routes. The TE-route reflector is actually not used as a route-
reflector by the AS but serves the sole purpose of learning the BGP
routes and advertise the tweaked routes for traffic engineering pur-
poses. Having all the known external BGP routes and the traffic
statistics learned from the border routers of the domain, the TE-
route reflector runs our search algorithm that computes which BGP
routes should be tweaked and advertised to each border router to
optimize the outbound traffic. To prevent routing loops from oc-
curring inside the domain, the TE-route reflector must also know
the IGP topology as well as the local policies applied by the bor-

der routers and compute the paths used by each border router to
reach a destination. To deal with failures of the TE-route reflector,
one might use two redundant TE-route reflectors, one announcing
tweaked routes with a LOCAL-PREF value of x, and the other with
a LOCAL-PREF value of x − 1.

Stub AS

Provider 2

Provider 3

iBGP session

Traffic statistics

Border router

TE-route reflector

eBGP session

Provider 1eBGP multihop
session

Figure 6: Typical scenario for stub ASes.

To perform its traffic engineering function, the TE-route reflector
must send iBGP updates to the border routers of the domain. These
iBGP updates are of two types. Whenever the TE-route reflector
chooses to tweak a BGP route, i.e. to change the preferred route
to reach a destination prefix, it must advertise to each border router
which route is to be preferred. For example, if the TE-route reflec-
tor on Figure 6 decides that all routers of the domain must send
their traffic towards prefix A.B.C.D/E through the border router
connected to provider 1, then the TE-route reflector will send an
iBGP update message to each router to indicate that the best route
it knows to reach prefix A.B.C.D/E is to be preferred, for instance
by putting a higher LOCAL-PREF value than all other routes the
other border routers know to reach prefix A.B.C.D/E. Note that if
all border routers have the same route to reach prefix A.B.C.D/E
at the same time, no routing loop will occur inside the domain due
to the outbound traffic engineering. The other type of iBGP update
message sent by the TE-route reflector to border routers of the do-
main are those for the previously tweaked routes that are not to be
tweaked during the next time interval anymore. In that case, the
TE-route reflector will just resend to all border routers of the do-
main the best route computed by BGP among those known by the
TE-route reflector. This iBGP update message only contains the
BGP route which would be advertised by the TE-route reflector if
it were acting as a traditional route reflector. If the best route cho-
sen by the TE-route reflector stops from being reachable, then the
TE-route reflector will behave like a normal route reflector and it
will find another route to reach the destination prefix and advertise
it to all the border routers.

3.2 Data
The first traffic trace used in our simulations is a six days trace of
all the outbound traffic from the Université catholique de Louvain
starting from March 19, 2003 00:00 CET. During this six days pe-
riod, the university sent 1.7 terabytes of traffic or an average of 27
Mbps. This six days long trace was cut into time intervals of ten
minutes. This trace was collected with nProbe [21] on a link just
behind the access router of the university. No packet loss was re-
ported by the system for the whole duration of the trace. For each
ten minutes interval, we recorded the amount of bytes sent to each
BGP prefix. In the remainder of this paper, we call this trace the
UCL trace.

The second traffic trace is an 18 days long trace of all the outbound
traffic from BELNET, a gigapop stub with 5 Gbps of capacity with

its providers, starting from October 30, 2003 12:00 CET. The trace
was collected using the NetFlow sampling available on the access
routers of BELNET with a 1/4000 packet sampling rate. Figure 7
shows the evolution of the outbound traffic of BELNET during the
18 days of the trace. Since packet sampling was used, we multi-
plied the byte count per second of the sampled trace by 4000 to
obtain the expected total traffic. The purpose of the trace from
BELNET is to evaluate how larger stub ASes could behave under
short-timescales BGP-based interdomain traffic engineering. Sev-
eral traffic disruptions appear on the graph of Figure 7, they are
only due to maintenance operations on the Netflow collector. Al-
though no actual traffic disruption occurred on the access routers of
BELNET during the duration of the trace, these periods can be con-
sidered as shutdown periods for the traffic engineering technique.
In the remainder of this paper, we call this trace the BELNET trace.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18

T
ra

ffi
c

(M
bp

s)

Time (days)

Evolution of BELNET outbound traffic

Figure 7: Evolution of BELNET outbound traffic.

In addition, we gathered routing information bases from Oregon
Route views [38] dating from April 2, 2003 (for the UCL trace)
and October 30, 2003 (for the BELNET trace) to simulate the BGP
routing tables of the would-be providers to which our stubs would
be connected. This particular choice of the would-be providers
will merely impact the default distribution of the traffic among
providers, not the performance of the optimization. As the purpose
of this paper is not to provide guarantees about the working of our
solution for any set of providers a stub AS could have, we do not
deal with this aspect in the remainder of this paper. Note however
that [10] studied how sensitive the BGP decision process was to the
choice of the set of providers of a stub AS. [10] showed that when
choosing a random pair of providers among those present in Ore-
gon route-views, 60% of the routes had the same AS path length.
This is an indication that the default distribution of the traffic for
multi-homed stubs will depend largely on which tie-breaking rules
of the BGP decision process are used to choose the best route, not
on the particular providers of the AS.

While it is known that BGP routes dynamics can be important for
some prefixes, it has however been shown in [49, 62, 25] that BGP
routes can be considered as stable over relatively long periods for
traffic destinations, so we use one BGP routing table per provider
for the whole duration of each trace. One could also replay the
eBGP updates received from would-be providers by using a tool
like CBGP [45]. Note that in this paper we consider the stability
over time of the amount of traffic per prefix, unlike [49] that consid-

ered the stability of the BGP routes over time, without respect to the
time evolution of the traffic volume per BGP route. As the purpose
of this paper is not to reproduce the exact routing of some network
but to show the feasibility of short-timescales outbound interdo-
main traffic engineering for stubs, we did not consider this aspect
as we do in [63]. For the UCL trace, the setting of the simulation
was of 3 providers (AS1239, AS7018 and AS1668). For the BEL-
NET trace, 3 providers have also been used (AS1239, AS3356 and
AS1668). The impact of the choice of the particular BGP routing
table used to simulate a would-be provider is limited, merely influ-
encing the traffic imbalance under default BGP routing. Studying
the impact of the choice of the particular provider on the default
traffic distribution found by BGP is irrelevant in the context of this
paper since its purpose is to demonstrate the feasibility of short-
timescales outbound traffic engineering with BGP, not to quantify
the expected gain of such traffic engineering.

3.3 Impact of traffic uncertainty
In this section, we study the effect of the impact of the predictors
aimed at tracking the traffic dynamics on the quality of the achieved
traffic balance. We also compare the results of the algorithm with
and without the uncertainty of the traffic demands to understand to
what extent the traffic dynamics prevents the algorithm to approach
the optimal traffic balance.

Figure 8 plots the average traffic imbalance as a function of the
number of iBGP updates allowed per 10 minutes interval, for the
UCL trace. We call imbalance ratio the maximum amount of traffic
sent through any of the three providers divided by the ideal traffic
balance (total traffic divided by the number of providers). To com-
pute the average, we took the whole non-dominated front for each
time interval, and averaged the imbalance ratio for the six days of
the UCL trace. Because we performed a non-domination sorting
of the solutions based on their objective value and their number of
BGP route changes, there is not always a non-dominated solution
for a given number of BGP route changes for some time interval.
This happens because a solution with fewer BGP route changes
performed better those found with more BGP routing changes due
to a changing traffic demand.

On Figure 8, we provide the results for four different states of un-
certainty about the traffic demand. Each graph of Figure 8 provides
for a given predictor the average gain in traffic imbalance together
with the standard deviation around the average, as a function of
the number of iBGP messages per time interval. For each graph
of Figure 8, we provide for a given value of the number of iBGP
messages the average gain in traffic imbalance as well as the av-
erage minus the standard deviation and the average plus the stan-
dard deviation. The top left graph of of Figure 8 corresponds to
the case where the exact amount of traffic that will be sent towards
each destination prefix is known. This situation is the one under
perfect prediction of the traffic. The top right graph of Figure 8
corresponds to the traffic engineering scheme where the optimizer
used the last value of the amount of traffic sent towards any des-
tination prefix as the prediction for the current time interval. The
two bottom graph of Figure 8 correspond to a particular EMA, the
LpEMA scheme proposed in [14] to predict aggregated Internet
traffic. The name LpEMA comes from low-pass EMA, to indi-
cate that this is a smoothed adaptive EMA predictor. The bottom
left (right) of Figure 8 corresponds to the LpEMA predictor where
the traffic prediction is performed independently for each destina-
tion prefix (provider). One can notice that except for the perfect
knowledge where the standard deviation decreases for larger num-

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60

T
ra

ffi
c

im
ba

la
nc

e

Number of iBGP route updates per 10 minutes interval

Average gain in traffic balance (UCL trace, perfect knowledge)

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60

T
ra

ffi
c

im
ba

la
nc

e

Number of iBGP route updates per 10 minutes interval

Average gain in traffic balance (UCL trace, last value)

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60

T
ra

ffi
c

im
ba

la
nc

e

Number of iBGP route updates per 10 minutes interval

Average gain in traffic balance (UCL trace, LpEMA prefixes)

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60

T
ra

ffi
c

im
ba

la
nc

e

Number of iBGP route updates per 10 minutes interval

Average gain in traffic balance (UCL trace, LpEMA providers)

Figure 8: Gain in traffic balance as a function of the number of iBGP updates.

bers of iBGP messages, all prediction schemes have a comparable
and quite large standard deviation. The decreasing standard devia-
tion for the perfect knowledge is due to the fact that when increas-
ing the number of iBGP messages, the optimizer achieves a smaller
traffic imbalance without suffering from any uncertainty concern-
ing the traffic. This standard deviation for the perfect knowledge
hence represents mainly the traffic variability over time, not the un-
certainty of the prediction. For the other three prediction schemes
on the other hand, their increased standard deviation reflects the
uncertainty of the traffic prediction. The standard deviation for the
three predictors is similar.

The four graphs of Figure 8 start with the same value of the average
traffic imbalance of about 1.9. The default route choice by the BGP
decision process chose to send on average 1.9 times more traffic
on one of the three providers than the average traffic over the three
providers. With 10 iBGP updates, the average traffic imbalance lies
below 1.5 for all traffic predictors. With 20, 30, 40, 50 and 60 iBGP
updates, the average traffic imbalance is respectively below 1.33,
1.25, 1.21, 1.20 and 1.19. So for all practical purposes, relying on
more than 40 iBGP updates provides a very limited improvement
for the traffic balancing objective. The difference in the average
traffic imbalance between the "last value" predictor and the prefix-
based LpEMA is of about 0.05. This section confirms the results of
section 2.1 showing that the LpEMA predictor was not better than
the last value. Even under perfect knowledge of the future traffic
demand, the improvement provided by more than 40 iBGP updates
is of at most 0.03. Relying on many iBGP updates to try to improve

the traffic objective will not provide a significant gain.

The number of iBGP updates required for the optimization
is small compared to the level of the "BGP noise". By BGP
noise, we mean the iBGP updates that are routinely exchanged
between BGP routers. A recent study at a large ISP [1] re-
ports a BGP noise of more than one hundred iBGP updates per
minute.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 1 2 3 4 5 6

T
ra

ffi
c

im
ba

la
nc

e
(m

ax
/p

er
fe

ct
 b

al
an

ce
)

Time (days)

Perfect knowledge of traffic demand

0 BGP route change
10 BGP route changes
20 BGP route changes

Figure 9: Evolution over time of traffic imbalance under per-
fect knowledge of traffic demand.

While Figure 8 showed the average and standard deviation of the
imbalance for the three traffic predictors, a single statistic cannot
render the variation of the traffic imbalance over time. Figure 9 thus
shows the cut of the non-dominated front for the perfect knowledge
of the traffic demand, for each time interval and 0, 10 and 20 BGP
route changes. The sole purpose of Figure 9 is to illustrate the vari-
ability of the traffic imbalance over time. The points for 0 BGP
route change on Figure 9 correspond to an imbalance ratio varying
between 1.2 to 2.4. Hence without relying on outbound interdo-
main traffic engineering, our stub with its three providers would
have a maximum load on any of its providers that varies by a fac-
tor of two over time. Although our traffic trace and the would-be
providers we chosen might not be representative of a typical multi-
homed stub, it is likely that a stub that does rely on default BGP
routing experiences important fluctuations in the load of its out-
bound traffic among its Internet access links. Tweaking BGP might
thus prevent some stub ASes from having to over-provision their
access links, without having to tweak a lot of BGP routes. Relying
on 10 BGP route changes reduces this imbalance to less than 1.6
while 20 BGP route changes to less than 1.3. The time evolution
of the traffic imbalance shows a broadly periodic behavior, with a
larger imbalance during the busy hours of the day. The larger traf-
fic imbalance during the busy hours of the day requires more BGP
route changes to approach a given value of the traffic imbalance.
This phenomenon is connected to the number of BGP prefixes hav-
ing a large fraction of the traffic that also follows the time of the
day pattern [62]. Influencing a given percentage of the total traffic
during the busy hours thus requires to influence more prefixes than
during the other parts of the day, at least on the considered traces.

Under perfect knowledge of the traffic demand, a limited number
of BGP route changes could allow to better balance the traffic. In
practice, the next traffic demand has to be predicted. The most
simple way of predicting the amount of traffic seen for some pre-
fix during the next time interval is to rely on the current amount of
traffic seen. The top right graph of Figure 9 shows the evolution
of the imbalance ratio for the "last value" prediction scheme, also
for 0, 10 and 20 BGP route changes. The traffic objective value of
each solution depends both on how well the current solution will
work during the next time interval. The points for 10 and 20 BGP
route changes on the other hand exhibit values of the imbalance ra-
tio a little poorer than those under perfect knowledge of the traffic
demand, with most solutions with 10 BGP route changes below an
imbalance ratio of 1.5 and 1.4 for 20 BGP route changes. The time
evolution of the imbalance ratio on the bottom graphs of Figure 9
for the two LpEMA predictors confirm the poorer average imbal-
ance ratio shown on Figure 8. The two LpEMA predictors provide
poorer results than the "last value" predictor, consistently over time
and not only on average as shown by Figure 8.

Complex traffic predictors as LpEMA do not provide any ad-
vantage in terms of the imbalance ratio for interdomain traffic
engineering purposes. For practical purposes, relying on the
simplest predictor −the current traffic demand− to engineer
the interdomain traffic seems the best choice.

3.4 Tabu prefixes
In the previous section, we saw that relying on complex predic-
tors was useless for traffic engineering purposes. From now on, we
only rely on the "last value" predictor. Furthermore, we saw that a
limited number of iBGP updates were enough to obtain a satisfac-
tory traffic balance. An issue with the short-timescales traffic en-
gineering we did not mention yet is that some BGP route might be

tweaked back and forth during consecutive time intervals. Traffic
flows could have to switch from one provider to another. We do not
wish that interdomain traffic engineering changes the path followed
by the traffic too often. If the traffic engineering technique decides
to change the provider used to carry the traffic towards some des-
tination prefix, it would be desirable to stick to this choice for a
sufficiently long time to limit the effect on the instability of the
topological distribution of the traffic [62].

For that purpose, we added a tabu list that maintains the set of BGP
prefixes for which the traffic engineering technique modified the
route attributes during the last x time intervals. BGP prefixes can-
not be tweaked by the algorithm as long as they are present in the
tabu list, these are "tabu prefixes". The traffic for the BGP prefixes
present in the tabu list cannot be moved to another provider by the
algorithm during x time intervals, starting from the time interval
during which this BGP route change was applied. The tabu list
contains the BGP routes changed by the algorithm during the last
x time intervals, hence BGP prefixes and the associated preferred
provider. If the provider chosen as the best route by the traffic en-
gineering scheme fails, the BGP next hop of the tweaked route will
become unreachable and the traffic will be automatically switched
to another provider as during normal BGP routing.

To evaluate the practical interest of the tabu list method, two ques-
tions must be addressed:

1. How many new BGP route changes should be accepted per
time interval?

2. For how long should a BGP route change be present in the
tabu list?

Figure 10 plots the average traffic imbalance for several values of
the number of the iBGP updates per time interval (10, 20, 30 and
40), using various lifetimes of the tabu list entries. The purpose of
Figure 10 is to show that the average traffic imbalance achieved by
the tabu list method mainly depends on the total number of BGP
routes tweaked by the technique during any time interval. We in-
sist that what we call the number of BGP routes tweaked during
any time interval is different from the number of iBGP messages
sent during any time interval. This is so because iBGP messages
are sent during some time interval only for the BGP routes that will
be tweaked during the next time interval and are not yet in the tabu
list. Hence the total number of BGP routes tweaked during any
time interval is equal to the number of entries of the tabu list plus
the BGP routes tweaked corresponding to the iBGP messages sent.
On the x-axis of Figure 10, we show the the total number of iBGP
routes that have been tweaked by the traffic engineering technique
for any time interval. This total number of BGP routes that have
been tweaked is not the same as the number of iBGP updates be-
cause with the tabu list method, we have no iBGP message for the
entries of the tabu list that stay the same between two consecutive
time intervals. With the tabu list method, there are iBGP updates
only for the BGP routes whose attributes are reset to the default
value (entries of the tabu list that expire) as well as iBGP updates
for the BGP routes that are tweaked by the traffic engineering tech-
nique (entries that enter the tabu list).

Let m represent the number of time intervals that an entry of the
tabu list remains in the tabu list and let n represent the number of
new tabu list entries accepted per time interval. Each time interval,

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 20 40 60 80 100 120 140

A
ve

ra
ge

 tr
af

fic
 im

ba
la

nc
e

Total number of BGP routes tweaked per 10 minutes interval

Performance of tabu list method (UCL trace)

10 iBGP updates per time interval
20 iBGP updates per time interval
30 iBGP updates per time interval
40 iBGP updates per time interval

no tabu list method

Figure 10: Insensitivity of tabu list method to number of iBGP
messages sent.

there are 2n iBGP updates, n for the new tabu list entries (newly
tweaked routes) and n for the old tabu list entries that expire. An
entry of the tabu list expires when it has been present in the tabu
list for more than m time intervals. During each time interval, there
are n × m tabu list entries that have not yet expired, as well as n

new ones selected to enter the tabu list, hence a total of n×(m+1)
BGP routes that are tweaked.

Figure 10 shows that only the total number of BGP routes tweaked
during any time interval drives the achieved average imbalance ra-
tio. The number of BGP routes that are currently being tweaked by
the traffic engineering technique corresponds to the number of ac-
tive entries in the tabu list. On the UCL trace, there is ample choice
for the number of iBGP updates allowed as well as the number of
tabu list entries present during each time interval. By changing the
size of the tabu list, the network operator can choose the acceptable
burden in terms of iBGP messages as well as how close he wants
to get from the optimal traffic balance achievable in practice. The
two questions above are thus interrelated and only the total num-
ber of modifications with respect to the default BGP routes seems
to be relevant for what concerns the value of the traffic objective
achieved. On Figure 10, we also reproduce the results obtained
without relying on a tabu list ("last value" curve of Figure 8), for
up to 60 BGP route changes. The tabu list results are seen to match
those not relying on a tabu list, with the points for the tabu list re-
sults closely following the "no tabu list" curve. This indicates that,
if the number of iBGP messages to be sent per time interval is fixed,
the value of the traffic objective largely depends on the number of
tabu list entries.

The benefits of the method are obvious when comparisons are made
with respect to the number of iBGP updates as this technique has
been especially designed to limit the number of iBGP messages.
Figure 11 provides, for the BELNET trace, the imbalance ratio as
a function of the number of iBGP updates per time interval with
the tabu list method. The comparison made on Figure 11 is inten-
tionally unfair towards the "no tabu list" method since the tabu list
method "cheats" by not requiring to send iBGP messages for BGP
routes that stay in the tabu list during consecutive time intervals.
The continuous curve on Figure 11 labeled "no tabu list" gives the
improvement in traffic balance when the optimization method does
not take into account the BGP routes that have been tweaked by

the algorithm in the past. The continuous curve hence provides
an upper bound on the number of iBGP updates per time interval to
achieve a given traffic balance. The other three curves on Figure 11,
labeled "tabu entry lifetime = x min", correspond to the result of the
tabu list method where the entries lifetime is of x minutes (x = 10,
20, 30 and 60). The "no tabu list" method for the BELNET trace

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0 5 10 15 20 25 30

A
ve

ra
ge

 tr
af

fic
 im

ba
la

nc
e

iBGP updates per 10 minutes interval

Performance of tabu list method (BELNET)

no tabu list
tabu entry lifetime = 10 min
tabu entry lifetime = 20 min
tabu entry lifetime = 30 min
tabu entry lifetime = 60 min

Figure 11: Reduction of the number of iBGP messages with the
tabu list method.

starts (default BGP routing) with an imbalance ratio of less than
1.5 and the improvement in the imbalance ratio decreases slowly,
to stick to a traffic imbalance of about 1.06 for more than 30 iBGP
updates per time interval. The curves corresponding to the tabu
list method on the other hand start from a lower imbalance ratio
thanks to their larger number of total BGP routes tweaked during
any given time interval. With only 10 iBGP updates per time in-
terval, the tabu list method is able to achieve an imbalance ratio a
little above 1.06 for a tabu list entries lifetime of 30 and 60 minutes.

The tabu list method has the advantage of allowing to reduce
the burden on the number of iBGP updates to be sent during
each time interval, without impacting on the quality of the traf-
fic engineering. Maintaining a list of tabu BGP routes is thus
extremely interesting from a practical viewpoint since it per-
forms better in terms of the imbalance ratio and the burden on
BGP, while providing stability to the best BGP route choice.

3.5 MED tweaking
Up to now, the tweaking of the BGP routes was implemented by
means of the LOCAL-PREF attribute to ensure that the optimization
will override all other BGP tweaking. This way of tweaking the
BGP routes could make the BGP decision process choose a route
with a longer AS path in order to optimize the traffic balance, po-
tentially leading to a worse end-to-end quality of the routes. [31]
has however shown that path length and performace were not cor-
related. If the on-line optimization is required not to override other
kinds of traffic engineering (e.g. MED or IGP cost), then ideally
one would prefer that the optimization tweaks a BGP attribute that
is evaluated by the BGP decision process just before the last rule
(lowest ROUTER-ID [53]).

In the case of non-transit ASes, the optimization could rely on the
MED attribute. According to the BGP Internet draft [48], the MED
attribute cannot be compared between routes learned from differ-
ent ASes, the route with the lowest MED being best for the BGP

decision process. Allowing to always compare the MED attribute
among BGP routes is allowed on many routers, see [30] p. 166. Al-
though there is no reason a priori to compare the MED attribute of
routes learned from different neighboring ASes, stub ASes could
rely on the MED attribute or another attribute having a meaning
local to the AS to perform traffic engineering. Only limited modi-
fications to BGP would be needed.

It must be noted that in practice relying on MED to tweak the BGP
routes might lead to oscillations problems [8]. The presence of
route-reflectors, as in the scenario proposed in section 3.1, makes
relying on MED potentially dangerous. The problems caused by
MED would not arise if some BGP attribute used after the IGP cost
rule of the decision process was available. If such traffic engineer-
ing techniques as proposed in this paper become widely used by
stub ASes, adding a new rule to the decision process after the IGP
cost one to allow interdomain traffic engineering to prefer equal-
cost BGP routes could be envisioned. The question of whether one
should change the decision process in the whole Internet for a lim-
ited number of stub ASes that perform BGP-based traffic engineer-
ing is outside the scope of this paper.

The reader might ask why MED should be used at all to perform
traffic engineering. As LOCAL-PREF is already used to enforce
policies, using it for traffic engineering purposes will force ISPs
to choose one range of values of LOCAL-PREF for policy routing
and another for traffic engineering. This could lead in messing up
the two types of BGP tweakings. Furthermore, using LOCAL-PREF

for traffic engineering should not override LOCAL-PREF used to en-
force routing policies, hence using another attribute seems to us a
better solution from a configuration viewpoint.

In this section, we allow the BGP instance running on the TE-route
reflector of the local AS to set the MED attribute of the routes re-
ceived from the different neighboring ASes to prefer one route over
another. The working of the optimization technique is similar to the
one presented in section 3.4, except that the preferred route for the
optimization algorithm gets a lower MED value compared to the
other routes towards a given prefix instead of having a higher value
of the LOCAL-PREF attribute. The main difference with the algo-
rithm of section 3.4 is that only routes having the same LOCAL-
PREF value and AS path length will have their MED value com-
pared. The optimization technique has thus a more limited choice
in the prefixes that can be used to balance the traffic, compared to
the LOCAL-PREF way.

Figure 12 presents the simulation results of the tabu list method
with the MED attribute for UCL. Figure 12 shows the average im-
balance ratio as a function of the number of iBGP updates per
10 minutes interval. Figure 12 is the counterpart of Figure 11.
Figure 12 shows that the average imbalance ratio of the tabu list
method with MED is quite comparable to the one with the LOCAL-
PREF attribute, only slightly worse. The two continuous curves on
Figure 12 give the simulation results for the "no tabu list" method,
with LOCAL-PREF and MED. The dotted lines of Figure 12 on the
other hand provide the simulation results for the tabu list method by
tweaking MED. Increasing the size of the tabu list (by increasing
the entries lifetime) provides a significant reduction of the number
of iBGP updates to be announced.

Relying on the MED attribute instead of the LOCAL-PREF at-
tribute to tweak the BGP routes of stub ASes does not signif-
icantly worsens the achieved average imbalance ratio. It only

1

1.1

1.2

1.3

1.4

1.5

1.6

5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 tr
af

fic
 im

ba
la

nc
e

iBGP updates per 10 minutes interval

Performance of tabu list method with MED (UCL)

no tabu list method (MED)
no tabu list method (local-pref)

tabu entry lifetime = 10 min
tabu entry lifetime = 30 min
tabu entry lifetime = 60 min

Figure 12: Using MED to tweak the BGP routes.

limits the choice of the BGP routes that can be tweaked. Tweak-
ing the BGP routes without over-riding the policy routing per-
formed by stub ASes hence still leaves room for the tabu list
technique to work properly.

3.6 Cost-weighted traffic objective
The previous sections have provided simulations with a relatively
simple traffic objective. In this section, we provide simulation
results with the cost-weighted traffic objective introduced in sec-
tion 1.2 for the traffic of BELNET. This objective is related to
the cost of the interdomain traffic, it is thus particularly relevant
in practice. The cost-weighted traffic objective is defined as min
Pn

i=1
ci × tri where ci > 0 ∀i, denotes the cost of one unit

of traffic sent to provider i. We used the following costs: c1 =
1.5, c2 = 1.25 and c3 = 1.

We left the costs ci fixed in the following simulations but nothing in
our scheme prevents the costs from varying with time or depending
on other parameters. For instance, a larger cost can be attributed
to the traffic sent to a provider during the busy hours or the cost
could depend on the relative load of the access links. The sole con-
straint on the objective function is that the impact on the objective
function of a change in the best BGP route for some destination pre-
fix must be known for the search algorithm to be able to improve
it. However, no assumption on the look of the objective function
(convexity, piecewise linearity,...) is made by the algorithm.

Figure 13 presents the results of the interdomain traffic engineering
when using the LOCAL-PREF attribute and for the traffic of BEL-
NET. The y-axis of Figure 13 represents the average normalized
cost, i.e. the value of the traffic objective divided by the optimal
cost. The x-axis represents the number of iBGP updates to be made
per 10 minutes time interval, for up to 40 iBGP updates. The top
curve on Figure 13 provides the result of the simulation without use
of the tabu list method. The three bottom curves show the results
using the tabu list method and with tabu list entries lifetimes of 30
minutes, 1 hour and 2 hours. As shown by the slower decrease rate
of the top curve of Figure 13, the cost-weighted traffic objective is
more difficult to optimize. More iBGP updates are required to ap-
proach the optimal cost compared to the traffic balancing objective
of the previous sections. The initial value of the cost-weighted traf-
fic objective found by BGP is 1.33. Without the tabu list method,
20 iBGP updates per 10 minutes interval yield an average normal-

ized cost of 1.2, 100 iBGP advertisements an average normalized
cost of 1.1 (not shown on Figure 13), and 180 iBGP updates an
average normalized cost of 1.06 (not shown on Figure 13).

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 n
or

m
al

iz
ed

 c
os

t

iBGP updates per 10 minutes interval

Performance of tabu list method for cost-weighted traffic objective (BELNET)

no tabu list
tabu entry lifetime = 30 min
tabu entry lifetime = 1 hour

tabu entry lifetime = 2 hours

Figure 13: Cost-weighted traffic objective.

As for the traffic balancing objective, the tabu list method al-
lows in the case of the cost-weighted traffic objective to drasti-
cally reduce the number of iBGP updates required to achieve
a given gain in terms of the traffic objective. The larger the
lifetime of the tabu list entries, the smaller the number of BGP
advertisements required to reach a given average normalized
cost.

4. EVALUATION
Although we limited the scope of this paper to traffic balancing
and the cost-weighted traffic objectives, the results for other traffic
objectives will be similar qualitatively. The main difference will
be in the absolute value of the average optimization gain, that are
context dependent anyway. Both the initial traffic objective value
found by the default BGP traffic distribution as well as the partic-
ular traffic objective to be optimized drive the actual optimization
gain to be achieved in practice. [61] relied on other traffic objec-
tives and the look of the Pareto-front has in every case been found
to be similar to the one found on Figure 8. The reason for the
convexity of the traffic objective value for increasing BGP route
changes allowed merely lies in the decreasing amount of traffic sent
towards the largest BGP routes (when ordered by decreasing byte
count). Because of the implicit constraint of the algorithm to try
to minimize the number of BGP route changes, the algorithm of-
ten chooses the BGP routes for which there is the largest amount
of traffic that provide the largest gain in the traffic objective. This
is however only true for the first few BGP routes tweaked. When
approaching the optimum of the traffic objective on the other hand,
improving the traffic objective requires a non-trivial choice of the
set of BGP routes to tweak.

In this paper we mostly relied on the LOCAL-PREF attribute to
tweak the BGP routes. As explained in the previous paragraph,
this is likely to interfere with IGP-based traffic engineering tech-
niques [26]. Our solution can also work on the MED attribute of
the BGP routes, as shown in section 3.5. Working on the MED at-
tribute would allow a transit provider to tweak the BGP routes that
have the same value of the LOCAL-PREF attribute and the same AS
path length. Since the MED attribute can be reset when advertis-

ing the best route to a peer, it would only affect the choice of which
BGP route among those having the same AS path length will be ad-
vertised. If other peer ASes do not filter the BGP routes based on
the AS numbers of the AS path, then their choice of the best BGP
route should not be influenced too much by the MED tweaking.

The simulations of section 3 relied on traffic objectives that were
functions of the total traffic sent through each provider. In the case
of objective functions that depend on end-to-end properties of the
path followed by the IP packets, a BGP-based solution might not be
desirable. The possibility of specifying objectives that are functions
of the BGP routes does not imply that optimizing these objectives
should be done through BGP. For instance, "route optimization"
[4, 33] techniques seem to choose the best BGP route towards a
particular destination according to the measured "quality" of the
end-to-end path between the local AS and the destination. If the
end-to-end properties of the routes change too fast compared to the
timescale at which the BGP advertisements are made by the inter-
domain traffic engineering technique (about a few minutes) then it
probably means that BGP should not be used to perform such traffic
engineering. What we mean is that traffic engineering techniques
that require too many BGP advertisements per minute should prob-
ably be implemented by means of other means than the interdomain
routing protocol because BGP has been designed as a reachability
protocol [32], not a traffic engineering tool. Our technique could
however be useful for route optimization techniques to limit their
burden on BGP. As our technique is able to work with several ob-
jectives at the same time, our technique could be integrated in route
optimization techniques so that both performance aspects and the
impact on BGP are optimized.

The main result of this paper is to show that tracking the dynamics
of the outbound interdomain traffic of a stub AS is possible with a
limited burden on BGP. We showed in section 3.4 that with 5 BGP
route changes every 10 minutes interval, a stub AS could balance
its outbound traffic within 6 % of the perfect traffic balance on av-
erage. However, it is not clear whether working on timescales as
small as minutes is practically relevant for interdomain traffic en-
gineering purposes. The technique we proposed in this paper can
work on any timescale larger than minutes. In this paper we relied
on a very small time granularity of 10 minutes so as to demonstrate
that even on such a small timescale BGP-based traffic engineering
is possible in stub ASes at a very small cost in terms of the number
of iBGP updates required.

5. CONCLUSION
In today’s Internet, for both cost and performance reasons, Inter-
net Service Providers often need to engineer their interdomain traf-
fic. This interdomain traffic engineering is often done by manually
tweaking the configurations of the BGP routers on an error-prone
trial-and-error basis.

In this paper, we have proposed a systematic approach to solve the
important operational problem of designing an interdomain traf-
fic engineering technique to optimize the outbound traffic of stub
ASes. Our approach allows the network operator to define objec-
tive functions on the interdomain traffic. Those objective functions
are used by an optimization box placed inside the AS that controls
the traffic. For this, it relies on the BGP routes and the traffic statis-
tics received from the border routers of the AS. Based on the traffic
statistics from the last period, the optimization box uses an efficient
evolutionary algorithm to select the required iBGP changes to op-
timize the traffic during the next period. Those iBGP changes are

then distributed inside the AS.

We have then applied our solution to the design of traffic engineer-
ing techniques to optimize the outbound traffic of stub ASes over
timescales of minutes. By way of simulations with two different
objective functions, we showed that the outgoing traffic can be ef-
ficiently engineered on a 10 minutes timescale by advertising not
more than a few iBGP messages per minute per border router. This
is lower than the BGP noise in the Internet. Our Perl prototype im-
plementation can be used in real-time since it requires only a few
seconds of CPU time on a P4 2.4 GHz to select the required iBGP
changes for each 10 minutes period. All Perl scripts used in this
paper are available at http://www.info.ucl.ac.be/ suh/.

6. ACKNOWLEDGMENTS
The authors wish to thank BELNET, the Belgian research network,
and particularly Jan Torreele and Pascal Panneels, for providing the
BGP session and the traffic trace. The authors also acknowledge the
insightful comments of the anonymous reviewers. This work was
partially supported by the Walloon Government (DGTRE) within
the TOTEM project (http://totem.info.ucl.ac.be).

7. REFERENCES
[1] S. Agarwal, C. Chuah, S. Bhattacharyya, and C. Diot. The

Impact of BGP Dynamics on Intra-Domain Traffic. In Proc.
of ACM SIGMETRICS, June 2004.

[2] S. Agarwal, C. Chuah, and R. Katz. Opca: Robust
interdomain policy routing and traffic control. In IEEE
Openarch, 2003.

[3] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and
R. Sitaraman. A measurement-based analysis of
multihoming. In Proceedings of ACM SIGCOMM 2003,
August 2003.

[4] D. Allen. NPN: Multihoming and route optimization:
Finding the best way home. Network Magazine, February
2002.

[5] P. Aukia, M. Kodialam, P. Koppol, T. Lakshman, H. Sarin,
and B. Suter. RATES: A server for MPLS traffic engineering.
IEEE Network Magazine, pages 34–41, March/April 2000.

[6] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao.
Overview and Principles of Internet Traffic Engineering.
Internet Engineering Task Force, RFC3272, May 2002.

[7] D. Awduche, J. Malcom, B. Agogbua, M. O’Dell, and
J. McManus. Requirements for Traffic Engineering Over
MPLS. Internet RFC 2702, September 1999.

[8] A. Basu, C. Ong, A. Rasala, F. Shepherd, and G. Wilfong.
Route oscillations in i-BGP with route reflection. In
Proceedings of ACM SIGCOMM 2002, August 2002.

[9] O. Bonaventure, B. Quoitin, and S. Uhlig. Beyond
interdomain reachability. Position paper at the Workshop on
Internet Routing Evolution and Design (WIRED), October
2003.

[10] O. Bonaventure, P. Trimintzios, G. Pavlou, B. Quoitin (Eds.),
A. Azcorra, M. Bagnulo, P. Flegkas, A. Garcia-Martinez,
P. Georgatsos, L. Georgiadis, C. Jacquenet, L. Swinnen,
S. Tandel, and S. Uhlig. Internet Traffic Engineering.
Chapter of COST263 final report, LNCS 2856,
Springer-Verlag, September 2003.

[11] O. Bonaventure, S. Uhlig, and B. Quoitin. The case for more
versatile BGP Route Reflectors. Internet draft,
draft-bonaventure-bgp-route-reflectors-00.txt, work in
progress, July 2004.

[12] G. Box, G. Jenkins, and G. Reinsel. Time Series Analysis:
Forecasting and Control. Prentice-Hall, 1994.

[13] J. Branke. Evolutionary Optimization in Dynamic
Environments. Kluwer Academic Publishers, 2002.

[14] L. Burgstahler and M. Neubauer. New Modifications of the
Exponential Moving Average Algorithm for Bandwidth
Estimation. In Proc. of the 15th ITC Specialist Seminar, July
2002.

[15] H. Chang, R. Govindan, S. Jamin, S. Shenker, and
W. Willinger. Towards Capturing Representative AS-Level
Internet Topologies. Computer Networks Journal, Elsevier,
44(6):737–755, April 2004.

[16] B. Claise. Packet Sampling (PSAMP) Protocol
Specifications. Internet draft,
draft-ietf-psamp-protocol-01.txt, work in progress, February
2004.

[17] C. A. Coello Coello. An updated survey of GA-based
multiobjective optimization techniques. ACM Computing
Surveys, 32(2):109–143, 2000.

[18] INTERNAP NETWORK SERVICES CORP. Internap Flow
Control Platform. http://www.internap.com/.

[19] K. Deb. Multi-objective Optimization using Evolutionary
Algorithms. Wiley Interscience series in systems and
optimization, 2001.

[20] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for
Multi-Objective Optimization: NSGA-II. In Proc. of the
Parallel Problem Solving from Nature VI Conference, pages
849–858, Paris, France, 2000. Springer-Verlag (LNCS 1917).

[21] L. Deri. nProbe: an Open Source NetFlow probe for Gigabit
Networks. In Proc. of Terena TNC 2003, May 2003.

[22] N. Duffield, P. Goyal, A. Greenberg, P. Mishra,
K. Ramakrishnan, and J. van der Merwe. Resource
management with hoses: point-to-cloud services for virtual
private networks. IEEE/ACM Transactions on Networking,
10(5):679–692, 2002.

[23] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and
K. van der Merwe. The case for separating routing from
routers. In Proc. SIGCOMM Workshop on Future Directions
in Network Architecture (FDNA), August 2004.

[24] N. Feamster, J. Borkenhagen, and J. Rexford. Guidelines for
interdomain traffic engineering. ACM SIGCOMM Comput.
Commun. Rev., 33(5):19–30, 2003.

[25] N. Feamster, J. Winick, and J. Rexford. A model of BGP
routing for network engineering. In Proc. of ACM
SIGMETRICS, June 2004.

[26] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering
with traditional IP routing protocols. IEEE Communications
Magazine, October 2002.

[27] B. Fortz and M. Thorup. Internet traffic engineering by
optimizing OSPF weights. In INFOCOM2000, March 2000.

[28] D. Goldenberg, L. Qiu, H. Xie, Y. Yang, and Y. Zhang.
Optimizing cost and performance for multihoming. In
Proceedings of ACM SIGCOMM 2004, August 2004.

[29] T. Griffin and G. Wilfong. An analysis of BGP convergence
properties. In Proc. of ACM SIGCOMM’99, September 1999.

[30] B. Halabi. Internet Routing Architectures (2nd edition). Cisco
Press, 2000.

[31] B. Huffaker, M. Fomenkov, D. Plummer, D. Moore, and
K. Claffy. Distance Metrics in the Internet. In Proc. of IEEE
International Telecommunications Symposium (ITS),
September 2002.

[32] J. Johnson. BGP is a reachability protocol. NANOG25
meeting, Toronto, Canada. June 2002. Available at
http://www.nanog.org/mtg-0206/ppt/jerm2/
index.html.

[33] J. Johnson. Intelligent route control improves BGP. Network
World, February 2002.

[34] A. Kumar, R. Rastogi, A. Silberschatz, and B. Yener.
Algorithms for provisioning virtual private networks in the
hose model. IEEE/ACM Transactions on Networking,
10(4):565–578, 2002.

[35] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. An
experimental study of Internet routing convergence. In
SIGCOMM 2000, August 2000.

[36] S. Leinen. Evaluation of candidate protocols for IP flow
information export (IPFIX). Internet draft,
draft-leinen-ipfix-eval-contrib-02, work in progress, January
2004.

[37] R. Mahajan, D. Wetherall, and T. Anderson. Understanding
BGP Misconfigurations. In Proc. ACM SIGCOMM ’02,
September 2002.

[38] D. Meyer. University of Oregon Route Views Project.
Available at
http://antc.uoregon.edu/route-views/.

[39] P. Morrissey. Mapping out the best route. Network
Computing, http://www.nwc.com/showArticle.
jhtml?articleID=16401572, December 2003.

[40] F5 NETWORKS. Big-IP Link Controller.
http://www.f5.com.

[41] Juniper Networks. Junos software release 5.6 : New features
list. http://www.juniper.net/products/ip_
infrastructure/junos/105012.html.

[42] K. Park and W. Willinger (editors). Self-Similar Network
Traffic and Performance Evaluation. Wiley-Interscience,
2000.

[43] R. Purshouse and P. Fleming. Conflict, Harmony, and
Independence: Relationships in Multi-criterion Optimisation.
In Proc. of the Second International Conference on
Multi-Criterion Optimization (EMO2003), Portugal, pages
16–30, April 2003.

[44] Y. Qiao, J. Skicewicz, and P. Dinda. Multiscale predictability
of network traffic. Technical Report NWU-CS-02-13,
Nothwestern University, October 2002.

[45] B. Quoitin. C-BGP, an efficient BGP simulator.
http://cbgp.info.ucl.ac.be/, September 2003.

[46] B. Quoitin, S. Uhlig, C. Pelsser, L. Swinnen, and
O. Bonaventure. Interdomain traffic engineering with BGP.
IEEE Communications Magazine, May 2003.

[47] RADWARE. Linkproof. http://www.radware.com/.

[48] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol
4 (BGP-4). Internet draft, draft-ietf-idr-bgp4-24.txt, work in
progress, November 2003.

[49] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang. BGP Routing
Stability of Popular Destinations. In Proc. of the second
ACM SIGCOMM Internet Measurement Workshop,
November 2002.

[50] A. Sang and S. Li. A Predictability Analysis of Network
Traffic. In Proc. of IEEE INFOCOM 2000, 2000.

[51] S. Sangli, D. Tappan, and Y. Rekhter. BGP Extended
Communities Attribute. Internet draft,
draft-ietf-idr-bgp-ext-communities-06.txt, work in progress,
August 2003.

[52] P. Smith. Weekly routing table report. Weekly reports from
APNIC’s router in Japan sent to
bgp-stats@lists.apnic.net.

[53] J. Stewart. BGP4 : interdomain routing in the Internet.
Addison Wesley, 1999.

[54] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz.
Characterizing the Internet hierarchy from multiple vantage
points. In INFOCOM 2002, June 2002.

[55] Cisco Systems. BGP Case Studies Section 1. http:
//www.cisco.com/warp/public/459/13.html.

[56] Cisco Systems. Sample Configurations for Load Sharing
with BGP in Single and Multihomed Environments. http:
//www.cisco.com/warp/public/459/40.html.

[57] Cisco Systems. NetFlow services and applications. White
papern, http:
//www.cisco.com/warp/public/732/netflow,
1999.

[58] ROUTESCIENCE TECHNOLOGIES. PathControl.
http://www.routescience.com/.

[59] S. Uhlig. Implications of the traffic characteristics on
interdomain traffic engineering. PhD Thesis, Computer
Science and Engineering Department, Université catholique
de Louvain, March 2004.

[60] S. Uhlig. A multiple-objectives evolutionary perspective to
interdomain traffic engineering in the internet. In Workshop
on Nature Inspired Approaches to Networks and
Telecommunications (NIANT) in PPSN04, Birmingham, UK,
September 2004.

[61] S. Uhlig, O. Bonaventure, and B. Quoitin. Interdomain
Traffic Engineering with minimal BGP Configurations. In
Proc. of ITC-18, September 2003.

[62] S. Uhlig, V. Magnin, O. Bonaventure, C. Rapier, and L. Deri.
Implications of the Topological Properties of Internet Traffic
on Traffic Engineering. In Proc. of the 19th ACM Symposium
on Applied Computing, March 2004.

[63] S. Uhlig and B. Quoitin. BGP-based interdomain traffic
engineering for transit ASes. Under submission,
http://cbgp.info.ucl.ac.be/apps.html#
section_transit_te.

[64] D. Walton, D. Cook, A. Retana, and J. Scudder.
Advertisement of multiple paths in BGP. Internet draft,
draft-walton-bgp-add-paths-01.txt, work in progress,
November 2002.

[65] Y. Wang, Z. Wang, and L. Zhang. Internet traffic engineering
without full mesh overlaying. In INFOCOM2001, April
2001.

[66] X. Xiao, A. Hannan, B. Bailey, and L. Ni. Traffic
engineering with MPLS in the Internet. IEEE Network
Magazine, March 2000.

[67] T. Ye and S. Kalyanaraman. A recursive random search
algorithm for large-scale network parameter configuration. In
Proc. of ACM SIGMETRICS’03, 2003.

