
Formal Verification
for a Next-Generation Space Shuttle

Stacy D. Nelson1, Charles Pecheur2

1 Nelson Consulting, NASA Ames Research Center, M/S 269-2, Moffett Field, CA 94035,
USA

nelsonconsult@aol.com
2 RIACS, NASA Ames Research Center, M/S 269-2, Moffett Field, CA 94035, USA

pecheur@ptolemy.arc.nasa.gov

Abstract. This paper discusses the verification and validation (V&V) of ad-
vanced software used for integrated vehicle health monitoring (IVHM), in the
context of NASA’s next-generation space shuttle. We survey the current V&V
practice and standards used in selected NASA projects, review applicable for-
mal verification techniques, and discuss their integration into existing develop-
ment practice and standards. We also describe two verification tools,
JMPL2SMV and Livingstone PathFinder, that can be used to thoroughly verify
diagnosis applications that use model-based reasoning, such as the Livingstone
system.

1 Introduction

NASA is investing in the future of space transportation by investigating automated
and integrated technologies for monitoring the health of future space shuttles and their
ground support equipment. This application field, known as Integrated Vehicle
Health Management (IVHM), is being developed in by the aerospace industry under
the auspices of NASA’s Space Launch Initiative (SLI) program.

The proposed IVHM system includes advanced software technologies such as
model-based diagnosis using NASA’s Livingstone system. This holds the promise of
automating the diagnosis across a number of subsystem components and possible sce-
narios that is not tractable for more conventional diagnosis techniques. On the flip
side, however, it also carries the burden of verifying that this very complex system
will perform as expected in all those situations.

This paper is based on a survey of V&V techniques for IVHM, carried at NASA
Ames in support of Northrop Grumman’s IVHM project [16,17,18]. Section 2 gives
an overview of IVHM for space vehicles, Section 3 surveys software verification and
validation practices at NASA, Section 4 discusses applicable formal methods and
ways to incorporate them into the software process in accordance with standards,
Section 5 presents our tools for V&V of model-based diagnosis, and Section 6 dis-
cusses ongoing work on maturing these tools and infusing them in the IVHM design
process.

2 Advanced Health Management for Space Vehicles

Advanced health management for space vehicles makes it possible to detect, diag-
nose, and in some cases, remediate faults and failures without human intervention.
This is critical to future space exploration because longer missions into deep space
cannot be effectively managed from earth due to the length of time for a telemetry
stream to reach earth from the space vehicle. It is also important to NASA’s Space
Launch Initiative focusing on affordable low earth orbit space vehicle, like the U.S.
Space Shuttle, in order to improve crew safety and reduce costs.

NASA’s Space Launch Initiative 2nd Generation Reusable Launch Vehicle (2nd
Gen RLV) program is investing into future space transportation technologies, towards
a flexible, commercially-produced fleet of reusable launch vehicles. The objective of
the current Risk Reduction Phase is to enable a mid-decade competition such that
critical technology demonstrations for each proposed architecture are adequately inte-
grated, funded, and scheduled.

Integrated Vehicle Health Management, or IVHM, is one of the technology areas
supported as part of 2nd Gen RLV. Simply stated, IVHM exists to diagnose/prognose,
evaluate and remediate failure modes. The system is composed of a generic (in-flight
& maintenance) architecture suitable for building an IVHM system from health man-
agement subsystems developed by different vendors [19].IVHM consists of both
flight vehicle (FV-IVHM) and ground (GIVHM) components. FV-IVHM is primarily
concerned with diagnosing and prognosing failures that have or might occur during
the current flight. Any response to or remediation of these failures would occur dur-
ing the current flight. GIVHM is primarily concerned with diagnosing/prognosing
failures that may occur on the ground prior to take off or on a subsequent flight. This
includes any pre-existing failure states. Both FV-IVHM and GIVHM contain model-
based reasoning software.

Model-Based diagnosis is one of the key technologies currently adopted for next-
generation shuttle IVHM. Model-Based Reasoning consists of applying a general-
purpose reasoning engine to a declarative model of the application's artifacts. Specifi-
cally, model-based diagnosis uses a description the different components in the sys-
tem and their interactions, including the failure modes of each component. These
models capture all the application-relevant information in an abstract, concise, de-
clarative representation. The diagnosis program itself is re-usable across different di-
agnosis applications.

Livingstone is a model-based diagnosis system developed at NASA Ames [26].
Livingstone models describe the normal and abnormal functional modes of each com-
ponent in the system. Livingstone observes the commands issued to the plant and uses
the model to predict the plant state. It then compares the predicted state against ob-
servations received from the actual sensors. If a discrepancy is found, Livingstone
performs a diagnosis by searching for the most likely configuration of component
modes that are consistent with the observations.

3 Software V&V at NASA

Software V&V is defined as the process of ensuring that software being developed or
changed will satisfy functional and other requirements (verification) and each step in
the process of building the software yields the right products (validation). A survey
of current practice in Verification & Validation (V&V) of safety-critical software
across NASA was conducted to support initial planning and analysis for V&V of the
2nd Generation Re-usable Launch Vehicle IVHM.

Three missions were selected as being representative of current software V&V
practices: Checkout & Launch Control System (CLCS); X-37 IVHM Experiment;
and Deep Space One (DS1) - Remote Agent (RA) including review of the Formal
Verification conducted on RA. The following sections summarize survey results for
CLCS, DS1 and the Formal V&V conducted on RA. X-37 is not included because,
while the V&V effort was excellent, the experiment was at an early stage and less
useful information could be collected.

3.1 Check-out and Launch Control (CLCS) System

The objective of the CLCS Project was to provide a real-time computerized Space
Shuttle checkout system used to control and monitor test operations and launch. The
CLCS project had comprehensive V&V plans based on NASA standards and con-
tained in an online repository (http://clcs.ksc.nasa.gov/docs/test-specs.html). CLCS
was canceled in August 2002; however, review of this project revealed two important
lessons:

1. using the spiral or evolutionary strategy described in IEEE 12207.2 Annex I is
more cost effective than the waterfall strategy; and

2. it is important to evaluate IV&V budget requirements early in the project. For ex-
ample, a manned mission or program costing more than $100M requires review by
the NASA Independent Verification and Validation (IV&V) team.

3.2 Remote Agent

The objective of the Deep Space One (DS1) mission was to test 12 advanced tech-
nologies in deep space so these technologies could be used to reduce the cost and risk
of future missions. One of the 12 technologies on DS1 was Remote Agent, a software
product designed to operate a spacecraft with minimal human assistance. The suc-
cessful demonstration of Remote Agent on DS1 lead its team to become co-winners
of the NASA 1999 Software of the Year Award.

The V&V of DS1 used a number of testbeds, as detailed in Table 1. V&V was
conducted via carefully planned operations scenarios and tests were distributed
among low, medium and high-fidelity testbeds, which improved project team agility
and reduced testing costs. Operations scenarios were used effectively to test nominal
and off-nominal events. Operational Readiness Tests identified procedural problems
during “dress rehearsal” so they could be corrected before the actual mission.

Table 1. Deep Space One – Remote Agent Testbeds
Testbed Fidelity CPU Hardware Availability Speed Readiness

Dates
Spacecraft Highest Rad6000 Flight 1 for DS1 1:1 05/99

DS1 Testbed High Rad6000 Flight spares +
DS1 sims

1 for DS1 1:1 04/99

Hotbench High Rad6000 Flight spares +
DS1 sims

1 for DS1 1:1 03/99

Papabed Medium Rad6000 Flight spares +
DS1 sims

1 for DS1 1:1 11/98

Radbed Low Rad6000 RAX Simulators 1 for RAX 1:1 04/98
Babybed Lowest PowerPC RAX Simulators 2 for RAX 7:1 02/98

Unix Lowest SPARC UNIX RAX Simulators Unlimited 35:1 08/97

Throughout initial stages of the project, the goal of testing was to discover bugs so
they could be repaired. As it grew closer to take off; however, the discovery of a bug
did not automatically imply it would be fixed. Instead, a Change Control Board
(CCB) composed of senior RA project members reviewed the details of each bug and
proposed fix to assess the risk of repair. The CCB became increasingly conservative
near mission launch date preferring to work around bugs rather than risk inadvertently
breaking more code during while repairing a bug.

3.3 Formal V&V of Remote Agent’s Executive

Incidentally, the executive part of the Remote Agent has been the target of a very il-
lustrative formal verification experiment [6]. The results came in two phases.

In 1997, a team from the ASE group at Ames used the Spin model checker [9] to
verify the core services of Remote Agent’s Executive (EXEC) and found five
concurrency bugs. Four of these bugs were deemed important by the executive soft-
ware development team, which considered that these errors would not have been
found through traditional testing. Once a tractable Spin model was obtained, it took
less than a week to carry out the verification activities. However, it took about 1.5
work-months to manually construct a model that could be run by Spin in a reasonable
length of time, starting from the Lisp code of the executive.

In May 1999, as the Remote Agent was run in space Deep Space One, an anomaly
was discovered in the EXEC. Shortly after, the ASE team took the challenge of per-
forming a "clean room" experiment to determine whether the bug could have been
found using verification and within a short turnaround time. Over the following
weekend, they successfully revealed and demonstrated the bug using the group's Java
PathFinder tool [7]. As it turns out, the bug was a deadlock due to improper use of
synchronization events, and was isomorphic to one of the five bugs detected in an-
other part of EXEC with Spin two years before. This verification effort clearly dem-
onstrated that advanced V&V techniques can catch the kind of concurrency bugs that
typically pass through heavy test screens and compromise a mission.

3.4 Software Process Standards

In order for advanced software to fly on spacecraft or aircraft, it must be approved by
relevant authorities—NASA for space, the Federal Aviation Authority (FAA) for civil

aviation. This approval generally involves conformance with some established soft-
ware process and V&V standards. The following NASA Standards are relied upon for
guidance:

• NASA NPG 2820 “Software Guidelines and Requirements” [14]. This document
references IEEE/EIA Standards 12207.0, 12207.1 and 12207.2 [10,11,12], which
are themselves based on ISO/IEC 12207. This series is in widespread use in the in-
dustry.

• NASA NPG 8730 “Software Independent Verification and Validation (IV&V)
Management” [15] discusses the requirements for independent verification and
validation. In a nutshell, a manned mission and any mission or program costing
more than $100M will require IV&V.

In addition to the NASA standards, RTCA DO-178B, “Software Considerations in
Airborne Systems and Equipment Certification” [24] contains guidance for deter-
mining that software aspects of airborne systems and equipment comply with airwor-
thiness certification requirements.

In summary, to comply with the above described standards, each project must have
a well-defined process with discrete phases and thoroughly documented work prod-
ucts for each phase.

4 Formal Methods for IVHM V&V

IVHM considerably increases the complexity of the software V&V task, in two dif-
ferent ways:

• The software components are more complex and may involve non-conventional
programming paradigms. For example, model-based reasoning uses a logic rea-
soning component issued from artificial intelligence research; furthermore, a lot of
the application-specific complexity lies in the model rather than in the diagnosis
program itself.

• The state space to be covered is incomparably larger, as the IVHM system aims at
properly handling, at least partly autonomously, a large set of possible faults under
a broad range of unforeseen circumstances. This contrasts with the current largely
human-based approach to diagnosis, with a number of mission controllers moni-
toring the vehicle’s telemetry.

These two aspects pose a serious challenge to conventional V&V approaches based
on testing. To achieve the required level of confidence in IVHM software, more ad-
vanced methods need to be applied. This section surveys the main formal analysis
techniques issued from the research community and discusses their applicability to
IVHM systems. It summarizes the results from the second report of the survey [17].

4.1 The Verification Spectrum

The term “Formal Methods” refers to various rigorous analysis and verification tech-
niques based on strong mathematical and logic foundations. In principle, formal veri-

fication will guarantee that a system meets the specifications being verified, whereas
informal techniques can only detect errors or increase confidence. In practice though,
the limit is blurred by the abstractions, restrictions and simplifications needed to ex-
press the system into a formal representation amenable to formal analysis. One
should rather think of a spectrum of techniques, with various degrees of formality.

Below is an overview the broad categories of verification methods. The methods
are ordered in increasing level of formality. Generally, more formal methods provide
greater assurance, at the cost of greater required expertise—from testing methods
used throughout the software industry, up to theorem proving techniques mastered
only by a few experts. Nevertheless, there can be wide variations between tools and
applications within a category, and many approaches blend aspects of different cate-
gories.

• Testing consists in executing the system through a pre-established collection of
sequences of inputs (test cases), while checking that the outputs and the system
state meet the specification. This is the most common, and often the unique,
mechanized verification technique used in most projects. It defines the baseline
against which other techniques should be compared. The test cases are commonly
developed and tuned manually by application experts, a cumbersome, error-prone
and very time-consuming task. A test harness also has to be developed, to simu-
late the operational environment of the tested system. As a result, testing is often
the most costly part of the whole development phase, especially in safety-critical
applications such as space transportation.

• Runtime Monitoring consists in monitoring a system while it is executing, or
scrutinizing the artifacts (event logs, etc) obtained from that execution. It can be
used to control complex specifications that involve several successive events. In
some cases, it can even flag suspicious code even if no error actually occurs. Run-
time monitoring typically requires little computing resources and therefore scales
up well to very large systems. On the other hand, it will only observe a limited
number of executions and thus gives only uncertain results. In the case of error
predictions, it can also give false negatives, i.e. flag potential errors that cannot
actually occur. Applications of runtime monitoring at NASA include the analysis
of generated plans using database queries at Jet Propulsion Labs [5] and NASA
Ames’ JPaX tool for monitoring Java programs [8].

• Static Analysis consists in exploring the structure of the source code of a program
to extract information or verify properties, such as absence of array bound viola-
tions or non-initialized pointer accesses [20]. In principle, static analysis can be
applied to source code early in the development and is totally automatic. There is,
however, a trade-off between the cost and the precision of the analysis, as the most
precise algorithms have a prohibitive complexity. More efficient algorithms make
approximations that can result in a large number of false positives, i.e. spurious er-
ror or warning messages. NASA has performed several experiments using Poly-
Space, a static analyzer for C programs [23].

• Model Checking consists in verifying that a system satisfies a property by ex-
haustively exploring all its reachable states [3,1]. This requires that this state space
be finite—and tractable: model checking is limited by the state space explosion
problem, where the number of states can grow exponentially with the size of the

system. Tractability is generally achieved by abstracting away from irrelevant de-
tails of the system. When the state space is still to big or even infinite, model
checking can still be applied: it will not be able to prove that a property is satisfied,
but can still be a very powerful error-finding tool. Model checking in itself is
automatic, but the modeling phase can be a very arduous and error-prone effort.
Model checkers often impose their own modeling language, though more and more
tools now apply directly to common design and programming languages (UML,
Java), either natively or through translation. Symbolic model checking is an ad-
vanced form of model checking that considers whole sets of states at each step,
implicitly and efficiently encoded into data structures called Binary Decision Dia-
grams (BDDs). Symbolic model checking can address much larger systems than
explicit state model checkers, though the complexity of the BDDs can outweigh
the benefits of symbolic computations. One of the major symbolic model checkers
is SMV from Carnegie-Mellon University (CMU) [2], which has been used in this
project, as detailed in Section!5.1.

• Theorem Proving consists in building a computer-assisted logic proof that the
system satisfies the specifications, where both are suitably represented in the
mathematical framework of the proof system being used. When applicable, theo-
rem proving provides the “Holy Grail” of V&V, as it has the potential to provide a
mathematically correct, computer-verified proof of compliance. However, the
proof systems needed for this kind of endeavor demand a lot of user guidance;
proving the final specification will typically require providing and proving a num-
ber of intermediate properties (e.g. loop invariants). Although modern proof sys-
tems provide ever more elaborate tactics that automatically chain more elementary
proof steps, this kind of verification still requires a lot of expertise and work, and is
most often performed on small-scale designs by specialized researchers.

No matter how effective more formal methods can be, testing remains an essential
element of the V&V process. In addition, our findings recommended that model
checking, static analysis and runtime verification be added to the set of methods ap-
plicable to V&V of IVHM. Theorem proving was not recommended, due to the ex-
cessive effort and expertise it requires, and because it was not considered appropriate
for the large, complex IVHM systems under consideration. The next section dis-
cusses where these different techniques fit into the software development process.

4.2 Formal Methods in the Software Process

In order to ensure that formal verification techniques meet the V&V standards, the
following guidance is provided for integrating formal methods into the Software Life
Cycle.

Effective software development requires a well-defined process with discrete
Software Life Cycle phases including documented work products (called deliverables)
for each phase; analysis procedures established to ensure correctness of deliverables;
and scheduled reviews of major product releases. These items have to be defined in
order for formal methods to be integrated in the software V&V process.

Formal methods can be applied to any or all phases of the Software Life Cycle.
They may be used to enhance rather than replace traditional testing; although tradi-

tional testing efforts may be significantly reduced when formal methods are used ef-
fectively. Different types of formal methods can be used at different stages in the life
cycle: model checking may be applied at the different levels of the design phase,
down to program code; static analysis is typically geared towards executable code;
runtime monitoring is applicable at different stages in the integration and testing
phase, every time real code is being executed.

Table 2. Recommendations for Formal Methods in the V&V Process (SW = Software, SRA =
System Requirements Analysis, SWRA = Software Requirements Analysis)

Formal Methods Applicable SW Life
Cycle Phase

Formal Verification Activities

Any Formal Meth-
ods Technique

SRA/SWRA Perform a new development activity called “formaliza-
tion” to create a new work product called a “formal
specification”.
Enhance traceability tools and techniques to track new
products such as formal specifications and proofs, and
their relationships to existing products

Model Checking
(Theorem Proving)

SRA/SWRA Perform a new analysis activity called “proving asser-
tions” to enhance the correctness of the formal specifi-
cation and to understand the implications of the design
captured in the requirements and specification.
Perform an Official Review of the formal specification
to check the coverage, correctness, and comprehensibil-
ity of the formal specification.

Model Checking SWRA and SW &
Model Detailed De-
sign

Perform a new analysis activity called “modeling”, pro-
ducing a new work product called a "formal model".
Perform a new activity called “formal analysis” where
model checking is applied to the formal models. Model
checking enables all execution traces to be verified.
This improves the accuracy and reliability of the product
and allows early error detection and correction. It may
also reduce the amount of traditional testing required.

Model Checking SWRA and SW &
Model Detailed De-
sign

Perform an Official Review of the model to check for
correctness

Static Analysis SW & Model De-
tailed Design and SW
Coding

Use Static Analysis tools in addition to a compiler dur-
ing code development. This can reduce the amount of
traditional unit testing required while increasing the ac-
curacy of the program.

Model Checking SW Coding and SW
& Model Unit Test-
ing

If available for the programming language and platform
used, use model checkers in addition to standard debug-
ging and test control tools. This can greatly improve the
odds of detecting some errors, such as race conditions in
concurrent programs.

Runtime Monitoring SW Coding, SW &
Model Unit Testing,
SW Qualification
Test ing, System
Qualification Testing

Use Runtime Monitoring during simulation testing at
each phase where program code gets executed. This can
provide more information about potential errors.

Planning for formal methods includes activities at each level in the life cycle. At the
beginning of the program, staffing requirements for formal methods and enhanced
project guidelines must be considered: The software development team must include
at least one team member knowledgeable in formal methods. Formal V&V guide-
lines, standards, and conventions should be developed early and followed carefully.

The V&V team must plan how and when to use formal methods; therefore, these new
planning steps are recommended: 1) determine which software or software compo-
nents will benefit from use of formal methods, 2) select the appropriate type of formal
methods, 3) choose the formal methods toolkit and 4) enhance life cycle activities for
activities associated with formal methods. Table 2 summarizes recommendations for
enhancing the life cycle.

Metrics are important to track effectiveness of formal verification activities. Po-
tentially useful metrics for formal verification include:

• Number of issues found in the original requirements (i.e., the requirements in their
English description form, before being formalized), along with a subjective ranking
of importance (e.g., major, minor)

• Amount of time spent in reviewing and in inspection meetings, along with a num-
ber and type of issues found during this activity

• Number of issues found after requirements analysis, along with a description of
why the issue was not found (e.g., inadequate analysis, outside the scope of the
analysis, etc.)

Metrics specific to model checking include: amount of time spent in model develop-
ment (both human and CPU time) and amount of coverage.

5 V&V of Model-Based Diagnosis

A model-based diagnosis system such as Livingstone involves the interaction between
various components: the reasoning engine that performs the diagnosis, the model that
provides application-specific knowledge to it, the physical system being diagnosed,
the executive that drives it and acts upon diagnosis results. There are multiple facets
of such a system that need to be verified, and different verification techniques that can
be applied to that objective. In this section, based on our third report [18], we present
two tools developed at NASA Ames for verifying Livingstone-based applications, and
discuss their applicability as part of the larger V&V process.

5.1 Symbolic Model Checking of Livingstone Models

By their abstract, declarative nature, the models used for diagnosis lend themselves
well to formal analysis. In particular, Livingstone models are semantically very close
to those used by symbolic model checkers such as SMV. The languages are different,
though, so a translation is necessary.

In many previous experiences in model checking of software, this translation had
to be done by hand, and was by far the most complex and time-consuming part, that
has hindered adoption of formal verification by the software industry. Instead, the
goal is for Livingstone application developers to use model checking to assist them in
designing and correcting their models, as part of their usual development environ-
ment. To achieve that, we have developed, in collaboration with Reid Simmons at
CMU, a translator to automate the conversion between Livingstone and SMV [22].
The translator supports three kinds of translation, as shown in Figure 1:

• The Livingstone model is translated into an SMV model amenable to model
checking.

• The specifications to be verified against this model are expressed in terms of the
Livingstone model and similarly translated.

• Finally, the diagnostic traces produced by SMV are converted back in terms of the
Livingstone model.1

The translation of Livingstone models to SMV is facilitated by the strong similarities
between the underlying semantic frameworks of Livingstone and SMV: both boil
down to a synchronous transition system, defined through propositional logic con-
straints on states and transitions. Based on this, the translation is mostly a straightfor-
ward mapping from JMPL to SMV language elements. The specifications to be veri-
fied with SMV are provided in a separate file, expressed in a syntax that extends the
existing JMPL syntax for logic expressions. They are translated into the CTL tempo-
ral logic used by SMV and appended to the SMV model file. CTL is very expressive
but requires a lot of caution and expertise to be used correctly. To alleviate this prob-
lem, the translator also supports a number of pre-defined templates and auxiliary op-
erators corresponding to Livingstone-relevant properties and features, such as consis-
tency of the model or the number of failed components. Finally, any error traces
reported by SMV are translated back to their Livingstone counterpart—this recent ad-
dition is further discussed in section 6.

MPL/JMPL
Model

MPL/JMPL
Specification

MPL/JMPL
Trace

SMV
Model

SMV
Specification

SMV
Trace

Livingstone

SMV

Fig. 1. Translation from Livingstone to SMV.2

The translator has been successfully applied to several Livingstone models, such as
the Deep-Space One spacecraft, the Xavier mobile robot from CMU and the In-Situ
Propellant Production system (ISPP) developed at NASA Kennedy Space Center for
Mars missions. The ISPP experience was the most extensive; it did produce useful
feedback to the Livingstone model developers, but also experimented with the poten-
tials and challenges of putting such a tool in the hands of application practitioners.

1 The reverse translation of traces, shown as a dotted arrow, was not available when the survey

was made but has since then been implemented.
2 The original translator applied to an earlier, Lisp-style syntax for Livingstone models (Model

Programming Language, or MPL). The translator has later been upgraded to the current
Java-like syntax (called JMPL).

Models of up to 1055 states could still be processed in a matter of minutes with an en-
hanced version of SMV. Experience shows that Livingstone models tend to feature a
huge state space but little depth, for which the symbolic processing of SMV is very
appropriate.

5.2 Extended Simulation with Livingstone PathFinder

Although model-based verification using SMV allows a thorough analysis of Liv-
ingstone models, it does not check whether the actual diagnosis engine performs that
diagnosis as required. In a complementary approach, we have developed a tool called
Livingstone PathFinder (LPF) that automates the execution of Livingstone, coupled
to a simulated environment, across a large range of scenarios. The system under
analysis consists of three parts, as illustrated on figure 2:

• The Livingstone engine performing the diagnosis, using the user-provided Living-
stone model.

• A simulator for the device on which diagnosis is performed.
• A driver that generates the commands and faults according to a script provided by

the user.
Currently, a second Livingstone engine is used for the simulator. The tool architecture
is modular, however, and the different components are accessed through generic pro-
gramming interfaces (APIs) so that their content can be easily changed.

observables

commands
& faults

DRIVER SCRIPT

LPF Model
Checking
Engine

T
E
S
T
B
E
D

MIR

Livingstone
•get state
•set state
•single step
•backtrack

MODEL

MODELSIMULATOR
(Livingstone)

Fig. 2. Architecture of the Livingstone PathFinder tool, showing the diagnosis engine (MIR),
the simulator and the driver.

Both Livingstone and its environment are instrumented to allow a closer and more
efficient control of the execution, using backtracking to explore alternate paths and
observing states to prune redundant executions. This amounts to applying the same
state space search as used for model checking. Each forward step consists of a whole
diagnosis cycle, where the next event is produced by the driver, applied to the simu-

lator and observed by the diagnosis system. When the current execution terminates (at
the end of the scenario or because no consistent next state could be found), LPF
backtracks step by step, looking for further alternate executions in previous states.
Typically, these alternate paths will explore different failure scenarios. The explora-
tion proceeds along the next alternate path, in a depth-first manner, until the entire
tree of possible executions has been covered. 3

5.3 Correctness and Reliability Criteria

The two tools presented in the previous section only partially address the verification
needs of a Livingstone-based application. To put this in perspective, we introduce the
following classification of correctness and reliability criteria for model-based diagno-
sis:

• Model Correctness: Is the model a valid abstraction of the actual physical plant?
In particular, the model should also be internally well-formed, that is, fulfill ge-
neric sanity criteria, such as consistency and completeness.

• Diagnosis Correctness: Does the diagnosis engine perform correctly? Note that
this verification needs to be addressed once, typically by the engine developers.
Once the engine has been verified, it can be viewed as a stable, trusted part, much
in the same way as programmers view their programming language compiler.

• Diagnosability: Is it possible to perform the required diagnosis? More precisely, is
it always possible to correctly detect and diagnose faults or other conditions as
specified in the requirements, assuming a perfect model and a perfect engine? De-
ficiencies against this criterion tend to be design issues rather than problems in the
diagnosis system. For example, the system may require additional sensors if a
fault can not be adequately detected and isolated.

Assuming model correctness, diagnosis correctness checks that all that can be diag-
nosed is correctly diagnosed, whereas diagnosability checks that all that needs to be
diagnosed can be diagnosed. In principle, if we can fulfill all three conditions, then
we can guarantee that the desired diagnosis will be achieved. In practice however,
these criteria are often deliberately weakened for technical reasons and efficiency
purposes.

To these three architectural criteria, we should add a fourth:

• Integration Correctness: Does the diagnosis system correctly interface with its
environment? That is, do the different pieces (engine, model, physical system, ex-
ecutive, etc.) properly interact to achieve the required functionality?

Model checking of diagnosis models can definitely address model correctness issues.
The translator directly provides specification templates for generic sanity criteria. It
can also be used to verify that the model satisfies documented properties of the sys-
tem, provided those properties can be expressed at the level of abstraction of the
model. For example, flow conservation properties have been verified this way. More

3 The architecture supports other automated or interactive simulation algorithms. Indeed, an

implementation of guided search has just been completed.

thorough verification may require case-specific technology, e.g. for comparing mod-
els of different nature. Livingstone PathFinder could be modified to perform a com-
parative simulation for that purpose. We have recently successfully experimented
with using symbolic model checking to verify diagnosability, using a duplicated ver-
sion of the Livingstone model [21]. Livingstone PathFinder can also detect diag-
nosability problems. Since it performs a focused verification based on running the real
engine on real test cases, it provides better fidelity but less coverage. It also provides
assurance into diagnosis correctness, though within the same focused scenario limits.
Finally, LPF gives a limited assurance in integration correctness, by running the real
engine into a simulated environment. This part could be strengthened by plugging
higher-fidelity simulators in LPF, and encompassing more components within the
LPF-controlled simulation.

6 Maturing V&V Technology

Livingstone Model Verifier
With JMPL2SMV

Fig. 3. The Livingstone Model Verifier graphical interface (detail).

As a follow-up on the survey and recommendations presented in the previous sec-
tions, work is currently underway to extend formal verification of Livingstone models
by enhancing the functionality of JMPL2SMV and Livingstone PathFinder (LPF) and
making them easy for a typical engineer to use, without the high cost of hiring formal
methods specialists to run them. Enhancements include the following list:

• The SMV Trace Translation tool completes the automated translation provided by
JMPL2SMV between Livingstone models and SMV models by translating traces
produced by SMV back in terms of Livingstone model elements.

• A number of new specification patterns have been added to the JMPL2SMV
translator, to further simplify the task of specifying the properties to be verified by
the model checker.

• A graphical front-end interface has been developed to simplify the use of
JMPL2SMV, automate the interactions between SMV and the different translators,
and provide better visualization capabilities (Figure 3). The resulting tool, called

Livingstone Model Verifier (LMV), appears as an integrated model checker for
Livingstone models. A similar interface has also been developed for the Living-
stone PathFinder tool.

7 Conclusions and Perspectives

What we have presented here is the result of a six-month, one-person investigation
and was therefore necessarily focused on selected applications and tools. Neverthe-
less, our findings have confirmed that the advanced diagnosis techniques that are be-
ing considered for future space transportation vehicles also require advances in verifi-
cation and validation techniques to guarantee safe and reliable operation. To be
applicable, those techniques also need to be easy enough to be used by practitioners
and be integrated into existing development frameworks, practices and standards.

We discussed how rigorous verification techniques, coming from research in for-
mal methods, not only improve safety by improving confidence in the system, but can
also be implemented and documented in accordance with strict software development
and certification standards. We presented our own contributions to the field,
JMPL2SMV and Livingstone PathFinder, two verification tools for the Livingstone
model-based diagnosis system. These tools make it possible to verify model accuracy
earlier in the software development process; therefore, reducing costs and improving
system reliability.

These results were received very favorably by our industrial partners in the Space
Launch Initiative program. We are now working towards maturing our tools and in-
fusing them into a real IVHM development environment, to demonstrate and evaluate
the impact formal methods can bring to the V&V of advanced, safety-critical software
architectures.

Bibliography

[1] Beatrice Bérard, Michel Bidoit, Alain Finkel, Francois Laroussinie, Antoine Petit, Laure
Petrucci, Philippe Schnoebelen with Pierre McKenzie. Systems and Software Verification
Model-Checking Techniques and Tools. Springer, 1998

[2] J.!R. Burch, E.!M. Clarke, K.!L. McMillan, D.!L. Dill, and J.!Hwang. Symbolic model
checking: 1020 states and beyond. Information and Computation, 98(2):142-170, June 1992.

[3] Edmund M. Clarke, Jr., Orna Grumberg, Doron A. Peled. Model Checking. The MIT Press,
2000.

[4] Ken Costello. Private communication. NASA IV&V Facility, October 13, 2001.
[5] Martin S. Feather. Rapid Application of Lightweight Formal Methods for Consistency

Analyses. IEEE Transactions on Software Engineering, Vol. 24, No. 11, November 1998,
pp. 949-959.

[6] Klaus Havelund, Mike Lowry, SeungJoon Park, Charles Pecheur, John Penix, Willem Vis-
ser, Jon L. White. Formal Analysis of the Remote Agent Before and After Flight. Pro-
ceedings of 5th NASA Langley Formal Methods Workshop, Williamsburg, Virginia, 13-15
June 2000.

[7] K. Havelund, T. Pressburger. Model Checking Java Programs Using Java PathFinder. Inter-
national Journal on Software Tools for Technology Transfer (STTT) 2(4), April 2000.

[8] Klaus Havelund, Grigore Rosu. Monitoring Java Programs with Java PathFinder. First
Workshop on Runtime Verification (RV'01), Paris, France, 23 July 2001. Electronic Notes
in Theoretical Computer Science, Volume 55, Number 2, 2001

[9] G.!J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5), May 1997.

[10] IEEE/EIA. Industry Implementation of International Standard ISO/IEC: ISO/IEC12207
Standard for Information Technology—Software life cycle processes. IEEE/EIA 12207.0-
1996.

[11] IEEE/EIA. Industry Implementation of International Standard ISO/IEC: ISO/IEC12207
Standard for Information Technology—Software life cycle processes—Life cycle data.
IEEE/EIA 12207.1-1997.

[12] IEEE/EIA. Industry Implementation of International Standard ISO/IEC: ISO/IEC12207
Standard for Information Technology—Software life cycle processes—Implementation
Considerations. IEEE/EIA 12207.2-1997.

[13] N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. Remote Agent: To boldly go where
no AI system has gone before. Artificial Intelligence, 103(1-2):5--48, August 1998.

[14] NASA. NASA Software Guidelines and Requirements. NASA NPG 2820.DRAFT,
3/19/01.

[15] NASA. Software Independent Verification and Validation (IV&V) Management. NASA
NPG 8730.DRAFT 2, 30 Nov 2001.

[16] Stacy Nelson, Charles Pecheur. NASA processes/methods applicable to IVHM V&V.
Project report, NASA/CR-2002-211401, April 2002.

[17] Stacy Nelson, Charles Pecheur. Methods for V&V of IVHM intelligent systems. Project
report, NASA/CR-2002-211402, April 2002.

[18] Stacy Nelson, Charles Pecheur. Diagnostic Model V&V Plan/Methods for DME. Project
report, NASA/CR-2002-211403, April 2002.

[19] Northrop Grumman, NASA, DSI. 2nd Generation RLV Risk Reduction Program: TA-5
(IVHM) Project Notebook. Edited by: Stephen A. Brown. Northrop Grumman, El Segundo,
CA, 07/20/01.

[20] F. Nielson, H. R. Nielson, C. Hankin. Principles of Program Analysis. Springer, 1999.
[21] Charles Pecheur, Alessandro Cimatti. Formal Verification of Diagnosability via Symbolic

Model Checking. Workshop on Model Checking and Artificial Intelligence (MoChArt-
2002), Lyon, France, July 22/23, 2002.

[22] Charles Pecheur and Reid Simmons. From Livingstone to SMV: Formal verification for
autonomous spacecrafts. In Proceedings of First Goddard Workshop on Formal Approaches
to Agent-Based Systems, April 2000. Lecture Notes in Computer Science 1871, Springer
Verlag.

[23] PolySpace Technologies. C Verifier. http://www.polyspace.com
[24] RTCA. Software Considerations in Airborne Systems and Equipment Certification. RTCA

(Requirements and Technical Concepts for Aviation) /DO-178B, December 1, 1992.
[25] John Rushby. Assurance for Dependable Systems (Disappearing Formal Methods). Pres-

entation at Safecomp, Budapest, September 2001, TU Vienna, March 2001 and NSA March
2001.

[26] B. C. Williams and P. P. Nayak. A model-based approach to reactive self-configuring
systems. In Proceedings of AAAI-96, 1996.

