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We give necessary and sufficient conditions under which an aggrega-

tion procedure yields the exact limiting probability distribution of a stoc-

hastic matrix. Vantilborgh's conditions for exact aggregation in exponential

queueing networks [Vantilborgh, 19781 are extended to all closed networks

with product form. Other results suggest that these conditions remain valid

for a wider class of networks.
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1. INTRODUCTION

Interest in queueing network models has been revived by the deve-

lopment of complex computer communication networks towards which data pro-

cesslng technology has been heading in the past decade. If realistic enough,

these models could become a cheap and reliable tool to evaluate the cost-

effectiveness of 'the many possible alternatives offered by the design of a

communication network.

The study of queueing networks models has taken two main directions.

A first approach consists in representing the whole network as an homogeneous

Markov process with denumerable multidimensional state space [Jackson 1963,

Gordon & Newell 1965, Baskett & al 1975, Gelenbe & Muntz 1976, Co hen, 1977];

these models are adequate to obtain equilibrium solutions but break down if

MBLE Research Laboratory, 2, av. Van Becelaere, 1170-Brussels, Belgium.



.
.

',-

36

the state space becomes too large or if transient or non-Markovian processes

are involved. In the other approach [Disney & Cherry 1913, Courtois 1912,

1911] the network is decomposed into subnetworks, possibly single server

systems, which can be analyzed in isolation; one hopes with this artifice to

exploit the many results known in queueing theory on single server systems.

However, most of these results on single server systems assume that

the input process is, like the service process, a renewal process; unfortuna-

tely, in queueing networks, input processes are generally the departure pro-

cesses from other queues and, therefore, are not renewal, except for very

special queues [see e.g. Daley 1916] . Approximate solutions can nevertheless

be obtained by considering these input processes as being renewal [KUhn 1916];

this approximation is especially accurate if the network can be decomposed

into subsystems such that interactions between subsystems are weak compared

to the interactions within these subsystems [Courtois 1917]. But if exact

solutions are sought by decomposition, exact models of subnetworks must be

constructed.

Chandy & al [19751 proposed a method to construct a subsystem of a

network with exponential server such that the queue length distributions

within this subsystem are the same as in the original network. In a recent

paper Vantilborgh [1978] gave the necessary and sufficient conditions under

which the decomposition of an exponential network into subsystems yields the

exact equilibrium state probability distribution of the network. The purpose

of this paper is to extend these conditions to arbitrary stochastic systems

and to a wider class of queueing network models.

2. BASIC MODEL

The first class of networks we shall consider consists of an arbi-

trary number of servers R1,...,RL and an arbitrary number K of c[asses of

customers. The length of a service is an i.i.d. random variable with a given

probability distribution for each class of customers at each server. Custo-

mers travel through the network and change classes according to routing pro-

babi[ities; a customer of class k who completes service at R. requires ser-

vice from R. in class r with probability p. k . (t ~ / k . =1 for all

J l, ;J,r '=1 =1 l, ;J,r
pairs (i,k)). Customers are selected for service byJa s~rver according to

the service discip[ine associated with this server.
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The state of the network at time t is defined by the vector

(s1,s2,...,sL,t) where Sz defines the conditions of service prevailing at

server Ri at time t; typically, the definition of St consists of the numbers

n? of customers of each class r in queue or in service at Ro and, if
~,r ~

necessary, of supplementary variables indicating the remaining service requi-

rements and the positions in the queue of these customers at time t.

The network is open if customers may arrive in the network from

outside sources, and may leave the network. Otherwise the network is c~osed

and its total number of customers remains constant.

If P(s1,...,sL,t) is the probability that the

in state (s1,...,sL)' which is assumed to be a feasible

rested in the limiting probability distribution

network is, at time t,

state, we are inte-

P(S1,...,SL)= i~ P(s1,...,sL,t) ;

the conditions for this limit to exist are supposed to be satisfied. From

(1)

this limiting distribution, it is easy to derive performance measures such

as server utilization factors, queue length distributions, etc ...

A remarkable property of these models is that, under certain condi-

tions,this limiting distribution exhibits what has been called the product-

form:

P(s1,...,SL) = G f1(s1) ... fL(sL) (2)

where G is a normalizing constant chosen so that the probabilities over all

states of the network sum up to 1, and each ft(.) is a function wich depends

on the type of server Rt' This product form was introduced by Jackson [ 1963]

for networks with exponential service times. With some restrictions on the

service disciplines, it was generalized to multi-class networks with service

distributions which have rationalLaplace transforms in [Baskett & all 1975] ;

Chaniy & al [19771 extended these results to arbitrary differentiable serVlce

distributions through the technique of supplementary variables. It was re co-

gnized in [Baskett & al 1975] that it is sufficient for the product form to

exist that at each server either the service distribution be exponential or

the service discipline be immediate, i.e. customers begin to receive ser-

vice immediately upon entering the queue; such immediate disciplines include

first in-first out, processor sharing, infinite server, etc... but exclude

first in-first out. This sufficient condition was proven in [Chandy & al

19771 to be also necessary when each server has a class independent serVlce

discipline, i.e. treats all classes of customers alike.

~
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Another property of queueing networks is the insensitivity property:

under certain conditions service distribution enter only through their means

in the expression of the distribution P(sl,...,sL); in particular this is

verified by all the networks mentioned above for which the product form has

been demonstrated: each function ft(.) depends on the service distribution

of server~ through its mean only. The general conditions for the insensiti-

vity of steady-state distributions in generalized semi-Markov processes has

been studied by several authors, see e.g. [Schassberger 1977].

So far, an explicit solution for the equilibrium distribution (1)

has been found for networks with product form only; this is due to the method

which has been followed, namely to assume the existence of the product form,

to inject this product form into the network balance equations which, for

each state, equate the probability of leaving and of entering this state,

and to solve for the functions ft(.).

3. DECOMPOSITION AND AGGREGATION

Thus, despite of the progress which has been made, the family of

networks models which can be explicitly solved is still rather limited in

view of present practical needs. Another problem is the rapid growth of the

number of states, and thus of the number of balance equations, with the

network complexity.

As said in the introduction, these problems call for another direc-

tion of investigation: decomposition methods. The network is decomposed

into subnetworks which are analyzed in isolation; each analysis focuses on

the stochastic process which represents the flow of customers through a sub-

network; this process is used in place of the subnetwork as input to the

remainder of the network to analyze the distribution of customers within

this remainder.

Queueing networks have structural properties which are propitious

to this type of approach. This is easier to demonstrate if we assume that

the network can be represented by a Markov transition matrix; existing

results on the decomposition of stochastic matrices [Courtois 1977] can then

be used.

Consider a general stochastic system the time behavior

is represented by the matrix equation

of which

y(t+1) = y(t) Q , ( 3)

L
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where an element y.(t), i = 1,...,n, of the row vector y(t) is the probabi-l

lity that the system is in state i at time t; Q is the stochastic matrix of

the transition probabilities between these states; suppose that Q is regular

so that at least one limiting probability vector v exists which is indepen-

dent of t (but not necessarily of the initial condition y(O)) :

v = v Q = lim y(t) .

t-+<x>

The most general method to obtain v by decomposition is to parti-

tion Q into A principal submatrices Q11' I = 1,...,A :

(3 bi s )

[

Q11 ~.. Q1A

]

Q = : 11:
. .

QA1 .. . QAA

and to construct from each principal submatrix Q11 a

by adding (in a way which will be discussed later) to
f+ n(J)

sum L I q. . , q. . denoting the (i,j) element
J=l j=1 l1JJ l1JJ
J~1 A

the order of QJJ'(I n(J) =n ). Thus,
'J=1

(4)

. ."

stochastlc matrlx Q1

each row i1 of Q11 the

of Q1J and n(J) being

..
Q = Q + E C

where Q. is a completely decomposable matrix

Q* =

l

Q*

]1 ~ .'. Q;

with the elements not displayed being equal to 0; E can be taken as the

maximum probability of leaving a partition of states

which implies that

max I I I c. . I = ] ;
i,1 J~1 j J l1JJ

. 111

the matrlces Q1 shall be referred to as the aggregates of Q.

A vector z which approximates v can be obtained by the following

aggregation procedure. Denoting v*(I) the equilibirum probability vector
. .

( )

. *
( )

. . .

of QI' so that v I Q1 = v I, a matrlx T of transltlons between groups of
states is constructed as .a AxA matrix of elements
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TIJ = L ,,~(I) L q. . ;

i-I 1 j6J lIJJ

the equilibrium vector Z = [Zl' ..ZI'" ZA] of T, Z = ZT, is used to obtain

~
.

( )

. . .
z. = ". I as an approxlmatlon to v. . If necessary, an aggregate QI can
1.1 1. 1.1

be decomposed into sub-aggregates, and the same procedure can be used to

obtain the vector ".(1), and so forth (hierarchical aggregation).

The above aggregation procedure clearly has the advantage of reducing

the analysis of a n-states system Q to.the separate analysis of A smaller

systems Q;. The reduction is still more important in cLosed queueing network

models. Consider a closed network with a single class of N customers, expo-

nential service times with parameter Pt for server Rt, and fixed routing

probabilities p... The state of the network is entirely specified by thelJ

L-tuple (n1,...,nL)' nt being the number of customers present at resource Rt.

For a time unit small enough to make negligeable the probability of more than

one customer completing service simultaneously, this model corresponds to a

discrete time homogeneous Markov chain; if the.states (n1""'~)'

L nt = N, are lexicographically ordered, the transition matrix takes the

form displayed in figure 1 for a network with N = L = 4; elements not dis-

played are zero; a (i,j) element denoted by a pair lm is the probability

Pt Plm of a transition from state i to state j, within a single time unit,

caused by a customer completing service at server Rt and applying to server

R ; the term L in each diagonalelementis equal to the sum of the off-dia-m
gonal elements of the corresponding row.

I

This matrix structure can be usefully exploited to analyze the

equilibrium probability distribution of the network by the decomposition and

aggregation procedure outlined above. The matrix is partitionable into (N+1)

principal submatrices (separated by plain lines on fig. 1); each principal

submatrix is, apart from the diagonal element, the matrix of a network of

(L-l) servers R1,R2,...,RL-1 with a population of N,...,N-K,...,O customers

respectively. Moreover, each submatrix is again partitionable into (N-K+1)

principal submatrices (separated by dotted lines on fig. 1) which, apart

from the diagonal element, correspond to a network of (L-2) servers

R"R2,...,RL-2' with populations (N-K),(N-K-1),...,O respectively; and so on

for as many levels of decomposition as there are servers in the network.

By transforming all these principal submatrices into aggregates,

each aggregate corresponding to a subnetwork with a given population, it is

thus possible to apply the above aggregation procedure, into as many levels

of decomposition as desired. An additional important simplification comes
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from the fact that, at the lower levels of decomposition, more and more

principal submatrices (see fig. 1) are, except for their diagonal, identical

to each other; identical stochastic aggregates can thus be constructed from

these submatrices by modifying only the diagonal element to obtain row sums

equal to unity; it is not difficult to see on figure 1 that, as a result of

this, the equilibrium probability distribution of only (N+1) distinct aggre-

gates needs to be evaluated at each level. This approach was thoroughly in-

vestigated in [Courtois 1972,1977] where it was also demonstrated that, by

taking as many decomposition levels as there are servers, each aggregate

reduces to a two-server queueing system with finite population.

This type of decomposition works for more complex types of closed

models. If service distributions are not exponential, each sever can be

modelled by a network of exponential stages [Baskett & al 1975J, or each

state must be complemented by supplementary variables [Chandy & al 1977J

indicating the remaining service requirements of customers. With these exten-

sions, just as in multi-class networks, the number of states of each aggregate

is increased, but the network keeps the same number of decomposition levels

and the same numbers and types of aggregates at each level.

Thus, closed network models can be decomposed into a restricted

number of aggregates which represent the stochastic behavior of a given

fixed population of customers applying to a subset of the servers.

When no special precautions are taken to decompose a stochastic
. .. .

matrlx Q and to construct the aggregates QI' the degree of approxlmatlon of

the above aggregation procedure is of order £ , defined by (5) [Courtois

1975,1977J. But, in queueing network models, exact results can be obtained

if the decomposition and the aggregate construction obey certain conditions

which, in practice, are not too restrictive. The determination of these

conditions is the object of the remaining sections.

4. EXACT AGGREGATION IN STOCHASTIC SYSTEMS

In this section we establish the necessary and sufficient conditions

under which the general aggregation procedure described in the preceding sec-

tion yields exact results, i.e. under which the vector z obtained by this

procedure is identical to the limiting probability distribution v of the

matrix Q given by (3 bis).

Let us use 81 to denote

the Ith set, I = 1,...,A, of the

the probability of being in any state of

partition of the states of Q :
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6 = t v.
I i€I 1.1

If we set

-1 .
b. = B rBr v. - v. ( I )] ,
1.1 r 1.1 1.

we have, by definition of z :
.

v. - x. = v. - Z- v.(I)
1.1 1.1 1.1 -I 1.

.
= (BI

- ZI)v.(I)+ b. . (6)
1. 1.1

A theorem proved in [Courtois 1977] (theorem 2.1 page 32) states

that

where B is the A-element vector of probabilities 81 and K is an A-vector

of elements
A

kI = I I b. I c. .
J=1 j~J JJ iEI JJ1.I

From these relations, it results:

(8)

Theorem 1 : When 81 ~ 0 for all I, a necessary and sufficient con-

dition for Z :: v is that b. = 0 for all I and ~I.
1.r

z == v then by ( 6)Proof. Necessity. If

.
b. = (ZI - 8r) v. (1)
1.1 1.

= (I z. - I v. )v~(I) = 0, for all ir'
i~I. 1.1 i~r 1.r 1.

Sufficiency. If bi = 0 for all ir' by (8) kr = 0 for all I

and by (7) 8 is the steady-state v~ctor of T; since T is irreducible, B must

be identical to Z; then, by (6) : v. = z. for all i .

1.r 1.r r

In plain words, an aggregation procedure yields the correct equili-

brium probability vector of a stochastic matrix if and only if the aggrega-

tes are constructed in such

distribution v.(r) is equal

distribution B~l vi ' i.r.

This condition is,

a way that, for each aggregate, the equilibrium

to the true marginal probability equilibrium

l.npractice, very restrictive; it will requl.re

in general the resolution of the whole system. Consider indeed only one

subsystem, say Ql1' which, without loss of generality, can be taken as the

first one:
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Q =[ Q: 1 : ]

where the square submatrix G comprehends all the other submatrices

~2 '. .. ,QAA.

Let [,,(1):H be, with the same partition, the equilibrium probabi-

lity vector of Q such that

[,,(1)1] Q = [,,(1)X]

v( 1) Q11 + X F = ,,(1)

,,(1)E +XG= X ;

if Q is irreducible, 1 is not an eigenvalue of G and (G-I)-1 exists; thus,

sol ving the last equation for:x: and replacing X in the second equation yields

-1

,,(1) [Q11 - E(G-I) F] = ,,(1) .

Thus, the marginal equilibrium distribution ~(1) and 1 are also

eigenvector and eigenvalue of the matrix [Q11 - E(G-I)-1]F . This result is

simply a direct application of the Gauss-Aitken-Bodewig formula [Bodewig

1956] which gives the algebraic expression of the condensed matrix obtained

by a triangular condensation procedure.
, -1

We note that the rowsums of E(I-G) F are equal to those of E;

indeed, if ~ denotes a column vector of element 1, we have:

E(I-G)-l F ~ = E(I-G)-1(I-G) ~ = El.

Thus, a possible construction for a correct aggregate would be

Q- = Q + E(I-G)-l F1 11

which requires the knowledge of (I-G)-l. Q~ is not the only possible correct

aggregate; but, if the original matrix has no particular structure, one can

expect that other possible schemes of construction of correct aggregates

will require an equivalent knowledge of the system. However, the structure of

queueing networks is such that correct aggregates can be obtained more

simply.

5. EXACTAGGREGATION. CLOSED NETWORKS WITH PRODUCT FORM

From the properties which have been established in the two preceding

sections, we can derive the conditions under which correct aggregation is

feasible in multi-class closed networks which have product form, arbitrary

differentiable service distributions, and fixed routing matrix.
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The routing matrix of probabilities p. k .' is supposed to be~, ,J,r
irreducible so that there is a vector [X. kJ , defined within a multiplica-~,
tive constant which satisfies the set of equations

L K

I t Xj,k.Pj,k;i,r=xi,r'
j=1 k=1

1 <;i';;;;L (9)

1<;r<;K.

X. can be interpreted as the reLative departure rate of customers1.,r

of class r from server Ri' This set of balance equations expresses that, in
the equilibrium, and over any given period of time, the average number of

customers of a class departing from a server is equal to the average number

arriving to this server. On this definition is based the

Theorem 2 : Exact aggregation of the equilibrium probability dis-

tribution of a network with product form is possible if and only if each

aggregate model of servers yields the exact values of the relative departure

rates of these servers.

,:

Proof. Consider an aggregate ~ of servers R1"" ,Rl' 1 E;;l < L;

and let p( s 1' . . . , slid;) be the marginal probability that this aggregate is

in state (sl,...,sl) given that the network is in some state

S = (sl,...,sl,sl+l,...,sL); thus

P(s1,...,S;t~ = L P(Sl"" ,sl,sl+l"" ,sL) ;
s[+l,...,sL

the summation being taken over all feasible states only; since the network

has product form, we have also:

P(Sl,...,SL) =G fl(sl)f2(s2)...fL(sL)
where G is a normalizing constant chosen to make. the probability sum equal

to 1. Thus

p(sl,...,st.I~) = G fl(sl)...fl(sl)[ L fl+l(sl+l)...fL(sL)]'
sl+l,...,sL

the summation being over all feasible states only; or,

p( s 1 ' .. .s ll.:t) = GDtf 1(s 1) .. .f l (s l) , ( 10)

Gci being a normalizing constant for the set of states of aggregate.;t. In a

network with product form, each function f. (s .) is, for a given s. ,1. 1. 1.

entirely defined by the service discipline, the service time distribution

and the relative departure rate X. of server R. (Baskett & al 1975, Chandy1. 1.

& al 1977]. Hence, if ~nd only if this departure rate is exactly obtained

from the aggregate model., so can be the function f. (s.) which, in all other1. 1.

respects, depends only on characteristics local to the server R.; then,1.

(
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also the marginal distribution (10) can be exactly obtained for aggregate~

By theorem 1, this exact marginal distribution for each aggregate~is

necessary and sufficient to obtain by decomposition and aggregation the net-

work equilibrium distribution P(s1,...,sL)' This completes the proof.

Exact Aggregation Procedure. There remains the problem of construct-

ing correct aggregates which obey the conditions of theorem 2. In the pre-

sent case of queueing networks, this is an easier problem than it is in the

general case of stochastic matrices discussed in section 4.

From theorem 2 we can derive a theorem which generalizes Vantilborgh's

[1978] conditions for exact aggregation to all closed networks with product

" i

I
I,
!

form and fixed routing matrix.

Define a m-element vector u as being subparallel to a vector

[v1,...,vn]' n;> m, iff there is a scalar k.; 0 such that u = k[v"...,vm]'

Then, we have

Theorem 3 : Exact aggregation of the equilibrium probability distri-

bution of a closed network with product form is possible iff each aggregate

has a routing matrix whose steady-state vector is subparallel to the steady

state vector of the network routing matrix.

The proof of the necessity and sufficiency of this condition results

directly from theorem 2 and from the fact that server relative departure

rates are defined by the steady-state vector of the network routing matrix.

Thus,acorrect aggregate is the model of a closed subnetwork with a

given population of customers; each server has same server discipline and

same serV1ce time distribution as in the original network; the routing ma-

trix of this correct aggregate is derived from the network routing matrix

so as to obey the conditions of theorem 3.

One particular way of deriving this correct ag£regate routing matrix

is to use the Gauss-Aitken-Bodewig formula to obtain a condensed routing

matrix.

Indeed, assume that the original network routing matrix P, with

steady-sate vector X, X = XP, is partitioned in the following way

p = [:M :]
where Pixl is the submatrix of routing probabilities connecting the servers

R"...,Rl of a given aggregate. As shown in section 4, the Gauss-Aitken-

Bodewig formula ensures that the matrix [Pii - E(G-I)-'F] has a steady-
I x

state vector which is subparallel to the steady-state vector X of P.
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It is thus remarkable that the conditions for exact aggregation

which, in general, pertain to the whole state transition matrix of a system,

reduce in the case of closed queueing networks with product form to conditions

over the routing matrix only. There is, int~ context, an intuitive inter-

pretation for the Gauss-Aitken-Bodewig formula. Consider a network with a

single class of customers and suppose an aggregate which groups all servers

of this network, except one, say RL' The condensed routing matrix of this

aggregate yielded by the Gauss-Aitken-Bodewig formula is a matrix of proba-

bilities p~. obtained from the network routing probabilities p.. by
~J ~J

, -1
p. 0 = p.. + pO L(1 - PLL) PL

o
~J ~J ~ J

co

= po 0 + pO L ( I pkLL)PL ' ,
~J ~ k=1 J

assuming that PLL ~ 1 (otherwise the network is reducible).

This is thus equivalent to a decomposition of the network into

aggregates of servers R1,...,RL-1' with given populations on the one hand,

and on the other hand a dummy server with zero service times at which a

customer cycles are arbitrary number k of times before returning to one of

the aggregates. The marginal distribution of customers within each aggregate

is, in relative value, the same as it is among the corresponding servers in

the whole network.

This is analogous to Norton's theorem in electrical circuit analy-

s~s, an analogy which had been first established in [Chandy & al 1975] .

Theorem 3 and the Gauss-Aitken-Bodewig formula situate this analogy in the

more general context of necessary and sufficient conditions for the obten-

tion of the exact equilibrium vector of the whole network; besides, as said

earlier, the Gauss-Aitken-Bodewig formula is only one particular way of

constructing a condensed matrix with the required property of subparallelism.

For instance, Vantilborgh [1978] has shown that for particular types of

networks such as central server-, balanced- or doubly stochastic networks,

the subparallelism condition is also satisfied if the aggregates are

constructed so as to be of the same type as the original network.

6. GENERALIZATIONS

Theorem 2 was established only (i) for closed networks which are

representable by a Markov homogeneous process and (ii) which have the

product form.
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Networks were assumed to be closed in order to keep a finite state

space and thus a finite number of aggregates, each with a finite population

and a finite number of states. But, by arguments similar to those we have

invoked, it is possible (see e.g. Chandy & al 1975) to show that an open

network with Poisson exogeneous inputs can be analyzed as a set of separate

subnetworks, open or closed. The correct aggregates are then constructed

according to the conditions of theorem 3; but the relative departure rates

are now solution of the system
L K

A. + I r x. p. k . = x. ,

~,r j=1 k=1 J,k J, ;~,r ~,r

1<i<L,1<r<K ( 11)

where A. is the rate of exogeneous arrivals of class r customers to
~,r

server i.

The Markov process representation, was required because we could

establish the general necessary and sufficient condition of theorem 1 for

stochastic matrices only. We can presume, however, that similar condition

will prevail for other types of system representations.

The last assumption of product form was needed in the proof of

theorem 2 as an easy means to ensure that the exact marginal equilibrium

distributions of customers in an aggregate are entirely determined, if the

servers relative departure rates are known, only by characteristics which

are local to the aggregate such as the service disciplines, the serVlce

time distributions and the fixed routing probabilities. Again, this is

presumably a rather general property of networks; the server departure rates

are also input rates to other aggregates; if all these rates are correctly

evaluated in relative value, the flows of customers through the aggregates

are kept proportional to what they are in the original network, so that each

aggregate marginal equilibrium distribution will be correctly obtained.

It is thus plausible that theorem 2 holds for a wider class of net-

works than those which have the product form; at least for networks in which

the departure rates can be defined.

So far, we have defined the departure rates as the steady-state

solution of a first order Markov chain routing matrix. The theorem we prove

hereafter shows that limiting values for these departure rates exist also

in networks which do not have necessarily a fixed Markov routing matrix;

e.g. in networks where the routing probabilities are functions of the con-

gestions at the server of departure and/or the server of arrival, or even
/

at other servers. Hence, theorem 2 presumably holds also for these networks;
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unfortunately, it is essentially a theorem of existence which gives little

clue as how to calculate limiting departure rates. Consequently, there is

not yet for these networks an equivalent of theorem 3 specifying how cor-

rect aggregates should be constructed.

We shall define a server as being non-ppeemptible if a customer

who starts being served by such a server completes service before any other

service is started.

Suppose then that Ri is a non-preemptible server of' a network
and let ' 1 ., ' 2 .,..., ' k ., ... be the epochs at which a service is com-

,l.,l. ,l.

pleted by R.. Consider the class of eventsl.

E.= {n.(t) Fa ; n.(t)=O for all j,i ; t=(' k .+0) for some
l. l. J ,l.

k} ;

an event of this class corresponds to the situation where all customers in

the network are at server R. and one customer has just completed service atl.
this server. After such an event E., the behavior of a closed network, orl.

of an open network with Poissonian exogeneous input, is a probabilistic re-

plica of its behavior after the first such event; for a given non-preemti-

ble server R., the sequence of such events is thus a sequence of pegenepativel.
events in these networks.

Define now D.t(t) as the number of departures from server R.t '
.t=1,...,L, since t=O up to time t ; and let us use t 1 ., t 2 . ,...,t . ,...

0 ,l. ,l. n ,l.

to denote the successive epochs at which an event of class E. occurs. Forl.

each .t=1,... ,L, the process {D.t(t)} is a cumulative process [Smith 1955,

19581 since D.t(t) is of bounded variation in every finite t-interval and
{Do(t .)-Do{t 1 .)}, for n=1,2,..., is a sequence of independent, identi-

-{.. n,l. -{.. n- ,l.

cally distributed non-negative random variables. If we introduce the follo-

wing expectations

KO = E {Do(t .)-Do(t 1 .)}
-{.. -{.. n,l. -{.. n- ,l.

and

a. = E {t . -t 1 .} ,
l n,l n- ,l.

we have the following theorem:

Theorem 4 : If, in a closed network or in an open network with Poissonian

input, there is at least one non-preemptibleserver R. for which E. is al. 1.

class of positive recurrent events (a. < 00), then

D.t(t) l. E{Dt(t)}
lim = lim -
t -+<x> t t -+<x> t

Kt-
a.
1.
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Proof. The proof results directly from Smith's ergodic theorems [1955,195~;

all conditions are satisfied for-these theorems since Dt(t) is a random va-

riable with positive increments only and since, with non-zero service times,

Qi < 00 implies Kt < 00 .

Thus, theorem 4 provides for the cumulative departure rate of the servers

a limiting value which is independent from the routing process of the network.

How this result can be used in the determination of correct aggregates is

still an open question; but Smith's central limit theorems for cumulative

processes m~ prove useful in this context.
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