
Constrained metabolic network analysis:

discovering pathways using CP(Graph)

Gregoire Dooms, Yves Deville, Pierre Dupont

Department of Computing Science and Engineering
Université catholique de Louvain

B-1348 Louvain-la-Neuve - Belgium
{dooms,yde,pdupont}@info.ucl.ac.be

1 Introduction

Biochemical networks – networks composed of the building blocks of the cell and
their interactions are qualitative descriptions of the working of the cell. Such
networks can be modeled as graphs. Metabolic networks are typical examples
of such networks. They are composed of biochemical entities participating to
reactions as substrates or products. Such a network can be modeled as a bipartite
digraph which nodes are the biochemical entities and reactions and edges are the
substrate or product link between an entity and a reaction.

Pathways are specific subsets of a metabolic network which were identified
as functional processes of cells[1]. As these pathways are known to be working
processes of the cell, they can be used to study the metabolic network. One type
of metabolic network analysis consists in finding simple paths in the metabolic
graph[2–6]. Here we focus on such analysis to discover pathways from a set of
their reactions. A potential application is the explanation of DNA chip experi-
ments using a CSP able to solve pathway discovery problems.

The study of the metabolic network is constantly evolving and most of the
problems are solved with dedicated algorithms. This dedicated approach has the
benefit of yielding very efficient programs to solve network analysis problems.
This approach however has the drawback that it cannot be easily adapted to solve
other problems or easily combined to solve combinations of various analyses.

In [7, 8], we proposed to use constraint programming to solve constrained
path finding problems in metabolic networks. This declarative paradigm allows
to easily adapt programs or combine different programs. In order to provide a
high level modeling language and as the data and results are graphs, we defined
a graph computation domain for constraint programming [9].

The two following sections are devoted to a short introduction to CP(Graph)
and a description of its application to metabolic network analysis.

2 The CP(Graph) Framework

CP(Graph) [9] features graph variables, node and arc variables, and set variables
for nodes and arcs. They are depicted in figure 2. That figure shows the notation

1

used for constants and variables in this paper. It also shows that a graph variable
has an inherent constraints linking its arcs to its nodes.

Type Representation Constraint Constants Variables

Integer 0, 1, 2, ... i0, i1, ... I0, I1, ...

Node 0, 1, 2, ... n0, n1, ... N0, N1, ...

Arc (0, 1), (2, 4), ... a0, a1, ... A0, A1, ...

Finite set {0, 1, 2}, {3, 5} ... s0, s1, ... S0, S1, ...

Finite set of nodes {0, 1, 2}, {3, 5} ... sn0, sn1, ... SN0, SN1, ...

Finite set of arcs {(0, 3), (1, 2)}, ... sa0, sa1, ... SA0, SA1, ...

Graph
(SN, SA)
SN a set of nodes
SA a set of arcs

SA ⊆ SN × SN g0, g1, ... G0, G1, ...

Weight functions N ∪A → IN w0, w1, ... –

Three kernel constraints suffice to express all MS-definable properties of
graphs [10] as constraints:

Arcs(G, SA) SA is the set of arcs of G.

Nodes(G, SN) SN is the set of nodes of G.

ArcNode(A, N1, N2) The arc variable A is an arc from node N1 to node N2.
This relation does not take a graph variable into account as every arc and node
has a unique identifier in the system. If A is determined, this constraint is a
simple accessor to the tail and head of the arc A and similarly if both nodes are
determined.

These constraints enable to express more complicated constraints such as
Reachables(G, N, SN) which states SN must be the set of nodes reachable from
N in G (the transitive closure of the adjacency relation in G) or Path(G, N1, N2)
which holds if G is a path from node N1 to node N2. While these constraints
can be expressed using kernel constraints, they are more efficient when imple-
mented using dedicated global propagators (either for their consistency level or
algorithmic complexity).

CP(Graph) enables to express constrained subgraph extraction problems
such as the TSP or the equicut problem:

– Finding the TSP in graph g with weights w: minimize Weight(G, w) s.t.

SubGraph(G, g) ∧ Cycle(G) ∧ Nodes(G) = Nodes(g)

– Graph partitioning problem: equicut of a graph g of even order: minimize
(Arcs(g) \ (Arcs(G1) ∪ Arcs(G2))) s.t.

SubGraph(G1, g)∧SubGraph(G2, g)∧Nodes(G1)∪Nodes(G2) = Nodes(g)∧

#Nodes(G1) = #Nodes(G2) =
1

2
#Nodes(g)

2

Related work: constraint programming was used to solve constrained path
finding problems in [11] using a finite domain model (successor variables). Path
variables were introduced in [12] to solve constrained path problems as part
of a network design problem. A cost-based filtering technique for constrained
shortest path problems was described in [13] and a global path constraint was
presented in [14]. Graphs also play an important role in constraint programming
in the design of propagators for global constraints: graph algorithms are used
[15] and global constraints were modeled as networks of similar constraints [16,
17]. The problem addressed in this paper is similar to queries addressed in the
model checking approach of BIOCHAM [18]. While queries about reachability
can be handled by both systems, it seems that some queries such as optimization
problems can be expressed using CP(Graph) but not with CTL logic.

As it is, CP(Graph) allows constrained subgraph extraction. However, we are
also working on constrained approximate subgraph isomorphism [19] by extend-
ing CP(Graph) with map variables [20, 21].

3 Metabolic network analysis experiments

The general kind of analysis we wish to perform with CP(Graph) is pathway
discovery by constrained subgraph extraction. One potential application of this
type of analysis lies in assisted explanation of DNA chip experiments. In such
experiments, the behavior of a sane cell and a mutant are compared in a given
context (the substrate on which they are living or more generally their environ-
ment). This comparison is done at different times by extracting and amplifying
the expressed RNA in the nucleus of the cells (this kills the cell). This RNA is
then put on a DNA chip: an array of representative sequences of bases for a set
of genes. The RNA binds to the chip in the locations which are specific to it.
That array is then scanned to see the level of expression of each RNA strand.
That RNA encodes for given enzymes which catalyze given reactions. Hence,
the level of RNA can be translated into the information of which reactions were
active in the cell at the time its RNA was extracted. Given this set of reactions,
biologists would like to know which processes where active in the cell. If a CSP
allows to recover known processes from sets of reactions, it could be adequate
to discover the real processes given other sets of reactions. Hence, such a CSP
could approximate the real processes at work in a cell from DNA chip results.
These computational results could then be used to further guide other concrete
experiments which are more expensive.

The current experiments focus on linear pathways by doing constrained short-
est path finding. Future work comprise increasingly better characterizations of
the CSP (ie. more constraints which increase the rate of correct recovery) and a
formulation of a CSP for pathways which contains branchings or cycles.

3

3.1 Prototype of CP(Graph) Implemented in Oz/Mozart and
Gecode

We implemented a prototype of CP(Graph) in the Oz/Mozart [22] constraint
programming framework. A set of nodes and a set of arcs are used to implement
each graph variable. We also implemented this prototype over the Gecode generic
constraint development environment [23]. In these prototypes, we implemented,
among others, the global path propagator of [14].

3.2 Constrained Shortest Path Finding

As about half of the known pathways are simple paths [24], one type of experi-
ment consists in trying to find these pathways by using constrained path finding
in a directed graph (knowing a few nodes of the path). In [25], experiments were
done first with a dedicated shortest path finding algorithm. Then some nodes
(the pool metabolites, molecules like ATP or H2O which are ubiquitous and take
part in many reactions) were removed from the graph and the results compared
with the previous ones. Some pathways, such as glycolysis, however use some
of these metabolites as intermediates. In order to decrease the likelihood of se-
lecting these nodes while still allowing to select them, all nodes were assigned a
weight proportional to their degree. As pool metabolites have a very high degree,
they are much less likely to be selected in the shortest paths.

Our experiment consists in redoing the former experiment with an additional
constraint of mutual exclusion for certain pairs of reactions. These pairs are
reverse reactions (the reaction from substrates to products and the one from
products to substrates). Most of the time, these reactions are observed in a single
direction in each species. Hence we wish to exclude paths containing both in our
experiment. Such additional constraints like mutual exclusion are not always
easily integrated in dedicated algorithms [25]. In CP(Graph) it just consists in
posting a few additional constraints. If n1, ..., nm are the included reactions and
(ri1, ri2), 0 < i ≤ t the mutually exclusive pairs of nodes, the program looks like:
miminize Weight(G, w) s.t.

SubGraph(G, g) ∧ Path(G, n1, nm) ∧ ∀0 < i ≤ m : ni ∈ Nodes(G)∧

∀i ∈ [0, t] : ri1 /∈ Nodes(G) ∨ ri2 /∈ Nodes(G)

In our experimental setting we first extract a subgraph of the original metabolic
bipartite digraph by incrementally growing a fringe starting by the included
nodes. Then, given a subset of the reactions of a reference pathway, we try to find
the shortest constrained path in that subgraph. The first process of extraction
of a subgraph of interest is done for efficiency reasons as the original graph is
too big to be handled by the CSP (it contains around 16.000 nodes). The results
are presented in Table 1, it shows the increase of running time, memory usage
and size of the search tree with respect to the size of the graph for the extraction
of three illustrative linear pathways shown in [25]. All reactions are mandatory
in the first experiment. The results of another experiment where one reaction

4

out of two successive reactions in the given pathway is included in the set of
mandatory nodes, is presented in Table 2.

The running time increases greatly with the size of the graphs. The program
can however be stated in a few lines and first results obtained the same day
the experiment is designed. The limitation on the input graph size does not
guarantee to get the optimal shortest path in the original graph. This should
however not be a major problem as biologists are most of the time interested
in a particular portion of the metabolic graph. The rapidity of expression and
resolution of such a NP(Hard) [13] problem outweights this size limitation.

Future work comprise two main aspects. The first is being able to cope with
bigger graphs. We could design more efficient heuristics for labelling. The use of
a cost-based filtering method could prune the size of the graph given an upper
bound of the cost. Such an upperbound is available as soon as a first solution
is found. Another solution would be to use an a-priori upper bound of the cost
which would need to be increased or removed if no solution is found. The second
aspect of our future work consists in finding which additional constraints are
needed to recover known pathways as it was shown in [25] that non-constrained
shortest paths are not able to recover all of them.

We are currently working on a extention of this approach to discovering
pathways containing branchings or cycles. A first formulation we wish to test is
the following: find the smallest graph containing all the seeds such that there is
a seed from which all other nodes are reachable.

Given sns a set of nodes (seeds), minimize Weight(G, w) subject to:

N ∈ sns, sns ⊆ Nodes(G) ∧ Reachable(G, N, Nodes(G))

Glycolysis (m=8) Heme (m=8) Lysine (m=9)

Size t Time Nodes Mem Size t Time Nodes Mem Size t Time Nodes Mem

50 12 0.2 20 2097 50 22 0.2 32 2097 50 18 0.2 38 2097
100 28 2.5 224 2097 100 36 0.3 22 2097 100 40 4.7 652 2097
150 48 41.7 1848 4194 150 62 1.0 28 2097 150 56 264.3 12524 15204
200 80 55.0 1172 5242 200 88 398.8 7988 18874 200 70 - - -
250 84 127.6 4496 8912 250 118 173.3 2126 9961 250 96 - - -
300 118 2174.4 16982 60817 300 146 1520.2 21756 72876 300 96 - - -

Table 1. Comparison of the running time [s], number of nodes in the search tree and
memory usage [kb], for the 3 pathways and for increasing original graph sizes. m is the
number of node inclusion constraints and t the number of mutual exclusion constraints.

4 Conclusion

The problem of discovering the processes at work in a cell given a set of reactions
can be modeled as a constrained subgraph extraction problem. But the formal

5

Glycolysis (m=5) Heme (m=5) Lysine (m=5)

Size t Time Nodes Mem Size t Time Nodes Mem Size t Time Nodes Mem

50 12 0.2 22 2097 50 22 0.3 44 2097 50 18 0.1 16 2097
100 28 2.5 230 2097 100 36 0.9 78 2097 100 40 13.3 1292 3145
150 48 79.3 5538 6815 150 62 7.3 144 3145 150 56 260.4 8642 14155
200 80 39.9 1198 5767 200 88 57.3 950 5242 200 70 4330.5 74550 192937
250 84 323.6 5428 14680 250 118 36.0 350 8388 250 96 - - -
300 118 10470.8 94988 296747 300 146 - - - 300 96 - - -
Table 2. Same experiment as in Table1, but with one reaction node included every
two (m = 5 instead of 8 or 9).

expression of this problem is not yet clear. In order to refine it, we first evaluate
the various problem formulations on recovering known pathways. We hope the
best solution to the reduced problem will be suitable to solve the more general
problem of discovering real pathways.

Such an approach is difficult to achieve using dedicated algorithms as new
algorithms must be designed each time a new problem formulation is to be
evaluated [25]. A declarative approach is more practical as it just requires the
formulation of the problem in a declarative language. Constraint programming is
a declarative framework which has been successfully used to solve hard problems.
CP(Graph) is a constraint programming computation domain suitable to express
constrained subgraph extraction problems. It provides a higher level interface to
define such problems and should be easier to use by bio-informaticians than
classical finite domain or finite set computation domains.

This first application of CP(Graph) on constrained shortest path problems
in metabolic networks shows that it is appropriate to express and solve these
metabolic network extraction problems. We shall continue this work by moving
to non linear pathways and trying to cope with bigger graphs.

Our future work includes an extention to pathways which contain cycles and
branchings, the handling of larger graphs, and the experimental characterization
of the formalization of the problem of recovering known pathways from the
metabolic graph using CP(Graph).

References

1. Minoru, K., Susumu, G., Shuichi, K., Akihiro, N.: The KEGG databases at
GenomeNet. Nucleic Acids Research 30(1) (2002) 42–46

2. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabasi, A.: The large-scale orga-
nization of metabolic networks. Nature 406 (2000) 651–654

3. Kim, B., Yoon, C., Han, S., Jeong, H.: Path finding in scale-free networks. Phys
Rev E Stat Nonlin Soft Matter Phys 65 (2002) 27101–27104

4. R. Alves, R.A. Chaleil, M.S.: Evolution of enzymes in metabolism: a network
perspective. Journal of Molecular Biology 320 (2002) 751–770

5. van Helden, J., Naim, A., Mancuso, R., Eldridge, M., Wernisch, L., Gilbert, D.,
Wodak, S.: Representing and analyzing molecular and cellular function using the
computer. Journal of Biological Chemistry 381(9-10) (2000) 921–35

6

6. van Helden, J., Wernisch, L., Gilbert, D., Wodak, S.: Graph-based analysis of
metabolic networks. In: Bioinformatics and genome analysis. Springer-Verlag
(2002) 245–274

7. Dooms, G., Deville, Y., Dupont, P.: Recherche de chemins contraints dans les
réseaux biochimiques. In Mesnard, F., ed.: Programmation en logique avec con-
traintes, actes des JFPLC 2004, Hermes Science (June 2004) 109–128

8. Dooms, G., Deville, Y., Dupont, P.: Constrained path finding in biochemical net-
works. In: Proceedings of JOBIM 2004. (2004) JO–40

9. Grégoire Dooms, Yves Deville, Pierre Dupont: CP(Graph): Introducing a Graph
Computation Domain for Constraint Programming. In: Proceedings of the
Eleventh International Conference on Principles and Practice of Constraint Pro-
gramming. Number LNCS, Springer-Verlag (2005)

10. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput. 85 (1990) 12–75

11. Pesant, G., Gendreau, M., Potvin, J., Rousseau, J.: An exact constraint logic
programming algorithm for the travelling salesman with time windows. Transp.
Science 32 (1996) 12–29

12. Lepape, C., Perron, L., Regin, J.C., Shaw, P.: A robust and parallel solving of a
network design problem. In: Proceedings of the 8th International Conference on
Principles and Practice of Constraint Programming. Volume LNCS 2470. (2002)
633–648

13. Sellmann, M.: Cost-based filtering for shorter path constraints. In: Proceedings
of the 9th International Conference on Principles and Practise of Constraint Pro-
gramming (CP). Volume LNCS 2833., Springer-Verlag (2003) 694–708

14. Cambazard, H., Bourreau, E.: Conception d’une contrainte globale de chemin. In:
10e Journ. nat. sur la résolution pratique de problèmes NP-complets (JNPC’04).
(2004) 107–121

15. Régin, J.: A filtering algorithm for constraints of difference in CSPs. In: Proc.
12th Conf. American Assoc. Artificial Intelligence. Volume 1. (1994) 362–367

16. Beldiceanu, N.: Global constraints as graph properties on structured network of
elementary constraints of the same type. Technical Report T2000/01, SICS (2000)

17. Beldiceanu, N.: Global constraint catalog. Technical Report T2005-08, SICS (2005)
18. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction net-

works in the biochemical abstract machine biocham. Journal of Biological Physics
and Chemistry 4 (2004) 64–73

19. Yves Deville, Grégoire Dooms, Stéphane Zampelli, Pierre Dupont:
CP(Graph+Map): Constrained Approximate Subgraph Matching. In: INGI
Research report 2005-07. (2005)

20. Gervet, C.: Interval propagation to reason about sets: Definition and implementa-
tion of a practical language. CONSTRAINTS Journal 1(3) (1997) 191–244

21. Hnich, B.: Function Variables for Constraint Programming. PhD thesis, SICS,
Sweden (2003)

22. Mozart Consortium: The mozart programming system version 1.2.5 (December
2002) http://www.mozart-oz.org/.

23. Gecode: Generic Constraint Development (2005) http://www.gecode.org/.
24. Lemer, C., Antezana, E., Couche, F., Fays, F., Santolaria, X., Janky, R., Deville, Y.,

Richelle, J., Wodak, S.J.: The aMAZE lightbench: a web interface to a relational
database of cellular processes. Nucleic Acids Research 32 (2004) D443–D448

25. Croes, D.: Recherche de chemins dans le réseau métabolique et mesure de la
distance métabolique entre enzymes. PhD thesis, ULB, Brussels (2005) (in prepa-
ration).

7

