
Testing Planning Domains (without Model
Checkers)

Franco Raimondi1 and Charles Pecheur2 and Guillaume Brat3

1 Department of Computer Science, University College London, London, UK
2 Dept. INGI, Université catholique de Louvain, Louvain-la-neuve, Belgium

3 RIACS/NASA Ames Research Center, Moffett Field, CA, USA

Abstract. We address the problem of verifying planning domains as
used in model-based planning, for example in space missions. We propose
a methodology for testing flight rules of planning domains which is self-
contained, in the sense that flight rules are verified using a planner and no
external tools are required. We review and analyse coverage conditions
for requirements-based testing, and we reason in detail on ”Unique First
Cause” (UFC) coverage for test suites. We characterise flight rules using
patterns, encoded using LTL, and we provide UFC coverage for them.
We then present a translation of LTL formulae into planning goals, and
illustrate our approach on a case study.

1 Introduction

The NASA rovers Spirit and Opportunity [1, 2], exploring the surface of Mars
since January 2004, are an example of complex systems, featuring significant
autonomous capabilities, that can be built using current software and hard-
ware technologies. Due to the complexity of such systems and in order to avoid
economic losses and mission failures, there is a growing interest in tools and
methodologies to perform formal verification for this kind of autonomous appli-
cations. In this paper we are concerned with the problem of verifying planning
domains. In the case of the Mars rovers, plans are generated using the Europa 2
planner [3] to satisfy some scientific and positioning goals. Then, the plans are
manually checked (against a set of requirements called flight rules) before being
uploaded to the rover. The generation and verification have to be done before
the next Mars daytime cycle. The methodology we propose to verify planning
domains would speed up the verification phase and help ensure that flight rules
are not violated.

Verification of planning domains has been investigated in the past, for in-
stance in [4, 5]. The solutions proposed by these authors consist in the transla-
tion of the planning domain into the input language of some model checker. The
main limitation of these approaches is the limited size of the domains that can be
translated and the problematic correspondence between languages for planners
and languages for model checkers. In this paper we suggest a different approach:
we propose to translate the problem of verification of planning domains into a
planning problem. Such an approach has the advantage that no external tools

are required, because the actual planner can be used to perform verification.
Specifically, we suggest to proceed as summarised in Figure 1: given as input a
planning domain and a set of flight rules (this is normally provided as a text
document), in step 1 we encode flight rules as LTL specifications. In the second
step we derive test cases from the specifications; we employ a revised notion of
requirements-based testing, using an approach similar to [6–8]. In the third step
we convert the test cases generated into planning goals. The actual tests are
performed by “enriching” the original planning model with the new set of goals,
using the planner for which the domain was designed.

1 : Encode as LTL formulae

2: Generate test cases 3: Convert into planning goals

Flight Rules Planning domain

Planning domain +
new goals the planner

Test using

Fig. 1. From flight rules to planning goals (overview).

The rest of the paper is organised as follows. In Section 2 we review the notion
of coverage for requirements-based testing. We present the planning problem in
Section 3. A motivational example is introduced in Section 4. We show how
flight rules can be encoded as temporal formulae in Section 5, and how these
can be translated into planning goals in Section 6, using the example provided.
We conclude in Section 7.

2 Testing and requirements-based testing

Various metrics exist to quantify the coverage of test suites [9], particularly for
structural testing. Coverage metrics for functional testing can be defined as well
when functional requirements are provided formally, for instance using temporal
formulae. Previous work in this direction include [8, 7, 6]. In this section we
briefly review MC/DC (structural) coverage, and then we reason on a metric for
functional testing by extending some concepts from [6].

2.1 MC/DC Coverage

In the scope of this paper, we use a metric inspired by the popular Modified
Condition/Decision Coverage (MC/DC) [10]. In particular, MC/DC coverage is
required for the most critical categories of avionic software [11] and its extensions
can be employed in specification-based testing (see below). MC/DC coverage is
defined in terms of the Boolean decisions in the program, such as test expressions
in if and while statements, and the elementary conditions (i.e. Boolean terms)
that compose them. A test suite is said to achieve MC/DC if its execution ensures
that: (1) Every basic condition in any decision has taken on all possible outcomes

at least once. (2) Each basic condition has been shown to independently affect
the decision’s outcome.

As an example, the program fragment if (a || b) { ... } contains the
decision c ≡ (a∨ b) with conditions a and b. MC/DC is achieved if this decision
is exercised with the following three valuations:4

(1) a = ⊤, b = ⊥, c = ⊤; (2) a = ⊥, b = ⊤, c = ⊤; (3) a = ⊥, b = ⊥, c = ⊥;
Indeed, evaluations 1 and 3 only differ in a, showing cases where a independently
affects the outcome of c, respectively in a positive and negative way. The same
argument applies to evaluations 2 and 3 for b.

The MC/DC requirements for each condition can be captured by a pair of
Boolean formulae, called trap formulae, capturing those valuations in which the
condition is shown to positively and negatively affect the decision in which it
occurs (also called the positive and the negative test cases). Coverage is achieved
by building test cases that exercise the condition in states which satisfy each trap
formula. In the example above, the trap formulae for condition a in c are a∧¬b

and ¬a ∧ ¬b.

2.2 UFC Coverage

As mentioned above, if functional specifications are expressed in a formal frame-
work, then functional testing can be measured in terms of coverage criteria simi-
lar to structural testing, but applied to the specifications rather than the imple-
mentation. This is the idea behind requirements-based testing, as investigated in
[6] and in [7]. In particular, [6] defines the notion of Unique First Cause coverage
(UFC), which extends ideas from MC/DC to requirements-based testing.

UFC coverage is defined with respect to functional properties that executions
of a system must satisfy, and to the atomic conditions occurring in these prop-
erties. As illustrated in Section 5, these properties are often expressed by means
of temporal formulae, for instance using the logic LTL (we refer to [12] for more
details). A test suite achieves UFC coverage of a set of requirements expressed
as temporal formulae, if: (1) Every basic condition in any formula has taken on
all possible outcomes at least once. (2) Each basic condition has been shown to
affect the formula’s outcome as the unique first cause.

Following [6], a condition a is the unique first cause (UFC) for ϕ along a
path π if, in the first state along π in which ϕ is satisfied, it is satisfied because
of a. This can be formalised as follows. Let π be a a path and X a set of
atomic conditions; we denote by π(X) the sequence of truth values of the atomic
conditions in X along π (also called the projection of π over X).

Definition 1 (a-variant). Let AC(ϕ) be the set of occurrences of atomic con-
ditions in a linear temporal formula ϕ.5 Given a ∈ AC(ϕ) and a path π, an
a-variant of π w.r.t. ϕ is a path π′ such that π(AC(ϕ)−{a}) = π′(AC(ϕ)−{a}).

4 We use ⊤ and ⊥ to denote Boolean true and false.
5 Note that different occurrences of the same condition a are considered distinct. This

poses technical difficulties with multiple occurrences. This is a known issue in the
MC/DC context too.

Definition 2 (UFC coverage). Given a linear temporal formula ϕ, a con-
dition a ∈ AC(ϕ) is the unique first cause (UFC) for ϕ along a path π, or
equivalently, π is an adequate (UFC positive) test case for a in ϕ, if π |= ϕ and
there is an a-variant π′ of π such that π′ 6|= ϕ.

When ϕ is a LTL formula, one can build a trap formula ufc(a, ϕ), which is
a temporal formula characterising adequate test cases for a in ϕ, i.e. paths on
which a is UFC for ϕ.6 ufc(a, ϕ) is defined by induction on ϕ. For example, given
a ∈ AC(ϕa):

ufc(a, a) = a; ufc(a,¬a) = ¬a

ufc(a, ϕa ∨ ϕb) = ufc(a, ϕa) ∧ ¬ϕb

ufc(a, F ϕa) = (¬ϕa) U ufc(a, ϕa)

ufc(a, G ϕa) = ϕa U (ufc(a, ϕa) ∧ G ϕa)

A complete definition is found in [6], and as a refined version later in this sec-
tion. This characterisation of test cases for LTL only applies to complete, infinite
paths. Realistic testing practices, however, are inherently limited to finite, trun-
cated paths. In this context, the test case coverage criteria need to be refined
further. Consider, for instance, the formula ϕ = G (a∨ b) expressing the require-
ment that either a or b must hold at any time. According to the definition above,
an adequate test case for a in ϕ must satisfy

ufc(a, ϕ) = (a ∨ b) U ((a ∧ ¬b) ∧ G (a ∨ b))

A concrete, finite test case πf may reach a point where a∧¬b, showing evidence
that a may contribute to making ϕ true. However, there is no guarantee that
this πf is indeed a prefix of a π that satisfies ϕ, that is, that a ∨ b can hold
indefinitely beyond the end of πf . Such a finite prefix is defined as a weak test
case for a in G (a ∨ b).

A comprehensive treatment of temporal logic on truncated paths is found
in [13], where strong and weak variants of semantic relations on finite prefixes
are defined (πf |=+ ϕ and πf |=− ϕ, respectively), where πf |=− ϕ iff πf 6|=+

¬ϕ. Intuitively, πf |=+ ϕ iff πf “carries all necessary evidence for” ϕ, whereas
πf |=− ϕ iff it “carries no evidence against” ϕ. In particular, if πf |=+ ϕ, then
for any (non-truncated) π extending πf we have π |= ϕ. Furthermore, [6] defines
strengthening and weakening transformations [ϕ]+ and [ϕ]− such that πf |=± ϕ

iff πf |= [ϕ]±.7 In essence, [ϕ]+ converts weak untils to strong untils, and vice-
versa for [ϕ]−; in particular, [G ϕ]+ = ⊥ and [F ϕ]− = ⊤.

On this basis, [6] adapts the notion of UFC coverage by requiring that a
(finite) test πf case for a in ϕ satisfies ϕ according to the standard semantics up

6 [6] uses a different notation ϕ+ for the set of (positive) trap formulae for conditions
in ϕ, that is, ϕ+ = {ufc(a, ϕ) | a occurs in ϕ}. The notation ϕ− = (¬ϕ)+ is also
defined. We do not use these notations here to avoid confusion with strong/weak
semantic variants |=+ and |=− (see below).

7 Denoted strong[ϕ] and weak[ϕ] in [6], using LTL semantics extended to finite traces
as in [13].

to the point where the effect of a is shown, and according to the weak semantics
thereafter. For example, the trap formula for ϕ = G (a ⇒ F b) becomes

ufc(a, ϕ) = (a ⇒ F b) U ((¬a ∧ ¬F b) ∧ [G (a ⇒ F b)]−)

= (a ⇒ F b) U (¬a ∧ ¬F b)

since [G (a ⇒ F b)]− reduces to ⊤. This also illustrates a lack of uniformity in
the approach: the weakening cancels some of the obligations on F b, but not
all, although the truncation may equally prevent all of them of being reached.
Instead, in this paper we keep both weak and strong interpretations and apply
them uniformly, obtaining two refined variants of UFC coverage.

Definition 3 (Strong/weak UFC coverage). Given a linear temporal for-
mula ϕ, a condition a ∈ AC(ϕ) is the strong (resp. weak) unique first cause for
ϕ along a finite path πf , or equivalently, πf is an adequate strong (resp. weak)
test case for a in ϕ, if πf |=+ ϕ (resp. |=−) and there is an a-variant π′

f of πf

such that π′

f 6|=+ ϕ (resp. |=−).

As an example, the prefix in Figure 2 is, at the same time, a strong test case for
a in F (a∧¬b) and a weak test case for a in G (a∨ b). Observe that, consistently
the discussion above, no finite prefix can strongly test a formula such as G a,
whose negation contains eventualities. We then refine ufc(a, ϕ) into strong and

a,b b a,b a

Fig. 2. Strong test case for a in F (a ∧ ¬b) and weak test case for a in G (a ∨ b).

weak variants ufc+ and ufc−, such that πf |= ufc±(a, ϕ) iff πf is a strong/weak
test case for a in ϕ. These are jointly defined as follows, given a ∈ AC(ϕa) and
b ∈ AC(ϕb):

8

ufc±(a, a) = a ; ufc±(a,¬a) = ¬a

ufc±(a, ϕa ∧ ϕb) = ufc±(a, ϕa) ∧ [ϕb]
±

ufc±(a, ϕa ∨ ϕb) = ufc±(a, ϕa) ∧ [¬ϕb]
±

ufc±(a, X ϕa) = X ufc±(a, ϕa)

ufc±(a, F ϕa) = [¬ϕa]± U ufc±(a, ϕa)

ufc±(a, G ϕa) = [ϕa]± U (ufc±(a, ϕa) ∧ [G ϕa]±)

ufc±(a, ϕa U ϕb) = [ϕa ∧ ¬ϕb]
±

U (ufc±(a, ϕa) ∧ [¬ϕb]
± ∧ [ϕa U ϕb]

±)

ufc±(b, ϕa U ϕb) = [ϕa ∧ ¬ϕb]
±

U ufc±(b, ϕb)

ufc±(a, ϕa W ϕb) = [ϕa ∧ ¬ϕb]
±

U (ufc±(a, ϕa) ∧ [¬ϕb]
± ∧ [ϕa W ϕb]

±)

ufc±(b, ϕa W ϕb) = [ϕa ∧ ¬ϕb]
±

U ufc±(b, ϕb)

8 This definition covers all cases, by pushing negations down to atoms and by sym-
metry of Boolean operators. Cases for F and G could be derived from U and W.

Specifically, sub-terms in G and W are strengthened to ⊥ and U in the +-cases;
in particular, ufc+(a, Gϕ) boils down to ⊥ for any ϕ (not a tautology), reflecting
the fact that no adequate strong (finite) test case exists for Gϕ. Given an atomic
condition a appearing in a formula ϕ and an execution model M , if there is a
strong test case πf |= ufc+(a, ϕ) in the traces of M , then πf shows that a can
necessarily positively affect ϕ, in the sense that any extension π of πf indeed
satisfies ϕ. On the other hand, if πf |= ufc−(a, ϕ), then πf only shows that a

can possibly positively affect ϕ, in the sense that there is no guarantee that this
prefix can be completed to a full path of M that satisfies ϕ. It is also possible
that there is no πf in M for which πf |= ufc±(a, ϕ): if ϕ is a positive (desired)
property, then this means that a is a vacuous condition in ϕ w.r.t. M [7]; if ϕ is
a negative (forbidden) property, then it confirms that this particular case of ϕ

cannot happen, which is the desired result. A test fails if it is possible to find a
path πf in M such that πf |= ufc±(a, ϕ), where ϕ is a negative property.

3 Planning

[...] planning can be considered a process of generating descriptions of
how to operate some system to accomplish something. The resulting de-
scriptions are called plans, and the desired accomplishments are called
goals. In order to generate plans for a given system a model of how the
system works must be given.”[3]

Traditionally, in the description of a system there is a distinction between
states and actions (see, for instance, the STRIPS planner and its associated
language [14]). In this paper, however, we take a different approach and we
consider the Europa 2 planner [3]; Europa 2 produces finite horizon, deterministic
plans. The key concept of Europa 2 is the one of tokens, i.e., a temporally
scoped (true) fact. For instance, a printer being ready between the time t = 2
and t = 5 is represented using a token ready (see the first token in Figure 3).
Tokens may represent states of a single object in the system, and are sometimes

. . .READY BUSY OUT−OF−TONER

[3−5] [3−5] {21} {21}{2} [30−34]

READY

[30−34]

Fig. 3. A sequence of tokens in a timeline.

mutually exclusive. A timeline is a structure where sequences of tokens appear
contiguously. For instance, the state of a printer can be described by a sequence
of tokens, as in Figure 3 (therefore, state is a timeline). In this example, the
syntax {2} denotes the time instant t = 2, while [3 − 5] denotes a value of t

between 3 and 5.
Europa 2 allows for the expression of various relations between tokens, based

on Allen’s interval logic [15]. Allen’s interval logic includes 13 possible relations
between a pair of tokens: meets/met by, before/after, equals, starts/ends,

contains/contained by, contains start/starts during, contains end/ends during.

A planning problem is formulated in Europa 2 as a set of tokens (possibly belong-
ing in a timeline), a set of rules expressed using the relations presented above,
and a set of goals : these elements define a so-called partial plan, which is refined
by Europa 2 into a complete plan, i.e., a plan where all tokens are active and
no unbound variables exist. We refer to [3] and references therein for further de-
tails about the theoretical foundations of Europa 2. The input files of Europa 2
are expressed using the New Domain Description Language (NDDL, pronounced
“noodle”). NDDL is a (restricted) object-oriented, Java-like language; a simple
example of a NDDL file (without goals) is given in Figure 4.

class SimplePrinter extends Timeline {

predicate ready{} /* Predicates with no arguments and no body:

these are tokens */

predicate busy{}

}

/* Simple rules to force a repeated cycle */

SimplePrintert::ready{

eq(duration, 10);

meets (object.busy);

met_by(object.busy);

}

Fig. 4. A very simple NDDL file.

4 A concrete example: the Rover scenario

This section presents a concrete case study which will be used in the remainder of
the paper to exemplify our methodology: an autonomous rover. A rover contains
three main components: a navigator to manage the location and the movement
of the rover; an instrument to perform scientific analysis; a commander, receiving
instructions from scientists and directing the rover’s operations. Each of these
components is mapped into a class (respectively: Navigator, Instrument, and
Commands); each of these classes is a timeline. Additionally, the domain contains
two classes Location and Path to represent physical locations and paths between
locations. Each of the timelines contain the following tokens:

– Navigator: At, Going (the rover is either at a location, or going between
locations).

– Instrument: stow, unstow, stowed, place, takesample (the instrument
can be stowed, can be in in the state of being stowed or unstowed, can be
placed on a target, or it can take a sample).

– Commands: takesample, phonehome, phonelander (the rover can be instructed
to take a sample, and it can communicate either with a lander, or directly
with the Earth).

An extract of the NDDL code for this example is presented in Figure 5, where
the NDDL code corresponding to a part of the declaration of the Navigator

timeline is shown (notice the similarities with the syntax of Java). See the com-
ments appearing in Figure 5 for more details. The class Timeline (not shown

class Location {

string name; int x; int y;

Location(string _name, int _x, int _y){

name = _name; x = _x; y = _y;

}

}

[...]

// Navigator is a Timeline

class Navigator extends Timeline {

predicate At{

Location location;

}

predicate Going{

Location from; Location to;

neq(from, to);

// This is a rule: it prevents rover from going from a location

// straight back to that location.

}

}

// This is a rule for the token At

Navigator::At{

met_by(object.Going from);// Allen’s relation: each At is met_by

// a Going token

eq(from.to, location); // next Going token starts at this location

meets(object.Going to); // Allen’s relation: each At meets

// a Going token

eq(to.from, location); // prevous Going token ends at this location

}

[...]

// A possible goal

goal(Commands.TakeSample sample); sample.start.specify(50);

sample.rock.specify(rock4);

Fig. 5. Excerpt from the NDDL file for the rover example.

in the example) is a super-class containing two variables start and end (notice
that in NDDL all variables and methods are public). A possible goal for this
scenario is presented at the end of the code in Figure 5: the goal is to begin a
sample of rock4 at time 50.

When a NDDL file encoding the scenario and the goals is passed to Europa
2, the planner generates a plan, similarly to the one presented in Figure 6

Fig. 6. Generated plan.

5 Flight rules

Flight Rules are requirements that must be satisfied in every execution. Typi-
cally, flight rules are a plain text document which accompanies the description
of scenarios. For instance, a flight rule for the example presented in Section 4
is “all Instruments must be stowed when moving”. The majority of flight rules
falls into one of the temporal patterns defined in [16] and thus can be encoded
by means of an LTL formula. For instance, the flight rule above can be encoded
as ϕ = G(p → q) = G(¬p ∨ q), where p = moving and q = stowed.

5.1 Coverage sets for flight rules

As flight rules can be encoded as LTL formulae, the methodology presented in
Section 2 can be applied to generate a set of test cases for flight rules with cov-
erage guarantees. As an example, we consider the flight rule presented above,
namely ϕ = G(¬p ∨ q) (where p = moving and q = stowed). Being a safety
formula, we can only have weak evidences for the positive test cases (see Sec-
tion 2.2) because the planner can only generate finite executions. More in detail,
we have the following three test cases:

1. ufc−(q, ϕ) = ((¬p ∧ q)U(¬p ∧ ¬q));
2. ufc−(p, ϕ) = ((¬p ∧ q)U(p ∧ q ∧ ϕ));

3. ufc+/−(p, ϕ) = ufc+/−(q, ϕ) = ((¬p ∨ q)U(p ∧ ¬q)).

The first positive test case tests the true value of the whole formula caused
by the proposition q (i.e., stowed); the second test case tests the proposition p.
There is only one test case for false value of the formula and it is contributed by
both propositions; notice that this test case is the same for weak and for strong
evidence.

A similar exercise could be repeated for all the flight rules appearing in the
specification for any given scenarios. Using the methodology presented above to
compute test cases with UFC coverage guarantees would be an improvement per
se with respect to the current testing methodologies (currently, test cases for
Europa 2 are generated manually and without coverage guarantees). But our
approach can be refined further, to the benefit of plan developers: in the next
section we present how the execution of tests can be automated by translating
temporal formulae into planning goals.

6 From temporal formulae to planning goals

The key idea of this section is to translate LTL formulae encoding test cases into
planning goals. This is achieved by building a parse tree of the formula and by
associating a timeline to each node of the parse tree.

We present the details of this methodology using the first positive test case for
the scenario presented in Section 4, namely, for the formula (¬p∧ q)U(¬p∧¬q),
where p = moving and q = stowed

We start with proposition p, which is true whenever the rover is moving.
We define a new timeline prop-p containing the two tokens TRUE and FALSE:
token TRUE of prop-p is the case when the token Going of Navigator holds,
and token FALSE of the timeline prop-p holds when TRUE does not hold. These
requirements are translated into the NDDL code represented in Figure 7 (top
part). The negation of proposition p is defined as a new timeline prop-not-p

composed by the two tokens TRUE and FALSE and by the rules presented in
Figure 7 (bottom part).

Proposition q (representing the fact that instruments are stowed) and its
negation are defined in a similar way as new timelines. The conjunction of two
propositions is encoded as a new timeline with four tokens representing the

// The new timeline with two tokens:

class prop-p extends Timeline {

predicate TRUE { };

predicate FLASE { };

}

// The rule for TRUE:

prop-p::TRUE {

Navigator nav;

equals(nav.Going);

met_by(object.FALSE f1);

meets(object.FALSE f2);

}

// Additional rule for Navigator::Going

Navigator::Going {

prop-p p;

equals(p.TRUE);

}

class prop-not-p {

predicate TRUE { };

predicate FLASE { };

}

prop-not-p::TRUE {

meets(object.FALSE f1);

met_by(object.FALSE f2);

prop-p p;

equals(p.FALSE);

}

Fig. 7. NDDL code for proposition p and ¬p (moving).

possible truth values of the two conjuncts. The scope of each token is defined
using the two Allen’s relations contains and contained_by. The truth value
of the whole conjunction is obtained using a third timeline with two tokens
only (TRUE and FALSE). The NDDL code corresponding to the conjunction of
two propositions is available from the authors upon request. We are now in a
position to test the formula ϕ = (¬p∧q)U(¬p∧¬q). For simplicity, let ϕ = AUB,
where A and B are encoded using the timelines prop-A and prop-B respectively.
The LTL proposition ϕ holds in the model iff the following goal can be satisfied:

goal(prop-A.TRUE); goal(prop-B.TRUE); eq(prop-A.start,0);

contains_end(prop-B.TRUE,prop-A.TRUE);

Intuitively, the goal above states that proposition A has to be true at the beginning
of the run (eq(prop-A.start,0)) and that B becomes true before the end of TRUE of
A (contains_end(prop-B.TRUE,prop-A.TRUE)). The additional NDDL code presented
above is added to the original NDDL code for the scenario (notice that, in doing so,
the instrumentation process cannot introduce bugs in the original model). The new
“enriched” NDDL code is passed to Europa 2 for plan generation. If a plan can be
obtained with the additional constraints for the positive test case, the test is passed
successfully. Figure 8 depicts Europa 2 output for the first test case. Notice the ad-
ditional timelines for the propositions Boolean propositions (compare with Figure 6).
This plan illustrates an execution where the atomic condition q (stowed) is the unique
first cause. This exercise can be repeated for the second positive test case, which is
passed, and for the negative test case. As expected, no plan can be generated for the
negative test case.

6.1 Discussion

While the scenario presented above is not as rich as real production and mission en-
vironments, it is nevertheless more complex than the biggest examples that could be

Fig. 8. Generated plan with additional timelines.

analysed using translations into model checkers [5, 4]. We have run our tests on a stan-
dard machine and the introduction of the new timelines did not affect the performance
of the planner for positive test cases. This result was expected, as a domain with ad-
ditional constraints should be “easier” to solve than a less constrained domain: the
introduction of the new timelines seems to balance this benefit. Negative test cases,
however, require more computational power because of the backtracking involved in
over-constrained domains. The planner eventually fails on negative test cases in around
10 minutes for the rover example, while it is able to produce a result in less than 30
seconds for positive test cases. Even though our aim in this paper is mainly to pro-
vide feasible coverage guarantees for test suites of planning domains and we are not
concerned with performance issues, nevertheless we consider our preliminary results
encouraging.

7 Conclusion

Traditionally, the problem of verifying planning domains has been approached by trans-
lating the planning domain into an appropriate formalism for a model checker, where
verification can be performed either in a direct way, or by generating test cases, with
the exception of [17] where a planning techniques are suggested for the generation of
tests. This latter work differs from ours in that different coverage conditions are consid-
ered, and tests are not generated from flight rules (i.e., temporal specifications). Some
issues remain to be investigated. For instance, we do not have a methodology to deal
with the translation of nested temporal operators into planning goals (but we did not
find nested temporal operators in the flight rules analysed). We are currently working
on this issue and on a software tool to automate the methodology: we are implementing
a parser from temporal patterns encoding flight rules to LTL trap formulae using the
definitions in Section 2.2, and finally to NDDL code.

References

1. S. W. Squyres et al.: The Opportunity Rover’s Athena Science Investigation at
Meridiani Planum, Mars. Science (2004) 1698–1703

2. S. W. Squyres et al.: The Spirit Rover’s Athena Science Investigation at Gusev
Crater, Mars. Science (2004) 1698–1703

3. McGann, C.: How to solve it (Europa 2 User Guide). NASA Ames report (2006)
4. Khatib, L., Muscettola, N., Havelund, K.: Verification of plan models using UP-

PAAL. Lecture Notes in Computer Science 1871 (2001)
5. Penix, J., Pecheur, C., Havelund, K.: Using Model Checking to Validate AI Planner

Domains. In: Proceedings of the 23rd Annual Software Engineering Workshop,
NASA Goddard (1998)

6. Whalen, M.W., Rajan, A., Heimdahl, M., Miller, S.P.: Coverage metrics for
requirements-based testing. In: Proceedings of ISSTA’06, New York, NY, USA,
ACM Press (2006) 25–36

7. Tan, L., Sokolsky, O., Lee, I.: Specification-based testing with linear temporal
logic. In: Proceedings of IRI04, IEEE Society (2004)

8. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based theory of test
coverage and generation. In: Proceedings of TACAS ’02, London, UK, Springer-
Verlag (2002) 327–341

9. Beizer, B.: Software testing techniques (2nd ed.). Van Nostrand Reinhold Co.,
New York, NY, USA (1990)

10. Hayhurst, K.J., Veerhusen, D.S., Chilenski, J., Riersn, L.K.: A practical tutorial on
modified condition/decision coverage. Technical Report TM-2001-210876, NASA
Langley Research Center (2001)

11. RTCA: Software Considerations in Airborne Systems and Equipment Certification.
(1992)

12. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge, Massachusetts (1999)

13. Eisner, C., et al.: Reasoning with temporal logic on truncated paths. In: Proceed-
ings of CAV ’03. Volume 2725 of LNCS., Springer (2003)

14. Fikes, R., Nilsson, N.J.: Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3/4) (1971) 189–208

15. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11) (1983) 832–843

16. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In Ardis, M., ed.: Proceedings of FMSP’98, New York,
ACM Press (1998) 7–15

17. Howe, A.E., Mayrhauser, A. von, Mraz, R.T.: Test Case Generation as an AI
Planning Problem. In Journal of Automated Software Engineering, 4:1, 1997, 77-
106

