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Abstract

While autonomous systems offer great promise in terms of
capability and flexibility, their reliability is particularly
hard to assess. This paper describes research to apply
formal verification methods to languages used to develop
autonomy software. In particular, we describe tools that
automatically convert autonomy software into formal
models that are then verified using model checking. This
approach has been applied to MPL code for the
Livingstone fault diagnosis system and to TDL task
descriptions for mobile robot systems. Our long-term
objective is to create tools that enable engineers and
roboticists to use formal verification as part of the normal
software development cycle.

1  Introduction

Autonomous systems rely on intelligent inference
capabilities to be able to take appropriate actions even in
unforeseen circumstances. They enable a whole range of
new applications, such as sending autonomous robots to
places where it is too dangerous or expensive for humans
to go, and where remote human control is difficult or not
even technically feasible. In particular, autonomy is a key
enabling technology for the future of NASA’s space
exploration program and is becoming more important in
terrestrial applications as embedded systems and mobile
robots become more prevalent.

However, this increased capability and flexibility comes
with a price: It is typically very difficult to assess the
reliability of autonomy software. Traditional scenario-
based testing methods fall short of providing the desired
confidence level, mainly due to the combinatorial
explosion of possible situations to be analyzed. Formal
verification is a powerful tool for creating reliable systems.
Model checking is one technique that has been used
successfully to formally verify complex hardware and
software systems [2, 4]. In model checking, one specifies
the system in a formal language, such as SMV [2] or
PROMELA [6], along with formal specifications that
indicate desirable properties of the system that one wants
verified. The model checker then determines whether the
properties hold under all possible execution traces.

Essentially, model-checking exhaustively, but intelligently,
considers the complete execution tree. Counterexamples
are provided for specifications that do not hold.

Our long-term objective is to make formal verification, and
model checking in particular, part of the standard tool kit
for designing and developing autonomous systems. The
idea is to make model checking easy enough to use so that
it can be employed as a regular part of the development/
debugging cycle, much as compilers regularly employ
extensive syntactic checking before producing object code.
The hope is that by checking early in the development
cycle, subsequent testing and debugging can be
significantly reduced.

A large obstacle to this vision is computational complexity.
Although great strides are being made in model-checking
algorithms, it is still the case that verifying large software
systems written using general-purpose programming
languages are beyond the state of the art. Our approach to
this problem is based on the fact that many autonomous
systems are developed using special-purpose languages
and inference engines. For instance, the NASA Remote
Agent [7] uses specialized languages for each of the
planner, executive, and fault diagnosis components. The
advantage here is that these languages are typically at a
higher level of abstraction and are typically more
constrained than general-purpose programming languages.
In general, simpler languages are easier to verify.

Given this approach, we can identify three classes of
verification problems:

• Special-purpose languages use special-purpose
interpreters (or compilers). These need to be verified.

• Application-specific programs written in these
languages need to be verified for internal correctness.
This includes checking for liveness, safety, etc.

• Application-specific programs need to be verified for
external correctness. That is, determining whether the
interaction of the software with the environment meets
system requirements.

In this work, we focus only on the second class of
problems. While the first class is important, verification of
the correctness of an interpreter can be done once by its
designers. From the point of view of engineers, the
interpreter is viewed as a stable, trustable tool, just as



programmers trust their compiler. While the third class is
also very important, modeling the environment is very
complex, and is not at all well understood at this point.

Thus, the basic approach described in this paper is to
automate the translation of programs, written in special-
purpose languages, into the SMV model-checking
language, perform model checking using standard
algorithms, and then translate counterexamples back into
terms that are meaningful to the software developer. In on-
going work, we are developing tools for visualizing and
explaining the counterexamples.

The next section briefly describes the SMV model checker
and the two languages that we used as case studies.
Sections 3 and 4 describe the translators developed for
those languages, and some of our early results. Section 5
presents our on-going work in this area.

2  Background

Symbolic Model Checking: Model checking is a
verification technology based on the exhaustive
exploration of a system’s achievable states. Given a model
of a concurrent system, and an desired property of that
system, a model checker will examine all possible
executions of that system, including all possible
interleavings of concurrent threads, and report any
execution that leads to a violation of that property. The
report is typically a counterexample to the property. 

Classical, explicit-state model checkers such as SPIN [6]
do this by generating and exploring every single state. In
contrast, symbolic model checkers such as SMV [2]
manipulate whole sets of states at once, implicitly
represented as the logical conditions that those states
satisfy. These conditions are often encoded in data
structures called Binary Decision Diagrams (BDDs) [1],
which provide a compact representation and support very
efficient manipulations of Boolean formulae. While
symbolic model checking has traditionally been applied to
hardware systems, it is increasingly being used to verify
software systems, as well.

Model-based Processing Language: MPL is used in the
Livingstone system to encode hardware and software
models. Livingstone is a model-based fault diagnosis and
recovery subsystem developed by NASA [17]. The
Livingstone inference engine observes a physical system,
predicts its current state according to the MPL models,
detects discrepancies between the predicted and observed
states, and diagnoses potential faults if discrepancies exist.
Livingstone was initially developed for the Remote Agent,
an autonomous spacecraft controller demonstrated in flight
on the Deep Space One (DS1) mission [7]. In addition,
Livingstone is being applied to the control of a propellant

plant for Mars missions [3] and execution monitoring for
the Xavier mobile robot [13].

MPL systems consist of sets of components and modules.
Figure 1 shows a simple component written in MPL. MPL
components consist of a set of parameters, a set of state
variables (including inputs and outputs), and a set of
modes, some of which are labeled as fault modes. Each
mode has a set of guarded transitions (including self-
transitions), where the guards are expected to be mutually
exclusive and exhaustive. The guards are first-order
formulae that involve state variables. For instance, in
Figure 1, the on mode transitions to the off mode when the
command-in variable is on.

Modes also consist of formulae that describe the values of
state variables when in that mode. For instance, the model
in Figure 1 states that when the switch is in the on mode,
the indicator-lamp is also on. MPL modules consist of
collections of components and other modules, plus
constraints between them. For instance, a module can
constrain the power output variable of one component to be
equal to the power input of another component.

Task Description Language: TDL is an extension of C++
that includes constructs for hierarchical task decomposition
and synchronization between tasks, monitoring task
execution, and handling exceptions [15]. Figure 2 shows
two simple tasks for multi-robot coordination written in
TDL. TDL simplifies the process of specifying how
concurrent robot tasks should, and should not, behave and
interact. TDL, which is based on the TCA (Task Control
Architecture) [12], has been used to implement the
“executive”  layer of several autonomous mobile robot
systems (e.g., [16]). While TDL, being an extension of

Figure 1: MPL Model of a Simple Switch

(defvalues on-off-values (on off))
(defvalues on-off-commands (on off no-command))

(defcomponent switch (?name)
(:inputs ((command-in ?name) :type on-off-commands))
(:outputs ((indicator-lamp ?name) :type on-off-values))
(:background :initial-mode off)
(on :model (on (indicator-lamp ?name)) :type ok-mode

:transitions((turn-off
:when (off (command-in ?name)
:next off)

(:otherwise :persist)))
(off :model (off (indicator-lamp ?name)) :type ok-mode

:transitions((turn-on
:when (on (command-in ?name)
:next on)

(:otherwise :persist)))
(broken :type :fault-mode :probability 0.01

:transitions ((:otherwise :persist))))



C++, is a general-purpose programming language, here we
deal with verifying just the parts of TDL that are concerned
with task decomposition and synchronization.

3  Translating MPL to SMV

The first step in translating a language to a formal
representation, such as SMV, is to model the semantics of
the language. In the case of MPL, this means formalizing
how the Livingstone engine infers modes and state
transitions. A first-order formalization is fairly
straightforward, since MPL is based on synchronous,
concurrent transition networks, which is the same
formalism underlying SMV. Unfortunately, understanding
exactly how Livingstone works is difficult, and research at
NASA Ames is endeavoring to capture this precisely in a
formal way.

In general, a translator is developed that converts code in
one language to an SMV model that incorporates the
semantics of the formal model of the interpreter. For MPL,
the fact that Livingstone and SMV have similar semantics
means that the original MPL code and the transformed
SMV models have similar syntactic properties. In addition
to the explicit state variables in MPL, we add a new
variable to each component that represents the mode of the
component. Each guarded transition in MPL becomes a
transition statement (TRANS) in SMV. For instance,
Figure 3 shows the SMV translation of the MPL code in
Figure 1. The translator is described in more detail in [10].

The main difficulty in performing the translation comes
from differences in variable naming conventions between
the flat, global name space of MPL and the hierarchical
name space of SMV. For instance, in MPL one could

directly refer to “ (indicator-lamp switch2)”  from within a
higher-level module. In SMV, however, one would need to
address that variable hierarchically as “widget1.switch-
module.switch2.indicator-lamp”. To handle this, the
translator constructs a lexicon that indicates how to
translate MPL names to SMV names. The lexicon is
generated by starting at the root (“main” ) module and
walking the tree of modules and components, expanding
the SMV names as necessary when a subpart is
encountered. The translator uses a simple hash table to find
corresponding names. In addition, the lexicon is used in the
inverse direction to translate SMV counterexamples back
into terms of the original MPL code, in order to make the
counterexamples more understandable to engineers.

Another difficulty in this enterprise is how to specify the
properties to be verified. SMV supports the powerful
temporal logic CTL (Computation Tree Logic) to express
such properties [4]. CTL enables specifications that can
quantify over time and over all (or some) of the execution
paths that a system can take. For example, AG (flow=high)
states that for all execution paths, globally (in each state
along the path) the flow is high. We have extended the MPL
syntax to enable users to encode CTL formulae directly in
MPL, using a Lisp-like style that is consistent with the rest
of the MPL syntax.

Unfortunately, while CTL is expressive, it is also difficult
for novices to use correctly. As a simpler alternative, the
translator supports pre-defined specification patterns for
common properties, such as consistency, completeness,
and reachability of given component modes. Consistency
and completeness check whether the guarded transitions
are mutually exclusive and exhaustive. Reachability
checks whether a legal path of mode transitions exist from

Figure 2: TDL Specification of a Multi-Robot 
Deployment Strategy (Simplified)

Goal GroupDeploy (DEPLOY_PTR deployList)
{

with (serial) {
for (int i=0; i<length(deployList); i++) {

spawn GroupDeploySub(i, deployList);
}

}
}

Goal GroupDeploySub (int phase,
DEPLOY_PTR deployList)

{
with (parallel) {

for (int j=phase; j<length(deployList); j++) {
spawn Deploy(deployList[j].robot,

deployList[phase].location);
}

}
}

MODULE switch 
VAR command-in : {on_, off_, no-command_};
    indicator-lamp : {on_, off_};
    _mode : {on_, off_, broken_};
DEFINE _faults := {broken_};
       _broken := (_mode in _fault_modes);
INIT (_mode = off_)
TRANS (((_mode = on_) & (command-in = off_)) 
    -> (next(_mode) in (off_ union _faults)))
TRANS (((_mode = on_) & !(command-in = off_)) 
    -> (next(_mode) in (on_ union _faults)))
TRANS (((_mode = off_) & (command-in = on_))    
    -> (next(_mode) in (on_ union _faults)))
TRANS (((_mode = off_) & !(command-in = on_))    
    -> (next(_mode) in (off_ union _faults)))
TRANS ((_mode = broken_) ->
       (next(_mode) = broken_))
INVAR ((_mode = on_) -> 
       (indicator-lamp = on_))
INVAR ((_mode = off_) ->
       (indicator-lamp = off_))

Figure 3: SMV Translation of Switch Model



the initial state to some given mode. These pre-defined
properties are automatically translated into equivalent CTL
formulae, which can then be verified by SMV. 

The translator also provides auxiliary predicates that can be
used to test for various important characteristics of a
system. For instance, there are predefined predicates
representing transitions to fault modes, presence of failed
components, and occurrences of commands to the system.
The probability of a component entering a given fault mode
is captured using predicates that encode order-of-
magnitude probabilities (likely, unlikely, etc.). These
predefined predicates make it easier to write concise CTL
specifications.

We have applied the MPL translator to several real-world
applications that use Livingstone. The most extensive
application, and the one for which Livingstone was initially
developed, is the diagnosis and recovery component of the
Remote Agent architecture on the DS1 spacecraft. The full
MPL program for the spacecraft runs to several thousand
lines of code. Using the translator, we have automatically
constructed SMV models and verified several important
properties, including consistency and completeness of the
mode transition relations, and reachability of each mode.
Using the translator, we were able to identify several
(minor) bugs in the DS1 models, after the models had been
extensively tested by more traditional means [8].

The translator was also applied to MPL programs
describing the locomotion system of both an indoor and
outdoor mobile robot. Those programs, which had not been
extensively tested, were found to contain several
significant bugs, including transition guards that were
inconsistent, mode transitions that were incomplete and not
mutually exhaustive, inconsistent constraints on state
variables, and non-reachable modes. The latter stemmed
from several factors, including modes in one component
being inconsistent with all modes of another component,
guards on transitions never becoming true, and the
constraints associated with certain modes being
inconsistent.

Finally, the translator is being used at NASA Kennedy
Space Center by the developers of a Livingstone model for
the In-Situ Propellant Production (ISPP) system, which is
designed to produce spacecraft propellant using the
atmosphere of Mars [3]. Early experiments have shown
that SMV can easily process the ISPP models (translation
and verification takes just several seconds) to verify several
useful properties, such as reachability of normal operating
conditions and recoverability from failures.

4  Translating TDL to SMV

As described in the previous section, the first step in
creating a translator is to formalize the semantics of the

language. Currently, we are concerned only with the task
decomposition and task synchronization aspects of TDL. A
task in TDL is a piece of C++ code that can operate on the
environment and/or spawn subtasks. TDL tasks are
synchronized using a language of relational and metric
temporal constraints. The constraints can refer to various
aspects of the task: 

• The handling of a task refers to the time it takes to
execute the C++ code associated with the task.

• The expansion of a task refers to the time it takes to
completely expand the TDL subtree rooted at that task,
that is, the handling of all non-leaf-node tasks.

• The execution of a task refers to the time it takes to
handle all leaf-node tasks.

Each aspect of a task is formalized as a finite state machine
with four states: disabled, enabled, active and completed.
Not all 64 combinations of the three aspects are legal,
however. There are intra-node constraints and inter-node
constraints that reduce the number of legal transitions. The
intra-node constraints represent things such as the handling
of a task cannot become enabled until its expansion is
enabled. Figure 4 shows the intra-node constraints as a
state-transition diagram for a single TDL task.

Inter-node constraints connect parent, children and sibling
tasks. For instance, in TDL the execution of a child task
cannot be active until the execution of the parent is enabled.
Similarly, the execution of the parent task cannot be
completed until all the children tasks have their execution
completed. In addition, developers can explicitly add
temporal constraints between sibling tasks, such as saying
that one task must be executed sequentially after another, or
that one task is enabled when another becomes active.

Each TDL task is represented as an SMV module with
separate state variables for the handling, expansion and
execution aspects. The non-leaf-node tasks also have
variables representing children tasks and encode
constraints detailing the synchronization relationships
between parent, children and sibling tasks. We have
constructed both synchronous and asynchronous versions
of the SMV models. While the asynchronous version is
simpler, it tends to take longer to verify. Since we are not
modeling metric time, both the synchronous and
asynchronous versions utilize fairness constraints in SMV
to model that the handling time of a task can be arbitrarily
long, but finite.

The way TDL is used, a compiler translates TDL code into
pure C++ code, which includes calls to a task management
library [15]. A command line option enables the same
compiler to produce an intermediate representation of just
the task decomposition and task synchronization
constraints. This intermediate language is what the TDL
translator actually uses to produce SMV models.



Currently, we translate only a subset of TDL. While we can
handle all of the qualitative temporal constraints between
tasks (e.g., “ the expansion of task A precedes task B”), we
do not handle metric constraints (e.g., “ the handling of task
C begins in 10 seconds” ). While we can handle both
unconditional and conditional spawning of tasks, we
cannot handle iterative constructs (spawning of tasks
within a “ for”  or “while”  loops) or recursive invocation of
tasks, all of which are supported in TDL.

While handling metric constraints is, in principle,
relatively straightforward - one can discretize time and
implement a global “ clock”  - this simple approach typically
blows up the state space of the verification problem. More
research is needed to find efficient means of dealing with
metric time. Handling task trees with variable numbers of
children tasks is also quite difficult. One simple approach
is to verify each possible expansion (e.g., for one iteration,
for two iterations, etc.). This, however, suffers from severe
combinatorial explosion. Another approach is to infer

invariants over the loops and abstract away the loop
structure [11].

We can verify certain important properties of task-level
control programs using the formal models of TDL that our
translator generates. In particular, we can check for
deadlock, liveness, and absence of resource conflict. The
latter is specified by associating resources with tasks and
verifying that the tasks that are associated with the same
resource cannot have their handling aspect active
concurrently. Currently, however, these specifications have
to be encoded directly in CTL. We are currently designing
extensions to TDL that would enable specifications to be
described directly in the language.

Unlike the MPL translator, we have not yet used the TDL
translator on real applications. We have, however, tested it
on several small examples. Based on these results, we have
improved the models produced by the translator to reduce
the time needed by the model checker (which dominates
the process as a whole).

5  On-Going Work

For MPL, we continue to use the translator in real
applications. In addition, we are extending the types of pre-
defined specifications, in response to feedback from users.
For TDL, we are working to extend the range of TDL
constructs that can be handled. In particular, we are
working to model metric temporal constraints, iterative
constructs, and the fact that one TDL task can terminate
another task (which, in turn, terminates all its subtasks,
recursively).

Another major focus is dealing with the counterexamples
produced by SMV. Counterexamples are essentially
symptoms of bugs in the original system. However, it is
usually quite difficult to diagnose the error directly from
the counterexample. One reason is that the counterexample
is in the SMV language, and the translation may not
directly preserve connections between the SMV model and
the original language. For instance, variable names may be
different and certain aspects of the hierarchical structure of
the system may be lost during the translation. To handle
this, we perform an inverse translation — from the SMV
counterexample back to the original high-level language.

A more serious difficulty is that a counterexample merely
indicates the state, or sequence of states, that led to the
problem, but gives no indication of what within the state, or
which particular state transitions, were really responsible.
This is essentially a diagnosis problem. We are
investigating two approaches to this problem.

First, we can use visualization techniques to abstract
counterexamples and present the data in a way in which the
cause of the problem may be more apparent. The idea is

Figure 4: State Transitions Within a TDL Task
Each node is labeled with the status of the handling, 

expansion and execution aspects, in that order, with status 
being one of Disabled, Enabled, Active, or Completed. 

Thus, CAE represents that the handling is completed, the 
expansion is active, and the execution is enabled.
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that many inference engines used in autonomous systems
have associated visualization tools that distill and present
data from log files of actual runs of the system. To use such
tools for visualizing counterexamples, one needs to
translate the state transitions in the counterexamples into
the log file format that the tool expects. In essence, we are
creating a “virtual”  execution trace that corresponds to the
false specification. In this way, all the features of the
visualization tool are available to aid the user in
understanding and debugging the problem.

The other way we are addressing the problem of
understanding counterexamples is to produce textual
explanations of the problem. Our current approach is to
take the counterexample and feed it into a TMS (Truth
Maintenance System), along with the original SMV model.
The TMS [9] propagates the constraints of the model and
the state of the system (given by the counterexample).
When it detects an inconsistent proposition, it traces back
through the links in the TMS. This produces a hierarchical
explanation of the inconsistency that can help focus a
developer on the true source(s) of the problem. 

6  Conclusions

Model checking is a powerful tool for verification of
autonomous systems. To date, however, it has had little
impact on the way autonomous systems are developed and
validated. This is due to both the state explosion problem
and the tedious, error-prone process of manually
translating software into formal models. We are addressing
these problems by focusing on high-level languages that
are geared towards autonomous systems and by developing
translators that produce SMV code automatically from
such languages. We are also extending the original
languages to enable desired verification properties to be
specified directly, and at a high level of abstraction.

This paper has presented results with two such languages -
MPL, used for model-based fault diagnosis and recovery,
and TDL, used for task-level control. While the efforts are
still on-going, and the results are still preliminary, we have
confidence that this approach can significantly impact the
development of autonomous systems. The result should be
more reliable autonomous systems with reduced
debugging/testing effort.
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