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Abstract

Time-related optimization problems are very hard to solve. Scheduling covers
a subcategory of such problems where the goal is to place events in time. The
discretization of time triggers a rapid growth of possible placements, leading to
large search spaces. While scheduling problems were already computationally
solved two decades ago, large real-world sized instances seemed to be out
of reach back then. The recent gain of computational power brought by
modern computers is not large enough to counter the combinatorial explosion
of scheduling problems. However, with the recent developments of these two
last decades, new promising resolution techniques have emerged. One of these
techniques that will be at the core of this thesis is Constraint Programming (CP).
This paradigm allows to express declaratively discrete constrained optimization
problems. This thesis achieves two main goals. First, we design new abstractions
and techniques to enrich the set of tools CP can use to solve Schedul...
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A B S T R A C T

Time-related optimization problems are very hard to solve. Schedul-
ing covers a subcategory of such problems where the goal is to place
events in time. The discretization of time triggers a rapid growth of
possible placements, leading to large search spaces. While scheduling
problems were already computationally solved two decades ago, large
real-world sized instances seemed to be out of reach back then. The
recent gain of computational power brought by modern computers is
not large enough to counter the combinatorial explosion of scheduling
problems. However, with the recent developments of these two last
decades, new promising resolution techniques have emerged. One of
these techniques that will be at the core of this thesis is Constraint Pro-
gramming (CP). This paradigm allows to express declaratively discrete
constrained optimization problems.

This thesis achieves two main goals. First, we design new abstrac-
tions and techniques to enrich the set of tools CP can use to solve
Scheduling problems. Second, we prove that CP is able to solve large
instances of real-world scheduling problems in short amounts of time.

Several new scheduling abstractions for CP are introduced in this
thesis. The two most important ones are the conception of two new
propagation procedures useful for time-related problems. Propagation
is a mechanism of CP that allows to remove parts of the search space
that are provably unfeasible, i.e., that do not contain any feasible solu-
tions. The first propagation procedure introduced performs Forward-
Checking propagation for the Nested Global Cardinality Constraint
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(Nested GCC). This constraint allows to bound the number of occur-
rences of values on nested ranges of variables. The second propagation
procedure is designed for a new constraint: the unary resource with
transition times. This constraint forbids a group of activities to overlap
in time and imposes a minimal delay between each pair of activities
from this group.

We apply CP scheduling resolution techniques on four industrial
problems. These four problems take place in two main sectors of activ-
ity: medical treatment centers and industrial production. The tree first
problems attempt at scheduling the steps followed by patients in radio-
therapy treatment centers. The last problem aims at reducing the en-
ergy costs of industrial sites by shifting their most energy-demanding
production tasks when electricity prices are the lowest. These four
problems have been solved on either realistic generated instances or on
historical instances. By coupling CP with Large Neighborhood Search,
a diversification strategy, we have been able to provide high quality
solutions to these four problems.
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I N T R O D U C T I O N

time-related problems in constraint programming

Since mankind has been able to perform philosophic reasoning, time
has always been fascinating us. Zeno of Elea (490–430 BC), a Greek
philosopher, was already measuring the time needed by Achilles to
catch up a tortoise. The recent advances of science are completely mod-
ifying the vision we have of this abstract concept. With the evolution
of computation power brought by modern computers, we are able to
solve larger and larger time-related problems.

This thesis aims at solving time-related problems in a combinato-
rial optimization context. The most widely explored category of prob-
lems that we investigate in this thesis is called scheduling. Scheduling
groups a wide range of problems in which the aim is to determine
when a set of events must take place. The possible placements of these
events are subject to constraints. These constraints can link events to-
gether, impose that some events use a resource, etc. Most of the time,
finding a feasible solution to a scheduling problem is not enough: the
quality of the solution also matters. In scheduling, optimization aims
at finding a possible schedule such that one or several optimization
criteria are either minimized or maximized.

We have used Constraint Programming (CP) to solve scheduling
problems. CP is a paradigm to solve constrained problems. This para-
digm allows to formally define a problem in which constraints are
declaratively stated. As such, a CP model describes the solutions but
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2 introduction

not how to obtain them. CP models define the search space contain-
ing all the feasible solutions. For many problems, the search space is
so large that, even with computer billions of time more powerful than
those we have right now, it would take billions of times the age of
the universe to totally browse it. Propagation is a technique of the CP
paradigm aiming at removing parts of the search space that are prov-
ably unfeasible. This reduction of the search space allows to tackle
several large problems that would not be solvable otherwise.

In this thesis, we propose several new abstractions, including two
propagation procedures for CP. The first propagation procedure de-
veloped in this thesis deals with the Nested Global Cardinality Con-
straint. The Nested GCC restricts the number of occurrences of values
on embedded ranges of variables. Considering a range of four vari-
ables x1, x2, x3, x4, it could for example impose that at least 1 variable
takes the value 2 in the range x1, x2, x3 and at most two variables take
the value 1 in the range x1, x2, x3, x4. The second propagation proce-
dure we develop in this thesis is for the unary resource with transition
times. In scheduling problems, it constrains two events not to over-
lap in time and impose a minimal delay between these events. Other
additional abstractions are also presented in this thesis. They are high-
lighted and detailed in the chapters of this thesis.

This thesis has been realized under two successive grants from the
Walloon region. These grants were provided to realize research con-
sulting for industrial projects.

For the first project called MIRROR, we have proposed and solved
scheduling models to optimize the schedule of patient treatment in
medical centers. Two different contexts were considered: Proton Ther-
apy (PT) centers and Nuclear Medicine (NM) centers. Proton Therapy
is a technique used in the treatment of cancer. During each PT treat-
ment session, the tumor of a patient is exposed to a beam of accelerated
protons. Successive sessions will attack the tumor, hopefully leading to
a full recovery for the patient. On the other hand, Nuclear Medicine
centers are used for diagnostic reasons. In NM centers, patients are in-
jected with nuclear tracers. As these tracers decay, they emit radiations
that can be captured by scanner sensors, allowing to obtain an image
of the desired part of the body.

The second industrial project, called InduStore, aims at reducing en-
ergy costs of industrial sites. The prices of electricity on the European
market varies hour by hour, sometimes dramatically. The aim of this
project is to propose production plans for industrial sites such that



introduction 3

their global electricity costs are reduced. To achieve that our model
attempts to schedule production processes with high energy demands
when the electricity prices (forecasts) are lower.

All these industrial problems have been solved using the abstrac-
tions we introduce in this thesis. We use CP in combination with Large
Neighborhood Search (LNS), a strategy exploring the neighborhood
of solutions. We show in this thesis how CP + LNS is able to solve
several hard industrial problems on real-world instances in relatively
small amounts of time.

Grab your best reading glasses, grab a good Belgian beer, and on-
wards with the reading. For the glory of Science, may the Force be
with you!

contributions

The main contributions of this thesis are the following:

the unary resource with transition times constraint

We introduce a new global constraint: the unary resource with transi-
tion times. An efficient propagation procedure is detailed for this con-
straint. This procedure contains propagators running in O(n log(n))
where n is the number of activities on the considered unary resource.
This propagation procedure is compared to other state-of-the art pro-
pagators.

an fwc propagation procedure for the nested gcc

We introduce a new Forward Checking propagation procedure for the
Nested GCC constraint. We propose a pre-computation step strength-
ening the bounds for this constraint, allowing additional pruning over
initial bounds. A dedicated propagator running in O(log(p)) is also
introduced, where p is the number of ranges of variables constrained
by the constraint.

resolution of the proton therapy problem

We propose two different models for the Proton Therapy Problem. A
model is described and solved using a CP + LNS approach. We have
solved this problem for large real-world instances.

ten weeks ahead appointment schedule problem

We propose reactive optimization for the Ten Weeks Ahead Appoint-
ment Schedule Problem. The reactive approach is able to solve real-



4 introduction

world sized instances using CP + LNS in reasonably small amounts
of time.

resolution of the nuclear medicine problem

We solve the multi-objective Nuclear Medicine Problem using CP +
LNS. Two new propagation procedures are introduced for constraints
dealing with the exponential components of the problem. These prop-
agation procedures rely on two new views for view-based propagator
derivation.

resolution of the paper production planning problem

We solve the Paper Production Planning Problem using a CP + LNS
approach. We solve this problem over historical instances and we
prove the benefits brought by the optimization resolution.

Several fragments of the source code produced for this thesis are de-
tailed in Appendix A. This thesis has also brought many contributions
to the open-source OscaR solver [Osc12].

publications

The four main publications discussed in this thesis are the following.

workshop publications

[Dej13] Cyrille Dejemeppe. “Alternative Job-Shop Scheduling For
Proton Therapy.” In: CP Doctoral Program 2013 (2013), p. 67.

conference publications

[DCS15] Cyrille Dejemeppe, Sascha Van Cauwelaert, and Pierre
Schaus. “The Unary Resource with Transition Times.” In:
Principles and Practice of Constraint Programming. Cork, Ire-
land: Springer International Publishing, 2015.

[DD14] Cyrille Dejemeppe and Yves Deville. “Continuously De-
grading Resource and Interval Dependent Activity Dura-
tions in Nuclear Medicine Patient Scheduling.” In: Inte-
gration of AI and OR Techniques in Constraint Programming.
Cork, Ireland: Springer International Publishing, 2014, pp.
284–292.



Conference Publications 5

[Dej+16] Cyrille Dejemeppe, Olivier Devolder, Victor Lecomte, and
Pierre Schaus. “Forward-Checking Filtering for Nested
Cardinality Constraints: Application to an Energy Cost-
Aware Production Planning Problem for Tissue Manufac-
turing.” In: Integration of AI and OR Techniques in Constraint
Programming. Banff, Canada: Springer International Pub-
lishing, 2016.

In addition to those, two other papers have been written during
this thesis. The first one has already been published and presented at
the CPAIOR 2015 conference. It was however not in the scope of this
thesis and therefore left out on purpose. The second paper has been
submitted at the CP 2016 conference, but has not yet been accepted.
This paper, while in the scope of this thesis, has been written during
the writing of this thesis manuscript and therefore left out of it.

conference publications

[Cau+16] Sascha Van Cauwelaert, Cyrille Dejemeppe, Jean-Noël
Monette, and Pierre Schaus. “Efficient Filtering for the
Unary Resource with Family-based Transition Times.” In:
Principles and Practice of Constraint Programming (submitted,
to be accepted). Springer International Publishing, 2016.

[DSD15] Cyrille Dejemeppe, Pierre Schaus, and Yves Deville. “Deri-
vative-Free Optimization: Lifting Single-Objective to Multi-
Objective Algorithm.” In: Integration of AI and OR Tech-
niques in Constraint Programming. Barcelona, Spain: Sprin-
ger International
Publishing, 2015, pp. 124–140.

outline

This thesis is divided in four parts. The first part contains background
information about the technical aspects of the thesis. The second part
introduces propagation procedures associated to constraints used to
solve time-related problems in CP. The third part presents schedul-
ing applications in the context of radiotherapy treatment centers. The
fourth part describes the resolution of a production planning indus-
trial problem.



6 introduction

In Part I, Chapter 1 dives into the main concepts of the Constraint
Programming paradigm. It gives all the key concepts needed to un-
derstand the role and internal mechanisms of constraint propagation.
Then, Chapter 2 presents Scheduling, a category of time-related prob-
lems. All the components needed to understand the various schedul-
ing models of this thesis are described there. To conclude this part,
Chapter 3 describes performance profiles in the context of propagator
comparison. This technique is used throughout this thesis to compare
various propagation procedures.

In Part II, Chapter 4 introduces a new propagation procedure in
Forward Checking for the Nested GCC. It also introduces a pre-compu-
tation procedure aiming at strengthening bounds to achieve stronger
pruning. Chapter 5 introduces the new unary resource with transition
times constraint. A dedicated propagation procedure is also detailed
in this chapter.

Part III begins with Chapter 6 that introduces the Proton Therapy
Problem and the Ten Weeks Ahead Appointment Schedule Problem.
These two problems aim at scheduling patient treatment sessions in a
Proton Therapy center. Chapter 7 tackles the Nuclear Medicine Prob-
lem in which patient treatment sessions have to be scheduled in a
Nuclear Medicine center.

Finally, Part IV contains a single chapter: Chapter 8. This chapter
tackles the resolution of the Paper Planning Production Problem. It
also tests the model and the CP + LNS resolution strategy on historical
instances.



Part I

B A C K G R O U N D





1
C O N S T R A I N T
P R O G R A M M I N G

With great power comes great responsibility.
—Uncle Ben, Spider-Man

Do, or do not. There is no ’try’.
—Yoda, Star Wars: Episode V - The Empire Strikes Back

No matter how small you start, always dream big.
—Stephen Richards

The more constraints one imposes, the more one frees one’s self.
And the arbitrariness of the constraint serves only to obtain
precision of execution.

—Igor Stravinsky

Problems are hidden opportunities, and constraints can actually
boost creativity.

—Martin Villeneuve
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10 constraint programming

As described in [WN14], Combinatorial Optimization Problems attempts
to efficiently allocate a set of limited resources to optimize a deter-
mined objective where the concerned resources can only be divided
into discrete parts. These resources may be machines, people or any
other discrete quantity and the constraints on these resources restricts
the possible alternatives to a finite set. Usually, the amount of possible
alternatives is too large to be completely enumerated for instances of
realistic size. For example, a steel production site might desire to plan
its production such that its electricity costs are minimized. Combina-
torial optimization problems are modeled with the help of variables,
terms used to represent integer quantities of the problem. These vari-
ables can be assigned to a limited set of values. A complete assignment
(or solution) is the assignation of all the variables to a single value.
The search space is the set of all potential assignments of values to the
variables of the problem. A feasible solution to the problem is a com-
plete assignment respecting all the constraints. When dealing with an
optimization problem, an objective function is used to associate a pref-
erence value (referred to as objective value) to each possible solution.
The resolution of a combinatorial optimization problem is to find the
feasible solution with the most preferred objective value, e.g., in a min-
imization context, this would be the feasible solution with the smallest
objective value. Many optimization techniques exist and this chapter
aims at describing one of them: Constraint Programming

Constraint Programming (CP) [Apt03, RVW06, Pie15] is a paradigm
using constraint abstractions for solving hard combinatorial problems.
Constraint Programming is declarative; it describes the search space
with variables and possible values for those; then it states constraints
restricting possible assignments to feasible solutions. This means that
CP only defines what are the possible solutions; it does not describe
how to obtain them. As other combinatorial optimization techniques,
the aim of CP is to find feasible solutions inside the search space. A
solution is said to be feasible if it lies within the search space and all con-
straints are satisfied. Constraint Programming is a potentially complete
resolution technique. It can be used to search all the feasible solutions
in the search space. This means that it will explore the whole search
space – or at least the whole feasible region inside the search space. To
avoid browsing all potential solutions, CP methodically removes un-
feasible regions from the search space. This is done with the help of
propagation procedures associated to the constraints of the problem.
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CP aims at solving two different categories of problems. In the first
category, one is interested in finding a single feasible solution. Such
problems are called Constraint Satisfaction Problems (CSPs). In the sec-
ond category of problems, one is interested in finding the best feasi-
ble solution according to a set of criteria. Such problems are called
Constraint Optimization Problems (COPs). In Section 1.1, we define Con-
straint Satisfaction Problems; similarly, Section 1.2 defines Constraint
Optimization Problems. Then, Section 1.3 describes the propagation
mechanisms associated to constraints allowing to reduce the search
space. Section 1.4 explains how the browsing of the search space is
performed in a CP framework. Finally, Section 1.5 describes the Large
Neighborhood Search metaheuristic used in combination with CP to
solve hard COPs.

1.1 constraint satisfaction problem

A Constraint Satisfaction Problem (CSP) is a representation of a com-
binatorial optimization problem. It is defined by a set of decisions vari-
ables, a set of domains (possible values for variables), and a set of
constraints restricting assignments of values to variables. The domains
associated to variables are discrete. The aim of solving a CSP is to as-
sign a single value to each decision variable from its domain such that
the constraints are satisfied.

Formally, a CSP is a triplet CSP(X, D, C) where X is a set of n vari-
ables, D is a set of n domains and C is a set of m constraints.

variables X = {x1, . . . , xn}
Variables are containers modeling quantities that can refer to objects
of the modeled problem. Variables can also be used solely for the pur-
pose of modeling. These latter variables are automatically assigned if
the decision variables are assigned. We often refer to variables corre-
sponding to problem objects as decision variables while the variables
used only for the model are simply referred to as variables.

domains D = {D(x1), . . . , D(xn))}
To each variable xi is associated a domain D(xi) that is the set of
possible values for xi. The search for a solution for the CSP applies
changes (reduction and restoration) to domains. Therefore, a distinc-
tion is made between the initial domain Dinit(xi) of variable xi and
its current domain D(xi). There are two ways to represent a domain:
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either in extension where all the possible values are explicitly enu-
merated or with a range where only the lower and upper bounds of
the domain are mentioned. The latter representation allows compact
representation of domains but can only be used when there are no
holes in the middle of the specified range.

constraints C = {c1, . . . , cm}
A constraint cj restricts combination of values from a subset of vari-
ables from X. This subset of variables on which cj applies is referred
to as the scope of the constraint scope(cj) ⊆ X. The arity of a constraint
cj is the cardinality of its scope:

∣∣scope(cj)
∣∣.

The cross-product of domains of a subset of variables Y ⊆ X are de-
noted D(Y). An assignment of a set of variables Y =

{
y1, . . . , yp

}
⊆ X

is a set of pairs
{
(y1, v1) , . . . ,

(
yp, vp

)}
with

{
v1, . . . , vp

}
∈ Dinit(Y).

An assignment is valid if the values are contained in the domains of
the variables i.e.,

{
v1, . . . , vp

}
∈ D(Y). When an assignment of a set of

variables Y is such that it contains all the variables X of the CSP (i.e.,
Y = X), we say that it is a total assignment. This implies that an assign-
ment is total only if all the variables of the CSP are assigned to a value.
An assignment of a set of variables Y ⊆ X satisfies a constraint cj ∈ C if
its restriction to variables from scope(cj) is such that scope(cj) ⊆ Y and
is allowed by cj. By extension, an assignment of variables satisfies a set
of constraints K ⊆ C if the assignment satisfies all the constraints in K.
The purpose of a CSP resolution is to find a complete assignment such
that all constraints are satisfied. In other words, CSP solving aims at
finding a total valid assignment. In this thesis, the set of solutions from
a CSP, P = CSP(X, D, C), will be denoted sols(P).

1.1.1 CSP Example: The Graph Coloring Problem

The graph coloring problem is a combinatorial problem that can be
represented as a CSP. It aims at coloring the different regions delim-
ited on a map such that two adjacent regions (regions sharing a border)
are filled with different colors. When the number of available colors is
much smaller than the number of regions to fill, this problem becomes
hard to solve by hand. Figure 1.1 shows a map of the provinces of
Belgium as an example. This problem can be represented as a graph-
coloring problem [Myc55]. To do so, every delimited region becomes a
vertex and there is an edge between two vertices if the two correspond-
ing regions are adjacent. For example, the map from Figure 1.1 would
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give the graph from Figure 1.2. A possible CSP representation for this
problem could be the following one:

variables

There is one variable per delimited region (i.e., vertex in the corre-
sponding graph) that has to be colored. Each variable represents the
color that will fill the region. In the example from Figures 1.1 and 1.2,
there are 10 variables, one per province:

X = {WF, EF, A, Lim, FB, WB, H, N, Liè, Lux}

domains

All variables have the same initial domain containing the set of colors
available to fill the regions on the map. In the example from Fig-
ures 1.1 and 1.2, we consider that there are four available colors, lead-
ing to the following initial domains:

Dinit(X) = {blue, orange, green, violet}

constraints

There is one constraint per pair of regions sharing a common fron-
tier. In the example from Figures 1.1 and 1.2, the variable WF is in
the scope of two constraints: WF 6= EF and WF 6= H. In the graph
representation from Figure 1.2, each edge represent one of these con-
straints. This example contains 19 edges; hence, its CSP representa-
tion has a set of 19 constraints in total.

The example from Figure 1.1 contains 10 variables that can take 4

different values. A feasible solution to this example problem is shown
in Figure 1.3. This very small example leads to a search space contain-
ing 104 different potential assignments. Despite this large search space,
a human should be able to find a solution in less than 30 seconds. It
is because we tend to apply deductions and reasoning instead of enu-
merating all solutions. However, a human would take much longer to
solve the same problem on all regions of countries from the EU. Fortu-
nately, the Constraint Programming framework is able to solve large
instances in a reasonably small amount of time using constraint propa-
gation and search. Those two techniques are detailed in later sections.

1.2 constraint optimization problem

A Constraint Optimization Problem (COP) is an extension of a CSP to
which we add one or several optimization objectives. The aim of a COP
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Figure 1.1: Example of map for the coloring problem. This is a map of Bel-
gium divided into its ten provinces.
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Figure 1.2: Graph representation of map from Figure 1.1 for the coloring prob-
lem. Each province is represented by a vertex and there is an edge
between two provinces when they share a common frontier.

is to find an assignment of values to variables satisfying the constraints
such that it optimizes one or several optimization functions. Formally,
A COP is defined as a quadruplet COP(X, D, C, O) where X, D and C
are respectively the set of variables, domains and constraints defined
in Section 1.1 and O is a set of objectives.
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Figure 1.3: Possible solution of the map coloring problem from Figure 1.1.

objectives O = {o1, . . . , ol}
Objectives are functions whose output depends on a subset of vari-
ables from X. Each of these objectives has to be optimized, i.e., either
minimized or maximized.

A clear distinction is made between techniques for single-objective and
multi-objective optimization.

Single-objective optimization aims at finding a single solution optimiz-
ing a single objective function. When considering a single optimization
objective, it is straightforward to compare two solutions and determine
which one is more desirable. For example, when comparing two solu-
tions si, sj ∈ sols(P) in a minimization context with a single objective
function f : Rn → R, si is better than sj if f (si) < f (sj). Single objec-
tive optimization can aggregate several optimization criteria in a single
objective function. Therefore, we will use the word criteria to refer to
the different goals of the optimization. The term objective will be used
to refer to the single objective function used in our model, possibly ag-
gregating several optimization criteria. There are multiple possibilities
to consider several criteria in single objective optimization. A first pos-
sibility is to aggregate all these criteria with a weighted sum. Another
option is to order these criteria by decreasing preference; such objec-
tive criteria can thus be considered in a lexicographical order. When com-
paring two solutions, we first compare them according to the first (the
most important) objective criterion. If the solutions cannot be discrimi-
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nated on this criterion, we then compare them on the second objective,
and so on.

Multi-objective optimization aims at finding a set of solutions that are
tradeoffs between the multiple objective functions considered [Anj56].
Indeed, when comparing solutions in a multi-objective context, it is
not always possible to determine a single best solution. Considering a
set of objective functions F ≡ { f1, . . . , fm}, a solution si can be more
desirable according to an objective fp than sj but oppositely si can be
less desirable than sj according to another objective fq. The Pareto dom-
inance [Par74] allows to evaluate if a solution is better than another
solution with regards to several objective functions. In the context of
minimization, the following definition of Pareto dominance is used.
Considering two solutions si, sj ∈ sols(P), we say that solution si dom-
inates solution sj on objective functions f1, . . . , fm, written si ≺ sj, if
the two following conditions are satisfied:

si ≺ sj ≡

 ∀ p ∈ {1, . . . , m} : fp(si) ≤ fp(sj)

∃ q ∈ {1, . . . , m} : fq(si) < fq(sj)

Alternative dominance definitions exist, as those proposed in [KRK08,
ZBT07, ALN99], but they are not detailed in this thesis. A solution si
is said to be Pareto optimal if it satisfies the following condition:

@ sj ∈ sols(P) : sj ≺ si

The Pareto optimal set is defined as the set of Pareto optimal solutions,
i.e. the set of non-dominated solutions. Multi-objective optimization
techniques aim at finding an approximation of this Pareto optimal set.

1.2.1 COP Example: The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) [Lit+63] is a combinatorial prob-
lem that can be represented as a COP. Given a set of locations and their
pair distances, the aim is to find the smallest route, in terms of distance,
to visit all the locations in a single loop. As the number of locations
increases, this problem becomes hard to solve by hand. Let us sup-
pose as an example that Bernie Sanders, one of candidate for the USA
presidency, decides to visit the ten most populated cities in the USA
for his campaign. Once he has visited a city, he has to take a flight to
pursue his tour to the next city. Figure 1.4 shows a map with the ten
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most populated cities of the USA. As Bernie’s campaign is based on
ecology, he decides to make as few miles as possible in flight. Hence,
he has to find the shortest circuit of direct flights between these cities.
A possible COP representation for this problem could be the following
one:

variables

There is one variable si per location i to visit. Each variable si repre-
sents the successor location of i i.e., si is the location visited right after
i. In the example from Figure 1.4, there are 10 variables, one per city
on the map.

domains

All variables have an initial domain containing all the locations but
themselves. In the example from Figure 1.4, there are ten cities and
each initial domain thus contains nine cities.

constraints

There is a single constraint for this classic TSP. The Circuit con-
straint [Lau78] ensures that all locations are visited once (i.e., the
succession of nodes forms a Hamiltonian cycle).

objectives

This TSP is a single-objective optimization problem. The optimization
objective is to minimize the total distance traveled. Formally, the ob-
jective function can be expressed as the sum of the distances traveled:

min
n

∑
i=1

distance(i, si)

where distance(i, si) is the distance between location i and location si.

The example from Figure 1.4 contains 10 variables that can each
take 9 different values. A feasible solution to this example problem is
shown in Figure 1.4. This very small example leads to a search space
containing 109 different potential assignments. If we take the cycle con-
straint into account, then the search space can be reduced to the num-
ber of permutations of 10 objects, leading to 10! ≈ 3.63 · 106 potential
assignments. For an arbitrary number of locations n, the problem has
to consider n! potential assignments. It is easily possible for a human
to find a feasible solution such as the one from Figure 1.5. It is how-
ever very hard to find by hand the best solution and it is even harder to
prove its optimality. Fortunately, as mentioned in Section 1.1, the CP
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framework can solve large instances of TSP variants in a reasonably
small amount of time [FLM02] with the help of constraint propagation
and branching search.
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Figure 1.4: Example of locations for the Traveling Salesman Problem. This is
a map of the ten most populous cities in the USA.

1.3 constraint propagators

One of the main mechanisms of the Constraint Programming frame-
work is called constraint propagation [RVW06, Apt03, Pie15]. Most of
the time, the combinatorial problems tackled by CP have a very large
search space. Constraint propagation is a mechanism allowing to re-
move parts of the search space that cannot contain any feasible solu-
tion. Every constraint stated in the model is associated to a propaga-
tion procedure that is in charge of finding unfeasible regions in the
search space and removing them. The propagation procedure associ-
ated to each constraint is performed by one or several propagators. Prop-
agators are algorithms taking as input a set of variables, the scope of
the constraint it implements, and their current domains and returning
a propagation outcome. Propagators attempt to remove inconsistent
values from domains, i.e., values that provably will never be part of
a feasible assignment with the remaining values in current domains.
We refer to the removal of values from domains by a propagator as



1.3 constraint propagators 19

NY

Phi
Chi

Dal

HouSA

SD Pho

LA

SJ

Figure 1.5: A possible solution for the TSP example from Figure 1.4. This
solution, while having a high quality objective value, has not been
proven to be the optimal solution of the example.

pruning. Whether or not a propagator has achieved pruning when it
was called, it will return one of these three outcomes:

success

This outcome happens when a propagator will not be able to make
any further deductions, whatever pruning is further achieved.

failure

A failure happens when the pruning of a propagator has led to an
empty domain. If the domain of a variable is empty, it means that
there is no possible assignment for this variable and thus, no solution.

suspend

If a propagator will potentially be able to achieve pruning when do-
mains are further reduced and that no domain is empty, then it re-
turns suspend as outcome.

Some constraints can be implemented by several propagators. The
different propagators implementing a constraint can achieve different
pruning i.e., they do not remove exactly the same values from domains
of the variables. Even if some propagators are able to achieve more
pruning than others, it often comes at the cost of a larger running time.
During the resolution of a CSP or a COP, it can be useful to use several
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propagators implementing the same constraint in order to achieve com-
plementary pruning. It all boils down to a tradeoff between stronger
pruning and larger amounts of time needed by propagators to run.
As explained in [Smi05]: Maintaining a larger pruning, i.e., removing
a larger proportion of inconsistent values, often takes more time; on
the other hand, if more values can be removed from the domains of
the variables, the search effort will be reduced and this will save time.
Whether or not the time saved outweighs the time spent depends on
the problem and the considered instance.

During the resolution of a CSP or a COP, the propagation procedure
will take place until a fixed point is reached. A fixed point is reached
when no constraint propagator can perform any more pruning on the
current domains. To reach a fixed point and determine the call order of
the different propagators, a propagation queue is used. The propagation
queue allows to sort the propagators that have to be called. Usually,
the propagation queue works as a FIFO queue i.e., the first propagator
added to the propagation queue is the first to be popped out and run,
while the last one added will be the last one to be popped out and run.

The propagators register to events occurring during a CP resolution.
These events are various and the most common ones are:

• The bounds of a domain have changed, i.e., the minimum or
maximum value from a domain has changed.

• A value has been removed from a domain.

• A variable has been bound, i.e., its domain contains a single
element.

When an event to which a propagator is registered occurs, the propaga-
tor is added to the propagation queue. As the pruning performed by a
given propagator can trigger several events, running a propagator can
result in the addition of several propagators on the propagation queue.
One of these propagators can also trigger events to which propagators
are registered and so on. In fact, some propagators can trigger events
causing themselves to be added again in the queue. The algorithm to
reach the fixed point is a loop that iteratively pops out the first prop-
agator from the propagation queue and runs it. The loop stops when
the propagation queue is empty, meaning that the fixed point has been
reached.

Algorithm 1.3.1 illustrates the fixed point algorithm. The main loop
runs while the propagation queue is not empty. At line 2, the first
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propagator is popped out from the propagation queue. The propaga-
tion of the propagator is performed in line 3 and we get back the list
of events that has occurred. If the propagation has resulted in a failure,
we stop the algorithm in line 5. Then, in line 9, we add to the propa-
gation queue all the propagators that were registered to an event that
has occurred during last propagation.

Algorithm 1.3.1 : Fixed Point Algorithm

1 while queue not empty do
2 propagator ← Pop(queue)
3 eventsTriggered← Propagate(propagator)
4 if a failure has occurred then
5 Break();
6 end
7 foreach event in eventsTriggered do
8 foreach newPropagator registered to event do
9 Push(queue, newPropagator)

10 end
11 end
12 end

1.4 search

The Constraint Programming framework is often described with this
simple equation:

CP = Model + Search

This expresses that a CP model is decoupled from the search strategy
used to solve it. A given model can be solved using different search
strategies; similarly, a given search strategy can be used to solve dif-
ferent models. The model in our equation is either a CSP or a COP,
described respectively in Sections 1.1 and 1.2. The search in our equa-
tion is defined by a branching search strategy.

Branching search strategies used in CP are constructive methods.
They can be either complete or incomplete, meaning they respectively
explore the whole search space or only a part of it. A branching di-
vides a problem P = CSP(X, D, C) into a set of smaller subprob-
lems {P1 = CSP1(X, D, C1), . . . , Pr = CSPr(X, D, Cr)}. A subproblem
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Pi = CSPi(X, D, Ci) is obtained by the addition of a set of new con-
straints to the problem P = CSP(X, D, C). Hence, a subproblem Pi
is obtained by constraining even more the original problem P. This
implies that all the possible solutions of the subproblem Pi are also
solutions of the original problem P: sols(Pi) ⊆ sols(P). The original
problem is partitioned such that the solution sets of the subproblems
are disjoint:

∀ i, j ∈ [1, . . . , r] : sols(Pi) ∩ sols(Pj) = ∅

When the branching strategy is complete, the union of the subprob-
lems cover all the search space from the original problem:

r⋃
i=1

sols(Pi) = sols(P)

On the other hand, if the branching strategy is incomplete, there is no
guarantee that this last equation holds.

A recursive application of the branching strategy builds a search tree.
Starting from a root node problem P (depth 0 in the tree), children
nodes are obtained with a recursive division into new subproblems
(depth 1). These subproblems are recursively divided into smaller sub-
problems (depth 2). Nodes at each depth are then recursively divided
into children nodes at an incremented depth. The division of a prob-
lem into subproblems is called branching.

When a branching strategy is complete, is corresponds to a complete
enumeration of all the potential assignments of values to variables of
the original (root) problem. To reduce the time taken by the search,
it is important to remove pieces of the search space that will never
contain any feasible solution. When a new node is created, constraint
propagation is applied on its corresponding CSP until a fixed point
is reached. This constraint propagation reduces the search space, po-
tentially removing some subproblems that would have been explored
otherwise.

The recursive division of a node into subproblem children nodes
stops when either one of these two situations occurs:

1. Constraint propagation resulted in a failure. This occurs when
a domain becomes empty. This means that the CSP in this node
contains no feasible solution. As such, this node does not have
to be explored.
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2. A solution has been found. This means that after constraint
propagation all domains contain a single value. The search can
thus stop as a feasible solution has been reached or continue if
all solutions are queried.

When solving a COP, the search should not stop when a solution
has been reached. Instead, a search strategy called branch and bound is
used. The branch and bound strategy maintains bounds on the value
of the objective function. Additionally to classic branching search, it
constrains the objective value to lie within these bounds. As the objec-
tive is to find the best solution according to the objective function, the
bounds will be tightened during the search. Whenever a new solution
is found, the bounds are tightened such that no solution can have a
worse objective value than the new discovered solution. Hence, it can
happen that nodes leading to feasible solutions (in the original prob-
lem) are not expanded because they lead to solutions with a worse
objective value.

While the branching strategy determines the shape of the search tree,
the search strategy defines in what order the nodes in the search tree
are explored. The exploration of the tree is driven by an ordered set of
open nodes called the frontier. An open node is a node representing a
subproblem P that has not been yet be divided into subproblems. On
the other hand, a visited node is a node that has already been divided
into subproblems. The iterative traversal of the search tree removes the
first open node from the frontier, divides it into subproblems, and adds
the corresponding children nodes to the frontier. When the frontier
is empty, the whole search tree has been traversed. The ordering of
the open nodes in the frontier is defined by the branching strategy.
A simple Depth-First Search strategy orders nodes in the frontier such
that the last node added is the first to be visited. A more elaborated
Heuristic Search strategy associates a heuristic value to each node in the
frontier. The frontier orders the nodes by increasing heuristic value.

1.4.1 Search Example

To illustrate the search mechanisms in CP, we will consider the follow-
ing small CSP example:

variables

There are three variables:

X = {x1, x2, x3}
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domains

All three variables have the same initial domains containing only 3

values:
Dinit(X) = {1, 2, 3}

constraints

There are only three constraints:

x1 > x2

x1 > x3

x2 6= x3

Figure 1.6 shows an example of search three for this small CSP exam-
ple. Here are the different steps followed in the tree traversal:

initial propagation

Initial propagation at the root node removes the value 1 from D(x1)

and the value 3 from both D(x2) and D(x3) since these values cannot
satisfy the constraints x1 > x2 and x1 > x3.

branching x1 = 2
The propagation of constraints x1 > x2 and x1 > x3 removes the
value 2 from both D(x2 ) and D(x3 ); the propagation of constraint
x2 6= x3 then leads to a failure since both D(x2 ) and D(x3 ) now
contain the same single value: 1.

branching x1 6= 2
This leaves a single value in the domain of x1: D(x1 ) = {3}. The
propagation of the constraints does not remove any unfeasible value.

branching x2 = 1
The propagation of constraint x2 6= x3 removes 1 from D(x3 ).
All variables are assigned and we have found a solution: D(x1 ) =

3, D(x2 ) = 1, D(x3 ) = 2.

branching x2 6= 1
This leaves a single value in the domain of x1: D(x2 ) = {2}. The
propagation of constraint x2 6= x3 removes 2 from D(x3 ). All
variables are assigned and we have found a solution: D(x1 ) =

3, D(x2 ) = 2, D(x3 ) = 1.
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x1 = 2 x1 6= 2

x2 = 1 x2 6= 1

Figure 1.6: A possible tree traversal for the small CSP example. Red nodes are
drawn when constraint propagation led to a failure. Green nodes
are drawn when a solution has been reached.

1.5 large neighborhood search

When considering a COP with a very large search space, it is often too
hard to find an optimal solution. In such cases, it is interesting to lose
the completeness of an approach to allow faster discovery of hopefully
higher quality solutions. As such approaches are not complete, even
if we find a high quality solution, we cannot prove that it is optimal.
However, in many applications, optimality is not required as long as
the best solution obtained has a sufficient objective quality.

Large Neighborhood Search (LNS) [Sha98] is a metaheuristic that
can be applied to many frameworks, including CP. It proposes to lose
the completeness of an approach to orient the search in promising
areas of the search space. LNS has proven to be very efficient to solve
some hard COP, several of them implemented with CP + LNS. The
main idea of LNS is to take advantage of the best solution so far to
quickly find new solutions of hopefully better quality. LNS iteratively
applies two phases: relaxation and reconstruction:

relaxation

Starting from the best solution found so far, the relaxation proposes
to relax parts of the solution, i.e., reset parts of the solution to their
initial states from the original COP. The parts that are relaxed are
often driven by heuristics, including randomness. This ensures that
successive relaxations starting from the same solution will not lead to
the same CSP. The CSP obtained after relaxation should hopefully be
much smaller than the original CSP. Furthermore, it contains parts of
the best solution and as such looks promising.
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reconstruction

Reconstruction attempts to solve the CSP obtained after a relaxation
phase. As some part of the CSP are already fixed, the search space
of this CSP is smaller and the time needed to reach failures or new
solutions will hopefully also be smaller.

If the reconstruction finds a new solution of higher quality, then a new
iteration relaxation-reconstruction with this new solution begins. On
the other hand, if the reconstructions fails to find a better solution in
a fixed amount of time, then a new iteration begins from the former
solution with a different relaxation.

The choice of the relaxation to perform depends on many factors,
such as the type of problem, the number of iterations already per-
formed, etc. Several works have proposed ways to select the relaxation
to perform at each iteration. Mairy et al. [MDH11] propose a reinforce-
ment learning method to select the subset of variables to relax at each
LNS iteration. Laborie and Godard [LG07] propose another method
allowing, given a set of possible relaxations, to select at each LNS it-
eration what relaxation to apply. In [PP09, Cle+10], a soft-cumulative
constraint is presented that allows to associate a cost to the usage a cu-
mulative resource. It defines an ideal capacity, below the max capacity
bounding the maximal usage of the resource, representing the desired
usage of a cumulative resource. The goal is to minimize a function of
the differences at each time step between the usage of a resource and
the ideal capacity.

1.5.1 LNS Example: The Traveling Salesman Problem

The Traveling Salesman Problem described in Section 1.2 can be solved
with the help of Large Neighborhood Search. We present here an ex-
ample of TSP resolution using CP + LNS. The CP model used is the
same as the one described in Section 1.2. We consider the resolution of
the example with the candidate to presidency campaign tour from Fig-
ure 1.4.

As an example, let us consider that the CP search eventually finds
the solution from Figure 1.5. Starting from this solution, LNS will per-
form iterations of relaxation and reconstruction. A possible relaxation
for our example could be to randomly relax 30% of the variables si i.e.,
30% of the variables have their domain set back to their initial domains,
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while the other variables remain assigned to values from the last solu-
tion found. An example of possible relaxation is shown in Figure 1.7.

From this partial assignment, the reconstruction using classic CP
resolution will eventually find a new solution shown in Figure 1.8. If
this solution has a better objective value than the previous one, then
new LNS relaxations will start from this new solution. Otherwise, new
iterations will begin starting from the former solution from Figure 1.5
until a better solution is found.
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Figure 1.7: A possible relaxation of 30% of the variables starting from solution
from Figure 1.5.

1.6 other combinatorial optimization techniques

There exist a wide range of combinatorial optimization resolution tech-
niques [Coo+11, PS82] other than CP. Every technique has its own ad-
vantages and its own strategy to solve problems. Some techniques are
well known to be efficient on well known classes of problem. This sec-
tion aims at mentioning the most known alternatives to CP and their
characteristics and differences. We present here two additional opti-
mization techniques: Integer Linear Programming and Local Search.
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Figure 1.8: A possible solution built from the partial solution from Figure 1.7.
The new assignments are shown in orange.

1.6.1 Integer Linear Programming

In [WN14], Integer Linear Programming (ILP) refers to the set of tech-
niques aiming at resolving problems that can be expressed as integer
programs. Integer programs are models for problems where variables
can only take integer values and constraints are linear (in)equations.
A feasible solution is a complete assignment of decision variables to in-
teger values such that the constraints are respected. [WN14] presents
several integer linear programming techniques: the branch and bound
method [LW66], the cutting planes method [Kel60], etc. Apart from
some specific variants, Integer Linear Programming resolution tech-
niques are complete (i.e., they explore the whole search space and pro-
vide a proof of optimality). Furthermore, ILP is an exact method since
it does not exclude any feasible solution.

1.6.2 Local Search

Local Search (LS) [RN95] is a method used to solve hard combinato-
rial problems. It is a perturbative method: starting from an existing
solution, it perturbates it to reach another solution hopefully of higher
quality. The next solution is chosen from the neighborhood of the cur-
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rent solution. The choice of the solution selected from the neighbor-
hood of a solution is driven by heuristics. Local Search techniques
can be trapped inside local optima. In order to escape local optima,
restart strategies and metaheuristics can be used. Some well known LS
metaheuristics are simulated annealing [Kir83], tabu search [Glo86],
ant colony optimization [Sol10] and genetic algorithms [RN95]. LS is
incomplete and as such does not provide any proof of optimality. LS
is inexact since it will not always browse all feasible solutions.

1.6.3 Comparison of Resolution Techniques

We propose here a summary of the tree resolution techniques we have
introduced here. We propose to differentiate these techniques on two
main aspects. First, we distinguish constructive from perturbative meth-
ods. A method is constructive if it builds a solution piece by piece
through the exploration of a search tree. On the other hand, perturba-
tive methods iteratively modify an existing solution to find a new one.
Second, we distinguish complete and incomplete methods. A method is
complete if it explore the whole feasible search space, while it is in-
complete if it does not. A summary of the techniques described in this
chapter is shown in Table 1.1.

Complete Incomplete

Constructive
CP

ILP

Perturbative LS

Table 1.1: Comparison of combinatorial optimization resolution techniques.
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S C H E D U L I N G

Next Saturday night, we’re sending you back to the future!
—Dr. Emett Brown, Back to the Future

We must use time creatively.
—Martin Luther King, Jr.

Coming back to where you started is not the same as never leaving.
—Terry Pratchett, A Hat Full of Sky

Most people spend more time and energy going around problems
than in trying to solve them.

—Henry Ford

Lost time is never found again.
—Benjamin Franklin

31
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Scheduling [BLN01] is a generic term covering a wide family of op-
timization problems. Many real-world problems can be described as
scheduling problems. However, scheduling problems tend to be hard
to solve and are computationally expensive. Hence, many researches
address scheduling and it is still widely studied nowadays. These re-
searches have led to a broad variety of resolution techniques to tackle
scheduling problems. Scheduling problems aim at placing a series of
events in time such that these events satisfy a set of constraints. This
global definition will be clarified in Section 2.1 where we give a formal
definition of scheduling problems. In Section 2.2 we describe the differ-
ent categories of scheduling problems. Finally, Section 2.3 introduces
a small scheduling problem example.

2.1 scheduling problems

A scheduling problem can be described as defining when a set of activ-
ities are executed such that a set of constraints are respected. Solutions
of scheduling problems are referred to as schedules, that is an exact
definition of when activities start and end such that constraints are
respected. Sometimes, a given scheduling problem can have multiple
solutions. Most of the time, some schedules are more desirable than
others according to one or several optimization criteria. Hence, most
scheduling problems are optimization problems. Even if time is con-
tinuous, it is discretized in most scheduling applications. In this thesis,
we consider that time is discretized into supposedly indivisible small
steps. The discretization steps may vary from seconds to days. This
implies that the attributes related to time will be defined with integers.
Therefore, the events that have to take place in time will always start
and end at integer times. Scheduling applications link these integer
times with real time units (seconds, minutes, days, months, years, ...).
Furthermore, we shift the schedules to a time window starting from 0
and ending at the horizon. No event can start before 0 nor any event
can end after the horizon. This time window can be shifted back to
the original bounds of the schedule (e.g., 0 corresponds to 9.40 a.m. on
10

th January 2016 and horizon corresponds to 6.50 p.m. on 11
th January

2016).
Most scheduling problems can be entirely defined by a set of com-

ponents. Even though several different components are used in the
literature, we propose a definition of scheduling problems with three
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main components: activities, constraints and objectives. We will review
these three main concepts in more details in this section.

2.1.1 Activities

The events that have to be placed in time are referred to as activities
(sometimes they are also called tasks). An activity is an "event" that
can be executed at some point in time. Activities will be written in
this thesis with a capital letter (most of the time "A") coupled with
subscript indices, e.g., A1, Aj, Ak, l . An activity Ai encapsulates three
CP variables. The first variable di represents the duration of the activity.
Then, the start variable si represents the moment at which the activity
begins its execution. Similarly, the end variable ei represents the time at
which the activity is completed. The initial domain of these variables
is described with a set of attributes:

duration duri
The duration of an activity corresponds to the amount of time during
which it has to be executed. It can either be a fixed integer duri or it
can be bounded by a minimal and maximal integer value, respectively
min(duri) and max(duri).

release date reli
The release date of an activity is a point in time before which it cannot
be executed. It is an integer fixed value written reli.

deadline deai
The deadline of an activity is a point in time after which it cannot be
executed. It is an integer fixed value written deai.

With these attributes, the variables associated to an activity Ai have
initial domains defined by the following ranges:

Dinit(di) = [min(duri), max(duri)]

Dinit(si) = [reli, deai −min(duri)]

Dinit(ei) = [reli + min(duri), deai]

Furthermore, these three variables are linked together by the following
constraint:

si + di = ei
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In addition to the attributes defined earlier, an activity Ai can also
be described by a set of features:

preemptive

An activity is preemptive if its execution can be interrupted and then
restarted later. On the opposite, a non-preemptive activity has to be pro-
cessed at one go and cannot be interrupted. A preemptive activity has
to be executed completely even if it is interrupted. This means that a
preemptive activity that has been interrupted restarts its execution at
the point at which it was interrupted.

optional

An activity is optional if it is not mandatory to be executed. On the
opposite, an activity is mandatory if it must be executed. If an op-
tional activity is executed, it has to be completely executed during
the schedule; there is no such things as partially executed activities.

In this thesis, we will only consider non-preemptive mandatory activ-
ities. This means that every activity described in our models has to
be executed and cannot be interrupted. Additional decision variables
are often used to express whether an activity is optional or not and
whether it is preemptive or not. We do not introduce them as we will
not consider preemptive nor optional activities in this thesis.

A graphical representation of an activity and its attributes is shown
in Figure 2.1. Activities are often represented in a Gantt chart [Wil03].
Gantt charts are unidimensional graphs in which the horizontal axis
represent time and activities are represented as 2D rectangles such that
their length corresponds to their duration. Furthermore, the rectangle
starts along the axis when the activity begins to be executed and ends
when the activity has been completed. Their vertical placement is often
made such that structured group of activities are on the same line and
such that rectangles do not overlap each other.

The variables di, si and ei are bounded by four quantities commonly
used to describe the potential placement in time of the corresponding
activity Ai in a current node:

earliest starting time esti
The earliest starting time of an activity corresponds to the first point
in time at which an activity can begin its execution. Formally, esti
represents the minimal value of the current domain of variable si:

min(D(si)) = esti
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Ai

di

si eireli deai

Figure 2.1: Graphical representation of an activity Ai with its attributes and
decision variables. It can be scheduled between the opening and
closing brackets representing respectively the release date reli and
deadline deai of the activity.

latest starting time lsti
The latest starting time of an activity corresponds to the last point
in time at which an activity can begin its execution. Formally, lsti
represents the maximal value of the current domain of variable si:

max(D(si)) = lsti

earliest completion time ecti
The earliest completion time of an activity corresponds to the first
point in time at which an activity can end its execution. Formally, ecti
represents the minimal value of the current domain of variable ei:

min(D(ei)) = ecti

latest completion time lcti
The latest completion time of an activity corresponds to the last point
in time at which an activity can end its execution. Formally, lcti rep-
resents the maximal value of the current domain of variable ei:

max(D(ei)) = lcti

These quantities describing the potential placement in time of an activ-
ity Ai allow to perform reasoning with other activities. This reasoning
helps to reduce the search space when solving a scheduling problem.
Some techniques used to reduce the potential placement in time of ac-
tivities will be detailed in later chapters. As such, when a propagation
mechanism is used to update these four values, the corresponding up-
dates are also applied to the related variables. These four quantities
are represented graphically in Figure 2.2.
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t
0 horizon

AiAi Ai

esti ecti lsti lcti

Figure 2.2: Graphical representation of an activity Ai and the four quantities
deduced from its decision variables. The quantities esti and ecti
are obtained when placing Ai at the first possible point in time.
Similarly, lsti and lcti are obtained when placing Ai at the last
possible point in time.

2.1.2 Constraints

Scheduling problems are subject to a wide range of constraints that can
be separated in three different categories. The first category contains
the time related constraints that constrain the time at which activities
can be scheduled related to each other. The second category contains
the resource constraints in which activities need to use a resource in
order to be executed. Finally, the third category contains all the addi-
tional constraints that are more general and not restricted to schedul-
ing problems. We will not describe constraints from this latter category
in this thesis. We describe the two first categories of constraints, time-
related and resource constraints, in this section.

Time-Related Constraints

The first important time-related constraint is called the precedence con-
straint. An activity Ai precedes Aj, written Ai � Aj, if Ai has to be
completely executed before Aj starts its own execution. This implies
that Aj cannot start before Ai is finished. Formally, Ai precedes Aj can
be expressed as follows:

ei ≤ sj

For example, let us consider the baking of a cake as a scheduling
problem. This problem has only two activities: mixing the ingredients
together, and put the mix in the oven for 30 minutes. This problem
contains a precedence constraint: the activity mixing the ingredients
precedes the activity where the cake is put in the oven for 30 minutes.

Another widely used time-related constraint is the transition times
constraint. This constraint states that two activities Ai and Aj cannot
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be executed simultaneously and a minimal amount of time must take
place between their respective executions. The amount of time that
must occur between the two activities is not symmetrical and depends
on which activity is executed before the other. If Ai is executed be-
fore Aj, then there must be at least a transition time tti,j between their
respective executions. On the other hand, if Aj is executed before Ai,
then there must be at least a transition time ttj,i between their respec-
tive executions. Formally, a transition time constraint between two ac-
tivities Ai and Aj is expressed as follows:

ei + tti,j ≤ sj ∨ ej + ttj,i ≤ si

For example, let us consider the baking of two different cakes as a
scheduling problem. The first cake must be put in the oven at a temper-
ature of 200 ◦C for 20 minutes: this is activity Ai. Similarly, the second
cake must be put in the oven at a temperature of 175 ◦C for 40 minutes.
The oven needs 5 minutes to decrease its temperature from 200 ◦C to
175 ◦C. Similarly, the oven needs 10 minutes to increase its temperature
from 175 ◦C to 200 ◦C. These two different amounts of time needed to
adjust the oven temperature can be modeled with transition times.

Resource Constraints

Many scheduling problems involve the use of resources. A resource
is an "object" that is needed by an activity during its execution. There
exist several different resources and they involve different constraints.
Most of the time, resources are shared by a set of activities Ω. As such,
the constraint implied by a resource involves all the activities using
it. Therefore, the constraint implied by the resource contains all the
variables from the activities using it in its scope. In this section, we
describe the four main types of resources that can be used to model
scheduling problems along with the constraints they imply:

unary resource

A unary resource [Vil04a] can be used by a single activity at any point
of time. It is sometimes referred to as disjunctive resource or machine. A
unary resource is used by an activity during its whole execution, for-
bidding any other activity to use it during this period. Two activities
using a unary resource cannot overlap in time and this induces a dis-
junction of precedence constraints between those. Formally, a group
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of activities Ω using a unary resource is subject to the following con-
straints:

∀
i 6=j

Ai, Aj ∈ Ω : ei ≤ sj ∨ ej ≤ si

An example of unary resource could be a sawing machine used to
split large planks into smaller planks. The machine can only cut a
single plank at a time. Hence, if cutting a large plank is modeled
by an activity, then the sawing machine is modeled with a unary
resource.

cumulative resource

A cumulative resource [Bel+96, BC02] can be used by several activi-
ties simultaneously up to a determined capacity. Each activity uses a
determined amount of the resource abusively called height. Cumula-
tive resources can be separated in two distinct categories: renewable
resources and non-renewable resources.

renewable resources

A renewable resource, sometimes referred to as discrete resource, al-
lows multiple activities to use it simultaneously, as long as the re-
source capacity is not exceeded. When an activity begins, it acquires
a given amount of the resource is acquired; this amount is returned
at the end of its execution. Hence, the available quantity of a re-
newable resource is reduced by an activity only during its execu-
tion. Concretely, a non-renewable resource imposes the following
constraint: at any point of time, the sum of the heights of activities
currently executed has to be lower or equal to the resource capacity.
Formally, a group of activities Ω in which each activity Ai needs
a height hi of a cumulative resource of capacity C is subject to the
following constraint:

∀ t ∈ [0, horizon] : ∑
Ai∈Ω
t∈[si , ei [

hi < C

Following the terminology used in the ILOG solver [Lab09], the cu-
mul function representing the use of a renewable resource is the
pulse function. The pulse function pulse(A, h) takes the value h (rep-
resenting the height i.e., the amount of resource used by activity
A) during the execution time of activity A and is null otherwise. A
graphical representation of the pulse function is shown in Figure 2.3.
An example of renewable resource could be a team of workers. Sev-
eral actions, each demanding a different number of persons, have to
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be performed. The total required number of persons by the different
actions executed at any point in time can never exceed the number
of persons from the team of workers. Hence, the team of worker can
be modeled by a renewable resource.

non-renewable resource

A non-renewable resource, sometimes referred to as reservoir resource
is a consumable resource whose level evolves through time as activi-
ties produce or consume amounts of it. When an consumer activity
begins, it consumes a given amount of the resource that is never re-
turned. When an producer activity ends, it provides a given amount
of the resource that is never taken back. Consumer activities lower
the level of the resource while producer activities increase it. Each
activity associated with the resource is either consumer or producer
but cannot be both. As the resource and its level is discrete, activity
consume or produce only integer amounts of it. The convention is
that consumer activities decrease the resource level of their height at
the moment they start their execution. On the other hand, producer
activities increase the resource level at the moment they end their ex-
ecution. At every point of time t, the level of the reservoir resource lt

is bounded by a minimal and a maximal level, respectively Lmin and
Lmax. Formally, the resource constraint can be expressed as follows:

∀ t ∈ [0, horizon] : Lmin ≤ lt ≤ Lmax

Following the terminology used in the ILOG solver [Lab09], the cu-
mul function representing the use of a non-renewable resource is
the step function. The step function step(A, h) is null until activity
A starts where it takes the value h (representing the height i.e., the
amount of resource used by activity A) until the horizon. A graphi-
cal representation of the step function is shown in Figure 2.4. An ex-
ample of reservoir resource could be a tank of fuel. Some activities
would pour fuel in the tank, increasing its level while other activities
would use fuel, decreasing the level of the tank. The minimal level of
the resource corresponds to the empty tank and the maximal level
of the resource is the volume that the tank can contain.

Graphically, one can represent the usage of a cumulative resource
(either renewable or not) with a cumulative profile. The height of
rectangles representing activities using a cumulative resource repre-
sents the amount of resource it consumes (or produces in the case of a
non-renewable resource). In a cumulative profile, the horizontal axis
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represents the time and the vertical axis indicates the amount of re-
source used. An example of schedule and the associated cumulative
profile of a renewable resource are represented in Figure 2.5. Simi-
larly, an example of schedule and the associated cumulative profile
of a non-renewable resource is represented in Figure 2.6.

alternative resource

An alternative resource [FLN00, AB93] defines a set of either unary or
cumulative resources. An activity using an alternative resource must
be assigned to one of the possible resources defined by the alternative
resource. The resource to which an activity is assigned must have a
sufficient amount to satisfy the demand of the activity at the time at
which it will be executed.

t
0 horizon

Ai

tsi ei0 horizon

Resource
Usage

0

h

Figure 2.3: Illustration of the pulse(Ai, h) cumul function representing the
consumption of a renewable resource by an activity Ai.

2.1.3 Objectives

There is a large panel of possible objective functions for scheduling
problems. In this section, we will focus on classic scheduling objectives.
These classic scheduling objectives can be defined as combinations of
the end decision variables described earlier. Some objective functions
are defined according to due-dates associated to a subset of activities.
A due-date duei is a preferential time at which an activity Ai should
end. Note that a due-date is a preference i.e., it does not imply a con-
straint. On the other hand, as specified earlier, a deadline imposes a
constraint. The main components of objective functions associated to
an activity Ai are the following ones:



2.1 scheduling problems 41

t
0 horizon

Ai

tsi ei0 horizon

Resource
Usage

0

h

Figure 2.4: Illustration of the step(Ai, h) cumul function representing the con-
sumption of a non-renewable resource by an activity Ai.

ending time

As described before, it is the time at which an activity ends.

lateness

The lateness of an activity is defined as the amount of time between
the due-date of an activity and its actual ending time. The lateness
of an activity can be negative if the activity ends before its due-date.
Formally, the lateness of an activity is defined as follows:

latei = ei − duei

tardiness

Similarly to lateness, the tardiness of an activity is defined as the
amount of time between the due-date of an activity and its actual
ending time. However, unlike lateness, tardiness only takes into ac-
count activities ending after their respective due-dates. If an activity
ends its execution before or at its due-date, its tardiness is null. For-
mally, the tardiness of an activity is defined as follows:

tardi = max(0, ei − duei)

Sometimes, the actual amount of time between the due-date and the
ending of an activity is not important. In such situations, a fixed
penalty is associated to an activity ending after its due date. Such ob-
jective is called reified tardiness, reif(tardi), and is formally expressed
as follows:

reif(tardi) =

 1 if ei > duei

0 otherwise
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Figure 2.5: Schedule of activities using the same renewable resource and its
associated cumulative profile. The line in the cumulative profile
corresponds to the sum of the heights of activities executed at any
point in time.

earliness

Earliness is similar to tardiness; the earliness of an activity is defined
as the amount of time between the actual ending time of an activity
and its due-date. However, on the opposite of tardiness, earliness only
takes into account activities ending before their respective due-dates.
If an activity ends its execution at or after its due-date, its earliness is
null. Formally, the earliness of an activity is defined as follows:

earli = max(0, duei − ei)

Similarly to tardiness, there is a reified version of earliness in which
a fixed penalty is associated to an activity ending before its due date.
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Figure 2.6: Schedule of activities using the same non-renewable resource and
its associated cumulative profile. The activities written with a cap-
ital ’P’ are producers and activities written with a capital ’C’ are
consumers. The line representing the resource level goes up at
the end of producer activities and goes down at the beginning of
consumer activities.

Such objective is called reified earliness, reif(earli), and is formally ex-
pressed as follows:

reif(earli) =

 1 if ei < duei

0 otherwise

The most widely known objective functions for scheduling problems
can be defined with these quantities. First, the makespan represents the
width of the time window where the schedule lies. The objective is to
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find the minimum makespan for a scheduling problem. Formally, it is
defined as the maximal ending time of the set of all activities in the
schedule:

minimize makespan = max
Ai∈A

ei

where A is the set of all the activities in the considered problem.
Other well known objective functions are weighted sums of the ear-

liness and tardiness (or their reified versions). This models the prefer-
ence of placement of some activities in possible schedules. Formally,
the objective is to minimize a weighted sum of earliness and tardiness
of activities:

minimize ∑
Ai∈A

wei · earli + wti · tardi

where wei and wti are weights attached respectively to the earliness
and tardiness of an activity Ai.

Finally, some problems associate a cost to the usage of a resource. In
some problems, the resource constraints are considered soft constraints.
This means that their capacity can be exceeded but the objective is to
limit the number of times and/or the amount by which the resource
capacities are exceeded. We

2.2 categories of scheduling problem

In Section 2.1, we have presented the three main components defining
a scheduling problem: activities, constraints and objectives. Scheduling
problems with similarities in those components can be grouped into
problem categories. Graham has proposed a classification of schedul-
ing problem in [Gra+79]. A web tool called Scheduling Zoo [DK13]
proposes to list scientific publications tackling a scheduling problem
according to its characteristics. This tool uses the problem classification
defined by Graham. In this section, we propose to enumerate some
widely used scheduling problem categories using an approach similar
to [Mon10, Dej12].

2.2.1 Shop Problems

Shop Problems are problems in which activities are grouped in jobs.
In the context of scheduling, a job is defined as a group of activities
sharing characteristics or to which some structure is imposed. It most
of the time considers n jobs containing m activities with demands on
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m different resources. This basic description covers a large range of
scheduling problems that has been widely studied. We propose to list
some well known shop problems that have been studied in the litera-
ture:

job-shop problem

The job-shop problem consists in n jobs and m unary resources. Each
job contains m ordered activities associated to the m different unary
resource. The sequence of ordered activities and their durations are
different inside each job. The objective function is to minimize the
makespan. An example of job-shop problem could be the scheduling
of an assembly line with products with slightly different options.

cumulative job-shop problem

The cumulative job-shop problem is a variant of the job-shop prob-
lem where resources are cumulative and activities can have different
heights.

open-shop problem

The open-shop problem is similar to the job-shop problem except
that activities within a job are not ordered. An example of open-shop
problem could be a set of workers having to realize a set of tasks
during the day, each requiring a different single user work station.

flow-shop problem

The flow-shop problem is a restriction of the job-shop problem in
which the sequence of activities (and thus of unary resource used) is
the same in each job. An example of flow-shop could be an assembly
line where products are built step by step on a conveyor belt.

no-wait job-shop problem

The no-wait job-shop problem is a job-shop in which no time can
elapse between activities within the same job. An example of no-wait
job-shop problem could be the scheduling of products on an assembly
line needing different layers of paint. To avoid the complete drying
of the paint, the different layers have to be applied immediately one
after the other.

preemptive job-shop problem

The preemptive job-shop problem is a variant of the job-shop prob-
lem in which activities can be interrupted and continued later. An
example of preemptive job-shop the scheduling of an assembly line
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where a product can be removed from the production process to be
completed later on.

group-shop problem

In a group-shop problem, the order between activities belonging to
the same job is only partly determined. Jobs are divided into sub-
jobs. Activities within the same sub-job can be executed in any order
(but overlapping is not allowed). Sub-jobs within the same job are
ordered; meaning no activity from a given sub-job can start before all
those of the preceding sub-job have ended. The group-shop problem
is a generalization of the job-shop and the open-shop problems where
sub-jobs are respectively all the activities in a job or single activities.

flexible job-shop problem

In flexible job-shop problem, each activity is not associated to a single
resource but it must use one from a defined set of unary resources.

2.2.2 Resource Constrained Project Scheduling Problems (RCPSPs)

This category of scheduling problems is defined as a set of activi-
ties partially ordered by precedence constraints. Activities are non-
preemptive, have a defined duration and use a defined amount of
cumulative resources. The objective function is to minimize either the
makespan, the weighted lateness of the last activity, or the weighted
sum of earliness and tardiness. The RCPSP can be seen as a the cat-
egory of scheduling problems with non-preemptive activities and im-
plying resources where we do not consider a set of jobs or the same
types of resources as for shop problems. Many variants of the RCPSP
exist. Such variants are obtained by adding reservoir resources, con-
sidering new precedence constraints, etc. For more details on RCPSPs,
refer to [Bru99, RC15, KS97].

2.2.3 Other Scheduling Problem

Many other classes of scheduling problems exist and have been stud-
ied. They imply the mix of various resources, preemptive and non-
preemptive activities, multiple optimization objectives, etc. As some
real-world problems tend to lead to complex scheduling models, this
mix of scheduling problems can often imply a wide range of different
constraints and parameters. We do not intend to address all existing
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problems in this thesis but the interested reader could find examples
of scheduling problems that are neither shop problems nor RCPSPs
in [Pin12].

2.3 a scheduling problem example

In this section we consider a small scheduling problem example. Let
us consider three workers, each having to build a different piece of
furniture. To build a piece of furniture, each worker proceeds in three
steps:

1. Cut the planks at the required dimensions.

2. Sand the planks such that they fit easily into each other.

3. Assemble the planks into the final piece of furniture.

To cut the planks, workers need to use the sawing station. This station
can only be used by a single worker at a time. Similarly, the sanding
of planks requires a sanding station that can also be used by a single
worker at a time. The assembly of planks together does not require
any specific working station. The goal is to obtain the three pieces
of furniture as soon as possible as they have to be shipped together
urgently to a client.

We can model this problem as a scheduling problem. For each work-
er, we define a job containing three activities: cutting, sanding and as-
sembling. Activities inside the jobs are ordered by precedences (cutting
comes before sanding which comes before assembling). The different
activities and their durations are reported in Figure 2.7. The cutting
and sanding activities both require a different working station that
can be used by a single worker at a time. Hence, these two working
stations are modeled as unary resources. As the objective is to produce
the three pieces of furniture as soon as possible, we can model this as a
makespan minimization. This problem can be thought of as a job-shop
in which the last activity of each job does not use a unary resource. A
feasible solution for this problem is shown in Figure 2.8.
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t
0 horizon

Worker 1

Worker 2

Worker 3

C1 S1 A1

C2 S2 A2

C3 S3 A3

Figure 2.7: The activities grouped by job for the furniture building problem.
This picture represents only the durations of the different activi-
ties and is not a solution to the problem. The ’C’, ’S’ and ’A’ rep-
resent respectively the cutting, sanding and assembling activities.
The indices associated to the capital letters corresponds to the as-
sociated worker.

t
0 horizon

Worker 1

Worker 2

Worker 3

C1 S1 A1

C2 S2 A2

C3 S3 A3

makespan

Figure 2.8: A feasible solution for the furniture building problem from Fig-
ure 2.7. Note that the cutting activities do not overlap each other in
time as they share a unary resource. The same situation occurs for
the sanding activities. However, assembling activities A2 and A3
can overlap as they do not share a unary resource. The makespan
shown on the figure corresponds to the maximal ending time of
the activities in the schedule.



3
C O M PA R I N G
P R O PA G AT O R S W I T H
P E R F O R M A N C E P R O F I L E S

I wanna be the very best, like no one ever was.
—Pokemon Theme Song

The Dark Side of the Moon has flash - the true flash that comes
from the excellence of a superb performance.

—Alan Parsons

Don’t lower your expectations to meet your performance. Raise
your level of performance to meet your expectations.

—Ralph Marston

The only thing you owe the public is a good performance.
—Humphrey Bogart

Those that are most slow in making a promise are the most faithful
in the performance of it.

—Jean-Jacques Rousseau
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Comparing the potential of various propagators associated to a con-
straint can be tricky. Most of the time, a propagator can be charac-
terized by two attributes: its worst time complexity and the achieved
pruning, i.e., the set of values removed from domains of variables in
the scope of the constraint. When two propagators offer the same prun-
ing, the one with the lowest time complexity is preferred. However, it
happens that two propagators achieve different pruning, i.e., the set
of values removed from domains of variables in the scope of the con-
straint differs between propagators. In some cases, some propagators
achieve more pruning than others, but at the cost of a higher time com-
plexity. Whether or not the additional pruning is worth the increased
propagation time might depend on the size and type of the consid-
ered instance. It is thus important to design a comparison procedure
to evaluate the performance of propagators with respect to each other.

This chapter describes the state-of-the-art propagator comparison
method introduced by Sascha Van Cauwelaert et al. in [CLS15]. This
approach is used in this thesis to compare the propagation procedures
from Chapters 4 and 5 with current state-of-the-art propagators. The
approach from Van Cauwelaert defines several solvers, based on a com-
mon model to which one propagator (a different one for each solver)
is added. These models are run on a set of instances such that each
run explores the same region of the search space. Various measures on
performance metrics are performed on these runs. Each measure for a
model on an instance represents the performance of the model on this
particular instance for the considered performance metric. Then, to ag-
gregate performances of solvers on all instances, performance profiles
are used.

In this chapter, Section 3.1 describes the method used to ensure mod-
els associated to the various propagators explore the same region of
the search space. Then Section 3.2 describes how the results can be
aggregated in a single graphical representation to clearly visualize the
performances achieved on a set of instances.

3.1 comparison of different models

We consider n propagators φ1, . . . , φn whose performances have to be
compared. These propagators are filtering algorithms for a constraint
c with a scope scope(c) =

{
xy, . . . , xz

}
. Each propagator behaves as

a filtering function mapping the domains of variables in this scope{
D(xy), . . . , D(xz)

}
to a set of reduced domains

{
D′(xy), . . . , D′(xz)

}
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for these variables. To compare the different approaches, [CLS15] pro-
poses to consider a baseline model M and all the models obtained
by adding one of the propagators mentioned earlier: M ∪ φk where
1 ≤ k ≤ n. These different models will be run on a hopefully repre-
sentative set of instances. Each run will provide a measure for each
performance metric, e.g., the number of nodes browsed, the number
of backtracks performed, the time of the run, etc. In order to obtain a
meaningful comparison, for a given instance, the runs of the model M
and all other models M ∪ φk should respect two conditions:

1. All runs explore the same region of the search space. Should
different regions of the search space be visited by the different
models, there would be no way to compare them.

2. The search nodes are visited by the different runs in the same
order. Should this ordering differ for the different models, some
might be advantaged because of the objective bounding.

Based on these two conditions, [CLS15] proposes a replay strategy in-
stance by instance. For a given instance, it first runs the baseline model
M using a branching strategy b until a timeout is reached or the search
space has been completely visited. During the run of M, the sequence
of visited search nodes is saved. Then, for each model M∪φk, the same
sequence of search nodes is visited, skipping the nodes removed by the
propagation of φk. The measure on the considered performance metric
is taken during each of these replay runs. This replay strategy allows
to simulate the use of complex branching strategies while enforcing
that the same region of the search space is visited. Algorithm 3.1.1 rep-
resents this replay strategy. In line 1, the first run of M with branching
b is performed on the instance to obtain the sequence of nodes vis-
ited. Then, in line 2, the measure pi

baseline is obtained by replaying the
sequence of nodes nodeSequence. Similarly, for all the propagators φk,
the measures pi

k are obtained by replaying the sequence of nodes using
the corresponding model M ∪ φk.

The replay strategy from Algorithm 3.1.1 is used on every instance.
This means that measures on performance metrics have been obtained
for all the models M ∪ φk on all instances. Now remains to define a
way to aggregate these measures such that it provides information on
whether a propagator performs globally better than another one, on
the set of considered instances, on the different performance metrics.
In the next section, performance profiles are explained as a way to
achieve such objective.
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Algorithm 3.1.1 : Replay Strategy
Input : b The branching strategy for the run of M
Input : i The instance considered
Input : tmax The max time of the baseline first run

1 nodeSequence← Run(M, b, i)
2 pi

baseline ← Replay(M, nodeSequence)
3 foreach k in 1, . . . , n do
4 pi

k ← Replay(M ∪ φk, nodeSequence)
5 end

3.2 performance profiles

The performance profiles technique [DM02] aggregates the measures
of a performance metric on a set of instances I . The performance pro-
file of a given performance metric τ is a cumulative distribution func-
tion ρ(τ). In the case where propagators are compared, the τ value
represents the ratio between the measures for performance metric p
of model M ∪ φk and M. Considering the measure of a performance
metric pi

k of the model M∪φk obtained by the replay strategy from Sec-
tion 3.1 on instance i ∈ I , the performance ratio ri

k is defined as fol-
lows:

ri
k =

pi
k

pi
baseline

From these ratios, the cumulative performance profile is defined as
follows:

ρk(τ) =
1
|I|
∣∣∣{i ∈ I : ri

k ≤ τ
}∣∣∣ (3.1)

ρk(τ) is the proportion of instances for which the model M ∪ φk had
a performance ratio of at most τ in comparison to the baseline. For ex-
ample, if the performance metric is the time needed by a propagator
to reach a given search node, ρk(0.5) represents the proportion of in-
stances for which the model M∪ φk spent at most half the time needed
by the baseline model to reach a given search node. Following this def-
inition, models with a larger ρk(τ) for a given τ are to be preferred.
The performance profiles can be represented graphically as curves in a
2D plot where the horizontal axis is τ and the vertical axis is ρ(τ). The
sequence of points associated to a curve for a performance metric in a
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2D performance profile plot is obtained with Algorithm 3.2.1. It begins
by sorting the ratios in increasing order. Then, the sequence of points
is iteratively built such that the ratio at position j in the sorted ratios,
sortedRatiosj, gives the point

(
sortedRatiosj,

j
|I|

)
. In our case, the

Algorithm 3.2.1 : Performance Profile 2D
Input : rk The ratios obtained by M ∪ φk on I
Output : pointSequence The sequence of points for the 2D curve

1 pointSequence← {}
2 sortedRatios← Sort(rk)

3 for j in 1, . . . , |I| do
4 point←

(
sortedRatiosj,

j
|I|

)
5 Append(pointSequence, point)
6 end
7 return pointSequence

graphical representation obtained for the baseline model will always
be a step function where a single step of height 1 happens at 1 on the
horizontal axis. The percentage of instances for which a model M ∪ φk
obtains better or equivalent performances than the baseline model M
is given by ρk(1), corresponding to the intersection of 2D curve of the
model with the one of the baseline occurring in (1, ρk(1)).

As mentioned in [DM02], performance profiles offer many advan-
tages over other presentations of data obtained by benchmarks. Many
benchmarking results are published under the form of tables. Interpre-
tation of results from these tables can be difficult, especially when the
set of instances is quite large, hence leading to large tables. Similarly,
reporting the average or cumulative total of a given performance met-
ric can be problematic. Indeed, a small number of difficult instances
(or too easy instances) can dominate the results. Another problem with
reporting averages or cumulative totals is that it requires to drop in-
stances for which any of the models failed, inducing a bias against the
most robust models. Performance profiles do not suffer the drawbacks
mentioned above. The use of performance ratios avoids a small num-
ber of difficult instances to dominate the results. Presenting a cumula-
tive representation of these ratios allows to easily observe the trend of
the results, especially since the graphical representation is concise and
easy to read.
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3.2.1 Example

Let us consider a small example where two propagation procedures,
φ1 and φ2 are compared with regards to a baseline procedure. The
comparison takes thus place over the models M, M ∪ φ1 and M ∪ φ2.
In this example, the performance metric compared is the time taken
by the different models to browse a given sequence of nodes obtained
with the replay strategy presented in Section 3.1. The example mea-
sures are reported in Table 3.1.

Instance M M ∪ φ1 M ∪ φ2

i1 5 6 7

i2 22 14 18

i3 12 14 8

i4 4 2 8

i5 62 10 30

Table 3.1: Example of time results obtained on the set of instances
I = {i1, i2, i3, i4, i5} by the solvers compared.

Instance M M ∪ φ1 M ∪ φ2

i1 1.00 1.20 1.40

i2 1.00 0.64 0.82

i3 1.00 1.67 0.67

i4 1.00 0.50 2.00

i5 1.00 0.16 0.48

Table 3.2: Performance ratios of measures from Table 3.1.

From these measures, the performance ratios are reported in Ta-
ble 3.2. By sorting the ratios per solver and creating 2D points with
the equations

(
sortedRatiosj,

j
|I|

)
, the points reported in Table 3.3

are obtained.
Finally, Figure 3.1 is the graphical representation of the performance

profiles with the points obtained in Table 3.3. Note that in our perfor-
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M (1.00, 0.2) (1.00, 0.4) (1.00, 0.6) (1.00, 0.8) (1.00, 1.0)

M ∪ φ1 (0.16, 0.2) (0.50, 0.4) (0.64, 0.6) (1.20, 0.8) (1.67, 1.0)

M ∪ φ2 (0.48, 0.2) (0.67, 0.4) (0.82, 0.6) (1.40, 0.8) (2.00, 1.0)

Table 3.3: Performance ratios of measures from Table 3.1.

mance profile representations, when a curves disappears, it is because
it is below another one superposing it. When two performance pro-
files superpose each other, they share the same performance values
(but only on the superposed parts). This figure highlights the fact that
the approach with φ1 performs generally better than the approach with
φ2. Indeed, its curve is above the one of M ∪ φ2, meaning that it per-
forms better for any proportion of instance. One can also observe that
both M ∪ φ1 and M ∪ φ2 perform better than the baseline model M for
at least 60% of the instances. In this example, M ∪ φ1 is at worst 1.67

times slower than the baseline model M.

τ(time)
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Figure 3.1: Graphical representation of performance profiles for measures
from Table 3.1.
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F O RWA R D C H E C K I N G
P R O PA G AT I O N F O R T H E
N E S T E D G C C

Progress is not an illusion, it happens, but it is slow and invariably
disappointing.

—George Orwell

An error does not become truth by reason of multiplied
propagation, nor does truth become error because nobody sees it.

—Mahatma Gandhi

Why live? Life was its own answer. Life was the propagation of
more life and the living of as good a life as possible.

—Ray Bradbury, The Martian Chronicle

Woodstock was both a peaceful protest and a global celebration.

—Richie Havens

Men are mortal. So are ideas. An idea needs propagation as much
as a plant needs watering. Otherwise both will wither and die.

—B. R. Ambedkar
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The Global Cardinality Constraint (GCC) from Régin [Rég96] is a
core constraint of the CP framework. The GCC imposes bounds on
the number of times a value can be assigned to a set of variables.
Many real world applications contain constraints that can be modeled
with GCC combinations. As such, several variants and extensions of
GCC have been studied in the literature. The Nested Global Cardinal-
ity Constraint (Nested GCC) is a generalization of the GCC. Nested
GCC imposes bounds on the number of times a value can be assigned
in several nested sets of variables. This chapter presents a new For-
ward Checking propagation procedure for the Nested GCC constraint.
The Nested GCC constraint is used in an application context described
in Chapter 8. It models stock and order book constraints over a pro-
duction plan.

There are two main contributions for the propagation of Nested
GCC in FWC in this chapter. First, we propose a pre-computation pro-
cedure that allows to strengthen the bounds provided as argument to
obtain stronger and faster propagation using a decomposition of multi-
ple FWC GCC propagators. The second contribution is the implemen-
tation of a dedicated global Nested GCC FWC propagator that allows
propagation with a reduced worst time complexity in comparison to a
decomposition of multiple FWC GCC propagators.

This chapter starts by a definition of the Nested GCC, introduced
by Zanarini and Pesant in Section 4.1. Then, Section 4.2 brings to light
the need of dedicated propagation procedures to overcome the prun-
ing missed by a classic GCC propagator decomposition. It also gives
a brief description of the GAC propagation procedure from [ZP07].
Section 4.3 presents a pre-computation procedure to strengthen the
bounds provided to the constraint in order to achieve more impor-
tant pruning. It then proposes a dedicated FWC propagator for the
Nested GCC with a reduced time complexity and compares its perfor-
mances with other existing propagators. Finally, Section 4.4 evaluates
the performances of the various propagation procedures mentioned
and introduced in this chapter.

related publications

[Dej+16] Cyrille Dejemeppe, Olivier Devolder, Victor Lecomte, and
Pierre Schaus. “Forward-Checking Filtering for Nested
Cardinality Constraints: Application to an Energy Cost-
Aware Production Planning Problem for Tissue Manufac-
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turing.” In: Integration of AI and OR Techniques in Constraint
Programming. Banff, Canada: Springer International Pub-
lishing, 2016.

4.1 the constraint

The Nested GCC constrains a set of variables X = {x1, . . . , xn} that
can be separated into p disjoint sets. Let {Xk} with 1 ≤ k ≤ p repre-
sent these disjoint sets of variables. Each set contains variables with
successive indices Xk = {xkmin , . . . , xkmax} such that kmin is the index
coming right after (k− 1)max and kmax is the index coming just before
(k + 1)min. We define the following nested unions of these sets:

χk =
⋃

1≤j≤k

X j

The sets χk can be seen as ranges containing variables from x1 to xkmax .
This means that χp contains all the variables from X, covering vari-
ables from x1 to xpmax = xn. As these unions are nested, the following
property holds:

χ1 ⊆ χ2 ⊆ . . . ⊆ χp

To each variable xi ∈ Xk corresponds its domain D(xi). The union
of domains of the variable set Xk is written D(Xk) and the union of
domains over X is simply written D(X). The number of occurrences
of a value v ∈ D(X) in a subset χk is bounded between a lower bound
lk
v and an upper bound uk

v. Formally, the signature of the Nested GCC
is:

Nested GCC
([

X1, . . . , Xp
]

,
[
l1, . . . , lp

]
,
[
u1, . . . , up

])
where li and ui (1 ≤ i ≤ p) are respectively lower and upper bound
arrays containing the lower and upper bounds for each possible value
v ∈ D(X). The constraint implied by such signature is as follows:

∀ k ∈ [1, p] , ∀ v ∈ D(X) : lk
v ≤

∣∣∣{x ∈ χk | x → v
}∣∣∣ ≤ uk

v

where x → v expresses that variable x is assigned to value v. To ease
the reading in the rest of this chapter, we refer to ranges [1, t] to denote
the range of variables from x1 to xt.



62 fwc propagation for nested gcc

Example

Let us consider a small set of five variables X separated in two disjoint
sets: X1 = {x1, x2, x3} and X2 = {x4, x5}. These five variables have ini-
tial domains that contains the same two elements: Dinit(X) = {blue,
red}. This example is represented in Figure 4.1a. Let us now con-
sider that we have the following upper bound: u1

red = 1, and the fol-
lowing lower bound l2

blue = 3. These bounds are represented in Fig-
ure 4.1b. Concretely, it constrains that at most one variable from the
set {x1, x2, x3} is bound to value red and at least 3 variables from the
set {x1, x2, x3, x4, x5} are bound to value blue.

1 2 3 4 5

X 1 X 2

χ1

χ2

(a) Disjoint sets of vari-
ables

1 2 3 4 5

At most 1

At least 3

(b) Lower and upper
bounds

Figure 4.1: Small example of the Nested GCC constraint. Indexed squares rep-
resent variables and the small colored squares below each variable
represent the values remaining in their domains.

Figure 4.2a shows a feasible solution for the example from Figure 4.1
satisfying the Nested GCC constraint. Figure 4.2a shows an unfeasible
solution for this example. Indeed, u1

red is exceeded: there are 2 variables
assigned to red in χ1. Furthermore, l2

blue is not reached since there are
only 2 variables assigned to blue in χ2.

1 2 3 4 5

At most 1

At least 3

(a) Feasible solution

1 2 3 4 5

At most 1

At least 3

(b) Unfeasible solution

Figure 4.2: Two potential solutions for example from Figure 4.1.
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4.2 gac propagation for nested gcc

The Nested GCC presented earlier can be modeled with a combination
of classic GCCs. Considering a Nested GCC applied on a set of vari-
ables X split into k sets as defined in Section 4.1, a single classic GCC
could be applied to each subset of variables χk with bounds lk and uk.
However, as proven in [ZP07], the propagation obtained would not be
able to achieve Global Arc Consistency (GAC).

Let us consider the example from Figure 4.3. With classic multi-
GCCs decomposition, there would be two GCC propagators used: the
first one constrains variables in the range {x1, x11} to contain at least
four variables assigned to red; the second one constrains variables in
the range {x1, x16} to contain at most seven variables assigned to red.
None of these two propagators would detect a failure on this small
example. However, there are already four variables assigned to value
red in the range [1, 16] constrained to contain at most seven variables
assigned to red. This imposes that the range before the first variable
assigned to value red (range from 1 to 12) should contain at most
three variables assigned to value red. This is in conflict with the lower
bound stating that there should be at least four variables assigned to
red in the range [1, 11]. This brings to light the need of a dedicated
propagator for Nested GCC to achieve GAC.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

At least 4

At most 7

Figure 4.3: Example of pruning missed with classic GAC GCCs decomposi-
tion for a Nested GCC constraint.

A GAC propagator for Nested GCC is introduced in [ZP07]. It pro-
poses a graph representation G(V, E) for the Nested GCC constraint.
This graph contains a node for every variable xi ∈ X as well as a
source s and a sink t. Additionally, for every subset Xk, and every pos-
sible value in D(X), a node is added. The arcs have a lower and an
upper capacity and connect the nodes as follows:
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• For each variable xi there is an arc from the source s to xi with
capacity [1, 1].

• For each variable xi ∈ Xk there is an arc with capacity [0, 1] from
the variable to each value node of Xk.

• For each subset Xk, there is an arc from each value node to
the value node of Xk+1 corresponding to the same value with
capacity [lk, uk].

• For each value node of Xp, there is an arc from this node to the
sink t with capacity [lp, up].

The small example from Figure 4.1 would be represented with the
graph shown in Figure 4.4.

s t

x1

x2

x3

x4

x5

b

r

b

r

[1
, 1
]

[1,
1]

[1, 1]

[1, 1]

[1, 1]

[0, 3]

[0, 1]

[3,
5]

[0
, 3
]

Figure 4.4: Graph representation of the small example from Figure 4.1. Arcs
with no bounds displayed take the default values [0, 1].

The GAC propagator for Nested GCC introduced in [ZP07] pro-
poses to use this graph representation. A feasible flow in this graph
represents a feasible assignment for the Nested GCC. A unary flow be-
tween a variable xi and a value node v corresponds to the assignment
xi → v. Similarly to the GAC propagator for classic GCC [Rég96], the
filtering algorithm finds a feasible flow in the graph to check the feasi-
bility of the Nested GCC. When there is no feasible flow, the constraint
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is unfeasible. If a feasible flow exists, pruning can be performed. First,
the residual graph of the flow found is built. Then, all the strongly
connected components of the residual graph are computed. Finally, all
the arcs that do not belong to any strongly connected component can
be removed. Every arc from a node xi to a value node v that has been
removed corresponds to the removal of v from D(xi).

Considering the graph representation G(V, E), the GAC propagator
for Nested GCC has a time complexity O(|V||E|) to find a feasible
flow and O(|V|+ |E|) to find unfeasible values. For these graphs the
number of nodes |V| is in O(n + k|D(X)|) and the number of edges E
is in O(n|D(X)|+ k|D(X)|).

4.3 a nested gcc forward consistent propagator

As explained in [Smi05], maintaining a higher level of consistency
takes more time; on the other hand, if more values can be removed
from the domains of variables, the search effort will be reduced and
this will save time. Whether or not the time saved by the values re-
moved outweighs the time spent on propagation depends on the prob-
lem. In practice, many solvers (such as the very efficient OR-Tools [OR-
10]) use a default Forward Checking filtering (FWC) for the GCC. For
this reason, we propose to develop a new FWC propagation procedure
for the Nested GCC.

In this section, we design a FWC propagator achieving both a po-
tentially stronger and faster pruning when compared to a naive de-
composition of k Forward Checking GCC propagators (FWC-GCCs).
The improvement in pruning is obtained by a pre-processing step that
strengthens the bounds of the cardinalities lk

v and uk
v. For simplicity,

in this section we suppose that the set of variables X = {x1, . . . , xn}
is separated into singletons Xk = {xk}. As such, lk

v is a lower bound
for the number of occurrences of v in the range [1, k] (thus for vari-
ables {x1, . . . , xk}). The improvement in terms of running time is ob-
tained by maintaining incremental counters avoiding the need to prop-
agate every sub-GCC on each domain update. We present first the
pre-computation step, then the dedicated FWC propagator.
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4.3.1 Stronger Bounds Pre-Computation

This step aims at tightening the bounds lk
v and uk

v specified in the signa-
ture of the constraint and minimizing the number of these to a minimal
set. Two reasonings can be done:

1. Between different ranges for the same value (e.g. the occur-
rences of red in range [1, 4] and range [1, 5]).

2. Between the bounds for the different values specified for the
same range [1, t] (e.g. the occurrences of red versus blue in range
[1, 6]).

The first one corresponds to per-value deductions and the second one
refers to inter-value deductions. Once both sets of deductions have
been performed, it is possible to reduce the bounds obtained to a mini-
mal set of bounds containing all the information needed to apply prun-
ing.

Per-Value Deductions

Per-value deduction is applied for each value in two sweeping of the
ranges: a forward update followed by a backward update. Intuitively,
the following forward and backward deductions can be made:

lower bounds

If there are at least two red in range [1, 4], then there are at least
two red in range [1, 5] (forward), and at least one red in range [1, 3]
(backward).

upper bounds

If there are at most two red in range [1, 4], then there are at most
three red in range [1, 5] (forward), and at most two red in range [1, 3]
(backward).

We can make those deductions based on the quantities lt
v and ut

v
containing respectively the best-known lower and upper bounds on
the occurrences of v for range [1, t]. This is done by traversing these
values for each range once forward and once backward. The forward
update of these values is defined as follows, t increasing from 2 to n:

lt
v = max

 lt
v

lt−1
v

ut
v = min

 ut
v

ut−1
v + 1
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Similarly, the backward update is defined as follows, v decreasing from
n− 1 to 1:

lt
v = max

 lt
v

lt+1
v − 1

ut
v = min

 ut
v

ut+1
v

An example of per-value deduction for lower bounds for a given
value v is shown in Figure 4.5. Initial lower bounds (black dots) in the
gray zone are updated since dominated by the other specified bounds.
The arrays displayed in this example represent the quantities lt

v at the
different steps of the bound tightening. Original represents the origi-
nal bounds specified as argument, Filled represents the bounds after
application of the forward update (left to right in the array) in Fig-
ure 4.5a and after backward update (right to left in the array) in Fig-
ure 4.5b. A similar example of per-value deduction for upper bounds
for a given value v is shown in Figure 4.6.

Inter-Value Deductions

Inter-Value deduction is applied on each range and updates the bound
of a value with regards to the bounds of other values. Intuitively, for a
given range [1, t] and for some value v, the following deductions can
be made:

lower bounds

On a given range, if the upper bound of a value ut
v is small, then the

lower bounds of other values in [1, t] are large.

upper bounds

On a given range, if the lower bound of a value lt
v is large, then the

upper bounds of other values in [1, t] are small.

For example, let us consider the bounds of a value v on the range
[1, 5]. If the sum of the lower bounds on the other values is 3 ( i.e.,
if ∑w 6=v l5

w = 3), then there can be at most 2 occurrences of v on this
range. This implies that u5

v ≤ 2. Similarly if the sum of the upper
bounds for other values is 3 (∑w 6=v u5

w = 3), then there must be at least
2 occurrences of v on this range. This implies that l5

v ≥ 2.
We can make those deductions based on the quantities lt

v and ut
v

containing respectively the best-known lower and upper bounds on
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t

lowertv

Original 0 0 1 0 2 1 2 4 4 0

Filled 0 0 1 1 2 2 2 4 4 4

(a) After the forward update

t

lowertv

Original 0 0 1 0 2 1 2 4 4 0

Filled 0 0 1 1 2 2 3 4 4 4

(b) After the backward update

Figure 4.5: Example of per-value deduction for lower bounds of a value v.

the occurrences of v for range [1, t]. For every value v and every range
[1, t] bounds are updated as follows:

lt
v = max


lt
v

t− ∑
w 6=v

ut
w

ut
v = min


ut

v

t− ∑
w 6=v

lt
w

Reduction to a Minimal Set of Bounds

After the tightening step of the bounds lt
v and ut

v, the number of these
bounds can be minimized to only keep the useful bounds in a de-
composition of the Nested GCC. If a bound for a given range is on a
plateau i.e., it is equal to bounds on previous and next range, it does
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t

upperit

Original 2 1 3 1 2 4 5 3 5 5

Filled 1 1 1 1 2 3 3 3 4 5

Figure 4.6: Example of per-value deduction for upper bounds of a value v.

not contain any useful information. Another situation where a bound
does not carry information for a given range happens when it is in
the middle of a slope i.e., it is larger/smaller than bound on previous
range and smaller/larger than bound on next range. Formally, only
lower bounds meeting the two following conditions carry useful infor-
mation:

keep lt
v if

 lt
v = lt−1

v + 1

lt
v = lt+1

v

A similar reasoning can be applied to filter the upper bounds. For-
mally, the upper bounds carry useful information if the two following
conditions are met:

keep ut
v if

 ut
v = ut−1

v

ut
v = ut+1

v − 1

On the example of Figure 4.7, the minimal set of useful bounds is
circled in the graph and those are given in the Filtered array. A similar
example to deduce the minimal set of upper bounds for a given value
is shown in Figure 4.8.

The pre-computation step is done only once, at the initialization of
the constraint. The final minimal set of bounds obtained after 1) the
per-value deductions, 2) inter-value deductions and 3) minimization
of the set of bounds, is the unique smallest set of bounds that contains
all the useful information initially specified by the quantities lt

v and ut
v.
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Furthermore, the set of ranges on which those final bounds apply is
always a subset of the ranges at which a lower and upper bounds were
originally given.

t

lowertv

Original 0 0 1 0 2 1 2 4 4 0

Filled 0 0 1 1 2 2 3 4 4 4

Filtered 1 2 4

Figure 4.7: Reduction to the minimal set of useful lower bounds from Fig-
ure 4.5.

t

upperit

Original 2 1 3 1 2 4 5 3 5 5

Filled 1 1 1 1 2 3 3 3 4 5

Filtered 1 3

Figure 4.8: Reduction to the minimal set of useful upper bounds from Fig-
ure 4.6.

A simplified version of the code used in OscaR to perform stronger
bound deduction is provided in Appendix A.3.
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Bounds Optimality

The three steps we have described here to obtain stronger bounds have
the two strong properties. We provide here an intuition of the reasons
why these two properties hold.

bounds optimality

Bounds are optimal in the sense that running a second time these
steps would not provide better bounds. The per-value deduction step
has to be performed first since it will also fill each period with a
bound for each value (some values might not be bounded on several
prefixes in the original bounds). Hence, performing the inter-value
deductions before the per-value deductions would result in less tight
bounds. Repeating per-value deductions after the inter-value deduc-
tion step will not bring any further improvement. Indeed, in the case
were some bound, either lower or upper, has been improved by the
inter-value deductions, this new bound will apply on a range that
was previously between two critical ranges for this value (i.e., a criti-
cal range is a range for which the bound (either lower or upper) is
not in the middle of a slope). Hence two cases can appear:

1. It dominates one or both of the two critical bounds. In such
case, the dominated bound(s) will only be removed by the per-
value deductions, but no further deductions will be deduced.

2. It is dominated by these two critical bounds. In such case, this
dominated bound will only be removed by the per-value de-
ductions, but no further deductions will be deduced.

From this we deduce that only one run of first the per-value then the
inter-value deductions is needed. Finally, the bound reduction step
has to go last. Indeed, this step removes bounds that are not critical
i.e., bounds that influence nor per-value, nor inter-value deductions.

minimal set of bounds

The final bounds are a subset of the original ones. Indeed, the only
bounds that are kept are the critical bounds. In the initial bounds,
only a subset of them are critical bounds. Then, using the same rea-
soning as the one used earlier, when a bound is determined to be
stronger, it either dominates one/both of its surrounding bounds or it
is dominated by its two surrounding bounds; the dominated bounds
are dropped. The number of critical bounds can thus only remain the
same or decrease, but can never increase. The cardinality of the set of
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initial bounds is thus an upper bound on the number of bounds that
remains after the three steps of stronger bounds pre-computation.

4.3.2 A dedicated FWC propagator for the Nested GCC

With the stronger bounds computed above, a decomposition of p FWC-
GCCs propagators, one propagator per constrained range, achieves
stronger pruning. However, its amortized time complexity remains
in O(p) per domain update since all p propagators running in O(1)
are potentially triggered. We present here a propagator that runs in
O(log(p)) amortized time and offers the same pruning. As a reference
point, the pruning given by FWC-GCCs is such that

• when the number of variables whose domain still contains a
given value decreases to the lower bound associated to it, these
variables are assigned to the value.

• when the number of variables bound to a given value increases
to the upper bound associated to it, this value is removed from
all other variables.

The main challenge of this algorithm is to avoid checking those vari-
able counts on every lower or upper bound when an update is received.
In order to do that, for every value that we track and for both lower
and upper bounds, we divide the variables into the segments that are
formed by the bounds, and only count variables inside those segments.
For example, if we have a maximum of 2 red in range [1, 3] and a max-
imum of 5 red in range [1, 8], we will separate the variables into the
segments [1, 3] (the first 3 variables) and [4, 8] (the next 5 variables). We
justify in the next paragraphs why local checks inside those segments
are enough to detect and trigger the required pruning. This example
is shown in Figure 4.9.

1 2 3 4 5 6 7 8

At most 2 red

At most 5 red

Segment 1 Segment 2

Figure 4.9: Example of segment decomposition.
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Let us examine the differences between the bounds in our example:
5− 2 = 3. We will call this difference the critical point of the segment
[4, 8]. If the number of variables bound to red in that segment reaches
3, then there will be at least 3 occurrences of red in that segment. As a
consequence, if the pruning condition in range [1, 3] is met, so that we
have 2 variables bound to red in [1, 3], then in total there will be at least
5 variables bound to red in the range [1, 8], so we have to prune there
as well. In other words, pruning in [1, 3] can only happen if pruning in
[1, 8] also happens; and since in both cases pruning means removing
the value red from all unbound variables, it becomes useless to track
the upper bound on [1, 3].

Conversely, if there are less than 3 variables bound to red in the seg-
ment [4, 8], then pruning for the upper bound of range [1, 8] will hap-
pen strictly after pruning happens in [1, 3] (if ever). Indeed, pruning in
[1, 3] happens when 2 variables in that segment are bound to red, and
at that point less than 5 variables would be bound to red in [1, 8].

For the leftmost segment, since there is no bound on the left, we
simply define the critical point as the bound on the right, in this case 2

for segment [1, 3]. In this segment, reaching the critical point by having
2 variables bound to red means reaching a pruning case, so we have to
remove the red value from the last variable. If the number of variables
bound to red is strictly under the critical point, however, no pruning
can be performed.

From these remarks we can notice that no pruning will happen in a
segment until it reaches its critical point. All that is left is to precisely
determine what to do when it is reached. We have taken upper bounds
as an example, but the critical point also makes sense for lower bounds:
instead of counting the number of variables bound to the value, we
count the number of variables that have the value in their domain.

We can also observe a useful property of critical points: if we com-
bine two consecutive segments, the distance to the critical point in the
merged segment will be the sum of the distances to the critical points
in the small segments. Indeed, when summing the critical points, the
middle bound will cancel itself out; and the number of variables that
are bound to a value or that have a value in their domain is clearly the
sum of those numbers in the segments that are being merged.
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Pruning cases and segment merging

Let us now develop an update strategy based on critical points. We
split the set of variables into contiguous disjoint segments as described
above. In the leftmost segment, pruning can happen only when its
corresponding critical point has been reached. For other segments, if
their respective critical points have not been reached, then no pruning
can occur before some pruning happens on the left bound. When the
critical point of a segment is reached, we can consider two different
actions to perform, depending on whether the considered segment is
the leftmost one or not.

First, if the segment is the leftmost segment, we have to trigger prun-
ing in it. As none of the segments on its right has reached its critical
point, no pruning should occur on those. Once the pruning has been
applied to the leftmost segment, it is removed and its neighboring right
segment, if it exists, is marked as the leftmost segment. To achieve fast
pruning, we propose to maintain a list of unbound variables still con-
taining a particular value in an array based reversible doubly linked
list. This allows value removal in constant time (as there is one list per
possible value). We refer to this list as the unbound list. When a critical
point is reached, the pruning on a segment will only be applied on
variables in the unbound list.

Second, if the segment is not the leftmost segment, then reaching
the critical point makes the bound on the left of the segment com-
pletely redundant in terms of pruning with the bound on the right of
the segment. Therefore, the bound on the left can be forgotten, and
this segment can be merged with its left neighboring segment. Since
distance to the critical point is additive, the larger segment will not
have reached its critical point either. To keep the propagator efficient
in terms of time complexity, we have to determine efficiently to which
segment a variable belongs. We also have to determine an efficient way
to merge segments. This problem can be solved easily using a union-
find data structure [Tar75].

Our propagation procedure will be triggered by two different events:

1. A variable xi has been bound to a value v and it is inside an
upper bound segment.

2. A value v has been removed from a variable xi and it is inside
a lower bound segment.



4.3 a nested gcc forward consistent propagator 75

When the first event occurs, Algorithm 4.3.1 is performed. It first re-
moves the variable xi from the unbound list associated to value v. Then,
by using a Find operation (on our union-find data structure), it will
fetch the segment containing the variable. The counter of variables
bound to v in the segment is augmented. If this counter has reached
the critical point, then the actions to take depend on whether the seg-
ment is the leftmost segment or not. If it is the leftmost segment, the
value v is removed from all the unbound variables in the segment (this
could trigger a Failure). Then, the segment on the right is marked as
the leftmost segment (if it exists). On the other hand, if the segment for
which the critical point has been reached is not the leftmost segment,
it is merged with the segment on its left (using a Union operation on
our union-find data structure).

Algorithm 4.3.1 : Update Upper Bound Segment
Input : xi The variable that has been bound
Input : v The value to which the variable has been assigned

1 Remove(unboundListv, xi)

2 segment← Find(v, xi)

3 counterv(segment)← counterv(segment) + 1

4 if counterv(segment) = critical point then
5 if segment is leftmost segment then
6 foreach xj in segment do
7 RemoveValue(xj, v)
8 end
9 if Right(segment) exists then

10 Right(segment) becomes leftmost segment
11 end
12 else
13 Union(Left(segment), segment)
14 end
15 end

Similarly, Algorithm 4.3.2 is performed when a value v has been
removed from a variable xi that is inside a lower bound segment. The
operations performed are similar to those from Algorithm 4.3.1 except
that the counter represents the number of variables in the segment
whose domain does not contain v. Furthermore, if the critical point of
the segment is reached and the segment is the leftmost segment, all
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unbound variables in the segment are assigned to v (This could lead
to a Failure).

Algorithm 4.3.2 : Update Lower Bound Segment
Input : xi The variable whose domain has been reduced
Input : v The value that was removed from the variable domain

1 Remove(unboundListv, xi)

2 segment← Find(xi)

3 counterv(segment)← counterv(segment) - 1

4 if counterv(segment) = critical point then
5 if segment is leftmost segment then
6 foreach xj in segment do
7 Assign(xj, v)
8 end
9 if Right(segment) exists then

10 Right(segment) becomes leftmost segment
11 end
12 else
13 Union(Left(segment), segment)
14 end
15 end

Time Complexity

The complexity analysis assumes one has access to the ∆ change of
the variables as for instance proposed in [SM+13] for the OscaR solver
[Osc12] also available in OR-Tools [OR-10], or the advisors of Gecode
[LS07].

Let us define u as the number of updates, that is, the sum of the
number of value removals over the whole search. Note that when the
constraint itself removes a value from a variable, it counts in u as well.
We will also use n, the number of variables, and p, which as earlier is
the number of distinct ranges involved in the bounds. Looking at the
steps performed when a value has been either removed or assigned, we
can deduce the time complexity for a particular update. Note that even
though the loops on lines 6-9 in Algorithms 4.3.1 and 4.3.2 can take
O(n) for one particular update to be processed, the variables pruned
also count as updates, so it remains amortized constant time per up-
date.
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The worst-time complexities of Algorithm 4.3.1 and Algorithm 4.3.2
are O(log(p)). Indeed, the operation Remove operation is performed
on the doubly linked list, UnboundList and is thus performed in O(1).
When we combine all the other operations performed at each up-
date, we discover that the total time complexity is the number of up-
dates multiplied by the cost of a union-find operation. As mentioned
in [SW11], there are implementations of the union-find data structure
where both operations Union and Find can be performed in O(α(p)).
In such implementations, α(p) is the inverse of an Ackermann func-
tion [Sun71] A(p, p) growing extremely fast, leading α(p) to be con-
stant in amortized running time. However, as this is implemented in a
CP framework, we are working with a reversible union-find structure.
As such, a particular update could be repeated arbitrarily many times
in different places in the search tree. This means we cannot use the
amortized O(α(p)) complexity for union-find operations, but rather
the O(log(p)) worst case. As a result, we obtain a time complexity in
O(u log(p)) for the whole search, or an amortized time complexity of
O(log(p)) per update.

FWC and GAC Pruning

The pruning achieved by either a decomposition into multiple FWC
GCC propagators or the dedicated FWC Nested GCC propagator de-
scribed earlier is larger when using the stronger bounds previously
pre-computed. However, this stronger pruning is still smaller than the
one obtained by the GAC graph-based propagation proposed by Za-
narini and Pesant [ZP07]. We illustrate this with the small example
shown in Figure 4.10. In this example, there are 6 variables whose do-
mains contain 2 different values: red and blue. The initial bounds lower
and upper bounds constraining variables from x1 to xt to be assigned
respectively at least lt

v and at most ut
v times to value v are:

l3
red = 2

l3
blue = 0

l6
red = 0

l6
blue = 0



u3
red = 3

u3
blue = 3

u6
red = 3

u6
blue = 6
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The pre-computation steps that we have described earlier compute
the following set of stronger bounds:

l3
red = 2

l3
blue = 0

l6
red = 2

l6
blue = 3



u3
red = 3

u3
blue = 1

u6
red = 3

u6
blue = 4

Despite these stronger bounds, the propagation achieved by any of
the FWC Nested GCC propagation procedure that we have described
is not able to detect the failure in our example. There is a failure be-
cause since variables x5 and x6 are already bound to value red, the
bound u6

red = 3 imposes that there can be at most one variable in the
range x1, . . . , x4 bound to red. This is in contradiction with the bound
l3
red = 2 that imposes at least two variables in the range x1, . . . , x3 to

take the value red. However, the GAC graph-based propagation pro-
cedure, whose propagation graph is illustrated in Figure 4.11, detects
this failure. Again, while GAC propagation is stronger than the proce-
dure that we have described, its worst case time complexity is much
larger than the fast FWC Nested GCC propagation procedure..

1 2 3 4 5 6

At least 2

At most 3

Figure 4.10: Example where FWC Nested GCC propagation misses a failure
that is however detected by the GAC Nested GCC propagation
from [ZP07].

4.4 experimental results

To evaluate our propagator, we used the OscaR solver [Osc12] and
ran instances on AMD Opteron processors (2.7 GHz). For each consid-
ered instance, we used the three following filtering procedures for the
Nested GCC constraint:
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Figure 4.11: Prop[agation graph used by GAC Nested GCC propagation
from [ZP07] for the example from Figure 4.10.

1. Decomposition into multiple GCC FWC propagators with the
original bounds (φGCCFWCs); there is one GCC FWC propagator
for each range constrained by the original bounds.

2. Decomposition into multiple GCC FWC propagators with the
strengthened bounds from Section 4.3.1 (φPrecompGCCFWCs); there
is one GCC FWC propagator for each range constrained by the
strengthened bounds.

3. The Nested GCC FWC propagator with O(log(p)) time com-
plexity from Section 4.3.2 (φNestedGCCFWC). This version also uses
the stronger bounds after the pre-computation step.

4.4.1 Considered benchmarks

We have considered instances for a very simple model. This model
considers a given set of n periods corresponding to a set of variables
X with the same initial domain. Several cardinality constraints hold
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on p ranges going from period 1 to period k (1 ≤ k ≤ n). These
cardinality constraints are represented with a Nested GCC constraint.
To each period i is associated a random cost ci. To each possible value
v is associated a random multiplier wv; these multipliers are stored in
a vector W. The objective considered is the minimization of the total
cost (obtained by multiplying the cost of each period by the multiplier
of the value assigned to the period’s variable). This objective has been
added to avoid a too large number of solutions. Formally, the model is
as follows:

minimize
n

∑
i=1

ci · Element(xi, W)

such that Nested_GCC
([

X1, . . . , Xp] ,
[
l1, . . . , lp] ,

[
u1, . . . , up])

where the Element constraint is used to obtain the multiplier associ-
ated to the value of the variable at period i.

We have constructed random instances for the model described ear-
lier with the following parameters:

number of variables

The different numbers of variables will allow to test the efficiency of
the propagators on both small and large ranges of variables. We have
considered the following numbers of variables: 20, 50, 100, 200, 400.

number of values

The number of possible values for each variable, i.e., the cardinality
of the domains. We have considered the following numbers of values:
3, 5, 10, 15, 20, 40.

number of bounds

The number of bounds imposed. This number of bounds is common
to all the values. For each bound, the range, value and whether it is
a min or a max bound is computed randomly. The following number
of bounds were chosen: 20, 50, 100, 150, 200, 400, 800.

For each of these configurations, we have generated 25 different in-
stances. We have applied two filters on these instances:

1. The unfeasible instances were not considered. Indeed, instances
that were unfeasible were most of the time detected at the root
node (or at a very small depth in the search tree); leaving us
with very small propagation time and null or tiny number of
backtracks.



4.4 experimental results 81

2. The instances that were closed in under one second by the
slowest propagation procedure were discarded. The measures
of time and number of backtracks are too small to be relevant
in this case.

From the 5 · 6 · 7 · 25 = 5, 250 generated instances, only 281 remained
after the filters had been applied. Indeed, it is quite complicated to
generate feasible instances with a large density of bounds (i.e., many
ranges are constrained on different values). The results presented in
this section are those obtained on these 281 instances.

4.4.2 Comparison of the Three Models

In order to present fair results regarding the benefits that are provided
by the considered propagators, we have followed the methodology in-
troduced in [CLS15]. An overview of this methodology is provided
in Chapter 3. In brief, the approach presented in [CLS15] proposes to
pre-compute a search tree using the filtering that prunes the less - the
baseline propagator - and then to replay this search tree using the dif-
ferent studied filtering procedures. We used φGCCFWCs as the baseline
filtering, and the binary static search strategy to construct the search
tree. The search tree construction time was limited to 120 seconds. We
then constructed performance profiles as described in [CLS15]. A concise
description of the use of performance profiles to compare propagators
is provided in Chapter 3.

Performance Profiles on Number of Backtracks

The performance profiles for backtracks are illustrated in Figure 4.12.
There is a single performance profile representing φPrecompGCCFWCs and
φNestedGCCFWC as they offer the same pruning. Indeed, both propaga-
tors are based on the same improved bounds offering the same addi-
tional pruning.

The pruning achieved by either φPrecompGCCFWCs or φNestedGCCFWC is
much more important than the one achieved by φGCCFWCs. This illus-
trates that the pre-computation of stronger bounds as explained in Sec-
tion 4.3.1 allows not only to reduce the set of considered bounds, but
also to achieve stronger pruning for FWC propagation. For only 5%
of the instances is the pruning equivalent between FWC propagation
based on the original bounds or on stronger pre-computed bounds.
Furthermore, when some additional pruning is achieved with the help
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of stronger bounds, it can be substantial: for at least 43% of the in-
stances, the number of backtracks is reduced by at least a factor two.

τ(backtracks)

%
in
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s
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0
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80

100

φGCCFWCs

φPrecompGCCFWCs & φNestedGCCFWC

Figure 4.12: Performance profiles of the three models for the number of back-
tracks.

Performance Profiles on Resolution Time

The performance profiles for replay time of sequences of nodes gen-
erated for 120 seconds with φGCCFWCs and the binary static search
heuristic are illustrated in Figure 4.13. The difference in terms of time
between φNestedGCCFWC and φPrecompGCCFWCs is not very large. One
could expect a larger difference in terms of propagation time due
to the different time complexities: O(log(p)) for φNestedGCCFWC and
O(p) for φPrecompGCCFWCs. This can be explained by the multiplying
constant of the time complexity associated to φNestedGCCFWC. Indeed,
even though the complexity is reduced from O(p) to O(log(p)), it
can only be done by the addition of a reversible data structure that
adds a small overhead to the operations performed on a single up-
date. Furthermore, one update will only trigger the propagation of the
GCC FWC propagators applying on a range containing the variable
concerned by the update. Nevertheless, there is a small difference be-
tween φNestedGCCFWC and φPrecompGCCFWCs. As this difference exists, one
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should consider the implementation of our Nested GCC FWC propa-
gator for problems where the Nested GCC constraint is the bottleneck
of the resolution in terms of time. This can be detected by measuring
the time required to propagate the Nested GCC constraint during the
whole resolution of an instance and then comparing it to the total time
taken to solve it.

On the other hand, the time difference between φGCCFWCs and both
φPrecompGCCFWCs and φNestedGCCFWC is important. This is directly re-
lated to the additional pruning performed by the latter propagation
procedures over the former. As φPrecompGCCFWCs and φGCCFWCs share
the same time complexity in O(p), the smaller amount of nodes the
former has to go through allows it to be faster. Furthermore, the num-
ber of bounds considered by φPrecompGCCFWCs may be smaller than the
number of original bounds, leading to less GCC FWCs propagators.
For at least 73% of the instances, φPrecompGCCFWCs is at least twice as
fast as φGCCFWCs. In the case of φNestedGCCFWC, it is at least twice as fast
as φGCCFWCs on at least 77% of the instances.
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Figure 4.13: Performance profiles of the three models for the replay time on
a sequence of nodes as explained in Chapter 3.



84 fwc propagation for nested gcc

conclusion

In this chapter, we have discussed the FWC propagation of the Nested
GCC constraint from [ZP07]. The FWC propagation of this constraint
can be performed using a decomposition into multiple GCC FWCs
propagators. The first improvement we have proposed to this approach
is a pre-computation procedure that can obtain new bounds stronger
than the original ones. This pre-computation procedure proceeds in
three successive steps. The first step performs per-value deductions
and considers the different ranges constrained for a single value. The
second step performs inter-value deduction that applies on all the
bounds on values occurring over the same range. Finally, the third
step reduces the number of bounds obtained to a minimal set of useful
bounds. This set of stronger bounds is always smaller or equivalent, in
terms of size, to the original set of bounds. All the steps from this pre-
computation procedure are light in terms of both computation time
and memory used.

The pre-computed stronger bounds can be used with a decompo-
sition into multiple classic GCC FWCs; there will be one GCC FWC
propagator for each of the constrained range in the set of stronger
bounds. The pruning achieved by this decomposition on the improved
bounds is potentially larger than the one achieved on the original set of
bounds. Furthermore, as this new set of bounds is potentially smaller
than the original one, it should allow faster propagation time even
when no additional pruning can be observed. Our experiments per-
formed on a large set of instances has proven that the gain brought
by such pre-computation in terms of pruning is substantial. Further-
more, the classic GCC FWC decomposition using stronger bounds has
proven to be much faster than a version using the original weaker
bounds.

The second contribution of this chapter is the introduction of a ded-
icated Nested GCC FWC propagator. This propagator performs the
same pruning than a decomposition into multiple GCC FWC propaga-
tors. However, it has two advantages over this decomposition. First, it
is a global propagator; hence it allows a more concise declaration of the
model. Second, it has a reduced time complexity in O(log(p)) instead
of O(p) and is therefore faster. However, our experiments have shown
that the gain in terms of time is relatively small in comparison to a de-
composition into multiple GCC FWC propagators using pre-computed
stronger bounds. Hence, as the new propagator introduced demands
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some consequent work in terms of implementation, we would advise
the reader to implement that dedicated Nested GCC FWC propagator
only if its performances are critical for the considered problem.





5
T H E U N A RY R E S O U R C E
W I T H T R A N S I T I O N T I M E S

Welcome my son, welcome to the machine.
—Pink Floyd, Welcome to the Machine

Life is really simple, but we insist on making it complicated.

—Confucius

Life is pleasant. Death is peaceful. It’s the transition that’s
troublesome.

—Isaac Asimov

Come on, Rory! It isn’t rocket science, it’s just quantum physics!
—The Doctor, Doctor Who

Fools ignore complexity. Pragmatists suffer it. Some can avoid it.
Geniuses remove it.

—Alan Perlis
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The unary resource constraint [Vil04a] is a core constraint of schedul-
ing problems. It imposes that two activities using the same unary re-
source cannot overlap in time. Many problems also impose that activ-
ities needing the same unary resource must be distant by a minimal
amount of time. If the amount of time between two activities depends
on the two activities between which it takes place, the amount of time
is said to be sequence-dependent. This constraint is referred to in the
literature as sequence-dependent transition times1 [Elm68].

This chapter presents extensions of the classic unary resource prop-
agation algorithms from [Vil07, Vil04a, Vil04b, VBČ05] that include
propagation over sequence-dependent transition times between activities.
A wide range of real-world scheduling problems from the industry
involves transition times between activities. An example is the quay
crane scheduling problem in container terminals [Zam+13] where the
crane is modeled as a unary resource and transition times represent
the moves of the crane on the rail to go from one position to another
along the vessel to load/unload containers.

There are several contributions for the propagation of the Unary Re-
source with transition times in this chapter. First, we have extended
thet Θ-tree and Θ-Λ-tree data structures from Vilím such that they
include transition times in the computation of lower bounds for the
earliest completion time of a set of activities. Then, we show how to
use these structures in modified versions of the four propagation algo-
rithms from [Vil07] (Overload Checking, Detectable Precedences, Not-
First/Not-Last and Edge Finding) to obtain global propagators for the
unary resource with transition times.

Section 5.1, gives an overview of the tackled problems and of cur-
rent state-of-the-art techniques to solve them. Then, Section 5.2 ex-
plains the requirements needed to integrate transition times propaga-
tion. Section 5.3 describes how to obtain lower bounds for the time
spent by transitions between activities from a set. Then, Section 5.4
introduces the integration of this bound in extended Θ-tree structures
to efficiently compute the ect of a set of activities. Section 5.5 then ex-
plains how classic unary algorithms can consider transition times by
using the extended Θ-tree structures. Finally, the results obtained by
the new propagation procedure are reported in Section 5.6.

1 Sometimes also referred to as sequence-dependent setup times.
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5.1 the constraint

As explained in Chapter 2, a scheduling problem is modeled by as-
sociating three variables to each activity Ai: si, ei, and di representing
respectively the starting time, ending time and duration of Ai. These
variables are linked together by the following relation:

si + di = ei

Depending on the considered problem, global constraints linking the
activity variables are added to the model. In this work, we are inter-
ested in the unary resource constraint. A unary resource, sometimes
referred to as a machine, is a resource allowing only a single activity to
use it at any point in time. As such, all activities demanding the same
unary resource cannot overlap in time; for every pair of activity on the
resource, either one must precede the other:

∀ i, j : (Ai � Aj) ∨ (Aj � Ai)

This constrains the variables as follows:

∀ i, j : (ei ≤ sj) ∨ (ej ≤ si)

The unary resource can be generalized by requiring transition times
between activities. A transition time tti,j is a minimal amount of time
that must occur between two activities Ai and Aj if Ai � Aj (precedes).
These transition times are described in a matrixM in which the entry
at line i and column j represents the minimum transition time between
Ai and Aj: tti,j. We assume that transition times respect the triangular
inequality. That is, inserting an activity between two activities always
increases the time between these activities:

∀ i, j, k i 6= j 6= k : tti,j ≤ tti,k + ttk,j

The unary resource with transition times imposes the following rela-
tion:

∀ i, j : (ei + tti,j ≤ sj) ∨ (ej + ttj,i ≤ si) (5.1)
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The triangular inequality assumption is mandatory for the com-
putation of lower bounds of transitions in a set of activities, as de-
scribed in Section 5.3. However, all the propagation algorithms de-
scribed in Section 5.5 could run without this assumption, as long as
they use lower bounds computed with techniques that do not need
this property.

5.1.1 Related Work

As described in a recent survey [All+08], scheduling problems with
transition times can be classified in different categories. First the ac-
tivities can be grouped in batches (i.e., a machine allows several activ-
ities of the same batch to be processed simultaneously) or not. Tran-
sition times may exist between successive batches. A CP approach for
batch problems with transition times is described in [Vil07]. Secondly
the transition times may be sequence-dependent or sequence-independent.
Transition times are said to be sequence-dependent if their durations
depend on both activities between which they occur. On the other
hand, transition times are sequence-independent if their duration only
depends on the activity after which it takes place. The problem cate-
gory we study in this chapter is non-batch sequence-dependent transi-
tion time problems.

Several methods have been proposed to solve such problems. Ant
Colony Optimization (ACO) approaches were proposed in [GPG01,
Tah+05] while [BSV08, ABF05, ORS10, GVV08] propose Local Search
and Genetic Algorithm methods. [ORS10] introduces a propagation
procedure with the Iterative Flattening Constraint-Based Local Search
technique. Many contributions using CP approaches to solve sequence-
dependent problems have been proposed.

Focacci et al [FLN00] introduce a propagator for job-shop problems
involving alternative resources with non-batch sequence-dependent
transition times. In this approach a successor model is used to com-
pute lower-bounds on the total transition time. The filtering proce-
dures are based on a minimum assignment algorithm (a well known
lower bound for the Travelling Salesman Problem). In this approach
the total transition time is a constrained variable involved in the objec-
tive function (the makespan).

In [ABF04], each resource is associated to a Travelling Salesman
Problem with Time Window (TSPTW) relaxation. The activities used
by a resource are represented as vertices in a graph and edges be-
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tween vertices are weighted with corresponding transition times. The
TSPTW obtained by adding time windows to vertices from bounds of
corresponding activities is then resolved. If one of the TSPTW is found
unsatisfiable, then the corresponding node of the search tree is pruned.
A similar technique is used in [AF08] with additional propagation.

In [Wol09], an equivalent model of multi-resource scheduling prob-
lem is proposed to solve sequence-dependent transition times prob-
lems. Finally, in [GH10], a model with a reified constraint for transition
times is associated to a specific search to solve job-shop with sequence-
dependent transition times problems.

Carlier and Pinson [CP89] introduce a branching scheme called Im-
mediate Selection that can be used to solve many disjunctive shop
problems. They however do not consider transition times problems in
their procedure. Baptiste and Lepape [Bap96] propose extensions of
several job problems, including an extension dealing with transition
times. However, they only mention the fact that the Edge Finding up-
date rules remains applicable when transition times are involved; there
is no mention of any algorithm allowing to apply those update rules
with a small time complexity. Brucker and Thiele [BT96] also extend
Carlier and Pinson’s work to take transition times into account. They
use a disjunctive graph allowing to maintain a lower bound on the
makespan. This lower bound is obtained by considering, for all the
machines of the problem the earliest completion time of the activities
executed on it. Several relaxations and variations of this techniques are
proposed to do so. This approach is however strongly coupled with
a makespan minimization objective. Furthermore, the update of the
bounds of activities is not determined using Detectable Precedences
[Vil04a], Not-First/Not-Last [VBČ05] or Edge Finding [VBČ05].

To the best of our knowledge, the CP filtering introduced in this
chapter is the first one proposing to extend all the classic filtering al-
gorithms for unary resources (Overload Checking [BLN01], Detectable
Precedences [Vil04a], Not-First/Not-Last [VBČ05] and Edge Finding
[VBČ05]) by integrating transition times, independently of the objective
function of the problem. This filtering can be used in any problem in-
volving a unary resource with sequence-dependent transition times.

5.1.2 Unary Resource Propagators in CP

As mentioned in Chapter 2, the earliest starting time of an activity
Ai denoted esti, is the time before which Ai cannot start. The latest
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starting time of Ai, lsti, is the time after which Ai cannot start. The
domain of si is thus the interval [esti; lsti]. Similarly the earliest com-
pletion time of Ai, ecti, is the time before which Ai cannot end and
the latest completion time of Ai, lcti, is the time after which Ai cannot
end. The domain of ei is thus the interval [ecti; lcti]. These definitions
can be extended to a set of activities Ω. For example, estΩ is defined
as follows:

estΩ = min
{

estj | j ∈ Ω
}

The propagation procedure for the unary resource constraint intro-
duced in [Vil07] contains four different propagation algorithms all run-
ning with time complexity in O(n log(n)) : Overload Checking (OC),
Detectable Precedences (DP), Not-First/Not-Last (NFNL) and Edge
Finding (EF). Let us consider that all the activities using a given unary
resource form the set T. These propagation algorithms all rely on an ef-
ficient computation of the earliest completion time of a set of activities
Ω ⊆ T using data structures called Theta Tree and Theta-Lambda Tree
introduced in [Vil07]. Our contribution is a tighter computation of the
lower bound of ectΩ taking into account the transition times between
activities.

5.2 transition times extension requirements

The propagation procedure we introduce in this chapter relies on the
computation of ectΩ, the earliest completion time of a set of activities
Ω ⊆ T. It follows the idea introduced in [Vil07] that proposes filter-
ing algorithms for the classic unary resource without transition times.
These propagation algorithms rely on an efficient computation of a
lower bound ectLB0

Ω of the earliest completion time of a set of activities
Ω ⊆ T, defined as:

ectLB0
Ω = max

Ω′⊆Ω
{estΩ′ + dΩ′} (5.2)

This bound does not consider the transitions that might occur be-
tween the activities in Ω. We propose a tighter lower bound that de-
pends on the transition times occurring between activities inside Ω.
Let ΠΩ be the set of all possible permutations of activities in Ω. For a
given permutation π ∈ ΠΩ (where π(i) is the activity taking place at
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position i in the permutation π), we can define the total time spent by
transition times, ttπ, as follows:

ttπ =
|Ω|−1

∑
i=1

ttπ(i),π(i+1)

A lower bound for the earliest completion time of Ω can then be de-
fined as follows:

ectLB1
Ω = max

Ω′⊆Ω

{
estΩ′ + dΩ′ + min

π∈ΠΩ′
ttπ

}
Unfortunately, computing this value is NP-hard. Indeed, computing
the optimal permutation π ∈ Π minimizing ttπ is equivalent to solving
a TSP. Since embedding an exponential algorithm in a propagator is
generally impractical, a looser lower bound can be used instead.

Our goal is to keep the overall O(n log(n)) worst time complexity of
Vilím’s algorithms. The lower bound tt(Ω′) must therefore be available
in constant time for a given set Ω′. Our approach to obtain constant
time lower-bounds for a given set Ω′ during search is to base its com-
putation solely on the cardinality |Ω′|. More precisely, for each possible
subset of cardinality k ∈ {0, . . . , n}, we compute the smallest transition
time permutation of size k on the set T of all activities requiring the
resource:

tt(k) = min
{Ω′⊆T: |Ω′|=k}

{
min

π∈ΠΩ′
ttπ

}
(5.3)

For each k, the lower bound computation thus requires one to find the
shortest node-distinct (k−1)-edge path between any two nodes, which
is also NP-hard as it can be casted into a Resource-Constrained Short-
est Path Problem. Hopefully, we propose in later sections various lower
bounds for this value that can be obtained in polynomial time.

Our final lower bound formula for the earliest completion time of a
set of activities, making use of pre-computed lower-bounds of transi-
tion times, is:

ectLB2
Ω = max

Ω′⊆Ω

{
estΩ′ + dΩ′ + tt(|Ω′|)

}
(5.4)

The different lower bounds of ectΩ can be ordered as follows:

ectLB0
Ω ≤ ectLB2

Ω ≤ ectLB1
Ω ≤ ectΩ (5.5)

The next sections will detail how we have managed to compute
ectLB2

Ω efficiently. This requires two properties. First, we need methods
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to pre-compute tight tt(k) in polynomial time. We detail in Section 5.3
various lower bounds to achieve the pre-computation in polynomial
time. Second, we need to maintain the computation of ectLB2

Ω incre-
mental. This means that adding or removing an activity to Ω should
not require a complete ectLB2

Ω re-computation.

5.3 transitions in a set of activities

The computation of tt(k) for all k ∈ {1, . . . , n} is NP-hard. This is a
constrained shortest path problem (for k = n it amounts to solving
a TSP) in a graph where each node corresponds to an activity and
directed edges between nodes represent the transition time between
corresponding activities. Although these computations are achieved
at the initialization of the constraint, we propose to use polynomial
lower bounding procedures instead. Several approaches are used and
since none of them is dominating all the other ones2, we simply keep
the maximum of the computed lower bounds.

5.3.1 Sum of Minimal Transitions

The first idea that comes to mind to compute tt(k) for k ∈ [1, n] is
to consider all the transition times of the problem and sum the k − 1
minimal ones. This has been proposed by [BT96]. Let us consider the
set of all transition times, M. Most of the time, M is represented
in a matrix form where the entry in line i and column j is tti,j. Let
us consider an activity Ai. By definition, as the triangular inequality
holds, there can be only a single transition time applied from Ai, a
single tti,j for any j. Therefore, an acceptable lower bound tt(k) is to
consider the smallest transition time tti,j for all activities Ai and sum
the k minimal ones. Formally, the set of the lowest transitions from
activities is defined as follows:

tti→ = minj tti,j

M→ = {tti→ | 1 ≤ i ≤ n}

2 There is however one relaxation that is dominated by another one, this will be men-
tioned as it is detailed.
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To obtain the k smallest elements from this set, we use the following
recursive formula:

M0
→ = ∅

Mn
→ =Mn−1

→ ∪
{

min
(
M→ \Mn−1

→
)}

Similarly, there can be only one transition time applied to Ai, a single
ttj,i for any j. Therefore, the set of the lowest transitions to activities is
defined as follows:

tti← = minj ttj,i

M← = {tti← | 1 ≤ i ≤ n}

Similarly to the set defined above, the k smallest elements from this set
are obtained with the following recursive formula:

M0
← = ∅

Mn
← = Mn−1

← ∪
{

min
(
M← \Mn−1

←
)}

Depending on the transition times considered, the sum of the k
smallest transition from activities can be larger or smaller than its coun-
terpart on the sum of the min transitions to activities. As both these
quantities are lower bounds, the largest value will make the tightest –
and therefore most desirable – lower bound:

tt(k) = max


∑
Mk−1→

tti→

∑
Mk−1←

tti←

Example

We propose here a small example of the lower bounds obtained with
the sum of minimal transitions relaxation on a set of transition times
between 5 activities. The example matrixM represents the transitions
between activities from this set:

M =


0 2 3 1 4
7 0 10 12 9

11 10 0 13 8
14 10 9 0 12
15 17 14 11 0

 (5.6)
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If we compute the minimal transition by row and by column, we
have the following results:

Min per Row =


1
7
8
9

11

 Min per Column =
(

7 2 3 1 4
)

And then, by summing the k minimal transitions, the following lower
bounds are obtained:

LB
k

0 1 2 3 4

∑
Mk−1→

tti→ 0 1 8 16 25

∑
Mk−1→

tti→ 0 1 3 6 10

tt(k) = max 0 1 8 16 25

Table 5.1: Lower bounds obtained by the sum of minimal transitions relax-
ation for sets of activities of cardinality n = 1, . . . , 5.

5.3.2 Minimum Weight Forest

Brucker and Thiele [BT96] propose to represent the problem as a graph,
where each node corresponds to an activity and directed edges be-
tween nodes represent the transition time between corresponding ac-
tivities. A lower bound for tt(k) is a minimal subset of edges of size k
taken from this graph. We propose to strengthen this bound by using
Kruskal’s algorithm [Kru56] to avoid selecting edges forming a cycle.
Even if this relaxation removes cycles, it can lead to a set of transition
times where several transitions go to (or leave) the same activity. We
stop Kruskal’s algorithm as soon as we have collected k edges. The
result is a set of edges forming a minimum weight forest (i.e., a set of
trees) with exactly k edges.
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Example

We propose here a small example of the lower bounds obtained with
the minimum weight forest relaxation on a set of transition times be-
tween 5 activities with transitions defined in Equation (5.6). Applying
Kruskal’s algorithm [Kru56], we obtain the following lower bounds:

LB
k

0 1 2 3 4

tt(k) 0 1 3 6 10

Table 5.2: Lower bounds obtained by the sum of minimal transitions relax-
ation for sets of activities of cardinality n = 1, . . . , 5.

Graphically, the minimum weight forest obtained for k = 4 is shown
in Figure 5.1.

A1

A2

A3 A4

A5

2

3 1

4

Figure 5.1: Minimum weight forest lower bound for k = 4 on example
from Equation (5.6).

5.3.3 Dynamic Programming

Using the graph representation described in Section 5.3.2, we compute
a lower bound with a Dynamic Programming approach. The proposed
dynamic program allows to compute a shortest walk (not necessar-
ily simple) of exactly k edges in the graph. We iteratively compute
DP(m, u) with 1 ≤ m ≤ k, that is, the shortest walk of m edges to
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node u. At each iteration, DP(m, u) is computed for each node u in the
graph using the following update rules:

DP(0, u) = 0

DP(m + 1, u) = min
x

(DP(m, x) + wx,u)

where x is a vertex and wx,u is the weight of the edge from node x to u.
Once we obtain the value of DP(k, u) for each node u, we can obtain a
lower bound as follows:

tt(k) = min
u

DP(k, u)

This formulation allows the walk of k edges to contain cycles. How-
ever, it ensures that a walk (i.e. a single path potentially containing
cycles) is computed. A simplified version of the code used in OscaR im-
plementing this Dynamic Programming approach is provided in Ap-
pendix A.4.

Example

We propose here a small example of the lower bounds obtained with
dynamic programming relaxation on a set of transition times between
5 activities with transitions defined in Equation (5.6). With this ap-
proach, the D(m, u) values computed iteratively are reported in Ta-
ble 5.3. From these values, the smallest for each k defines tt(k) as re-
ported in Table 5.4.

u
m

0 1 2 3 4

A1 0 7 9 16 18

A2 0 2 9 11 18

A3 0 3 10 12 19

A4 0 1 8 10 17

A5 0 4 11 13 20

Table 5.3: Values D(m, u) obtained by the dynamic programming approach.
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LB
k

0 1 2 3 4

tt(k) 0 1 3 6 10

Table 5.4: Lower bounds obtained by the dynamic programming relaxation
for sets of activities of cardinality n = 1, . . . , 5.

5.3.4 Minimum Assignment

Brucker and Thiele [BT96] propose another lower bound that is com-
puted by considering the problem as a minimum assignment problem.
To do so, we duplicate the set of activities, and we try to find a mini-
mum assignment of k edges (i.e., transition times tti,j) such that each
edge has its end points in the two different sets. This problem can be
defined by the following linear integer program:

minimize ∑Ai∈T ∑Aj∈T tti,j · xi,j

such that ∑i ∑j xi,j = k

∑i xi,j ≤ 1

∑j xi,j ≤ 1

xi,j = {0, 1}

The bound obtained by solving this linear integer program does not
contain loops but it does not guarantee that selected edges form a
path (i.e., the edges selected may not be successive). Note that this
relaxation provides a bound that is at least as tight as the one from
obtained by summing the of minimal transitions per line/column. This
means that this former relaxation dominates the latter. Nevertheless, as
the A simplified version of the code used in OscaR to implement this
relaxation is provided in Appendix A.4.

Example

We propose here a small example of the lower bounds obtained with
the minimum assignment relaxation on a set of transition times be-
tween 5 activities with transitions defined in Equation (5.6). Applying
this relaxation, we obtain the following lower bounds:
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LB
k

0 1 2 3 4

tt(k) 0 1 8 16 25

Table 5.5: Lower bounds obtained by the minimum assignment relaxation for
sets of activities of cardinality n = 1, . . . , 5.

Graphically, the minimum assignment obtained for k = 4 is shown
in Figure 5.2.

A1

A2

A3

A4

A5

A1

A2

A3

A4

A5

1

7

8

9

Figure 5.2: Minimum assignment lower bound for k = 4 on example
from Equation (5.6).

5.3.5 Lagrangian Relaxation

The exact problem of finding the shortest succession of k transition
times can be reduced to finding the shortest-path of length k inside a
graph (the graph described in Section 5.3.2). To do so, we add a source
node (node 0) and a sink node (node n + 1) to this graph such that
there is a directed edge of weight 0 from the source to the original
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nodes, as well as from the original nodes to the sink. As such, we are
able to formulate the following NP-hard problem:

minimize ∑i ∑j tti,j · xi,j

such that ∑i ∑j xi,j = k

∑j x0,j −∑j xj,0 = 1

∑j xn+1,j −∑j xj,n+1 = −1

∑j xi,j −∑j xj,i = 0

xi,j = {0, 1}

When it is combined to the path constraints, the cardinality constraint
∑i ∑j xi,j = k makes this problem hard to solve. Therefore, we com-
pute a lower bound by solving a Lagrangian relaxation of the above
linear integer program. It uses the Bellman-Ford algorithm [Moo59,
Bel58] to compute the shortest path of length k and if a negative cycle
is detected, a classic Linear Integer Programming approach is used.

Example

We propose here a small example of the lower bounds obtained with
the Lagrangian relaxation on a set of transition times between 5 activi-
ties with transitions defined in Equation (5.6). Applying this relaxation,
we obtain the following lower bounds:

LB
k

0 1 2 3 4

tt(k) 0 1 5 10 16

Table 5.6: Lower bounds obtained by the Lagrangian relaxation for sets of
activities of cardinality n = 1, . . . , 5.

5.3.6 Exact TSP

Instead of using relaxations that might provide loose values, one could
desire to compute the exact value of tt(k) for all k ∈ [1, n]. In [VB02], a
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Dynamic Programming approach is introduced to compute the small-
est sequence of transitions of a set of activities with the first activ-
ity fixed. This approach iteratively computes the smallest sequence of
transitions for all the possible subsets of activities. Furthermore, for each
subset, all the activities from the subset are considered once being the
first of the sequence. Formally, this Dynamic Programming approach
uses the following recurrence rules:

ttAi→{Ai} = 0

ttAi→A′∪{Ai} = min
Aj∈A′

{
ttij + ttAj→A′

}
where A is the set of all activities, A′ ⊆ A and ttAj→A′ is the smallest
sequence of transitions for activity subset A′ such that Aj is the first
of the sequence. Once all these values have been obtained, the values
of tt(k) for all k ∈ [1, n] are easily obtained. For each k, all the values
ttAj→A′ where |A′| = k are collected and the minimal value is retained.
Formally, this is done as follows:

tt(k) = min
|A′|=k

min
Aj∈A′

ttAj→A′

The computation of all these values grows dramatically with the
number of activities considered. For a set of n activities, the time
complexity of this approach is O(n2 · 2n). Furthermore, all these val-
ues also have to be stored in memory and the space complexity is
O(n · 2n). This method is not adapted for large matrices and does not
scale. Hence, we will not use it to compute tt(k). We only report this
approach for comparison reasons.

Example

We propose here a small example of the lower bounds obtained with
the exact TSP on a set of transition times between 5 activities with
transitions defined in Equation (5.6). Applying this method, we obtain
the following lower bounds:
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LB
k

0 1 2 3 4

tt(k) 0 1 8 17 25

Table 5.7: Lower bounds obtained by the exact TSP procedure for sets of ac-
tivities of cardinality n = 1, . . . , 5.

5.3.7 Comparison of Lower Bounds

We propose here an example of the lower bounds obtained on a set of
transition times between 15 activities. The example matrix M repre-
sents the transitions between activities from this set:

M =



0 13 17 11 10 17 9 13 19 13 15 18 10 5 5
13 0 18 5 10 12 7 10 6 13 14 12 11 12 15
9 17 0 19 11 7 17 17 16 17 12 12 11 14 14
16 12 13 0 5 15 7 12 15 15 12 7 6 7 12
12 12 16 8 0 12 10 15 18 13 7 15 9 11 15
15 13 9 12 6 0 10 10 12 12 5 14 6 15 12
15 8 14 13 13 11 0 5 14 8 12 20 13 8 17
13 16 14 18 12 6 12 0 9 11 7 16 12 16 12
18 16 22 14 6 18 16 14 0 11 13 13 15 16 11
12 5 15 10 6 17 12 15 11 0 13 17 15 17 17
10 12 9 17 13 13 5 10 15 7 0 9 7 10 8
9 12 15 10 14 8 6 8 16 13 6 0 13 14 5
16 14 7 13 17 14 6 11 17 14 18 15 0 14 6
17 9 12 13 5 17 8 13 15 8 10 18 5 0 11
10 23 15 17 20 19 19 16 16 18 17 15 15 15 0


We computed the lower bounds of the sum of the k transitions tak-

ing place in any set of n = k + 1 activities. The lower bounds were
obtained with the relaxations mentioned earlier. In Table 5.8, we re-
port the time (in milliseconds) taken by each of these relaxations to
compute the lower bounds of transition times in a set from size 1 to
15 (i.e., containing 0 to 14 transitions). The results seem to show that
the min assignment relaxation is time consuming with respect to other
relaxations. However, to illustrate the time needed on larger instance,
Table 5.9 reports the time (in milliseconds) taken by the relaxations
to compute the lower bounds on a set of n = 50 activities. The time
taken by a Lagrangian relaxation as described earlier greatly increases.
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As expected, the time needed for summing the min elements per line,
Kruskal’s minimum spanning tree and dynamic programming relax-
ations seem to follow a quadratic increase. The time needed to com-
pute the exact value, with the exact TSP procedure described earlier is
relatively small for n = 15. However, for n = 50, it would be too large
to be reported here (or even to be computed someday).

LB Time (ms)

Sum of Min. Trans. 0.08

Min. Weight Forest 0.26

Dyn. Prog. 0.08

Min. Ass. 33.00

Lag. Relax. 534.40

Exact TSP 67.86

Table 5.8: Time taken by the relaxations to compute the lower bounds of a set
of transitions based on the cardinality of the set (n = 15).

LB Time (ms)

Sum of Min. Trans. 0.2

Min. Weight Forest 2.9

Dyn. Prog. 1.0

Min. Ass. 1,628.8

Lag. Relax 55,924.4

Exact TSP +∞

Table 5.9: Time taken by the relaxations to compute the lower bounds of a set
of transitions based on the cardinality of the set (n = 50).

The lower bounds obtained by the various relaxations on cardinal-
ities k = 0, . . . , 14 (i.e., sets of 1 to 15 activities) are reported in Ta-
ble 5.10. As expected, the lower bound obtained by the sum of the
minimal elements by line or column is alway inferior or equal to the
lower bounds obtained by the min assignment. No relaxation proposes
a lower bound that is above the ones obtained by other relaxations for
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all the possible cardinalities. It is therefore useful to keep several re-
laxations such that the best possible lower bound can be used. This is
even more useful when considering that these relaxations will only be
used in a pre-computation step. The line tt(k) = max takes the maxi-
mal lower bounds obtained by the relaxations for every k. The last line,
Exact TSP reports the exact value obtained when solving all the TSPs
of size k with the procedure defined earlier. Again, this approach is to-
tally impractical since there are 2n TSPs to solve to obtain these values
(one TSP for each possible subset of the n activities). The lower bounds
obtained are very tight, they are below by a maximum of three units of
the exact TSP value for some cardinalities. Therefore, these relaxations
seem to provide tight lower bounds and have the advantage to scale
in terms of time (and memory) needed to compute them.

LB
k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sum of Min. Trans. 0 5 10 15 20 25 30 35 40 45 51 57 64 71 78

Min. Weight Forest 0 5 10 15 20 25 30 35 40 45 50 55 61 67 74

Dyn. Prog. 0 5 10 15 21 26 31 36 42 47 52 57 63 68 73

Min. Ass. 0 5 10 15 20 25 30 35 40 45 51 58 66 74 83

Lag. Relax. 0 4 9 15 20 25 30 35 41 47 53 59 66 72 78

tt(k) = max 0 5 10 15 21 26 31 36 42 47 53 59 66 74 83

Exact TSP 0 5 10 15 21 27 32 38 44 49 54 61 69 76 85

Table 5.10: Lower bounds obtained by the relaxations for sets of activities of
cardinality n = 1, . . . , 15.

5.4 the theta-tree structure

As introduced in [Vil04b], the O(n log n) propagation algorithms for
unary resource use the so-called Θ-tree data structure. We propose to
extend it in order to integrate transition times while keeping the same
time complexities for all its operations.

A Θ-tree is a balanced binary tree in which each leaf represents
an activity from a set Θ and internal nodes gather information about
the set of (leaf) activities under this node. For an internal node v, we
denote by Leaves(v), the leaf activities under v. Leaves are ordered
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in non-decreasing order of the est of the activities. That is, for two
activities Ai and Aj, if esti < estj, then Ai is represented by a leaf node
that is on the left of the leaf node representing Aj. This ensures the
following property :

∀ Ai ∈ Left(v), ∀ Aj ∈ Right(v) : esti ≤ estj

where left(v) and right(v) are respectively the left and right children
of v, and Left(v) and Right(v) denote respectively Leaves(left(v)) and
Leaves(right(v)).

A node v contains pre-computed values about Leaves(v): Σdv repre-
sents the sum of the durations of activities in Leaves(v) and ectv is the
ect of Leaves(v). More formally, the values maintained in an internal
node v are defined as follows:

Σdv = ∑
Aj∈Leaves(v)

dj

ectv = ectLeaves(v) = max
Θ′⊆Leaves(v)

(estΘ′ + dΘ′)

For a given leaf l representing an activity i, the values of Σdl and ectl
are respectively di and ecti. In [Vil07] Vilím has shown that for a node
v these values only depend on the values defined in its left(v) and
right(v) children. The incremental update rules introduced in [Vil07]
are:

Σdv = Σdleft(v) + Σdright(v)

ectv = max

 ectright(v)

ectleft(v) + Σdright(v)

An example of a classic Θ-tree is given in Figure 5.3.
When transition times are considered, the ectv values computed in

the internal nodes of the Θ-tree may only be a loose lower-bound since
it is only based on the earliest start times and durations of activities.
We strengthen the estimation of the earliest completion times (written
ect∗) by also considering transition times. We add another value inside
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ect = 70
Σd = 65

ect = 70
Σd = 45

ect = 55
Σd = 25
est4 = 30

ect = 45
Σd = 20
est3 = 25

ect = 25
Σd = 20

ect = 25
Σd = 10
est2 = 15

ect = 10
Σd = 10
est1 = 0

Figure 5.3: Classic Θ-tree as described in [Vil07].

the nodes: nv is the cardinality of Leaves(v): nv = |Leaves(v)|. The new
update rules for the nodes of a Θ-tree are:

Σdv = Σdleft(v) + Σdright(v)

nv = nleft(v) + nright(v)

ect∗v = max

 ect∗right(v)

ect∗left(v) + Σdright(v) + tt(nright(v))

In these update rules, the term tt(nright(v)) is surprising since it sup-
poses that we consider right(v) transitions for a set of right(v) ac-
tivities, where normally one should consider only right(v)− 1 transi-
tions. The additional transition is included to represent the transition
between the activities in the left subtree and those in the right subtree.

As an example, let us consider the set of four activities used in the
Θ-tree example of Figure 5.3. Let us assume that the associated tran-
sition times are as defined in the matrix M of Figure 5.4. The lower
bounds for sets of activities of different cardinality are reported next
to the matrix. With the new update rules defined earlier, we obtain the
extended Θ-tree presented in Figure 5.5. Note that the values of ect∗

in the internal nodes are larger than the values of ect reported in the
classic Θ-tree (Figure 5.3).

Theorem 1. For any set of activities for which a lower bound of its ect is
computed with an extended Θ-tree, the ect∗ computed in any node satisfies
the following property:

ectv ≤ ect∗v ≤ ect�Leaves(v) = max
Θ′⊆Leaves(v)

(
estΘ′ + dΘ′ + tt(|Θ′|)

)
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M =


0 10 13 18

12 0 15 15

10 18 0 20

19 11 16 0



LB
k

0 1 2 3

Sum of Min. Trans. 0 10 20 33

Min. Weight Forest 0 10 20 31

Dyn. Prog. 0 10 20 32

Min. Ass. 0 10 20 33

Lag. Relax. 0 10 20 32

tt(k) = max 0 10 20 33

Figure 5.4: Example of transition time matrix and associated lower bounds of
transition times occurring in a set of activities.

ect∗ = 95
Σd = 65
n = 4

ect∗ = 80
Σd = 45
n = 2

ect∗ = 55
Σd = 25
n = 1
est4 = 30

ect∗ = 45
Σd = 20
n = 1
est3 = 25

ect∗ = 30
Σd = 20
n = 2

ect∗ = 25
Σd = 10
n = 1
est2 = 15

ect∗ = 10
Σd = 10
n = 1
est1 = 0

Figure 5.5: Extended Θ-tree for transition times. The ect∗ values reported in
the internal nodes have been computed using the update rule of
the extended Θ-tree.

Proof. The proof is similar to the proof of Proposition 7 in [Vil07]. The
only term added to the original ect update in a classic Θ-tree is the
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tt() term. However, for any set of activities Θ, the following inequality
holds:

tt(|Θ|) ≥ tt(|Θ ∩ Left(v)|) + tt(|Θ ∩ Right(v)|)
This inequality is itself a direct consequence of the fact that tt(k) is
monotonic in k.

Since the new update rules are also executed in constant time for
one node, we keep the time complexities of the initial Θ-tree structure
from [Vil07]. Inserting or removing an activity inside the tree requires
to update all its parents up to the root. Considering a set of n activities,
the Θ-tree contains at most n leaves. As theta trees are balanced binary
trees, leaves have O(log(n)) parents. Hence, inserting or removing a
single activity is performed inO(log(n)). Therefore, the insertion or re-
moval of all activities in the tree has a time complexity of O(n log(n)).
The complexities of all the actions performed on an extended Θ-tree
are reported in Table 5.11.

Operation Time Complexity

Clear Θ← ∅ O(n log(n))

Remove Θ← Θ ∪ {Ai} O(log(n))

Add Θ← Θ \{Ai} O(log(n))

Get ect∗Θ O(1)
Fill Θ← T O(n log(n))

Table 5.11: Worst-case time complexities of operations on extended Θ-tree.

Extending the Θ-Λ-tree with Transition Times

The Edge Finding (EF) algorithm requires an extension of the original
Θ-tree, called Θ-Λ-tree [Vil07]. This extension is used to obtain a time
efficient EF algorithm. In this extension, in addition to the activities
included in a Θ-tree, leaves can be marked as gray nodes. Gray nodes
represent activities that are not anymore in the set Θ. However, they
allow to easily compute ectΘ if a single one of the gray activities were
included in Θ. Let us consider the set of gray activities Λ such that
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Λ ∩ Θ = ∅. Our interest lies in the computation of the largest ect
obtained by including only one activity from Λ into Θ:

ect(Θ,Λ) = max
Ai∈Λ

ectΘ∪{Ai}

In addition to Σdv and ect∗v, the Θ-Λ-tree structure also maintains Σdv

and ect∗v, respectively corresponding to Σdv and ect∗v, if a single gray
activity in the sub-tree rooted in v maximizing ectv was included:

ect∗(Θ,Λ) = max
Ai∈Λ

ect∗Θ∪{Ai}

The update rule for Σdv remains the same as the one described in
[Vil07]. However, following a similar reasoning as the one used for
the extended Θ-tree, we add the nv value. The update rule for ect∗v
is also modified in order to take into account the transition times in-
side Leaves(v). The updated rules for the extended Θ-Λ-tree are the
following:

Σdv = max

 Σdleft(v) + Σdright(v)

Σdleft(v) + Σdright(v)

ect∗v = max


ect∗right(v)

ect∗left(v) + Σdright(v) + tt(nright(v))

ect∗left(v) + Σdright(v) + tt(nright(v))

nv =

 nv + 1 if the subtree rooted in v contains a gray node

nv otherwise

This extended Θ-Λ-tree allows us to efficiently observe how the ect∗

of a set of activities is impacted if a single activity is added to this set.
This information allows the EF algorithm to perform propagation effi-
ciently; finding the “responsible” activity arg maxAi

ectΘ∪{Ai} (required
by EF) is done similarly to [Vil07]. An example of Θ-Λ-tree based on
the example from Figure 5.4 and Figure 5.5 is displayed in Figure 5.6.

Similarly to the reasoning applied for the extended Θ-tree, the time
complexities remain the same as the ones from the original Θ-Λ-tree
structure from [Vil07]. The time complexities of the various operations
performed on a Θ-Λ-tree are recalled in Table 5.12.
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ect∗ = 65
Σd = 45
n = 3
ect

∗
= 95

Σd = 65
n = 4

ect∗ = 55
Σd = 25
n = 1
ect

∗
= 80

Σd = 45
n = 2

ect∗ = 55
Σd = 25
n = 1
ect

∗
= 55

Σd = 25
n = 1
est4 = 30

ect∗ = −∞
Σd = 0
n = 0
ect

∗
= 45

Σd = 20
n = 1
est3 = 25

ect∗ = 30
Σd = 20
n = 2
ect

∗
= 30

Σd = 20
n = 2

ect∗ = 25
Σd = 10
n = 1
ect

∗
= 25

Σd = 10
n = 1
est2 = 15

ect∗ = 10
Σd = 10
n = 1
ect

∗
= 10

Σd = 10
n = 1
est1 = 0

Figure 5.6: Extended Θ-Λ-tree for transition times with one gray activity. The
ect∗ and ect∗ values reported in the internal nodes have been com-
puted using the update rules of the extended Θ-Λ-tree.

Operation Time Complexity

Clear (Θ, Λ)← (∅,∅) O(1)
Fill (Θ, Λ)← (T,∅) O(n log(n))

Gray (Θ, Λ)← (Θ\{Ai}, Λ ∪ {Ai}) O(log(n))

Insert Θ← Θ ∪ {Ai} O(log(n))

Remove Λ← Λ \{Ai} O(log(n))

Get ect∗(Θ,Λ) O(1)
Get ect∗Θ O(1)

Table 5.12: Worst-case time complexities of operations on extended Θ-Λ-tree.

5.5 propagation algorithms

In [Vil07], a propagation procedure for the unary resource constraint
is defined. This propagation procedure consists of a propagation loop
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including Overload Checking (OC), Detectable Precedences (DP), Not-
First/Not-Last (NF/NL) and Edge Finding (EF) algorithms. The first
three rely on the Θ-tree while the latter employs the Θ-Λ-tree. Some
small modifications can be done to these algorithms to obtain an ef-
ficient propagation procedure making use of knowledge about transi-
tion times.

The four mentioned propagation algorithms use a Θ-tree or a Θ-Λ-
tree to compute ectΘ on a set of activities Θ. OC checks if ectΘ > lctΘ.
DP, NF/NL and EF rely on a set of rules that potentially allow to up-
date the est or lct of an activity. They all incrementally add/remove ac-
tivities to a set of activities Θ while maintaining the value ectΘ. When
a rule is triggered by the consideration of a given activity, the est or lct
of this activity can be updated according to the current value of ectΘ.
In the rest of this section, we describe the extended versions of the four
propagation algorithms mentioned earlier.

Each of these algorithms potentially updates only one of the bounds
of an activity: either its est or its lct. However, it is easy to make these
algorithms potentially update both bounds with the help of a single
transformation. To each activity Ai can be associated a mirror activ-
ity Am

i . This mirror activity defines two views on the start and end
variables from the original activity and shares its duration variable.
Given a propagator p, a view [SS08] is represented by two functions
φ and φ−1 that are composed with p to obtain the desired propaga-
tor φ ◦ p ◦ φ−1. The φ function transforms the input domain and φ−1

applies the inverse transformation to the propagator’s output domain.
The mirror activity Am

i has the following views on the variables of Ai:

sm
i = −ei

em
i = −si

dm
i = di

To update both bounds of activities, algorithms are run twice: once on
the original activities and once on the mirror activities.

5.5.1 Overload Checking

The Overload Checking (OC) rule [WS04] applies on any subset of
activities using the same unary resource. Let us consider an arbitrary
set of activities Ω ⊆ T where T is the set of all activities using a given
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unary resource. The OC rule states that if activities from the set Ω
cannot be processed within the bounds of Ω, then no solution exists
(i.e., a failure has been detected). Formally, for any set of activities
Ω ⊆ T, a failure is detected when the following OC rule is satisfied:

estΩ + dΩ > lctΩ

This OC rule can be extended to include transition times between ac-
tivities. In addition to the sum of durations of activities from Ω, the
transitions occurring in the set can be considered. Formally, for any set
of activities Ω ⊆ T, a failure is detected when the following extended
OC rule is satisfied:

ectΩ > lctΩ

As this extended OC rule can be applied for any Ω, thanks to Equa-
tion (5.5), it is possible to substitute ectΩ by ect∗Ω. Therefore, the ex-
tended OC rule can be simplified as follows:

ect∗Ω > lctΩ

As the exact value for ectΩ is hard to compute in practice, it can be
substituted with a lower bound. The lower bound ect∗Ω obtained with
the extended Θ-tree data structure introduced in Section 5.4 can be
used for the extended OC rule.

The extended Overload Checking algorithm from Algorithm 5.5.1
applies the extended OC rule on various sets Ω ⊆ T. The sets Ω are
built by adding activities one by one in non-decreasing order of lct
(line 3). For each of the sets obtained, the extended OC rule is tested in
line 4. If the extended OC rule is true for a set Ω, then a failure has been
detected and the algorithm returns Failure. If no set Ω has triggered
the extended OC rule, no failure has been detected; the algorithm ends
and returns Suspend.

The worst time complexity of Algorithm 5.5.1 is O(n log(n)) where
n = |T|. Indeed, it starts with an empty Θ-tree and it performs n in-
sertions in the tree, each insertion being performed in O(log(n)). It
is important to mention that the extended OC algorithm from Algo-
rithm 5.5.1 is only a checker. This means that it only checks the satisfi-
ability of the current domains from variables in its scope, but it does
not modify the domains themselves.

Example

Let us consider a small example of four activities using a unary re-
source and subject to transition times. The activities are represented
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Algorithm 5.5.1 : Overload Checking

1 Θ← ∅
2 for Ai in non-decreasing order of lcti do
3 Θ← Θ ∪ {Ai}
4 if ect∗Θ > lcti then
5 return Failure
6 end
7 end
8 return Suspend

in Figure 5.7; the transition times matrix and the lower bound of tran-
sitions in a set of activities by cardinality are reported in Figure 5.8.

t0 5 10 15 20

A1

A2

A3

A4

Figure 5.7: Example of activities for which the Overload Checking algorithm
detects a failure.

The OC algorithm adds activities in a Θ-tree in non-decreasing order
of lcti. After every insertion, ectΘ is compared to the lcti of the last
activity Ai added; if ectΘ > lcti then a failure occurs. In the case of
the example from Figures 5.7 and 5.8, after adding the four activities
A1, A2, A3 and A4 in the Θ-tree, its content is as depicted in Figure 5.9.
The last activity added was A4 and we have ectΘ > lct4. Therefore, the
OC rule has detected a failure.
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M =


0 5 5 4

4 0 3 4

5 6 0 7

5 7 5 0



LB
k

0 1 2 3

Sum of Min. Trans. 0 3 7 12

Min. Weight Forest 0 3 7 11

Dyn. Prog. 0 3 8 12

Min. Ass. 0 3 7 12

Lag. Relax. 0 3 7 11

tt(k) = max 0 3 8 12

Exact TSP 0 3 8 12

Figure 5.8: Example of transition times and lower bound of transitions within
a set of activities by cardinality.

ect∗ = 25
Σd = 14
n = 4

ect∗ = 11
Σd = 6
n = 2

ect∗ = 6
Σd = 3
n = 1
est4 = 3

ect∗ = 5
Σd = 3
n = 1
est3 = 2

ect∗ = 11
Σd = 8
n = 2

ect∗ = 5
Σd = 4
n = 1
est2 = 1

ect∗ = 4
Σd = 4
n = 1
est1 = 0

Figure 5.9: Θ-tree obtained after the iterative addition of the activities
from Figure 5.7.

5.5.2 Detectable Precedence

The Detectable Precedence rule [Vil04a] updates the est of an activity
with respect to the set of activities preceding it. When an activity Aj
precedes another activity Ai, Aj � Ai, the following deduction can be
performed:

esti ≥ ectj
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Considering a third activity Ak also preceding Ai, Ak � Ai, the same
deduction can be applied. However, the update obtained with single
precedences is relatively weak and does not bring important bound
change. if we consider that both Aj and Ak precedes Ai,

{
Aj, Ak

}
� Ai,

then a stronger deduction is possible. Indeed, with Ω =
{

Aj, Ak
}

, then
the following deduction can be made:

esti ≥ ectΩ

For a given activity Ai, this reasoning can be extended for all the activi-
ties preceding it. As specified in [Vil07], the set of all detectable preceding
activities for an activity Ai is referred to as DPrec(Ai) and is defined as
follows:

DPrec(Ai) =
{

Aj | j ∈ T ∧ lstj < ecti ∧ j 6= i
}

The detectable precedence rule updates esti according to ectDPrec(Ai),
its set of detectable preceding activities:

esti = max

 esti

ectDPrec(Ai)

To include transition times in the DP update rule, the ectDPrec(Ai)

can be replaced by ect∗DPrec(Ai)
. However, in addition to the transitions

in the set DPrec(Ai) (that are embedded in ect∗DPrec(Ai)
), there will be

an additional transition from the last activity of DPrec(Ai) to Ai. As
it is not possible to know what activity in DPrec(Ai) will come last,
one could count the minimal transition from any of the activities Aj ∈
DPrec(Ai) to Ai. Computing the minimal transition from a set to an
activity has a time complexity in O(n). This could be pre-computed
for every activity Ai and every possible set of activities Ω ⊆ T \ {Ai}.
Unfortunately, there exists 2n−1 such set for every activity Ai, leading
to n · 2n−1 values to pre-compute. Regardless of the time needed to
compute all these values, the memory needed to store them could
not scale. Therefore, we propose to use again a lower bound for this
transition that is the smallest transition from any activity Aj ∈ T \ {Ai}
to Ai, tti←:

tti← = min
j 6=i

ttj,i

This means that only n values have to be pre-computed and each of
these values is obtained in O(n). With the addition of this minimal
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transition, the extended detectable precedences update rule is defined
as follows:

esti = max

 esti

ect∗DPrec(Ai)
+ tti←

The extended Detectable Precedences algorithm depicted in Algo-
rithm 5.5.2 applies the extended DP rule to all activities on a resource.
It goes through all activities Ai in non-decreasing order of ecti (loop
starting at line 4) and adds all activities that are in DPrec(Ai) in a Θ-
tree (lines 5-7). Then, at line 9, the new bound for esti is registered in
a cache est′i. The new bounds are registered in a cache and not directly
applied to domains in order to keep the Θ-tree consistent. Finally, once
all activities have been browsed, the new bounds kept in cache are ap-
plied to the domains in line 11. This is done in Algorithm 5.5.3 that
applies the bounds in cache to the domains and stops if a failure has
been detected.

Algorithm 5.5.2 : Detectable Precedence

1 Θ← ∅
2 Q← Queue of Aj in non-decreasing order of lstj
3 Aj ← Pop(Q)

4 for Ai in non-decreasing order of ecti do
5 while ect∗i > lstj do
6 Θ← Θ ∪

{
Aj
}

7 Aj ← Pop(Q)

8 end

9 est′i ← max

 esti

ect∗Θ \{Ai} + tti←
10 end
11 return UpdateESTs()

The worst time complexity of Algorithm 5.5.2 is O(n log(n)) where
n = |T|. Indeed, it starts with an empty Θ-tree and it performs n inser-
tions in the tree, each insertion being performed in O(log(n)). It also
performs O(n) successive removals and insertions (both performed
in O(log(n))) when getting the value ect∗Θ \{Ai}. Indeed, to compute
ect∗Θ \{Ai}, one first removes Ai from the tree, then get the desired value,
then reinsert Ai back in the tree to restore its original state.
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Algorithm 5.5.3 : Update ESTs

1 forall the Ai do
2 esti ← est′i
3 if a failure has occurred then
4 return Failure
5 end
6 end
7 return Suspend

Example

Let us consider a small example of three activities using a unary re-
source and subject to transition times. The activities are represented
in Figure 5.10; the transition times matrix and the lower bound of tran-
sitions in a set of activities by cardinality are reported in Figure 5.11.

t0 5 10 15 20

A1

A2

A3

Figure 5.10: Example of activities for which the Detectable Precedences algo-
rithm updates the bounds of an activity.

When the DP algorithm considers the activity A3, both A1 and A2

are added in the Θ-tree that is shown in Figure 5.12. The update per-
formed for A3 is the following one:

est′3 = 17 = max

 est3 = 11

ect∗Θ \{A3} + tt3← = 12 + 5 = 17

Once this update has been applied on the domain of A3, we obtain the
domains as shown in Figure 5.13.
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M =


0 4 6

2 0 5

4 3 0



LB
k

0 1 2

Sum of Min. Trans. 0 2 5

Min. Weight Forest 0 2 5

Dyn. Prog. 0 2 5

Min. Ass. 0 2 5

Lag. Relax. 0 2 4

tt(k) = max 0 2 5

Exact TSP 0 2 5

Figure 5.11: Example of transition times and lower bound of transitions
within a set of activities by cardinality.

ect∗ = 12
Σd = 10
n = 2

ect∗ = 6
Σd = 5
n = 1
est2 = 1

ect∗ = 5
Σd = 5
n = 1
est1 = 0

Figure 5.12: Θ-tree obtained after the addition of A1 and A2 from Figure 5.10.

t0 5 10 15 20

A1

A2

A3

Figure 5.13: Activities from Figure 5.10 after the Detectable Precedences al-
gorithm from Algorithm 5.5.2 updates est3. The dashed gray
bracket is the former value of est3.
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5.5.3 Not-First/Not-Last

The Not-First and Not-Last rules [Vil04a] are two symmetric update
rules. They respectively update the est and lct of an activity. We only
present here the Not-Last rule and algorithm; the Not-First rule is ob-
tained easily with the mirror transformation we have mentioned ear-
lier.

The Not-Last reasoning is applied on an activity Ai and a set of
activities Ω ⊆ T such that Ai /∈ Ω. If the activity Ai cannot be sched-
uled after the set of activities Ω (i.e., Ai cannot be the last activity in
Ω∪{Ai}), then lcti can be updated. An activity Ai cannot be scheduled
after a set of activities Ω if:

ectΩ > lsti

In this case, there is at least one activity from Ω that has to be sched-
uled before Ai. Therefore, the following update can be performed:

lcti = min


lcti

max
Aj∈Ω

lstj

It is easy to extend the Not-Last rule such that they take transition
times into account. The extended rule to detect if an activity Ai cannot
be scheduled after a set of activities Ω is obtained by substituting ect∗Ω
to ectΩ:

ect∗Ω > lsti

If such case is detected, we know that there should be at least one
activity Aj ∈ Ω scheduled before Ai. We also know that there will
be a transition time between Ai and the last activity of Ω. Following
a similar reasoning as the one proposed for DP, the last activity of
Ω is not known and therefore the transition to take into account is
also unknown. We thus propose to use as lower bound the smallest
transition from Ai to any activity Aj ∈ T:

tti→ = min
j 6=i

tti,j

Hence, when an activity Ai cannot be scheduled after a set Ω, we can
perform the following extended update:

lcti = min


lcti

max
Aj∈Ω

lstj − tti→
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For a given activity Ai, any set Ω that could apply the NL update
rule should be a subset of NLSet(Ai):

NLSet(Ai) =
{

Aj | j ∈ T ∧ lstj < lcti ∧ j 6= i
}

For any set of activities Ω ⊆ NLSet(Ai), we have the following prop-
erty:

max
Aj∈Ω

lstj ≤ max
Ak∈NLSet(Ai)

lstk

Therefore, it is not mandatory to consider the exact NLSet(Ai); consid-
ering only a subset of it can be enough to update lcti.

The Not-Last algorithm depicted in Algorithm 5.5.4 applies the ex-
tended NL rule to all activities applying on a resource. It goes through
all activities Ai in non-decreasing order of lcti (loop starting at line 4).
For each Ai, the set NLSet(Ai) is iteratively built in the loop from line 5

to line 6 by adding all potential activities in a Θ-tree. The activities in-
cluded in Θ might contain Ai itself; therefore, when checking if the NL
update can be applied, we have to consider the set Θ \ {Ai}. In line 9,
we check if Ai has to be scheduled before at least one activity from
Θ \ {Ai}. In case the NL rule can be applied, the new bound for lcti is
registered in a cache lct′i at line 10. Similarly to the DP algorithm, the
cache is used to ensure values in the Θ-tree are still consistent. Finally,
once all activities have been browsed, the new bounds kept in cache
are applied to the domains in line 13. This is done in Algorithm 5.5.3
that applies the bounds in cache to the domains and stops if a failure
has been detected.

The worst time complexity of Algorithm 5.5.4 is O(n log(n)) where
n = |T|. Similarly to Algorithm 5.5.2, it starts with an empty Θ-tree
and it performs n insertions in the tree, each insertion being performed
inO(log(n)). It also performsO(n) successive removals and insertions
(both performed in O(log(n))) when getting the value ect∗Θ \{Ai}.

Example

Let us consider a small example of three activities using a unary re-
source and subject to transition times. The activities are represented
in Figure 5.14; the transition times matrix and the lower bound of tran-
sitions in a set of activities by cardinality are reported in Figure 5.15.

The NL algorithm from Algorithm 5.5.4 begins its main loop with A3

(since it has the smallest lct). The activities A1, A2 and A2 are succes-
sively added in the Θ-tree in the loop from line 5-6. Then, the Not-Last
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Algorithm 5.5.4 : Not-Last

1 Θ← ∅
2 Q← Queue of Aj in non-decreasing order of lstj
3 Aj ← Peek(Q)

4 for Ai in non-decreasing order of lcti do
5 while lcti > lstj do
6 Θ← Θ ∪

{
Aj
}

7 Aj ← Pop(Q)

8 end
9 if ectΘ \{Ai} > lsti then

10 lct′i ← min

 lcti

lstj − tti→
11 end
12 end
13 return UpdateLCTs()

Algorithm 5.5.5 : Update LCTs

1 forall the Ai do
2 lcti ← lct′i
3 if a failure has occurred then
4 return Failure
5 end
6 end
7 return Suspend

rule is checked in line 9. This rule checks if ect∗Θ \{A3} > lst3. At this mo-
ment, Θ \ {A3} = {A1, A2} and the computation of ect∗Θ \{A3} is shown
in Figure 5.16. As the NL rule should apply, the update performed for
A3 is the following one:

lct′3 = 12 = min

 lct3 = 15

lst2 − tt3→ = 14− 2 = 12

Once this update has been applied on the domain of A3, we obtain
the domains as shown in Figure 5.17.
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t0 5 10 15 20

A1

A2

A3

Figure 5.14: Example of activities for which the Not-Last algorithm updates
the bounds of an activity.

M =


0 4 2

6 0 5

4 2 0



LB
k

0 1 2

Sum of Min. Trans. 0 2 4

Min. Weight Forest 0 2 4

Dyn. Prog. 0 2 4

Min. Ass. 0 2 4

Lag. Relax. 0 1 4

tt(k) = max 0 2 4

Exact TSP 0 2 4

Figure 5.15: Example of transition times and lower bound of transitions
within a set of activities by cardinality.

ect∗ = 17
Σd = 15
n = 2

ect∗ = 9
Σd = 8
n = 1
est2 = 1

ect∗ = 7
Σd = 7
n = 1
est1 = 0

Figure 5.16: Θ-tree obtained after the addition of A1 and A2 from Figure 5.14.

5.5.4 Edge Finding

The Edge Finding rule [BL96] updates the est of an activity with re-
spect to a set of activities. Let us consider a set of activities Ω ⊆ T and
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t0 5 10 15 20

A1

A2

A3

Figure 5.17: Activities from Figure 5.14 after the Not-Last algorithm from Al-
gorithm 5.5.4 updates lct3. The dashed gray bracket is the former
value of lct3.

an activity Ai /∈ Ω. If the latest completion time of the set Ω is smaller
than the earliest completion time of the set Ω including Ai, then Ai has
to be scheduled after all activities from the set Ω. Formally, for any set
Ω ⊆ T and any activity Ai /∈ Ω, the EF rule detects that Ai has to be
scheduled after all other activities in Ω if:

ectΩ∪{Ai} > lctΩ

If this rule holds, then Ai has to be scheduled after Ω and the following
update rule can be applied:

esti = max

 esti

ectΩ

One can easily include transition times in the EF rule. The extended
rule to detect if an activity Ai must be scheduled after a set of activities
Ω is obtained by substituting ect∗Ω to ectΩ:

ect∗Ω∪{Ai} > lctΩ

If such case is detected, we know that activities from Ω should be
scheduled before Ai. We also know that there will be a transition time
between the last activity of Ω and Ai. Following a similar reasoning as
the one proposed for DP and NL, the last activity of Ω is not known
and therefore the transition to take into account is also unknown. We
thus propose to use as lower bound the smallest transition from any
activity Aj ∈ T to Ai:

tti← = min
j 6=i

ttj,i



5.5 propagation algorithms 125

Hence, when an activity Ai must be scheduled after a set Ω, we can
perform the following extended update:

esti = max

 esti

ect∗Ω + tti←

To ease the computation of ect∗Ω∪{Ai}, we can take advantage of the
Θ-Λ-tree structure. Indeed, the Θ-Λ-tree structure allows to answer
the question What would be the ect if one gray activity is added to Ω?.
Therefore, the value ect∗(Ω,Λ) is the value of ectΩ∪{Ai} where Ai ∈ Λ is
the gray activity that will increase the most the ect. The extended EF
rule can therefore be substituted with the following:

ect∗(Ω,Λ) > lctΩ

If this rule is verified, then the est of the gray activity in the Θ-Λ-tree
responsible for ect∗(Ω,Λ) can be updated with the extended EF update
rule described earlier.

The extended Edge Finding algorithm depicted in Algorithm 5.5.6
applies the extended EF rule to all activities executed on a unary re-
source. In line 1, a Θ-Λ-tree is initialized with all the activities set in Θ
and none in Λ (i.e., no gray activity yet). It goes through all activities
Aj in non-decreasing order of lcti (loop starting at line 4). At each iter-
ation, the current activity Aj is grayed in line 8; then Aj is set to be the
next activity. At line 10, the extended EF rule is checked. If the EF rule
applies, the gray activity responsible for ect∗(Ω,Λ) is identified in line 11;
its est is updated with the extended EF update rule in line 12 and it is
finally removed at line 13. The loop starting in line 10 can be applied
on several gray activities while the EF rule holds. In line 5, the OC
rule is checked. This is not mandatory if the OC algorithm is included
in the fixed point but it can speed up the propagation by detecting a
failure earlier.

The worst time complexity of Algorithm 5.5.6 is O(n log(n)) where
n = |T|. It starts with a full Θ-Λ-tree and it grays n activities; gray-
ing an activity is performed in O(log(n)). It also removes at most n
activities from the set of gray activities (each being also performed in
O(log(n))).

Example

Let us consider a small example of four activities using a unary re-
source and subject to transition times. The activities are represented
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Algorithm 5.5.6 : Edge Finding

1 (Θ, Λ)← (Ω,∅)

2 Q← Queue of Aj in non-increasing order of lctj
3 Aj ← Pop(Q)

4 while Size(Q) > 1 do
5 if ect∗Θ > lctj then
6 return Failure
7 end
8 (Θ, Λ)← (Θ \

{
Aj
}

, Λ ∪
{

Aj
}
)

9 Aj ← Pop(Q)

10 while ect∗(Θ,Λ) > lctj do
11 Ai ← gray activity responsible for ect∗(Θ,Λ)

12 est′i ← max {esti, ectΘ}
13 Λ← Λ \Ai

14 end
15 end
16 return UpdateESTs()

in Figure 5.18; the transition times matrix and the lower bounds of tran-
sitions in a set of activities by cardinality are reported in Figure 5.19.

t0 5 10 15 20

A1

A2

A3

A4

Figure 5.18: Example of activities for which the Not-Last algorithm updates
the bounds of an activity.

The EF algorithm from Algorithm 5.5.6 first fills the Θ-Λ-tree in
line 1 such that (Θ, Λ) = ({A1, A2, A3, A4} ,∅). Then, the loop starting
in line 4 begins with Aj = A4. In line 5, the OC rule is checked, but
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M =


0 3 4 3

6 0 2 5

4 7 0 2

4 7 8 0



LB
k

0 1 2 3

Sum of Min. Trans. 0 2 4 7

Min. Weight Forest 0 2 4 7

Dyn. Prog. 0 2 4 7

Min. Ass. 0 2 4 7

Lag. Relax. 0 1 4 6

tt(k) = max 0 2 4 7

Exact TSP 0 2 4 7

Figure 5.19: Example of transition times and lower bound of transitions
within a set of activities by cardinality.

it does not apply here; no failure has been detected. The activity A4 is
grayed in line 8, leading to (Θ, Λ) = ({A1, A2, A3} , {A4}). The activity
Aj is set to A3 in line 9. As the EF rule holds: ect∗(Θ,Lambda) > lct3, we
enter the loop starting in line 10. The loop begins by retrieving the
gray activity responsible for the value of ect∗(Θ,Lambda) (line 11); in this
case, the responsible gray activity is A4. The EF update rule is applied
in line 12 as follows:

est′4 = 18 = max

 est4 = 0

ect∗Θ + tt4← = 16 + 2 = 18

Once this update has been applied on the domain of A4, we obtain the
domains as shown in Figure 5.21.

5.5.5 Unary Resource with Transition Times Fixed Point

The four algorithms described earlier for the unary resource with tran-
sition times constraint will be called in a fixed point algorithm de-
scribed in Chapter 1. As all these propagators implement the same con-
straint, we propose to integrate them in their own propagation loop,
as proposed in [Vil07] for the classic unary resource constraint. Indeed,
as these algorithms are not idempotent and as they propose a different
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ect∗ = 16
Σd = 9
n = 3
ect

∗
= 18

Σd = 12
n = 4

ect∗ = 16
Σd = 6
n = 2
ect

∗
= 16

Σd = 6
n = 2

ect∗ = 16
Σd = 3
n = 1
ect

∗
= 16

Σd = 3
n = 1
est3 = 13

ect∗ = 5
Σd = 3
n = 1
ect

∗
= 5

Σd = 3
n = 1
est2 = 2

ect∗ = 4
Σd = 3
n = 1
ect

∗
= 8

Σd = 6
n = 2

ect∗ = 4
Σd = 3
n = 1
ect

∗
= 4

Σd = 3
n = 1
est1 = 1

ect∗ = −∞
Σd = 0
n = 0
ect

∗
= 3

Σd = 3
n = 1
est4 = 0

Figure 5.20: Θ-Λ-tree obtained when (Θ, Λ) = ({A1, A2, A3} , {A4}) with ac-
tivities from Figure 5.18.

t0 5 10 15 20

A1

A2

A3

A4

Figure 5.21: Activities from Figure 5.18 after the Edge Finding algorithm
from Algorithm 5.5.6 updates est4. The dashed gray bracket is
the former value of est4.

pruning, they will trigger events that will require them to be run again
until no further pruning can be achieved.

As the algorithms described earlier rely on several lower bounds,
the pruning achieved is not sufficient to ensure the correctness of the
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constraint; i.e., the pruning achieved by these four algorithms could
accept an unfeasible assignment as a solution. To ensure that the fixed
point of the constraint is correct, we propose to add n2 binary decom-
position equations that ensure the correctness of the propagation loop
as proposed in Equation (5.1) and recalled here:

∀ i, j : (ei + tti,j ≤ sj) ∨ (ej + ttj,i ≤ si)

Propagating each single equation is done in constant time O(1). When
a single variable has been updated, only n equations have to be propa-
gated. Hence, the propagation of a single variable update is performed
in O(n). The propagation of all variables implies to propagate all the
equations and is achieved in O(n2). Most of the time only a few vari-
ables have been updated and trigger propagation of the equations in
which they are implied. Therefore, this propagation is performed in
amortized linear time.

As mentioned in [RVW06], the order in which the algorithms will
be called inside this propagation loop can have a non-negligible im-
pact on the performance. Furthermore, we must consider whether or
not the pruning of each propagator is worth it; the gain in terms of
propagation of one algorithm might not compensate the time required
to make it run. To make a complete study, one should consider all the
possible orderings of the five propagators (OC, DP, NFNL, EF and bi-
nary decomposition) including or not the four relaxation propagation
algorithms (OC, DP, NFNL, EF). It should compare all permutations
of the 5 propagators plus all permutations of 4 propagators while not
including one of the four relaxation propagation algorithms and so on.
We have the following possible number of propagation loops to con-
sider:

5! + 4 ∗ 4! + 6 ∗ 3! + 4 ∗ 2! + 1 = 120 + 96 + 36 + 8 + 1 = 261

Looking for the best possible ordering would require to compare the
time taken by propagation of these 261 possible orderings on a large
set of instances. Lacking the time and resources to do so, we haven’t
performed this study and this remains an open question for further
work.

According to some small experimental results, we have come up
with an ordering that performs well on a wide range of various in-
stances. This ordering is reported in Figure 5.22. The Overload Check-
ing algorithm was not included in the loop since its reasoning is in-
cluded in the Edge Finding algorithm. This propagation loop includes
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all the reasoning and pruning rules of the four propagation algorithms
described before (and also the binary decomposition). This propaga-
tion loop performs an internal fixed point. Therefore, this propagation
loop can be seen as a single block that will be added on the propagation
queue when one of the events to which it is registered is triggered. In
our case, this propagation loop registers to any event implying a do-
main change on the start, end or duration variables in the scope of the
constraint it implements.

Binary Decomposition

Edge Finding

Detectable Precedences

Not-First/Not-Last

Suspend

Failure

No Update

No Update

No Update

No Update

Update

Update

Update

Update

Failure

Failure

Failure

Failure

Figure 5.22: Propagation loop for the unary resource with transition times
constraint.

5.6 evaluation

To evaluate our propagation procedure, we used the OscaR solver
[Osc12] and ran instances on AMD Opteron processors (2.7 GHz). For
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each considered instance, we used the three following filtering proce-
dures for the unary resource with transition times constraint:

binary decomposition

Binary decomposition constraints (φb) given in Equation (5.1). For effi-
ciency reasons, a global dedicated propagator has been implemented
instead of posting reified constraints.

unary resource + binary decomposition

Binary decomposition constraints given in Equation (5.1) with the
unary resource global constraint from Vilím [Vil07] (φb+u).

unary resource with transition times

The constraint introduced in this thesis (φuTT). The propagation is per-
formed using the internal propagation loop described in Figure 5.22.

5.6.1 Considered benchmarks

We have constructed instances considering transition times from fa-
mous Job Shop benchmarks. For a given benchmark B, in each in-
stance, we added generated transition times between activities, while
ensuring that triangular inequality always holds. From B, we gener-
ated new benchmarks B(a,b) inside which the instances are expanded
by transition times uniformly picked between a% and b% of D, where
D is the average duration of all activities in the original instance.

We generated instances from the well-known Taillard’s instances
(available at http://mistic.heig-vd.ch/taillard/problemes.dir/
ordonnancement.dir/ordonnancement.html). From each Taillard’s in-
stance, we generated two instances for a given pair (a, b), where the fol-
lowing pairs have been used : (50, 100), (50, 150), (50, 200), (100, 150),
(100, 200) and (150, 200). This has allowed us to generate 960 new in-
stances (available at http://becool.info.ucl.ac.be/resources/
benchmarks-unary-resource-transition-times).

5.6.2 Comparison of the Three Models

In order to present fair results regarding the benefits that are only
provided by our propagators, we first followed the methodology in-
troduced in [CLS15]. An overview of this methodology is provided
in Chapter 3. Additionally, we have made measurements using a static

http://mistic.heig-vd.ch/taillard/problemes.dir/
ordonnancement.dir/ordonnancement.html
http://becool.info.ucl.ac.be/resources/
benchmarks-unary-resource-transition-times
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search strategy, as it cannot be influenced by the additional pruning
provided by our propagation procedure.

Potential of the constraint

In brief, the approach presented in [CLS15] proposes to pre-compute
a search tree using the filtering that prunes the less – the baseline prop-
agator – and then to replay this search tree using the different studied
filtering procedures. The point is to only measure the time gain pro-
vided by the propagation, by decoupling the gain provided by the
search strategy (while still being able to use dynamic search strategies)
from the one provided by the propagation. We used φb as the baseline
filtering, and the Conflict Ordering Search (COS) [GHPS15] strategy to
construct the search tree, as this strategy has been shown to achieve
good performances in scheduling. The search tree construction time
was limited to 600 seconds. We then constructed performance profiles as
described in [CLS15]. Performance profiles in the context of the com-
parison of propagators are described in Chapter 3.

Performance Profiles on Number of Backtracks

The performance profiles for backtracks are illustrated in Figure 5.23.
We can see that the pruning of φuTT is really important. For more than
35% of the instances, the pruning of φuTT is at least ten times larger
than the one achieved by φb. And it is at least twice as large than the
one proposed by φb for about 88% of the instances.

On the other hand, the pruning achieved by φb+u is larger than the
one of φb on only 65% of the instances. The pruning of φb+u is at least
twice as large as the one of φb on only 2% of the instances. We can
deduce from this that using classic unary resource propagators when
considering problems involving transition times is inefficient. Indeed,
as we will see with performance profiles for resolution time, the clas-
sic unary resource propagators will only add computational overhead
to binary decomposition pruning while not being able to reduce the
search space in most cases.

Performance Profiles on Resolution Time

The performance profiles for replay time of sequences of nodes gen-
erated for 600 seconds with φb and the COS heuristics are illustrated
in Figure 5.24. For at least 45% of the instances, φuTT is at least twice
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Figure 5.23: Performance profiles of the three models for the number of back-
tracks.

faster than φb. Furthermore, φuTT is at least as fast as φb on 68% of
the instances. However, φb is faster than φuTT for about 32% of the
instances. The same performance profiles are represented up to the
maximal performance ratio obtained in Figure 5.25. In this latter rep-
resentation, one can observe that φuTT is at most 7.5 times slower than
φb. On the other hand, φb+u is faster than φb on only at least 3% of the
instances. It has poor time performances, it is at worst 7.5 times slower
than φb on 60% of the instances. This confirms the conclusion of the
backtrack performance profile from Figure 5.23 stating that using the
binary decomposition and the classic unary resource propagators is
inefficient for problems considering transition times.

Evaluation over a Static Search Strategy

The replay evaluation strategy with performance profiles used earlier
has shown the potential of our propagator in comparison with a clas-
sic binary decomposition. However, the replay evaluation greatly fa-
vors the base model, in our case the binary decomposition. Indeed,
the branching strategy chosen will favor the exploration of the search
space for the base model, during the construction of the sequence of
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Figure 5.24: Performance profiles of the three models for the replay time on a
sequence of nodes generated with the COS heuristics and φb as
explained in Chapter 3.

nodes. This is especially true with the COS strategy that will tend to
move up in the tree the variables that trigger failure. However, with the
same search strategy but with different propagators – e.g., the unary
resource with transition times introduced here – the sequence of nodes
might have been completely different. For this reason, we present here
results in a more “traditional” fashion.

We compute the best makespan that can be obtained with φb within
600 seconds, using the following binary static search strategy: fixed
variable order, left branch assigns si to esti, right branch removes esti
from the domain of si. Then, the time and number of failures required
by each model to find this solution are computed. We filtered out in-
stances for which the solution was found by φb in less than one second.
From this perspective, the 10 best and worst results are reported in Ta-
bles 5.13 and 5.14, respectively. On the 10 best instances, the gains (the
number of failures and time) are significant (sometimes two orders of
magnitude). On the 10 worst instances, the times obtained with φuTT

are similar to the results using the classical unary resource (i.e. φb+u),
while they are at worst around 6.4 times slower than the simple binary
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Figure 5.25: Long-term view of performance profiles from Figure 5.24.

decomposition (i.e. φb). Note that on these instances, no additional
pruning is achieved, or only a negligible additional pruning.

5.6.3 Overview of Results

This whole result and performance analysis allows us to draw the fol-
lowing conclusions:

important additional pruning

The propagator φuTT allows to achieve substantial additional pruning
with respect to the binary decomposition φb on all instances.

classic unary resource performs badly

The propagator φb+u fails to achieve additional pruning in compar-
ison with φb on most instances (rather small additional pruning on
only 65% of the instances).

important time gain

The gain of time achieved by φuTT in comparison with φb can be im-
portant (at least twice as fast for 45% of the instances).
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Instance
φuTT φb φb+u

Time #Fails Time #Fails Time #Fails

Best-1 1.12 2,442 117.92 980,330 432.07 911,894

Best-2 2.11 744 182.27 1,127,272 999.79 1,127,272

Best-3 0.24 449 17.63 168,466 62.27 168,466

Best-4 3.90 5,593 187.93 889,079 534.20 602,591

Best-5 2.96 1,709 126.61 584,407 829.25 584,407

Best-6 11.59 885 340.32 332,412 1225.44 206,470

Best-7 1.97 1,178 39.23 226,700 314.34 226,700

Best-8 0.91 2,048 16.40 119,657 63.38 119,657

Best-9 3.79 1,680 63.16 878,162 4.63 1,695

Best-10 0.74 687 9.24 106,683 41.25 106,683

Table 5.13: Best time results for φuTT compared to φb. The problem is to find
a given makespan: the smallest makespan found in 600 seconds
by φb using a binary static search strategy. Time is reported in
seconds.

Future Work

The propagation procedure involved in this chapter has some limita-
tions. The two most important ones are as follows:

• It relies on loose bounds of the ect of a set of activities.

• It is inefficient when considering sparse transition times between
activities i.e., when the number of null transition times is large.

Several improvements could be considered to overcome the two limita-
tions of the work presented in this chapter. Let us address some ideas
that could potentially increase the impact of this work. We will first
address ideas to overcome the loose bound on the ect of a set of ac-
tivities, then we will discuss current research performed to deal with
sparse transition times.
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Instance
φuTT φb φb+u

Time #Fails Time #Fails Time #Fails

Worst-1 645.26 546,803 127.38 546,803 572.81 546,803

Worst-2 954.77 164,404 174.63 164,437 1,108.43 164,437

Worst-3 213.54 78,782 38.26 78,968 180.20 78,968

Worst-4 147.55 164,546 26.42 164,576 175.69 164,576

Worst-5 178.37 96,821 31.23 96,821 139.84 96,821

Worst-6 11.15 8,708 1.94 8,745 11.87 8,745

Worst-7 18.63 6,665 3.15 6,687 19.93 6,687

Worst-8 85.84 61,185 14.24 61,185 65.12 61,185

Worst-9 286.61 88,340 46.17 88,340 180.23 88,340

Worst-10 189.37 208,003 29.55 209,885 157.33 209,885

Table 5.14: Worst time results for φuTT compared to φb. The problem is to find
a given makespan: the smallest makespan found in 600 seconds
by φb using a binary static search strategy. Time is reported in
seconds.

Tightening the ect lower bound

The Θ-tree and Θ-Λ-tree data structures allow to compute tighter
bounds of the ect than the original versions from Vilím when transi-
tion times are considered. However, they have weaknesses that would
benefit being investigated.

First of all, the update rules take transitions into account only based
on the cardinality of the set of activities considered: tt(k). Other works
have considered a different approach such that the lower bounds of the
ect of a set of activities is tighter. For example, Artigues et al. [AF08]
propose to pre-compute all the exact TSPs for all the possible sets of
activities (the exact TSP procedure defined in this chapter). However,
the number of all the possible sets of activities is exponentially large;
for n activities, there are 2n different possible sets. Nevertheless, Ar-
tigues proposes a dynamic program that computes all the TSPs (hence
all the minimal times spent by transitions) for n activities with a time
complexity in O(n2 · 2n). Furthermore, we can consider that the value
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for the TSP of a given set of activities is stored in memory on an inte-
ger, nowadays stored on 4 bytes. This means that for n activities, one
would need 4n · 2n bytes to store these values (for each possible set, we
have to store the smallest TSP considering every time that one activity
from the set is the first one). To give an overview of how badly such
decision scales, we have reported both the number of operations and
the memory required to store such data in Table 5.15. Even if some

k Number of Operations Scaled Memory Size

5 400 · 100
40 b

10 51.2 · 103
2.56 kb

15 3.68 · 106
122.88 kb

20 209.71 · 106
5.24 Mb

25 10.48 · 109
209.71 Mb

30 483.18 · 109
8.05 Gb

35 21.05 · 1012
300.64 Gb

40 879.60 · 1012
11 Tb

45 35.62 · 1015
395.82 Tb

50 1.41 · 1018
14.07 Pb

Table 5.15: Number of operations and amount of memory required to com-
pute and store the TSPs representing the transitions inside all the
sets of k activities, as proposed in [VB02, AF08].

supercomputer were able to perform the tremendously huge amount
of operations in less than billions of times the age of the universe,
one would still need to buy a lot of RAM memory to be able to store
all the computed data. As one can see, this approach is not meant to
scale on large instances and therefore does not fit our needs. We have
considered instances with up to 2000 activities (i.e., k = 2000) in our
benchmarks.

Unfortunately, even if we had access to the exact value of the small-
est transition TSP of a set of activities, we could not use it in the Θ-tree
and Θ-Λ-tree. Indeed, those structures rely on the separation of the
computation of ectLeft(v) and ectRight(v). We could not combine those
together if we considered exact TSP values. Indeed, if we consider two
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disjoint sets of activities Ω1 and Ω2 (Ω1 ∩Ω2 = ∅), we have the fol-
lowing inequality:

TSP(Ω1 ∪Ω2) ≤ TSP(Ω1) + TSP(Ω2) + min
Ai∈Ω1,Aj∈Ω2

ttij

This equation forbids to merge the TSPs of two subsets of activities to
compute the ect of the union of those latter. Other options should be
considered to replace the lower bound obtained only on the cardinality
of a set of activities.

Finally, the total sum of transition times by cardinality taken into
account in the root is a sum of bounds of sets of small cardinality.
Indeed, our update rules include only the lower bound based on the
cardinality of the right subset of activities. This means that the largest
cardinality considered will be n/2 for a tree containing n activities. For
example, if we consider a complete Θ-tree of 8 activities, the maximal
sum of the terms taking transition times into account is as follows:

tt(4) + tt(2) + tt(1) ≤ tt(7)

However, this decomposition into subsets of smaller cardinalities is
mandatory to maintain the low time complexity obtained by incremen-
tal computation. Some investigations should evaluate the possibility
of obtaining less divisions into subsets, hopefully obtaining a tighter
bound for the transitions included in a set of activities.

Robustness Over Sparse Transition Times

Our lower bounds for the transition times occurring in a set of ac-
tivities relies only on the cardinality of the set. In the case of a sparse
transition time matrix, such lower bounds can be pretty loose for small
cardinalities. Let us consider a small example of six activities with the
sparse transition matrix from Figure 5.26. The associated computed
lower bounds are also displayed in Figure 5.26. First of all, we can see
that the relaxations used to compute the lower bounds are not close
to the real TSP values when a lot of transitions are null. Then, even
when considering the real TSP values obtained, they are very loose.
As the Θ-tree and Θ-Λ-tree structures both rely on these lower bounds
by cardinality, the computed ect∗ of a set of activities will be loose.

However, if we carefully look at the transition matrix in Figure 5.26,
we can see that we could group activities into "families". One could
group activities into families as follows: A1, A2 ∈ f1, A3, A4 ∈ f2 and
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M =



0 0 4 4 6 6

0 0 4 4 6 6

5 5 0 0 8 8

5 5 0 0 8 8

7 7 9 9 0 0

7 7 9 9 0 0



LB
k

0 1 2 3 4 5

Sum of Min. Trans. 0 0 0 0 0 0

Min. Weight Forest 0 0 0 0 4 10

Dyn. Prog. 0 0 0 0 0 0

Min. Ass. 0 0 0 0 0 0

Lag. Relax. 0 0 0 0 0 0

tt(k) = max 0 0 0 0 4 10

Exact TSP 0 0 4 4 11 11

Figure 5.26: Example of transition times and lower bound of transitions
within a set of activities by cardinality.

A5, A6 ∈ f3. As transitions between activities inside each family are
null, it could be useful to count the cardinality of different families in-
side a set of activities instead of counting the number of activities.
Indeed, the transition matrix from Figure 5.26 can be transformed into
a transition matrix between families as shown in Figure 5.27. We can
see that the lower bounds obtained on the transitions between families
are much tighter than those obtained with the original transition ma-
trix. Let us consider a small set of three activities Ω = {A1, A3, A5}.
The exact transition TSP lower bound considering the cardinality over
activities would give tt(2) = 4. A stronger lower bound can be ob-
tained if we count the number of different families (here three different
families): tt(2)families = 11. Counting the number of different families
instead of the number of activities would require adaptations of the
extended Θ-tree and Θ-Λ-tree structures introduced in this chapter.
However, these modifications could bring a huge additional pruning.
A work on such improvement has been submitted to the CP2016 con-
ference and the results so far show that the gain in terms of pruning
can be huge when families can be considered.

The families from the example in Figures 5.26 and 5.27 can be de-
duced easily as they have the two following properties:

• There are only null transitions between activities from a same
family.

• Activities from a given family all have the same transition to
and from any activity from another family.
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Mfamilies =


0 4 6

5 0 8

7 9 0



LB
k

0 1 2

Sum of Min. Trans. 0 4 9

Min. Weight Forest 0 4 10

Dyn. Prog. 0 4 9

Min. Ass. 0 4 9

Lag. Relax. 0 4 9

tt(k)families = max 0 4 10

Exact TSP 0 4 11

Figure 5.27: Example of transition times and lower bound of transitions be-
tween families by cardinality.

However, there could be cases where one or both of these properties
are not respected even though the problem contains null transitions
or transitions of widely different importances. From there came the
idea that a clustering technique could be applied on the initial ma-
trix. The obtained clusters could then be considered as families and
the family count based reasoning could be applied. If a cluster con-
tains non-null transitions between its internal activities, one could also
count the number of activities from that cluster and use a cardinality
reasoning on transitions internally to the cluster. Note that there could
be several levels of clusters for large transition matrices. The larger
clusters could be made to take large transitions into account. Inside a
cluster, there could be other sub-clusters that would include smaller –
but still larger than the average – transitions. This recursive clustering
would not be limited to two levels, but could include more.

conclusion

In this chapter, we have proposed an extension of the classic unary re-
source propagation algorithms in order to take transition times into ac-
count. We have proposed to compute a lower bound of the time taken
by transitions occurring between activities from a set Ω. This allows
to compute a tighter lower bound for ectΩ. We have proposed several
methods to compute these lower bounds and we have shown that the
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obtained lower bounds were close to the smallest TSPs with k activ-
ities. To achieve an efficient computation of ectΩ, we have proposed
to integrate these lower bounds in extensions of the Θ-tree and Θ-Λ-
tree structures. These extended structures can then be used in slightly
modified versions of classic unary propagation algorithms; namely
Overload Checking, Detectable Precedences, Not-First/Not-Last and
Edge Finding. From these algorithms, we have proposed an internal
propagation loop that also integrates the binary decomposition of the
constraint. This new obtained propagation procedure has the advan-
tage that it can be used conjointly with any other constraint and that
it is completely independent from the objective function to optimize.

The results of our approach have highlighted that the additional
pruning achieved by this propagation can dramatically reduce the
number of nodes. On the other hand, we have also shown that the
classic unary resource propagation procedure (that does not include
transition times) rarely proposes a substantial gain in terms of pruning.
The additional gain from our propagation procedure allows to solve
problems faster, sometimes dramatically faster. However, the overhead
of this propagation procedure is non-negligible when compared to the
one of the binary decomposition propagation. Hence, the propagation
procedure we have introduced is slower when it fails to achieve sub-
stantial pruning (maximum 7.5 times slower when a small additional
pruning is achieved).

The potential of the propagation procedure introduced in this chap-
ter is quite large. We have proven that it could achieve a large pruning
with a low time complexity. However, this research is just the begin-
ning; several promising ideas could potentially increase the achieved
pruning obtained. There could be more than one single PhD thesis cen-
tered on this constraint. Several other ideas have not been discussed
but are worth being mentioned: using Θ-tree to compute TSPs, use
Θ-tree to compute a lower bound on the makespan, ...

It is our strong belief that this constraint can be improved in many
ways and that its true potential has yet to be revealed.
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P R O T O N T H E R A P Y
PAT I E N T S C H E D U L I N G

To keep the body in good health is a duty... otherwise we shall not
be able to keep our mind strong and clear.

—Buddha

Occam’s Razor. The simplest explanation is almost always
somebody screwed up.

—Gregory House, House, M.D.

Healing is a matter of time, but it is sometimes also a matter of
opportunity.

—Hippocrates

Music is therapy. Music moves people. It connects people in ways
that no other medium can. It pulls heart strings. It acts as
medicine.

—Macklemore

A healthy outside starts from the inside.

—Robert Urich

145



146 pt patient scheduling

Proton Therapy (PT) is a recent technique in which a beam of pro-
tons is used to treat cancer. It offers many advantages over classic ra-
diotherapy techniques. Even if this technique is recent and still under
study, treatments performed so far have shown promising results. The
management of the schedule of patient treatment is complex and sub-
ject to many constraints. To date, no computer procedure exists to op-
timize the schedule of patient treatments within PT centers. IBA (Ion
Beam Applications)1 has proposed to study this particular problem.
The work presented in this chapter has thus been realized in collabo-
ration with IBA.

The Proton Therapy Problem (PTP) consists in optimizing the sched-
ule of patient workflows within a PT treatment center. This problem
can be challenging since it considers the optimization of several non-
trivial objectives. These objectives can depend on the specific config-
uration of the PT center considered. We propose an approach using
Scheduling in CP allowing to easily adapt the model to the changing
requirements of the physicians regarding the schedule.

A second problem that was studied during this thesis was the Ten
Weeks Ahead Appointment Schedule Problem (TWAASP). This prob-
lem aims at finding an optimal schedule for appointments correspond-
ing to the treatment sessions a patient has to go through. When a
patient is diagnosed with cancer, he has to follow a specified amount
of treatment sessions. Each treatment session has its own parameters
and corresponds to a specific patient workflow, with its various steps,
durations and resource demands. The problem aims at determining
when these sessions will be placed in the PT center global schedule
such that an objective function is optimized.

We first give an overview of the first considered problem in Sec-
tion 6.1. Section 6.2 describes the Scheduling in CP resolution of the
problem. Finally, Section 6.3 presents the Ten Weeks Ahead Appoint-
ment Schedule Problem (TWAASP) and Section 6.4 introduces the CP
approach used to solve it.

related publications

[Dej13] Cyrille Dejemeppe. “Alternative Job-Shop Scheduling For
Proton Therapy.” In: CP Doctoral Program 2013 (2013), p. 67.

1 http://www.iba-worldwide.com/
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6.1 the proton therapy problem

Proton Therapy (PT) [Shi+79] is a technique used in the treatment of
cancer. It uses a beam of protons to irradiate diseased cells. As other
forms of radiotherapy, it sends ionizing energy particles (here protons)
to the diseased tissues. A particle accelerator is used to generate the
proton beam. The protons damage the DNA of the cells, eventually
causing their death or limiting their ability to procreate. Due to their
high rate of cell division and their reduced ability to repair DNA, the
cancerous cells are more vulnerable than healthy cells to the attack of
ionizing particles on DNA.

As protons are heavier than photons, they spread less into surround-
ing tissues, reducing damages on healthy cells surrounding targeted
tumors. Protons, as all charged particles, have a rapid energy loss in
the last millimeters of penetration into human tissues. This allows to
sharply define a maximal distance of penetration since this distance is
directly related to the initial energy of charged particles. Furthermore,
only the last millimeters of this penetration depth receive the maxi-
mal dose. As stated in [Lev+05], this phenomenon of a localized sharp
peak of dose is known as Bragg peak. To irradiate a tumor, one has to
vary beam energy and intensity to obtain the desired dose over the
tumor volume. Tissues located along the ray but at lower depth than
Bragg peak receive a reduced dose. Tissues located at higher depth
than Bragg peak receive no dose at all. The main benefits of PT over
classic radiotherapy techniques are that tissues behind the tumor are
not irradiated and that reduced damages are caused to surrounding
tissues.

PT requires a particle accelerator that can be expensive. It also de-
mands several additional pieces of equipment with large space require-
ments. This is one of the reasons for which nowadays there are only
few PT centers worldwide. According to [Gro12], in 2012 there existed
40 PT centers in operation worldwide. They are located in North Amer-
ica, Europe, Asia and South Africa. The types of cancer treated by PT
include ocular tumors, skull base and para-spinal tumors, unresectable
sarcomas, pediatric neoplasms and prostate cancer. This technique is
still under study but according to [Lev+05], treatments performed so
far have shown promising results.
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6.1.1 PT Treatment Center

To date there are 40 PT centers in operation around the world. While
these centers differ on many points, most of them share a common
structure. The structure that is described here is inspired by the PT
center in Essen, Germany. There can be many variants of this structure
and most of the centers are variants of a base model (as those designed
by IBA2).

PT centers contain a particle accelerator (cyclotron or synchrotron)
which produces the proton beam. This particle accelerator can be set
up to a given intensity and energy level to deliver the dose desired for
a given patient. The other main rooms of PT centers are the following
ones:

preparation room

In order to make sure the tumor is hit by the proton beam and as
few healthy tissues as possible are damaged, patients are immobi-
lized. To do so, they are bound to a treatment board, most of the time
aided with specific immobilization equipment. It is in the prepara-
tion room that patients are immobilized before treatment. It is also in
this room that they are released from the immobilization equipment
after treatment. For matters of precision and ease, every patient is
assigned to his own immobilization equipment. Dressing rooms are
attached to these preparation rooms to allow patients to undress and
dress respectively before and after treatment. There are often several
preparation rooms in a PT center in order to allow several patients to
prepare simultaneously.

corridor

Corridors link rooms of the PT center. Congestion has to be taken
into account because of the limited space a corridor can provide. In-
deed, trolleys are used to move immobilized patients. The width of
corridors allow at most two trolleys to cross each other. Having trol-
leys with patients waiting in a corridor for a treatment room to be
available is a common situation.

scan room

In order to determine the location and size of the tumor, patients
have to be scanned. These informations obtained by the scanner allow
to calibrate the beam and the position in which the patient will be

2 For more details about the services IBA provides for PT, refer to [IBA12].
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irradiated. The scanner is also used to track the evolution of the tumor
through treatment.

anesthesia room

Some patients are treated under anesthesia. The anesthesia is per-
formed in a dedicated anesthesia room. An awakening room is at-
tached to the anesthesia room in order to monitor the awakening of
patients and make sure anesthesia took place as planned.

treatment room

According to the type of tumor, a patient will be treated in a given
treatment room. There are different types of treatment rooms (e.g.,
fixed beam rooms, single and double scattering rooms, gantry rooms,
etc.). In these treatment rooms, a huge device called snout is used to
shape the proton beam. The same snout can be used for patients with
the same type of tumor. This big device has to be changed between
two treatments of different type of tumors. In most centers, there
is one beam line and only a single treatment room can deliver the
proton beam to a patient at a given time. It takes some time to install
a patient in a treatment room. To save time, while a patient receives
the proton beam, other patients are installed in other treatment rooms.
When a patient is installed and ready to receive his dose, a demand
to get the proton beam is sent to the control room and the patient
waits until he has received the required dose. Switching the proton
beam from one treatment room to another takes some time (from 1 to
2 minutes).

control room

The control room is used to assign the proton beam to a treatment
room and to adjust its energy level and intensity. When a treatment
room queries the proton beam, its request is inserted in a FIFO3

queue. When a beam request reaches the front of the queue, the treat-
ment room who queried the beam receives it (as soon as the current
dose delivery is over) and the query is removed from the queue.

Figure 6.1 is a schema of the structure of a PT center. There are sev-
eral treatment rooms and their types may differ (gantry, fixed beam,
etc.) or may be redundant (some PT centers only cure a single type
of cancer). As explained before, there are several preparation rooms
and scanning rooms to allow respectively simultaneous patient prepa-
rations and scans.

3 First In First Out
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PABL

TR1 TR2 TR3
CoR

SR1 SR2
AnR

AwR

PR1 ChR1 PR2 ChR2 PR3 ChR3

Co

Co

Co

RA

Figure 6.1: Schema of a PT center and its main rooms. The dotted red line rep-
resents the proton beam. PA is the Particle Accelerator (cyclotron
or synchrotron). BL is the Beam Line. TR holds for Treatment
Room. CoR is the control room. SR holds for Scanning Room.
AnR and AwR are respectively the Anesthesia Room and the
Awakening Room. PR and ChR holds respectively for Prepara-
tion Room and Changing Room. Co holds for Corridor. RA is the
Reception Area.

6.1.2 Patient Workflow

When a patient is diagnosed with cancer, a given number of sessions
is determined for his treatment. His workflow (sequence of steps he
has to follow during one treatment session) is also determined dur-
ing diagnosis. The workflow assigned to a patient is defined according
to the type of cancer, the location and size of the tumor, along with
other factors. The workflow of patients may differ even if they have
the same type of cancer. For example, a child workflow systematically
begins with an anesthesia while this is rarely the case for an adult
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workflow. The time spent at every step of the workflow of a patient
may be approximated but it varies due to human factors. Even if two
patients have the same workflow, the time they spend at every step
of this workflow may differ. In our work, we have considered that the
workflow assigned to each patient is known and determined (includ-
ing the time spent in every step of his workflow).

6.1.3 Staff Workflow

The staff working in a PT center has also to be taken into account in
our model. The staff members we are interested in are those whose job
imply they will intervene in patient workflows. Some staff members
are static in the sense they are assigned to given rooms and don’t ac-
company patients through several steps of their workflow (e.g., staff in
scan room). Other staff members are needed to guide patients through
corridors to the different rooms in their workflow (scan, treatment,
anesthesia, etc.). Finally some staff members are needed to perform
technical tasks such as changing a snout or managing the repartition
of the beam from the control room.

6.1.4 PTP Scheduling Objectives

The optimization of the daily schedule of patients can be performed
on several criteria. Here is a list the most important of those:

patient throughput

The patient throughput represents the number of patients that can be
treated on a single day. If more patients can have their treatment ses-
sion in a day, then more patients could have their whole treatment in
a PT center. One objective is thus to maximize the patient throughput.

patient comfort

During a treatment session, patients have to be immobilized some-
times in very uncomfortable positions. The amount of time patients
spent immobilized (i.e., the amount of time needed by the overall
workflow of a patient) must then be minimized in order to improve
patient comfort or, equivalently, reduce patient discomfort.

staff welfare

Staff welfare can be expressed in a scheduling problem as a smooth-
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ing of the schedule. One of the optimization criteria becomes the min-
imization of downtimes for staff members.

One of the goals of PTP is to combine these objectives. We would then
provide a set of solutions whose quality can be quantified according
to each criterion described above. This set of solutions would be an
estimation of the Pareto set of our problem. A human user would then
select one of the schedules proposed in the Pareto set.

6.2 a scheduling model for ptp

In this section, we present a scheduling model for PTP. This simple
model has been solved with Constraint Programming (CP). First, we
explain the model, then we describe the resolution strategy applied to
solve it.

6.2.1 Model

The main components of our scheduling model will be described here:
activities, resources, constraints, and objectives.

activities

Every workflow of a patient is represented as a job and every step of
the workflow is represented as an activity in that job. As the treatment
steps from a patient’s workflow cannot be interrupted, we consider
the activities as non-preemptive. We also consider that the durations
of the activities are known for every patient whose treatment session
has to be scheduled.

resources

The two main resources considered in this work are the PT center
rooms and treatment tables. PT centers generally contain several in-
stances of some treatment rooms (allowing parallel flow of patients).
These rooms can be modeled with cumulative resources whose capac-
ity corresponds to the number of instances of the treatment room con-
sidered. Other rooms however, are present in only a single instance.
These latter are modeled with unary resources. The treatment tables
are available in several instances and are also represented with cu-
mulative resources. Finally, the proton beam is modeled with a unary
resource as it cannot be split and shared between several treatment
rooms simultaneously. The simple decomposition of activities into
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the different steps of a treatment session is not enough here. Indeed,
some resources, such as treatment tables, have to be held for a succes-
sion of activities and cannot be released during idle times between
these activities. To model this, we use super activities. A super activ-
ity is an activity containing a succession of activities such that the
starting time of the super activity corresponds to the starting time
of the first activity it contains and its ending time corresponds to the
ending time of the last activity it contains. With such formulation and
the usual resource constraints, it is not possible for a resource used
by a super activity to be released between the activities the super ac-
tivity contains. The members of the staff are also taken into account
in this model. They are modeled as cumulative resources, one cumu-
lative resource for each type of staff member e.g., physicians, nurses,
technical supervisors, etc.

constraints

The different steps in the treatment session of a patient must take
place in a fixed order. There are thus precedences ordering the activ-
ities inside each job as they represent treatment sessions for specific
patients. Then, for each of the resources we have described earlier,
there is a cumulative or unary resource constraint corresponding to
the kind of resource considered. The beam is modeled with a unary
resource and transition times are also taken into account. Indeed,
some delay – i.e., transition time – is required to switch the beam
between treatment rooms. Note that this delay depends on the two
rooms considered and the transition matrix will thus contain various
values. A similar constraint models the amount of time required to
change the snout between two successive patients with different tu-
mor types. Another constraint imposes that two activities cannot be
separated by more than a maximal amount of time. This is done to
ensure that patients under anesthesia will not be put to sleep for a
too long period.

objectives

We consider a single objective in this simple model: the maximization
of the patient throughput. We model this with a minimization of the
makespan over the treatment sessions that have to be scheduled. In-
deed, if a given number of treatment sessions can be performed in
a shorter amount of time, then there could be more additional treat-
ment sessions added on the same day. The second objective consid-
ered is to maximize the comfort of patients. Patients whose treatment
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takes a lot of time, because of idle times between treatment steps,
will experiment discomfort. Similarly, if patients are rushed through
their treatment steps without some small idle times, they will also
experiment discomfort. Hence we consider that the whole treatment
of a patient should contain some idle times neither too long nor too
short. This is modeled by minimizing the difference between the total
time taken by a job (i.e., a patient treatment session) and a predefined
value that is supposed to represent the optimal time for a treatment
session. The third objective is the maximization of staff welfare. To
reduce stress and allow normal shifts for staff members, huge peaks
of activity should be avoided. The definition of peak of activity be-
ing confusing, we try to smooth as much as possible the demand
of staff members. This is modeled with the usage of the cumulative
resources representing staff members. We sum the difference of the
usage of these resource between successive steps of time.

Formally, the model described above is as follows:

minimize w1 · makespan (6.1)

+ w2 ·∑
j
(ej,n − sj,1 − prefDurj)

2 (6.2)

+ w3 ·∑
sr

∑
t
(usage(sr, t)− usage(sr, t− 1))2 (6.3)

such that ∀j, ∀i : Aj,i � Aj,i+1 (6.4)

∀ur : UnaryResource (A, Uur) (6.5)

UnaryResourceWithTT (A, Ubeam,Mbeam) (6.6)

UnaryResourceWithTT (A, Usnout,Msnout) (6.7)

∀cr : CumulativeResource (A, Ucr, Ccr) (6.8)

∀ja : (eja,n − sja,1) < durAnesthesiaja (6.9)

where A is the set of all the activities, Aj,i is the activity at position
i of job j, ur denotes a unary resource and Uur is a vector defining
for each activity whether or not it uses ur, cr is a cumulative resource,
Ucr is a vector defining for each activity the usage of cr and Ccr is
the capacity of cr, w1, w2 and w3 are positive weights determining the
importance of each objective, prefDurj is the desired duration of the
treatment session of patient j (i.e., job j), sr denotes staff resource (a cu-
mulative resource representing a staff crew), usage(r, t) is the usage of
the resource r at time step t, unaryResourceWithTT is a unary resource
with transition times as described in Chapter 5, Mbeam and Msnout
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represents the transition times between activities using respectively
the beam and snouts, ja represents a patient with anesthesia (a job
containing activities in relation with anesthesia) and durAnesthesiaja
is the maximal duration of anesthesia for patient ja.

This model could be extended to add more constraints should the
configuration of a PT center require it. All the constraints and param-
eters of our problem allow us to define our model as a cumulative
job-shop problem.

6.2.2 Simplifications and Potential Improvements of the Model

Several simplifications of the model have been performed. First of all,
several quantities have been modeled with cumulative resources. This
is the case for the treatment rooms, the treatment tables and the staff
members. Indeed, the cumulative resource does not forbid rectangle,
i.e., activities, overlapping, it only enforces that the sum of the usage
of activities at any point of time does not exceed its capacity. Hence a
situation might occur where the cumulative resource constraint is re-
spected but the actual schedule enforces an activity to start on a given
resource and end on another one (e.g., a patient begins his treatment
activity in a given room and has to end it in another treatment room
– which is not allowed). Hence, a finer model would use alternative
resources, where a patient is assigned to a single treatment room and a
single treatment table.

This simplification has been made because the quantities modeled
with cumulative resources are most of the time over-capacitated. In
the instances that we have run, it only has happened a few time that
the usage of quantities modeled by cumulative resources had reached
its capacity. Furthermore, when resource usage met the capacity, it
was always possible to find an arrangement of the rectangles repre-
senting the activities on the resource such that they did not overlap.
Therefore, to keep a concise model, we have decided to consider that
a post-processing step was able to arrange the activities at peak us-
age such that they did not overlap. Of course, a more refined model
should consider alternative resources because in some instances, this
post-processing step could not be feasible.

In this model, the second and third objectives from Equations (6.2)
and (6.3) are sums of squared differences. This could have been mod-
eled with a sum of absolute values of the differences but we have
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chosen the squared version to favor multiple small differences instead
of a few large ones.

The third objective from Equation (6.3) has been modeled with a
sum of squared differences of resource usage between consecutive
time steps. It could also have been modeled with the smooth cumu-
lative constraint from Beldiceanu et al. [Bel+15]. We have however
not integrated this objective that maximizes the comfort of staff mem-
bers. Indeed, to our knowledge it would be hard to implement an
efficient propagator such as the smooth cumulative constraint [Bel+15]
to bound the objective value. Due to a lack of time we unfortunately
have not been able to design and implement such a propagator.

6.2.3 Resolution

We have used a CP approach to solve this advanced model. The model
from Section 6.2.1 was translated into a classic CP scheduling model
CSP(X, D, C, O).

We have used a classic setTimes heuristics as search strategy to solve
our problem. As the search space is quite large, we coupled our reso-
lution with a LNS strategy. We have considered several relaxations for
this strategy:

impose start variables

Maintain start variables values except for a random x% of them. Typ-
ically, we have set x ∈ [50, 90] i.e., between 50% and 90% of the start
variables were relaxed.

impose precedences

Maintain precedences between activities except for a random x% of
them. To detect the precedences, we have considered all the possible
pairs of activities Aj,i, Ak,l such that Aj,i � Ak,l ; if the detected prece-
dence was not imposed by the original model, we have randomly
relaxed it with a x% probability. Typically, we have set x ∈ [10, 35] i.e.,
between 10% and 35% of the precedences were relaxed.

impose precedences on resources

Maintain precedences between activities using the same resource ex-
cept for a random x% of them. To detect the precedences, we have
considered all the possible pairs of activities Aj,i, Ak,l using the same
resource – either cumulative or unary – such that Aj,i � Ak,l ; if the
detected precedence was not imposed by the original model, we have
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randomly relaxed it with a x% probability. Typically, we have set
x ∈ [10, 35] i.e., between 10% and 35% of the precedences on each
resource were relaxed.

combinations of relaxations

From the three relaxation strategies described earlier, we have de-
cided to combine them into a single relaxation. Hence, at each relax-
ation, we have applied the three relaxation strategies described earlier
together while modifying their respective relaxation probability.

We have also decided to adapt our LNS strategy according to the
results obtained. As explained in Chapter 1, the search for each relax-
ation is limited by a maximal number of failures. When this maximal
number of failures is reached, the search stops and a new LNS iteration
begins. During the first relaxations of the LNS strategy, the objective
value is far from the optimum. On the other hand, after a sufficient
amount of relaxations, the objective value should be closer to the op-
timum. Hence, it is easier to find a feasible solution in early LNS re-
laxations while it is harder in later relaxations. For such reasons, we
have decided to vary the maximal number of failures allowed for each
relaxations. When an LNS relaxation is successful, we decrease this
maximal number of failures; oppositely, when a relaxation fails, we
increase the maximal number of failures allowed. Obviously we still
have to bound this maximal number of failures to keep a good trade-
off between intensification (trying to find a solution for one particular
relaxation) and diversification (trying several relaxations). Formally, the
max number of failures was updated as follows:

nFailsi+1 ←

 max (α · nFailsi, nFailsmin) new solution found

min (β · nFailsi, nFailsmax) no new solution

where nFailsi is the maximal number of failures allowed at LNS it-
eration i, α is a constant such that 0.5 ≤ α ≤ 1, β is a constant such
that 1.0 ≤ β ≤ 2.0 and nFailsmin and nFailsmax are respectively the
minimal and maximal number of failures allowed for a single LNS
iteration.

The choice of these relaxations was motivated by experience and
common knowledge about what relaxation works well in practice in
the context of scheduling problem. As for the various parameters of
the relaxations, they were fixed with values that have proven to work
well in practice on the instances that we had generated. To do so, we
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have solved several times our problem while varying the relaxation
chosen, its parameters, the seed of the random generator and the in-
stances. We have gathered this information but we were unable to find
a given relaxation strategy that clearly dominated all the other ones.
However, these experiments have allowed us to determine the various
ranges of parameters described earlier that provided the best results
for each relaxation. These relaxations could have been selected with
several automated relaxation strategies as the ones described in Chap-
ter 1. We have however not implemented such framework in the case
of this work.

Results

We have developed a random instance generator for PTP. We were
unfortunately not able to test our model on real historical data. Nev-
ertheless this generator was developed to generate patient mixes and
PT center configurations that are supposed to be very close to real sit-
uations. We have generated 300 instances of sizes going from 20 to 80

patients. The PT center that we have visited was a large center and was
treating around 50 patients daily. We have performed some tests while
varying the weights on the objectives to give more or less importance
to minimization of patient throughput or patient comfort. On the gen-
erated instances, for all the objective weight configurations we have
tested, the solver was able in less than 10 seconds to find an initial
feasible schedule. With another period of 10 seconds, the solver in-
creased the quality of our schedule by about 25%. Furthermore, when
the solver has run for a longer amount of time, it has been able to find
solutions of even higher quality even if the gains would be very small.

In Figure 6.2, we present the evolution of the makespan ratio – the
makespan divided by the best makespan observed – through time
when applying successive LNS iterations. On this figure, the relaxation
applied imposes the assignation of values to the start variables while
relaxing a proportion of them. The relaxation probability tested here
are 50%, 75% and 90%. We see clearly on this picture that this param-
eter has a large influence on the resolution time needed to reach a
given objective value. Furthermore, some relaxation probabilities are
unable to discover the best solution found. Indeed, as too few start
variables are relaxed, the CSP is too constrained and therefore cannot
find new solutions. Several other experiments were performed while
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varying the parameters of LNS relaxations, we however have decided
not to report them here.
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Figure 6.2: Evolution of the makespan ratio (makespan divided by best
makespan) through time when applying LNS relaxations with var-
ious relaxation probability on an instance of 70 patients. The LNS
relaxations impose start variables while relaxing a given percent-
age of them.

6.2.4 Industrial Prototype and Reception

We have designed a working prototype for this problem. Despite the
promise that has been made by our industrial partners to provide us
real data about historical instances, after more than a year and half
we still had not received any data. Therefore, when we have presented
our results to conjoint meetings, it was based on instances randomly
generated following the procedure mentioned earlier. Therefore, it was
not possible to assess the potential gains that our optimization model
was able to achieve since we had no schedule to compare our solutions
with.

The last time we have presented the work performed on PTP was
during a meeting with our industrial partners and their clients, po-
tential future users of our solutions. However, before we had even
presented our prototype and the results we had obtained, some clients
had clearly stated that they had no interest for this work. Strong sen-
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tences were pronounced such as "I don’t believe in optimization.".
Therefore, after such unenthusiastic reception, even after the showing
of our prototype – GUI included – we have decided to tackle another
problem in PT centers. This problem is detailed in latter sections.

6.3 the ten weeks ahead appointment schedule problem

When a patient is diagnosed with cancer, he can be treated with Proton
Therapy. The PT treatment of a patient corresponds to a sequence of
treatment sessions which take place in a PT center. The current prob-
lem consists in deciding when to schedule appointments for treatment
sessions of a new patient inside a PT center. The global schedule of the
PT center in which new appointments have to be inserted is already
partially filled with other patient session appointments.

The sequence of treatment sessions is subject to many constraints.
Indeed, in order for the treatment to be effective, two successive treat-
ment sessions must be separated by an amount of time whose length
lies in a given interval. Such constraints also apply on sets of succes-
sive treatment session, e.g., the first and the last session from the set
must be separated by an amount of time bounded by a given interval.

To each appointment to be scheduled corresponds a whole treatment
session of the patient. The succession of steps the patient must go
through during a treatment session corresponds to a specific workflow.
All treatment sessions containing the same succession of steps can be
characterized as corresponding to the same workflow, even if duration
of steps inside of it slightly differ. The steps inside a given workflow
are ordered sequentially, i.e., a step cannot begin before the previous
one is finished.

Each step from a workflow uses several resources from the PT center
in determined quantities. Resources inside a PT center have a maximal
capacity. This means that the total consumption of a resource at any
point of time should be at most equal to its capacity. For example, a
PT center containing 2 scanning rooms cannot scan more than two
patients (one patient in each scanning room) simultaneously. As seen
in Section 6.1, the resources of a PT center are either unary or cumula-
tive.

The time taken by a given treatment session might depend on the
moment at which it is scheduled. For example, a treatment session
needing a specific resource and scheduled at a moment at which this
resource is used by a large number of other patients might cause de-
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lays in the whole workflow of the patient (or in the workflows of other
patients). Another example is a session requiring an additional snout
change. This occurs when a session is scheduled at a moment when pa-
tients have a different tumor type. The limitation of resources imposes
that only a few patients can be treated in parallel. A good schedule of
patient treatments allows to treat several patients in parallel such that
the treatment is as comfortable as possible for both patients and staff
members.

There are several objectives for which the schedule of patient ap-
pointment of treatment sessions can be optimized. Here is a list of
these objectives:

minimize session time

The sessions must be scheduled such that the time needed to com-
plete them is minimal. Indeed, scheduling a session at the wrong
moment will result in potential delays occurring during the work-
flow of the session, due to a resource requirement which could not
be fulfilled immediately.

maximize adaptability

The placement of the session appointments should keep the global PT
center schedule as adaptable as possible. The adaptability of a given
treatment session represents the possibility to move an appointment
to another time slot. This allows to keep the schedule to unexpected
events such as equipment breaking or staff member sicknesses. As
the delay between successive treatment sessions is bounded, some
treatment appointment cannot be moved to another time slot with-
out moving other treatment sessions. This kind of sessions are not
flexible since their rescheduling imposes to move other appointments.
Hence, sessions that have the possibility to be rescheduled without
modifying the whole schedule of a patient’s remaining sessions are
preferred.

minimize additional snout changes

The number of different snouts needed per day should be minimized.
If we reduce the number of different snouts needed each day, we have
more chance to produce daily schedules with less snout changes and
thus, less wasted time.

minimize overloaded days

The number of days for which schedules are likely to exceed a given
time limit – for example the number of opening hours of the PT center
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– should be minimized. When sessions are scheduled either too late or
too early, it decreases the comfort of both staff members and patients.

Note that the TWAASP is tightly linked with PTP described in Sec-
tion 6.1. Indeed, PTP optimizes the schedule of a PT center during a
single day. However, we can consider that this optimization can be per-
formed for each day in the PT center calendar. One can see TWAASP
as adding patient workflows to days that have previously been opti-
mized with PTP such that a set of constraints are respected, a new set
of objectives are optimized along with minimizing the perturbations
brought to daily schedules previously optimized with PTP.

6.4 a cp model for twaasp

In this section we define our model to solve the TWAASP. The ap-
proach chosen is a CP resolution combined with an LNS strategy to
propose reactive optimization. What we mean by reactive solution is
that a user will be able to add constraints to a solution that will then
be re-optimized to find a new solution respecting the additional con-
straints.

6.4.1 The Model

This problem is modeled as a COP(X, D, C, O) where each component
is detailed below. While this problem might present similarities with
scheduling problems, the model we use here is far more simple. We
consider that we have access to all the details of the partial schedule
of the PT center i.e., we know what are the details of patient sessions
already present in this schedule. In addition to this information, we
take as input to our model the sequence of the n sessions to be inserted
in the partial schedule and all the details associated to them.

The components of our COP(X, D, C, O) are as follows:

variables – X
To each treatment session i of the patient to insert in the partial sched-
ule corresponds a variable x i with 1 ≤ i ≤ n.

domains – D
Each variable x i has the following domain: D i = [0; horizon] where
the value 0 corresponds to the current day in the schedule (i.e. the day
at which the request of new session insertion is done) and horizon
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corresponds to the last day at which a treatment session can be sched-
uled (i.e., in our case we assume we cannot see further than 10 weeks
ahead in our schedule).

constraints – C
First, one has to impose the strict ordering between the successive
treatment sessions. Then, the amount of time required between two
sessions – either two successive sessions or for a subsequence of
successive sessions – is bounded. The amount of time between the
session l and the session k is bounded between minDelayl ,k and
maxDelayl ,k .

objectives – O
The first objective is to minimize the time that is needed by the addi-
tional new treatment sessions. This objective can be expressed with
a sum of Element constraints. The data from the partial schedule in-
forms us on what are the resources available each day and what ses-
sions using these resources are scheduled on which day. Thanks to
this piece of information, we can pre-compute what would be the
cost of scheduling a new treatment session i on the period d. To com-
pute the time that would be taken by the new treatment session i if
scheduled on period d, we use a formula taking into account the ca-
pacity and usage at period d of the resources used by i. This formula
could be substituted with a more accurate version, but we will not
discuss it any further in this work.

The second objective is to maximize the adaptability of the schedule.
We measure the adaptability of the schedule with the delays between
sessions. As these delays are bounded, one desires to minimize the
number of time this delay is equal to a bound. Indeed, if the de-
lay between session l and session k corresponds to its minimal value
minDelayl ,k , it will not be possible to advance session k without mod-
ifying other sessions in the schedule. The same holds for the maximal
value of the delay between two sessions: maxDelayl ,k . Hence, we min-
imize the number of delays between sessions that are either equal to
their lower or upper bound. This is done with the help of reified
variables.

The third objective is to minimize the additional snout changes re-
quired by the new sessions. It is easy to pre-compute whether or not
there would be an additional snout change if session i is scheduled at
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period d. This allows us to model this objective with a sum of Element
constraints.

Finally, the fourth objective is to minimize the number of overloaded
days. Again, it is easy to pre-compute whether or not the period d
will be overloaded if session i is scheduled at period d. Again, we use
a sum of Element constraints to model this objective.

These four objectives are aggregated through a weighted sum to ease
the resolution process.

Formally, the TWAASP model described above is as follows:

minimize w1 ·
n

∑
i=1

Element(xi, estimatedTimei) (6.10)

+ w2 ·∑
l

∑
k

minDelayKOl,k + maxDelayKOl,k (6.11)

+ w3 ·
n

∑
i=1

Element(xi, additionalSnoutChangei) (6.12)

+ w4 ·
n

∑
i=1

Element(xi, periodOverloadi) (6.13)

such that ∀i : xi < xi+1 (6.14)

∀l, ∀k : minDelayl,k ≤ xk − xl ≤ maxDelayl,k (6.15)

∀l, ∀k : minDelayKOl,k == (xk − xl === minDelayl,k)

(6.16)

∀l, ∀k : maxDelayKOl,k == (xk − xl === maxDelayl,k)

(6.17)

where estimatedTimei is an array containing for each period p an es-
timation of the time needed to schedule session i, minDelayKOl,k and
maxDelayKOl,k are reified variables where == is the symbol used to
constrain two terms to be equal and === is the reification operator
equal to 1 if left and right members are equal and equal to 0 if they
are different, additionalSnoutChangei is an array containing for each
period p the value 1 if an additional snout change is needed by schedul-
ing session i at period p and 0 otherwise, similarly, periodOverloadi is
an array containing for each period p the value 1 if an overload occurs
with session i scheduled at p and 0 otherwise.
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6.4.2 Simplifications and Potential Improvements of the Model

Several simplifications of the model have been performed. First of all,
two of the four objectives from rely on the pre-computation of respec-
tively estimatedTimei and periodOverloadi arrays. The values put in
these arrays have been defined using heuristic functions. However,
to be more accurate, for each treatment session i and each period p,
we could have solved PTP at period p while adding patient session i
to the schedule. This would allow to obtain more accurate values in
estimatedTimei and periodOverloadi arrays. This would however re-
quire to resolve n · horizon PTPs. Therefore, we have decided to avoid
this computationally expensive computation by using heuristic func-
tions.

A second simplification was to consider that patient appointments
could be scheduled any time during the day. We have decided to as-
sign a day for each treatment session needed, not an exact hour ap-
pointment time. This is done fore several reasons. First of all, as the
schedule of the PT center is not yet full for all the days considered,
some level of optimization for individual days has to remain. Second,
most of the time, patients usually do not have a full schedule yet for all
the days where a possible appointment for a treatment session could
be set. Finally, most of the time, patients following a PT treatment
are in a state of severe weakness. They are therefore monitored in a
hospital close to the PT center and are completely dedicated to their
treatment, hence they are free at any time for their treatment sessions.
As our goal was to demonstrate the feasibility of a reactive optimiza-
tion framework, we have decided that our periods at which appoint-
ments could be set were days. It is easy to extend this prototype to
have more granular periods e.g., half days or an hour of a day. Further-
more, as our reactive optimization framework allows additional user
constraints, if a patient is not available on some period, it is possible to
forbid that any appointment should be scheduled at that given period.

6.4.3 Resolution

We used CP with LNS to find possible schedules for treatment session
appointments. In order to propose a reactive resolution, i.e., to let the
opportunity for a user to slightly modify a solution by adding new
constraints, we have designed a CP with LNS resolution coupled with
a Graphical User Interface (GUI) to represent solutions and interact
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Figure 6.3: GUI used to interact with the model

with our solver. We have used the OscaR open-source solver [Osc12].
The branching and value selection heuristics is very simple since we
use a classic binary-first-fail heuristics on the xi variables.

The CP search quickly finds a feasible solution (in about one second).
After a first solution is found, we begin an LNS exploration to improve
the quality of the solution. In this LNS approach, the relaxations ran-
domly relax 50% of the variables. This first resolution phase is limited
to five seconds as we want to quickly display a feasible solution to the
user. This solution is displayed in the GUI shown in Figure 6.3.

Once a solution has been found, the user can add new constraints
to modify it. If these constraints still allow to keep partially the last
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solution found, an LNS relaxation maintaining this solution part is
launched. This allows us to find more rapidly a new feasible solution.
However, as new constraints are added/removed, it is not always pos-
sible to reach an improved objective value. The upper bound on the
objective is therefore relaxed when new constraints are added. In the
case where the user has only removed constraints, this upper bound
on the objective is maintained.

In Figure 6.3, we observe that the GUI is separated in two distinct
parts. The first part at the top of the image is simply a calendar display-
ing the appointment solution of our model. The user cannot interact
with this top part of the GUI. On the other hand, the bottom part of the
GUI allows the user to interact with the model. The four first lines of
this bottom part defines options to adjust before launching the search
and the start button launches the search. The parameters that can be
changed in this GUI are:

earliest and latest dates for first session

The first line “First session scheduled between firstmin and firstmax” is
used to add the following constraints on the first appointment:

firstmin ≤ x1 ≤ firstmax

The two buttons “Start Earlier” and “Start Later” allow to respec-
tively decrease and increase firstmin and firstmax. The effect of mod-
ifying the interval in which the first session can be scheduled will
impact the whole sequence of sessions to schedule.

earliest and latest dates for last session

The second line “Last session scheduled between lastmin and lastmax”
is used to add the following constraints on the last appointment:

lastmin ≤ xn ≤ lastmax

The two buttons “End Earlier” and “End Later” allow to respectively
decrease and increase lastmin and lastmax. As for the first session, mod-
ifying the interval in which the last session can be scheduled will
impact the whole sequence of sessions to schedule.

allow sessions on saturday

The third parameter is a checkbox which adds the following con-
straints when checked:

∀i ∈ [1, n] : (xi mod 7) 6= Saturday
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where mod is the modulo operator (e.g., (a mod b) denotes the re-
mainder when dividing a by b) and Saturday represents the integer
which represents Saturday in our schedule. Checking this checkbox
will thus forbid any session to be scheduled on Saturday.

allow sessions on sunday

The fourth parameter is a checkbox which adds the following con-
straints when checked:

∀i ∈ [1, n] : (xi mod 7) 6= Sunday

where Sunday represents the integer which represents Sunday in our
schedule. Checking this checkbox will thus forbid any session to be
scheduled on Sunday.

Finally, the last line in the bottom part of the GUI contains a single
button: “Start”. This button, when pressed, launches a search phase
of 5 seconds. During these 5 seconds, the options and the start but-
ton are not available and a CP with LNS strategy is performed in the
background, modifying the upper visualization part of the GUI. This
search begins by adding the new constraints stipulated by the options.
Then it iteratively performs LNS relaxations to try to find new solu-
tions improving the current objective value.

Every time the user clicks on the “Start” button, only a given num-
ber of relaxations are performed. In order to avoid a specific relaxation
to lead to too much exploration, we also impose a dynamic limit on the
number of failures allowed per relaxation, similarly to what was pro-
posed in Section 6.2. When this limit is reached, its value is increased
if at least one solution was found for this relaxation, otherwise it is de-
creased. This is done to reduce the loss of time when a good solution
has been reached. All those limitations are performed to keep the GUI
as reactive as possible.

A lot of other constraints could be implemented to allow more cus-
tomization of the current solution by the user. However, this model
and the GUI associated to it were developed to be a proof of concept.
A possible interesting improvement could be to allow the user to ad-
just the weights of the aggregated objectives.

6.4.4 Industrial Prototype and Reception

We have designed a working prototype for this problem with a work-
ing GUI allowing a user to have some interactions. Similarly to PTP,
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we have had no access to any data on which we could have tested our
prototype. It has thus been tested on randomly generated instances
that tried to represent real situations. On these random instances, we
have been able to show the practicability of our reactive optimization
approach.

We have presented our prototype to our two main industrial part-
ners: IBA and Palantiris. They were enthusiastic about our prototype,
especially because of the GUI. Indeed, should the work that we have
performed on TWAASP become part of a commercial software some-
day, the interaction of the user with our solution is of high interest.
While a classical optimization tool allows to obtain high quality sched-
ule, it sometimes simplifies too much the problem by proposing a
generic optimization. However, with the GUI and reactive optimiza-
tion approach we have designed, the user could customize its own
model to reach a solution that satisfies his preferences. Our industrial
partners have also highlighted the importance of leaving control to the
potential users of such applications. Indeed, their point was that leav-
ing the opportunity of changing a proposed schedule would provide a
confidence feeling for the potential user. Our industrial partners were
also keen on testing the limitations of our approach by over constrain-
ing the problem. Despite the fact that at some point our framework
was not able to find any feasible solution – because the problem was
too constrained – they were impressed with the robustness of our ap-
proach since as long as you did not make the problem unsatisfiable,
our framework was always able to provide a solution.

This prototype was the last proposed for the MIRROR project. De-
spite their interest for our prototype, it was not developed as a part of
a commercial product. Nevertheless, several ideas that we have intro-
duced here have given some ideas and proven the feasibility of such
approaches to our industrial partners and they were pleased with our
solution.

conclusion

In this chapter, we have discussed two problems related to Proton Ther-
apy and the treatment centers in which patients are cured. The first
problem was the Proton Therapy Problem in which one attempts to
schedule the treatment sessions of patients in a PT center for a given
day. This problem is complex and involves several constraints as well
as not so trivial optimization objectives. We therefore have proposed a
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CP model to tackle it. We have designed to consider a CP resolution
strategy for the model we have proposed for PTP. As this model is
hard to solve, we have used an LNS strategy to attempt to improve
the obtained schedules. This strategy has shown good performance
over large instances that are supposed to represent real-world patient
mixes and PT center configurations. We have therefore proven the ap-
plicability of a CP + LNS approach for large scheduling applications
in a complex medical context.

The second problem tackled in this chapter was the Ten Weeks
Ahead Appointment Schedule Problem. In this problem, one attempts
to place the treatment sessions of a new patient in the partially filled
schedule of a PT center. There are various non-trivial optimization ob-
jectives to this problem and a CP + LNS approach has been chosen
to resolve it. This approach was chosen for its modularity. Indeed,
the resolution process has been integrated with a GUI allowing the
user to modify a solution by adding/removing constraints to the orig-
inal model. The results obtained were encouraging and we have thus
proven that it was possible to use a CP + LNS approach in a reactive
context.

These two problems have finally both been tackled using CP + LNS
and the results obtained have shown good performances on both prob-
lems. This is yet another proof that CP + LNS is a technique that per-
forms well on problems related to time on real-world problems with
large instances.
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N U C L E A R M E D I C I N E
PAT I E N T S C H E D U L I N G

The power of the sun in the palm of my hand.
—Dr. Otto Octavius, Spider-Man 2

Why do we fall sir? So that we can learn to pick ourselves up.
—Alfred Pennyworth, Batman Begins

I would like nuclear fusion to become a practical power source. It
would provide an inexhaustible supply of energy, without pollution
or global warming.

—Stephen Hawking

Do you know what’s on the PET scan?
—Gregory House, House, M.D.

Reality TV to me is the museum of social decay.
—Gary Oldman
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Nuclear Medicine (NM) is a medical imaging technique in which pa-
tients are administered radioactive tracers. As the tracers decay in the
human body, they emit photons, which are then captured to generate
an image used for diagnostic purposes. The management of doses in-
jected to patient is crucial since it contains radioactive emission hazard.
Furthermore, as tracer compounds decay, emissions decrease, requir-
ing larger exposition times in a scanner to obtain image of sufficient
quality.

The schedule of daily patients in an NM center is a hard and inter-
esting problem due to the management of radioactive resources. This
scheduling problem allows us to define two uncommon scheduling ab-
stractions: continuously degrading resources and interval dependent
activity durations. In this chapter, we model the NM scheduling prob-
lem as a Constraint Optimization Problem. We have used a resolution
strategy combining CP with LNS. We also detail two propagation pro-
cedures to deal with continuously degrading resources and interval
dependent activity durations.

In Section 7.1, we describe the Nuclear Medicine Problem and its
context. Then, Section 7.2 defines a model for NMP. This model in-
cludes continuously degrading resources and interval dependent ac-
tivity durations whose propagation procedures are explained in Sec-
tion 7.3. Finally, we assess the results obtained by our model on real
world sized instances in Section 7.4.
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7.1 the nuclear medicine problem

Nuclear Medicine (NM) is a clinical practice in which patients are ad-
ministered nuclear tracers in order to provide diagnostic information
for a wide range of diseases. This technique is notably widely used
to diagnose and follow the treatment of cancer tumors. The nuclear
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tracers injected to patients are mixes of radioactive compounds. The
emissions, also referred to as radioactive activity, decrease over time
as the compounds decay. As defined in [FI02], the activity of a radioac-
tive tracer decreases with time according to the following law of decay:

Rad(t) = Rad0 × e
−t ln(2)

t0.5 (7.1)

where Rad0 is the initial activity of the decaying substance and t0.5 is its
half-life time. The decay of a nuclear tracer through time is represented
in Figure 7.1.
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Figure 7.1: Evolution of the radiation level of a nuclear tracer with time. The
value t0 represents the starting time of the decay. At the half-life
time of the tracer, the radioactivity level has decreased by half its
original level: Rad(t0.5) =

1
2 Rad0.

During decay, the radioactive compounds in the tracer emit gamma
rays or high-energy photons. The energy levels of these emissions are
such that a significant amount of energy can exit the body without be-
ing scattered or attenuated. External gamma-ray sensors allow captur-
ing these emissions, and computers are then able to recreate an image
from them. The quantity of emissions required by the scanner to get
an image of sufficient quality depends on the area of the body that has
to be scanned. Hence, the quantity of radioactive tracer injected to a
patient depends on the body area to scan. Furthermore, the weight of
a patient is inversely proportional to the quantity of emissions leaving
its body. This means that heavier patients will be injected larger doses
of tracer.

As stated in [CSP12], NM has several advantages over other medical
imaging techniques. Most other imaging techniques are either more
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intrusive i.e., they bring a larger discomfort to patients or they pro-
duce less accurate images. The precision and the quality of the images
obtained with NM makes it a technique widely used for medical imag-
ing.

The Nuclear Medicine Problem (NMP) consists in scheduling the
workflow of patients inside an NM center such that several objectives
are optimized.

7.1.1 NM Treatment Center

There are more and more Nuclear Medicine centers installed around
the world. While these centers differ on many points, most of them
share a common structure. The structure that is described here is in-
spired by the NM center in Mont-Godinne, Belgium. There can be
many variants of this structure and most of the centers are variants
of a base model. However, most of the time, they only differ by the
number of rooms they contain and thus the number of patients that
can be treated simultaneously.

The main rooms of NM centers are the following ones:

cold waiting room

When the patient arrives to the NM center, he has to wait until his
turn comes. According to perturbations and delays, some patients
might begin their treatment earlier – if they are in the waiting room
in advance – or later than the predicted appointment time. However,
we will not consider perturbations and delays i.e., this work does
not perform robust scheduling. Instead, we expect that the schedule
that we will produce will be followed without any unexpected event
occurring.

injection room

The injection room is the room in which doses are administered to
patients. The injection is performed by a robotic arm for two specific
reasons. First, it avoids the staff to manipulate too much nuclear sub-
stances. Indeed, each member of the staff is equipped with a dosime-
ter that records the level of radioactivity that he has been exposed to.
The amount recorded by this dosimeter cannot exceed a given limit.
This limit is set to the maximal exposure that is known not to be
harmful for the human body. Should a human be exposed to radia-
tions above this limit, his health could be put in danger. The second
reason for which a robotic arm is used for injection is that it avoids



7.1 the nuclear medicine problem 175

human mistakes that could lead to spills of the tracer. Not only the
tracer substance is expensive, but it also could be a hazard for the
patient if some drops of the substance were spilled directly on his
skin.

hot waiting room

Once the patient has been injected, he waits in another waiting room
in order to allow his body to incorporate the tracer. The hot waiting
room is completely separated from the cold waiting room. Patients
that have been injected must be separated from other patients since
they start emitting radioactive emissions as their tracer decays. The
duration of this waiting time has to last at least a minimal amount of
time, otherwise the human body will not have fully incorporated the
nuclear tracer. On the other hand, the waiting time cannot be too long:
this would mean that the radioactive tracer would have decayed for
too long, leading to its radioactive activity being too low to provide
satisfactory images.

scanner room

Once his body has fully incorporated the tracer, the patient goes into
a scanning room in which the image is captured. There can be sev-
eral different scanning rooms which differ in their scanner equipment.
The amount of time needed by the scanner equipment to capture
the image directly depends on the amount of time the patient has
been waiting after having been administered the radioactive tracer.
To adjust image quality, the exposition to the scanner is sometimes
increased to capture even more emissions. We however will not con-
sider in this work that the duration of the scanning of a patient can
be adjusted on the fly to change the quality of the image. Instead, we
consider here that the scanning time depends only on the duration of
the waiting time of the patient in the hot waiting room. As stated in
[Sch+03], the acquisition time can be expressed as a linear function of
the waiting time as follows:

dacq = α + β · dwait (7.2)

where dacq and dwait are the respective durations of the acquisition
and waiting time, α and β are positive constants depending on the
quantity and type of tracer administered to the patient. Figure 7.2
shows an example of how the acquisition time depends on the wait-
ing time. These scanner rooms exist in different instances, correspond-
ing to the type of image desired. Some of these scanner room in-
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stances are duplicated to allow parallel scans of patients requiring
the same image type.

laboratory

The nuclear substances are stored and prepared in this room. At the
beginning of the day, nuclear components are delivered to the NM
center. These nuclear components are very expensive and only few
specialized institutions can produce them. These nuclear components
are stocked in multiple containers. As long as a container remains
sealed, the decay of nuclear components remains negligible. However,
as soon as the seal of a container is removed, the nuclear components
start to decay. Hence, to avoid wasting nuclear emissions (and also
for safety reasons), containers are unsealed only when required. The
nuclear components from a container are mixed with saline solution
to become a nuclear tracer. The nuclear tracer doses are prepared
inside the laboratory.

Note that in opposition to PT centers from Chapter 6, the corridors are
not of high importance here. Indeed, congestion does not need to be
taken into account in corridors as either patient walk by themselves
or they are transported in wheeling chairs. This means that several
patients can walk by easily when they cross each other in corridors.
Furthermore, it does not happen that patients have to wait in corridors,
they are directly going from one room to the other one, according to
their respective workflow.

Once the seal of a nuclear container has been broken, the radioactive
level of its content decreases as shown in Figure 7.1. The captors for
scanning the patients capture emissions coming out of their body. In
order to capture an image of a given quality, emissions coming out of
a patient’s body should correspond to a given level. Hence patients
should be injected a given dose of radioactivity. The tracer injected to
patients comes from a mix of nuclear compounds from a nuclear con-
tainer unsealed for some time. Hence, the tracer they are injected with
has already decayed a bit and thus will have a lower radioactive activ-
ity. To match a given dose, the quantity of tracer injected to a patient
will vary according to its state of decay. This means that the quantity
of nuclear tracer a patient is injected with is inversely proportional to
the radioactivity of a tracer. Formally, for a patient i, the quantity of
the tracer of type deg injected at time t, Qdeg

i (t), is defined as follows:

Qdeg
i (t) = γi · e

t ln(2)

t
deg
0.5 (7.3)
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Figure 7.2: Time required for image acquisition in function of the length of
the waiting time after injection. Here, dwait

min and dwait
max correspond

respectively to the min and max duration of the waiting time. Sim-
ilarly, dacq

min and dacq
max are the the min and max duration of the

acquisition time. In this example, we have the following values
from Equation (7.2): α = 1.0 and β = 1.15.

where tdeg
0.5 is the half-life time of the nuclear components in the tracer

deg.
This quantity is limited by a maximal value. Indeed, after some

time, not only should the patient be injected with unrealistically large
amounts of tracer, but the radioactivity level of the tracer would be too
low. Hence, the content of a nuclear component whose seal has been
broken is not exploited after an amount of time tmax.

An example of the evolution of the quantity of tracer injected to
a patient varying with time (the time since the seal of the nuclear
container has been broken) is shown in Figure 7.3.

7.1.2 Patient Workflow

Patients coming to an NM center are treated following the steps of a
workflow. For a given patient, the steps of his workflow might differ in
terms of duration, but the sequence of steps he goes through is defined
by his workflow. In NM centers different workflows follow the same
sequence of steps but they however differ by the pieces of equipment
needed at each step. Here are the successive steps followed by a patient
treated in an NM center:

1. The patient arrives in the NM center and waits for the beginning
of its appointment in the cold waiting room.
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Figure 7.3: Evolution of the quantity of tracer injected to a patient with time.
The value t0 represents the time at which the seal of the nuclear
container has been broken.

2. The patient is administered a nuclear tracer in the injection
room.

3. The patient waits in the hot waiting room to allow his body to
incorporate the tracer.

4. The patient is scanned in the scanning room corresponding to
the type of image desired.

5. The patient leaves the NM center.

By the time a patient leaves an NM center, the emissions coming out
of his body are too low to be harmful to other people. The results of
the imaging process are sent with analysis to the physician in charge
of the patient treatment. The physician then contacts the patient and,
depending on the diagnosis, prescribes a treatment.
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7.1.3 NMP Scheduling Objectives

The Nuclear Medicine Problem (NMP) consists in scheduling the steps
of patient workflows inside an NM center. This scheduling is per-
formed such that two objectives are optimized. Here are these two
objectives:

patient throughput

The patient throughput represents the number of patients that can
be treated on a single day. If more patients can be scanned in a day,
then more patients could be scanned in an NM center. One objective
is thus to maximize the patient throughput.

tracer consumption

The quantity of tracer injected depends both on parameters specific
to the patient and on the time at which the patient is injected. As
nuclear tracers contain very expensive materials, one objective is to
minimize the total amount of tracer used by the schedule.

One of the goals of NMP is to combine these objectives. We would then
provide a set of solutions which quality can be quantified according to
both criteria described above. This set of solutions would be an approx-
imation of the Pareto set of our problem. A human user would then
select one of the schedules proposed in the Pareto set. This means that
these objectives are not aggregated and we will consider bi-objective
optimization in our resolution.

7.2 the model

We propose in this section a scheduling model for NMP. This model
introduces two uncommon concepts. The tracer is modeled as a contin-
uously degrading resource, i.e. a resource starting with an initial level
that is only decreased, never increased. The level of a continuously
degrading resource can never be negative. The second uncommon ab-
straction introduced by our model is the interval dependent activity.
An interval dependent activity is an activity whose duration is a func-
tion of the length of the idle time between two activities. The main
components of our scheduling model will be described here: activities,
resources, constraints and objectives.

activities

Every workflow of a patient is represented as a job and every step
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of the workflow is represented as an activity in that job. The steps
inside a patient’s workflow cannot be interrupted. The activities are
thus non-preemptive. Each job contains only two activities: injection
and acquisition. The various waiting times are not modeled as activ-
ities. The duration of the injection activity is known and fixed. The
duration of the acquisition activity is bounded and depends on the
amount of time between the end of the injection and the start of the
acquisition.

resources

The two main resources considered in this work are the injection
room and the various acquisition (scanner) rooms. As most center
have a single injection room, it is modeled with an unary resource.
The acquisition rooms depend on the configuration of the center.
Some centers contain a specific acquisition room in several instances
and other ones on a single instance only. Consequently, unique acqui-
sition rooms are modeled with a unary resource while those present
in multiple instances are modeled with cumulative resources. Note
that the rooms represented with cumulative resources should be mod-
eled with alternative resources to avoid that a patient has to switch
from acquisition room in the middle of the acquisition process.

constraints

The first constraints of our problem define an order between injection
and acquisition activities from the same job. Furthermore, as the body
of the patient needs a minimal amount of time to integrate the tracer,
a minimal delay is imposed between successive injection and acquisi-
tion. Similarly, the waiting time of a patient between his injection and
acquisition activities cannot exceed a maximal amount of time.

Another constraint is needed to determine the duration of the acqui-
sition activity. Indeed, the acquisition time depends on the amount
of time between injection and acquisition. The duration of the acqui-
sition activity is defined as a linear function of the waiting time after
injection as shown in Equation (7.2).

Finally, we have to express the constraints on the continuously de-
grading resources (tracers). We have decided not to model the tracer
as a resource. Instead, we keep a counter of the amount of nuclear
tracer that is consumed through time by injection activities. To do so,
we consider that injection activities consume an increasing amount of
tracer over time as expressed in Equation (7.3). We assume that the
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amount of a resource needed by an activity is consumed at its starting
time in an atomic way.

objectives

This problem considers two objective functions, as detailed earlier.
We represent the maximization of the throughput with a makespan
minimization. Indeed, if a given number of patients can be treated in
a shorter amount of time, then there could be additional patient scans
added on the same day. The second objective is the minimization of
the total consumption of tracer resources. Note that, as said earlier,
these two objectives will not be aggregated but considered in a multi-
objective context.

Formally, the model described above is as follows:

minimize


makespan

∑
deg

∑
i

wdeg ·Qdeg
i (sinj

i )

such that ∀i : sacq
i − einj

i ≥ minDelay

∀i : sacq
i − einj

i ≤ maxDelay

dacq
i = αi + βi · (sacq

i − einj
i )

∀ur : UnaryResource (A, Uur)

∀cr : CumulativeResource (A, Ucr, Ccr)

∀deg : ∑i Qdeg
i (sinj

i ) ≤ initialCapacity(Rdeg)

where Rdeg represents a continuously degrading resource, wdeg is a
positive weight determining the importance of the consumption of
Rdeg, i represents a patient/job, minDelay and maxDelay represent re-
spectively the minimal and maximal waiting time of a patient between
his injection and acquisition activities, αi and βi are positive integer
constants, A is the set of all activities, ur denotes a unary resource and
Uur is a vector defining for each activity whether or not it uses ur, cr
is a cumulative resource, Ucr is a vector defining for each activity the
usage of cr and Ccr is the capacity of cr and initialCapacity(Rdeg) is the
initial available amount of the continuously degrading resource Rdeg.

The second objective minimizes the weighted total consumptions of
tracers. The first and second constraints impose respectively a minimal
and maximal waiting time between injection and acquisition activities.
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The third constraint is the interval dependent activity constraint link-
ing the duration of the acquisition to the duration of the waiting time.
The fourth and fifth constraints model the use of treatment rooms (in-
jection room and the various acquisition rooms). Finally, the last con-
straint limits the total usage of the continuously degrading resources
to never exceed their initial capacities.

While this model is simple and concise, there are no dedicated prop-
agation procedure for the two uncommon abstractions introduced: con-
tinuously degrading resources and interval dependent activities. The
next section explains how propagation can be performed for those.

7.3 dedicated propagation procedures

In this section, we describe how to perform propagation for the con-
tinuously degrading resource constraint and the interval dependent
activity duration constraint. Both these propagation procedures rely
on the use of view-based propagator derivation. We first recall what is
view-based propagator derivation, then we instantiate this technique
to the continuously degrading resource and the interval dependent
activity duration constraints.

7.3.1 View-Based Propagator Derivation

The view-based propagator derivation technique [SS08] allows to apply
propagators on transformations of domains. A view is represented by
two functions, a transformation function φ and its inverse φ−1. Given a
propagator p, a view is represented by two functions φ and φ−1 that are
composed with p to obtain the desired propagator φ−1 ◦ p ◦ φ. Starting
from a domain D, these two functions allow to apply a propagator p
on a transformation of the domain Dφ. The filtering of p is applied
on the transformed domain Dφ and its filtered version D′φ is obtained.
The inverse transformation φ−1 is then applied on D′φ to obtain the
filtered original domain D′. Concretely, the propagation is performed
by applying the following steps:

1. Apply φ to the original domain D to obtain the transformed
domain Dφ.

2. Apply propagator p on Dφ and obtain its filtered version D′φ.

3. Apply φ−1 on D′φ to obtain the original filtered domain D′.
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These view functions can be combined and allow to chain transfor-
mations. If we consider two transformation functions φ1 and φ2 and
their respective inverse φ−1

1 and φ−1
2 , to apply the propagator p, one

can use the following procedure to perform filtering on the original
domain: φ−1

1 ◦ φ−1
2 ◦ p ◦ φ2 ◦ φ1.

Let us consider a small example. Let us consider a variable x and its
current domain D(x) = {1, 2, 3, 4}. The following constraint is applied
to the domain:

3 · x ≤ 8

We can apply view-based propagator derivation by considering the
following transform function φ and its inverse φ−1:

φ(v) = 3 · v
φ−1(v) = 1

3 · v

The propagator p removes all the values of a domain that are larger
than 8:

p(D) = {v | v ∈ D ∧ v ≤ 8}
With these two functions and this propagator, the propagation pro-

cedure is able to obtain the filtered domain D′ = {1, 2} following the
steps detailed in Figure 7.4.

1, 2, 3, 4

D(x)

1, 2

D ′(x)

3, 6, 9, 12

Dφ(x)

3, 6

D ′φ(x)

φ

p

φ−1

Figure 7.4: Example of application for view-based propagation derivation
from [SS08].
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7.3.2 Continuously Degrading Resource

The continuously degrading resource constraint seem complex at first
since it involves using an exponential function on a variable. However,
with the help of view-based propagator derivation, we will be able to
achieve Bound Consistency (BC) for this constraint. A BC propagator
ensures that the constraint is verified for the domain bounds (min and
max values of the domain). As a reminder, here is the constraint for
which we have to design a propagation procedure:

∑
i

γi · e
s
inj
i ln(2)

t
deg
0.5 ≤ initialCapacity(Rdeg) (7.4)

We propose to define a transformation function φi for each patient i
and each continuously degrading resource Rdeg as follows:

φi(v) = γi · e
v ln(2)

t
deg
0.5

Its inverse version is as follows:

φ−1
i (v) =

tdeg
0.5

ln(2)
· ln
(

v
γi

)
As values returned by the φ function are real values and our CP
variables only accept integer values, we consider the domain of sinj

i
mapped by φ is a discrete domain in which each value corresponds
to a single value in the domain of sinj

i . This means that any real value
obtained by applying either φ or φ−1 will be rounded up (either to the
upper or lower integer value depending whether we are dealing re-
spectively with the result of ). The definitions of φ and φ−1 allow us to
use a classic linear sum constraint propagator as proposed in [Apt03].

We can see that with the help of views, we were able to obtain a BC
propagation procedure without large implementation efforts.

7.3.3 Interval Dependent Activity Durations

The interval dependent activity duration constraint involves three vari-
ables and two constants. As a reminder, the constraint we are con-
cerned with is the following one:

dacq
i = αi + βi · (sacq

i − einj
i ) (7.5)
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The first step we can perform to simplify the constraint is to create
an auxiliary variable dwait

i that represents the waiting time of patient i
between its injection and acquisition activities. This auxiliary variable
is constrained as follows:

dwait
i = sacq

i − einj
i

With this auxiliary variable, we are able to rewrite the constraint as
follows:

dacq
i = αi + βi · dwait

i

We propose to apply two successive transformation functions on the
right part of this constraint. Let us define the following two transfor-
mation functions:

χi(v) = βi · v
ψi(v) = αi + v

Their inverse versions are as follows:

χ−1
i (v) =

v
βi

ψ−1
i (v) = v− αi

Considering the propagator p for the equality constraint, we are able
to use view-based propagator derivation applying the following oper-
ations:

χ−1 ◦ ψ−1 ◦ p ◦ ψ ◦ χ

Let us consider a small example with these transformation functions.
In this example, we have α1 = 6 and βi = 2. The transformation func-
tions defined earlier are as follows:

χ(v) = 2 · v
ψ(v) = v + 6

χ−1(v) = 1
2 · v

ψ−1(v) = v− 6

The respective domains of the acquisition duration dacq
i and the wait-

ing time duration dwait
i variables are D(dacq

i ) = {16, 18} and D(dwait
i ) =

{4, 5, 6, 7}. The GAC equality propagator p removes all the values of
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the transformed waiting time duration domain, Dχ ◦ ψ(dwait
i ) that are

not equal to any value of the acquisition duration domain D(dacq
i ):

p(D1) =
{

v | v ∈ Dχ ◦ ψ(dwait
i ) ∧ v ∈ D(dacq

i )
}

With these two transformation functions, their inverse and this propa-
gator, the propagation procedure is able to obtain the filtered domain
D′(dwait

i ) = {5, 6} following the steps detailed in Figure 7.5.

4, 5, 6, 7

D(dwait
i )

5, 6

D ′(dwait
i )

8, 10, 12, 14

Dχ(d
wait
i )

10, 12

D ′χ(d
wait
i )

14, 16, 18, 20

Dχ◦ψ(dwait
i )

16, 18

D ′χ◦ψ(d
wait
i )

χ ψ

p

ψ−1χ−1

Figure 7.5: Example of application of the view-based propagator derivation
for interval dependent activity durations.

Similarly to continuously degrading resources, we were able to ob-
tain a propagation procedure without large implementation efforts
with the help of views.

7.3.4 Simplifications and Potential Improvements of the Model

Several simplifications of the model have been performed. First of all,
acquisition rooms present in several instances have been modeled with
cumulative resources. This could however cause some patient to switch
acquisition room in the middle of its acquisition process as cumulative
resources do not avoid activities overlapping. To overcome this prob-
lem, alternative resources should be used instead to assign each acqui-
sition activity to a single scanning room. We have not done this in our
model for a very simple reason: the two NM centers we have visited
did not have acquisition rooms in several instances. These NM centers
had several acquisition rooms, but the scanning equipment they con-
tained was different from one room to another. Hence, depending on
the type of scan desired, only a single scanning room was available.
We propose in our model that several instances of the same type of
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acquisition room exist only because we have heard that it might be
possible in other NM centers.

Another simplification of this model is that the staff members are
not represented. According to our visit, there were enough members
(much more than needed) to ensure the full function of the centers.
Staff members are either associated to a treatment room (injection or
acquisition) or they are there to monitor patients and make junctions
between the rooms. As the number of parallel activities requiring staff
members never exceeds the number of available staff members, they
are not modeled. This is done to avoid a complication of the model and
an overhead in the resolution time by running propagators that will
never fail nor prune. The staff members should however be taken into
account if some objective representing the comfort of staff members
were to be added to the current model.

Finally, a simplification we have made in our model is that we do
not take into account maintenance times that are sometimes needed.
As explained earlier, the injection activity is performed by a robotic
arm that might need maintenance. We have decided not to include
these maintenance in our model as they are usually planned every
week. To model a day in which a maintenance operation occurs, one
only has to fix an activity using the injection room at the time at which
the maintenance is planned. The duration of this maintenance activity
is fixed and thus does not bring any uncertainty to our model.

7.4 results

To give an overview of the complex nature of NMP, we propose to
solve four different versions of the problem. Each version increases the
level of complexity of the previous version. These problems are solved
using a CP strategy combined with LNS. The branching heuristic used
for search is a binary first fail on the start variables si. Similarly to
the previous chapter, the choice of LNS relaxation and the associated
parameters was performed from experience. We have run experiments
on a set of possible well known LNS relaxations while varying their
parameters, the seed of the random generator, etc. One relaxation has
obtained the best results on most instances, except a few ones where
it was the second best by a small margin. Hence, in order to ease the
benchmarking process, we have selected this single relaxation strategy.
It imposes that start variables si are set to the values of the last solution
except for 10% of them that are randomly chosen.
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Here are the descriptions of the four models that have been used in
our experiments:

model V1

This model is a relaxation of NMP in which neither continuously
decreasing resources nor the interval dependent activity durations
are considered. This means that durations are fixed for all activities
and that we do not limit the usage of nuclear tracers. Hence, the
only objective considered is the minimization of the makespan, this
objective is denoted MK in our results. The model V1 is thus a classic
model for a Cumulative Job-Shop Problem.

model V2

The second model V2 is an extension of the V1 model where the inter-
val dependent activity duration constraints have been added. Hence,
the durations of the acquisition activities of patients are not fixed any-
more and we add the constraint stated in Equation (7.5). Again, we
only consider minimization of the makespan (MK).

model V3

The third model V3 is an extension of the V2 model where the contin-
uously degrading resource constraints, expressed in Equation (7.4),
have been added. As this allows us to model the quantity of tracer
used easily, the objective function has been modified. The model does
not consider makespan minimization but it focuses on minimizing
the quantity of tracer used (this objective is denoted TQ in our re-
sults).

model V4

The fourth model V4 considers NMP as a bi-objective problem. It is
an extension of model V3 where both objectives MK and TQ are min-
imized. Hence, this model aims at finding a set of non-dominated
solutions instead of a single one. To solve this problem we use the con-
straint introduced in [SH13]. This constraint allows to easily maintain
a set of non-dominated solutions in a multi-objective optimization
context in CP. Note that a possibility to perform this multi-objective
optimization could have been to use the Variable Objective LNS intro-
duced by Schaus in [Sch13a].

For each version of our problem, a time limit of three minutes is
imposed and the best values found for both objectives (makespan and
quantity of tracer consumed) are reported in Table 7.1. All experiments
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were conducted with the OscaR open-source solver [Osc12]. The in-
stances considered are lists from 10 to 50 patients obtained by a biased
random generator we designed. The durations of patient activities, the
resource capacities, and the decay parameters are generated using re-
alistic values. However, typical NM centers with the considered con-
figurations treat at most 25 patients per day and larger instances are
considered only to test the limits of the model.

For the first model V1, we can observe that the quantity of tracer
used (TQ) increases dramatically with the number of patients and with
the makespan (MK). This is due to the exponential nature of the quan-
tity of tracer required with time, as stated in Equation (7.3).

When comparing the results from Table 7.1 for models V1 and V2, we
can see that the makespan and quantity of resource used are higher for
V2 than for V1. This can be explained by two main reasons. First, the
solutions for model V1 are not solutions of model V2. Indeed, V2 adds
a relation linking the waiting time of patients with the duration of
imagery acquisition durations. This relation could not be respected in
a solution for model V1. Second, as V2 does not fix the duration of
the acquisition activities, the search space is larger for V2 than for V1.
As both problems V1 and V2 have ran under the same conditions and
with the same branching heuristics, it is normal that the resolution of
V2 fails to obtain solutions as good as the ones obtained by solving V1.

As expected, when comparing results for models V2 and V3 in Ta-
ble 7.1, we observe that the quantity of tracer used is on average
lower for V3 than for V2 as opposed to the makespan which is higher.
This was expected as they minimize respectively makespan and tracer
quantity while not considering the other objective. To obtain solutions
which are tradeoff between the two objective functions, it is interesting
to consider a bi-objective version of our problem as proposed in V4.

The results from Table 7.1 for V4 are the average best solutions ob-
tained for both objectives. We can observe the reported average of
the best solutions obtained are between the best and the worst val-
ues found for V2 and V3 for the makespan and the quantity of tracer
used.

In Figure 7.6, we report the Pareto front obtained solving V4 as well
as the best solutions obtained resolving V2 and V3 on instances with
20 and 40 patients. We observe that some solutions obtained by V4 are
dominated by the best solutions obtained by V2 and V3. On the other
hand, some other solutions are not dominated by the best solution for
V2 nor the best for V3. This can be explained by the fact that the resolu-
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Model
10 Patients 20 Patients 30 Patients 40 Patients 50 Patients

MK TQ MK TQ MK TQ MK TQ MK TQ

Model V1 251 9.97 446 40.44 650 129.9 867 516 1,048 1,268

Model V2 253 11.49 486 51.16 737 242.6 994 1,065 1,211 2,770

Model V3 291 9.17 530 39.04 779 164.7 1,029 671 1,245 1,862

Model V4 266 9.42 495 38.32 751 182.2 1,011 757 1,234 1,885

Table 7.1: Average objective values for the four different models on different
sizes of instances (10 instances per size; 50 instances in total). MK
is the makespan and TQ is the total quantity of tracer used. For
models V1, V2 and V3, the values reported are the average values
for the instance size considered. For problem V4, values reported
are the averages of the best values found for each objective for the
instance size considered.

tions of the different models explore different parts of the search space.
This effect can be further reinforced with the randomness brought by
the LNS strategy. Another interesting detail to observe is that the fronts
propose a range of well spread solutions. The front is dense in the sense
that there are several solutions between extreme solutions (those with
the smallest objective value for a single objective). Furthermore, these
fronts always contain solutions close to the best solutions from V1 and
V2. Finally, the many solutions between the extreme points are well
spread between those. As such, the problem version V4 is well suited
to obtain a set of tradeoffs between the two objectives considered.

7.4.1 Industrial Prototype and Reception

We have designed a working prototype with a GUI for this problem.
This prototype was well received by our industrial partners. However,
due to the lack of data and hence the impossibility to assess the poten-
tial gains of such approach, it has not yet been used in a hospital envi-
ronment. Nevertheless, some components of the prototype we have de-
signed were of high interest for the industrial partners. Unfortunately
for us, the aspects they were most interested in were not especially re-
lated to optimization. Two main outcomes of what we have done here
could be used on a given fixed schedule. First, they were able to obtain
a decent approximation of the quantity of tracer used on a single day.
This can be done using our activity representation in correlation to our
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Figure 7.6: Comparison of Pareto front solutions obtained with resolution of
model V4 and the best solutions obtained by solving models V2
and V3. The red pentagons are the best solutions obtained on
model V2, the blue triangles are the best solutions obtained on
model V3 and the black circles are the points of the Pareto front
obtained with model V4.

continuously decreasing resource representation. Second, the fact that
we were able to show them that sometimes injecting a patient later
could reduce the amount of time he spent in an acquisition activity.
Indeed, with our model representing the acquisition duration propor-
tional to the waiting time between injection and acquisition, they were
able to determine the best time at which the injection should be per-
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formed to obtain the desired acquisition times and desired waiting
times.

conclusion

In this chapter, we have described the Nuclear Medicine Problem. We
have modeled it as a scheduling problem. To deal with some character-
istics of the problem, we have introduced two uncommon scheduling
abstractions: continuously decreasing resources and interval depen-
dent activity durations. These two scheduling abstractions were easy
to model but could not be linked to any efficient existing propagation
procedure. Indeed, these constraints may seem complex at first since
they link several varaibles together and they include non-linear func-
tion e.g. an exponential function. With the help of view-based propa-
gator derivation, we have proposed a simple propagation procedure
making use of existing propagators. One of the main advantages of
these propagation procedures using views is that they can be imple-
mented with minimal efforts.

Finally, we have proposed an efficient method to solve NMP using a
CP + LNS approach. We have proposed four different models embed-
ding an increasing number of constraints, allowing finer modelization,
closer to reality. Each model can be solved according to the desired
objective function. The last version has even allowed us to perform bi-
objective optimization to obtain a set of solutions which are tradeoffs
between both objectives.

The proposed modeling and search techniques are generic and could
be used for other cumulative scheduling problems with specific con-
straints. The only requirement is that these specific constraints com-
bine existing constraints (i.e., with an existing propagator) on new
variables which are defined as functions of variables of the initial prob-
lem (e.g., start and end activity variables). Thanks to the use of views,
propagators of these constraints can be applied. Our approach allows
a large range of cumulative scheduling problems with specific addi-
tional constraints.
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Do I really look like a guy with a plan?
—The joker, The Dark Knight

Be prepared!
—Scar, The Lion King

A goal without a plan is just a wish.
—Antoine de Saint-Exupéry

Failing to plan is planning to fail.

—Alan Lakein

Adventure is just bad planning.

—Roald Amundsen
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The share of renewable energy production, such as wind or solar
power is growing fast in several countries of the EU [WB06]. While
the production of nuclear and fossil energy tends to be stable, renew-
able energy production is highly dependent of both climatic conditions
and the time of the day considered. Renewable resources add a huge
variability on energy offer and demand, and thus on the price of elec-
tricity. As an example, Figure 8.1 shows the historical electricity prices
in Europe on March 3

rd, 2014. In this example, the electricity prices
fluctuate with a multiplicative factor higher than 3.5. Performing ac-
tivities requiring more energy when electricity price is low represents
both an economic and ecologic advantage (the energy produced is not
"wasted").
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Figure 8.1: Historical evolution of electricity prices on the EU market on
March 3

rd, 2014.

In [SH11], Simonis and Hadzic propose a cumulative constraint that
links the energy consumption of activities with evolving electricity
prices. We believe this kind of energy-aware optimization will become
increasingly present in the industries with order-driven production
planning that can be easily split into different steps. It generally offers
enough flexibility to reduce the energy costs by scheduling activities
requiring more energy when the electricity price is lower.

This chapter addresses the problem of energy-efficient scheduling
in consumer tissue production planning. Consumer tissue production
planning offers several levers of flexibility, allowing to drastically re-
duce the energy costs for a given set of orders. Indeed, the paper ma-
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chine receiving paper pulp as input and producing paper rolls con-
sumes an amount of energy that depends on the tissue properties
(quality, density of fibers, thickness, etc).

This chapter therefore describes a model attempting to schedule the
production of paper rolls requiring more energy when the electricity
price forecasts are lower. Two CP models representing different parts
of the production process are described in this chapter. These two mod-
els are solved sequentially in order to reach a global reduction of en-
ergy costs in the whole production process.

In Section 8.1, we describe the consumer tissue manufacturing prob-
lem. Then, in Section 8.2, we propose a modelization of this industrial
problem using two CP models. Finally, Section 8.3 explains the results
obtained on real historical data with our model.

related publications

[Dej+16] Cyrille Dejemeppe, Olivier Devolder, Victor Lecomte, and
Pierre Schaus. “Forward-Checking Filtering for Nested
Cardinality Constraints: Application to an Energy Cost-
Aware Production Planning Problem for Tissue Manufac-
turing.” In: Integration of AI and OR Techniques in Constraint
Programming. Banff, Canada: Springer International Pub-
lishing, 2016.

8.1 paper production planning

An important industrial site in Belgium manufactures hygienic paper
(toilet paper and facial tissues are examples of refined paper they pro-
duce). Paper rolls are produced before being converted into different
products (e.g. toilet papers or kitchen rolls). The production is a two
step process: paper roll production, then conversion of paper rolls into
final products. In Figure 8.2, we give a schematic overview of the differ-
ent steps in the production of paper on the industrial site considered.

Depending on the type of paper produced, the energy consumption
required by the machines can vary. This actually depends on several
parameters for the type of paper: the mix between long and short wood
fiber, the thickness of the paper, etc. The energy consumption can vary
by up to 15% depending on the type of paper roll produced. Therefore
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Figure 8.2: Production steps in paper industry.

the company is looking for the less expensive production planning
given the electricity price forecasts.

The potential savings depend on the flexibility of the production site.
For example, a factory continuously producing the same product does
not have much potential to reduce its energy bill. On the contrary, a
manufacturer producing many different products on a production line,
each requiring a significantly different amount of energy has probably
more flexibility to reduce its energy bill.

The paper conversion lines directly convert paper rolls into final
products. These conversion lines are however not dependent on the
type of paper they process. The only lever for flexibility here would
be to produce orders in advance and store them in a stock. However,
the size of the stock is limited, leaving us with a tiny potential en-
ergy gain. Furthermore, the energy consumption of conversion lines
is significantly less energy-intensive than the two other steps of the
production process. Optimizing the production plan of the converting
lines based on electricity costs is therefore not considered. We will thus
focus on the paper roll production part of the production line in this
thesis.

The paper roll production can be separated in two main successive
steps: paper pulp production and transformation of paper pulp into
paper rolls. We will briefly detail these two steps.

8.1.1 Pulp Preparation

The paper pulp production consists in the mixing of wood fibers with
water in the desired proportion. There are two types of wood fibers:
short and long. The proportion of short and long fibers in the paper
pulp will give certain properties to the paper produced and the exact
mix is driven by the type of paper desired as a product. The mix of long
fibers, short fibers and water is performed in two different pulpers.
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Figure 8.3: Paper pulp production.

Once the paper pulp obtained has been mixed long enough, it is spilled
in one large tank, that himself is spilled in another large tank. This last
tank is used to aliment the paper machine that produces paper rolls
starting from the paper pulp. As the paper machine runs continuously,
there is a constant debit of paper pulp from the second tank.

Typically, at the considered industrial site, the pulpers have a coun-
tenance of 35% of the large tanks. The only part of this process needing
a relevant amount of energy is the mixing of fibers and water inside
the pulpers. The available flexibility on this part of the process is to
use the tanks and the pulpers as buffers.

For example, if we know that the electricity prices will jump soon,
we could fill the two tanks and make the two pulpers process their
batch without emptying them. Then, during the period where the elec-
tricity price is high, as a lot of paper pulp will already be ready in the
tanks and the pulpers, the pulpers will not be needed, reducing the
amount of energy consumed at that period. Figure 8.3 illustrates the
paper pulp preparation process in a schematic way.

Note that on Figure 8.3, the colors represent different mixes. This
means that the content of a pulper, when spilled into tank 1, will alter
the mix in this tank (and the same holds when a portion of the content
of tank 1 is spilled into tank 2). Furthermore, we can notice that the
second tank is constrained by a minimum and a maximum level. This
means that the content of the second tank must always be between the
min and the max level imposed.
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8.1.2 Paper Machine

The paper machine transforms paper pulp into paper rolls. This con-
sists in a continuous process where the paper pulp is spread out on a
conveyor belt passing through several presses and in front of several
heating devices or ventilation systems in order to dry the pulp and
obtain a sheet of paper that will then be rolled up to form paper rolls.
The number of rolls of a given type of paper is determined by an or-
der book. This order book imposes that there must be at least n rolls
of a given type available at time period p. The rolls can be produced
in advance and stored in a stock. At period p when the n rolls of the
considered paper type are required by the order book, n rolls of this
paper type are removed from the stock.

As this process is continuous, the biggest factor that can impact the
consumption of electricity is the kind of paper that has to go through
the process. Indeed, depending on the type of paper pulp on the con-
veyor belt, the speed of the belt, the temperature of the heater, the
speed of the ventilation systems and several other parameters will vary.
The flexibility of this part of the production resides in the permutation
of paper types according to electricity prices.

For a given type of paper, the conveyor belt and the other compo-
nents of the production line have to be calibrated. As such, to avoid
too many calibrations, when a paper type is produced, it has to be pro-
duced for a minimal period of time before another paper of a different
type can be produced. Furthermore, as calibration is an exhaustive and
expensive process (because the quality of the paper cannot be ensured
during a transition between two different paper types), productions
plan in which the same paper type is produced for large periods are
preferred (i.e., there are less switches between different paper types).

The calibration time and loss of paper quality both depend on the
two paper types between which they occur. As such, some transitions
between successive paper types produced are more desirable than oth-
ers. A transition cost can thus be associated for every transition (i.e.
every pair of paper types that will be produced successively). There
are also some transitions that are forbidden as they could harm the
different machines involved in the process.
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8.2 modeling the production process

In this section, we describe a scheduling model to represent the pro-
duction of paper rolls. First, we have decided to separate the two parts
of the production process (paper pulp production and transformation
of paper pulp into paper rolls) into two different models that we will
link together. Indeed, considering the whole production line in a single
model would greatly complicate the model. Furthermore, the search
space would be much larger on a single unified model and it would
result in much larger solving times.

The first model will be a model for the transformation of paper pulp
into paper rolls in the paper machine. Indeed, considering a set of
demands (i.e., demands from the order book of a given amount of
paper rolls of a given type before a given due date), it is natural to first
consider the order in which the rolls of each paper type appearing in
the demands will be produced.

Once the order of types of paper rolls is determined, this can be
considered as the output flow of the model of the paper pulp produc-
tion. This is convenient because this will allow us to have the mix of
different pulps defined a priori and this makes the paper pulp model
much easier. Furthermore, the lever of optimization is higher in this
model as the flexibility of the corresponding part of the production
line is much higher than the other one. Indeed, once the output flow
of the paper pulp production is fixed, our only lever of optimization
is the filling of the pulpers and tanks. As, for the site we have visited,
the combination of the capacity of tanks and pulpers (if they are not
emptied) allow us to store a bit more than 7 batches (one batch repre-
sents one full pulper), we cannot hope to optimize for a long period of
time should the electricity prices remain high for a long period. Fur-
thermore, the electric consumption of the pulpers is about 20 times
lower than for the refinement of the pulp into paper rolls process.

For all those reasons combined, we have chosen to first solve the
paper machine model (transformation of the pulp into paper rolls).
From the solution obtained on the paper machine model, we then solve
the paper pulp production model. A resolution of these two models in
the opposite order would greatly complicate the models (especially to
cope with the mix of different pulps) and would probably result into
schedules of lower quality. In Section 8.2.1 we propose a model for
the paper machine while Section 8.2.2 describes a model for the paper
pulp production.
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8.2.1 Paper Machine Model

The paper machine model should include the following constraints:

• For every demand of paper rolls of a given type at a specified
due date, a larger or equivalent amount of paper rolls of the
same type has to be produced before the respective due date.

• When a roll of a given paper type is produced, it has to be
produced for a minimal amount of time before any other paper
type can be produced.

As for the objectives, we have the following quantities to optimize:

• The total energy cost of the production planning has to be min-
imized.

• The cost (and thus also the number) of transitions between dif-
ferent successive paper types has to be minimized. When a tran-
sition between two paper types is forbidden, an infinite cost is
associated to it. This allows to keep a small and concise model.

We propose a CP model for these constraints and these objectives.
We have chosen a discrete representation of the process as the price of
electricity at every hour (forecasts) is one of the input in our model.
We associate one decision variable for each hour on the horizon on
which the production planning has to be optimized. We represent our
variables as follows: X = {x1, . . . , xn} where x1 is the variable associ-
ated to the first hour of the production plan and xn to the last one (the
horizon). The order book is directly translated in full hours to fit to the
model. The values these variables can take represent the type of paper
produced at the corresponding period. The variable xi will thus take
as value the paper type of the paper rolls to be produced at the hour
i of the production plan. This allows easy linking of every production
of paper type to the price of the electricity at the corresponding hour.

The first constraint to impose on these variables is to respect the
demands of paper rolls. We can do that easily by imposing a Global
Cardinality Constraint (GCC) [Rég96] for every deadline that we have
in the order book. This constraint will enforce that there are at least-
/at most m variables (hours) taking the value v (paper type) on the
specified sub-array.

We have analyzed the theoretical pruning provided by this con-
straint decomposition and we have noticed that it could be improved.
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Figure 8.4: Schedule in which the regular constraint is respected.

Paper type 1 Paper type 2 Paper type 3 Paper type 2 Paper type 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 8.5: Schedule in which the regular constraint is not respected.

Indeed, the various GCCs will not be able to communicate between
each other event if their scopes are nested ranges. The Nested GCC
from [ZP07] allows to overcome this limitation. Zanarini and Pesant
have proposed a GAC propagator for this constraint and we have de-
scribed a FWC propagation procedure in Chapter 4. As our model will
be solved using the help of a LNS approach, we have assumed that the
heavy GAC propagator for the Nested GCC from [ZP07] would be too
time-consuming for this application. Indeed, its worst time complexity
is very large. Furthermore, obtaining an efficient implementation of
the GAC propagator from Zanarini and Pesant is rather hard. This is
the motivation that lead us to develop a dedicated FWC propagator
for the Nested GCC as described in Chapter 4.

The second constraint to impose is that there are at least k successive
periods of every paper type produced. This means that, in our repre-
sentation, the same value has to appear in a succession of at least k
variables. To impose this constraint, we have used a Regular constraint
[QW06] where the automaton provided as input imposes a chain of k
successive same values before reaching an accepting state. If we repre-
sent the values (paper types) by colors and variables (hours) as small
rectangles, we can represent a feasible schedule as a succession of col-
ored rectangles. In Figure 8.4, we see a schedule in which the regular
constraint is respected for k = 4 (i.e. there is no succession of rectan-
gles of the same color whose length is inferior to 4). On the other hand,
Figure 8.5 shows an infeasible schedule for the same set of paper types
produced since there are two successions of only 2 periods where the
paper type is blue

The two objectives, minimization of electricity costs and minimiza-
tion of transition costs between paper types, are aggregated in a sum
that is minimized. The first objective is represented as a sum of vari-
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ables obtained with the Element constraints. The Element constraint
is used to obtain the energy consumption associated to the value (i.e.,
paper type of the rolls produced) of the variable xi at hour i. This al-
lows us to multiply the electricity price of a period with the amount of
electricity consumed at that period by a given paper type production.
This implies that we have an array whose elements are the prices of
electricity (indices of the arrays correspond to periods) and another
array containing the consumption of electricity for producing a given
paper type. The second objective is also expressed with a sum of vari-
ables defined with Element constraints. However, in this case, it is ex-
pressed on a matrix instead of a one-dimension array. Indeed, we have
to represent the pairs of paper types in a matrix T where an entry ta,b
represents the cost of the transition from the production of paper type
a to the production of paper type b. This matrix must ensure that the
diagonal (representing the transition from any paper type to the same
paper type) is null (since we do not want to penalize production plans
where there are no real transitions, i.e., no calibration will be needed).

Formally, the paper machine model is as follows:

minimize
n

∑
i=1

pricei · Element (xi, C) +
n−1

∑
i=1

Element2D (xi, xi+1, T)

such that Nested_GCC
([

X1, . . . , Xp] ,
[
l1, . . . , lp] ,

[
u1, . . . , up])

Regular (StretchAutomaton (X, k))

where the first sum of the objective represents the total electricity cost
and the second sum represents the transition costs. The bounds lr and
ur in the signature of the Nested GCC (see Chapter 4 for a definition
of this signature) are vectors representing respectively the minimal
(imposed by the order book) and maximal (imposed by the stock lim-
itations) number of paper rolls to produce in the specified range of
variables Xr. StretchAutomaton (X, k) is an automaton accepting only
chains containing the same value at least k successive times. Note that
in this particular model, we have not weighted the two objectives, but
this could be done in practice to determine their relative importance.

8.2.2 Pulp Production Model

Once an optimized production plan has been obtained for the pa-
per machine, the output flow of the paper pulp production is fixed.
Therefore, we do not have to consider pulp mixes or different types of
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fibers. This makes this model easier. Furthermore, we can consider the
two tanks as a single tank whose capacity is the sum of the capacity
of the two tanks. This allows us to have a lighter and more concise
model. Hence, our model only has to express the information of when
the batches are processed into the pulpers and when the pulpers are
spilled into the tank.

We propose to use a scheduling model in which the processing of
a batch in a pulper is represented as an activity. Similarly, the spilling
of a pulper into the tank is also represented by a activity. This allows
us to easily represent the model with precedences between activities,
expressing the ordering in which batches have to be processed. This
model includes the following constraints:

• Every batch occurring in a pulper has to be performed from the
beginning to the end without being interrupted. As such, there
can be only a single batch processed at any point of time for a
given pulper.

• The capacity of the tanks cannot be exceeded. Both tanks have a
lower and an upper capacity. Therefore, the minimal and maxi-
mal capacities of the big virtual tank representing their content
are obtained by summing respectively the minimal and maxi-
mal capacities of both tanks.

• The spilling of a batch into the tank can be performed only
when the batch has been completely processed in the pulper.

• Every batch must be spilled in the tank before its due date. The
due date of every batch has been deduced from the output flow
obtained by the solution to the paper machine model.

The objective is to minimize the cost of the production plan according
to the electricity prices of the period at which a batch is processed.

We propose a CP scheduling model for these constraints and this
objective. We have chosen a time step of 5 minutes since it corresponds
to the duration of the spilling of a batch from a pulper to the first tank.
We associate an activity to each of the following events:

• Every batch i mixed in a pulper is represented with a activity
Amix

i . These activities all have the same duration: 20 minutes (4
time steps).
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• The spilling of the batch i from a pulper to the first tank is
represented with an activity Aspill

i . These activities all have the
same duration: 5 minutes (1 time step).

• At every time step t, we associate an activity Acons
t that corre-

sponds to the consumption of a fixed amount of pulp from the
second tank by the paper machine.

To ensure that no two batches can be processed simultaneously on
the same pulper we use a cumulative resource constraint [AB93] with
capacity 2 (since there are two pulpers). This constraint will impose
that there cannot be more than two simultaneous batches in pulpers at
any point in time. There exists a trivial algorithm to find back to which
pulper (pulper 1 or pulper 2) each batch is associated. This greedy algo-
rithm associates every activity to the first free resource in lexicographic
order. To restrict the amount of pulp inside the aggregated tank, we
use a reservoir resource [SC95]. This implies that at the end of every ac-
tivity Aspill

i (spilling of a batch into the tank), the level of the reservoir
resource is increased by the quantity of pulp in the batch. Similarly,
every activity Acons

t (consumption of pulp by the paper machine) is a
consumer activity: the level of the reservoir resource is decreased by a
given quantity when it begins. To impose that the spilling of a batch
can only be performed when the pulper has finished to mix it, we use
precedence constraints. For every batch, we impose that the pulper ac-
tivity precedes the spilling task: Amix

i � Aspill
i . Finally, to ensure each

batch is performed before a due date, we restrict the initial domain of
variables such that the variable corresponding to the end of the spilling
of a batch is set to be at most equal to the due date corresponding to
the batch.

The objective can be represented, as for the first model, by a sum of
variables obtained with element constraints. To ease this process, we
pre-compute for every point of time t what would be the electricity
cost of a pulper activity Amix

i starting in t. This result is stored in an
array pulpElecCost.
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Formally, the pulp production model is as follows:

minimize
n

∑
i=1

Element
(

smix
i , pulpElecCost

)
such that ∀i ∈ [1, n] : Amix

i � Aspill
i

ReservoirResource


[Aspill

1 , . . . , Aspill
n ],[

Acons
1 , . . . , Acons

horizon

]
,

Lmin,

Lmax


CumulativeResource

([
Amix

1 , . . . , Amix
n
]

, 2
)

where smix
i is the start variable of activity Amix

i . In the signature of
ReservoirResource, the first array [Aspill

1 , . . . , Aspill
n ] represents the pro-

ducers and the second array the consumers
[
Acons

1 , . . . , Acons
horizon

]
. The

values Lmin and Lmax represent respectively the min and max level of
the aggregated tank (obtained by summing the min and max capaci-
ties of the individual tanks). Finally, in the signature of the cumulative
resource constraint, CumulativeResource, the value 2 is the capacity of
the cumulative resource.

8.2.3 Simplifications and Potential Improvements of the Models

Several simplifications of the model have been performed. First of all,
we have separated the problem into two disjoint models: paper pulp
production and paper machine models. These models are solved in
sequence: first the paper machine model fixes the output of the pa-
per pulp model, then the paper pulp model is solved. A single model
would result in finer optimization and could lead to better solutions.
However, as mentioned earlier, our main objective is to reduce the
energy costs that are proportional to the energy consumption of the
processes to schedule. The paper pulp model contains activities with
almost negligible consumption in comparison to the paper machine.
Furthermore, the flexibility of the paper pulp production model is
small: only the tanks and the pulper can be kept full to avoid running
a pulper while prices are high. This is one of the reasons for which it
is acceptable to split the problem into two distinct models that will be
solved sequentially.
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Another simplification is that the pulp model does not model the
mix of various paper pulp that can occur in the two tanks. Indeed, we
have simplified our model by aggregating the two tanks in a single
reservoir resource and even then, we do not bother with the mix of
paper pulps. Taking the mixing of various paper pulps would have
resulted in a much harder modeling, and much less concise. We have
chosen to make this simplification for two main reasons. First of all,
mix of various paper pulps only happen during very small periods
in the whole schedule. Then, the output of the paper pulp model is
fixed. Hence, knowing the mix that is used by the paper machine at
any point of time, it is possible to adjust the fiber mix in both pulpers
to obtain the desired mix in the end.

Another simplification of these models is the granularity of the time
we have used here. As prices are provided hour by hour, we have
chosen to use hour time steps. However, to be a bit more accurate, one
could use half-hours time steps. According to the visits our industrials
partners have made on site, it is not useful to use a smaller time step
than half an hour. Our model could be easily adapted to consider half
hours time steps instead of hours.

Finally, we have not considered in this model any kind of unex-
pected event. It however happens that some piece of the paper ma-
chine must be put under maintenance or that a pulper or stocking
tank has to be cleaned. These events are however unexpected events
not planned in advance. Therefore, it would require to perform robust
scheduling[KDVk00] that would imply a completely different resolu-
tion strategy.

8.3 results

Our complete modelization of the problem is performed through two
models solved successively. We had access to partial historical data.
This historical data contains the amount and type of paper rolls pro-
duced from paper pulp over a couple of years. The data obtained gives
us access to the electricity consumption of the various parts of the pro-
cess. Additionally, we have also been granted access to the historical
electricity prices during the same period. Our intention was therefore
to test both models and compare the optimized results obtained on
this site. Unfortunately, we had to lower our expectations on this mat-
ter due to three main reasons:
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1. The data was not available for the pulp mixing part of the pro-
cess. Hence, we have not been able to test the associated model
on real data.

2. The historical data does not always respect all the constraints
that we were asked to implement. This means that if we con-
sider the historical production plan applied during a given pe-
riod, some constraints are not respected. The particular con-
straint that was violated was the one imposing that there should
be at least k successive periods producing the same paper type.
We have decided to limit our experimentations on periods that
were respecting all the constraints.

3. The data is partial. During some periods, no production has
been recorded at all. We have no idea of whether the indus-
trial site was actually shut down during these periods or if
some maintenance was performed or if the recording devices
stopped working. Hence, we have decided to only consider pe-
riods where all (or almost all) data was available.

For the reasons mentioned earlier, we have been able to test only the
paper machine model. The rest of the experiments described here are
performed only on this paper machine model.

8.3.1 The Historical Instances

Combining the data coming from the industrial site and the histori-
cal European electricity prices over the same period, we were able to
produce instances as follows:

1. Randomly select two dates separated by a specified amount
of days. This defines the time window tw representing the in-
stance.

2. Collect over tw the historical type of paper roll produced every
hour.

3. Collect over tw the historical European electricity prices every
hour.

4. Collect over tw, for every paper type i the contiguous periods
at which i is produced. Let [t1, t2] be such an interval where
product type i is produced continuously. A deadline is imposed
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to produce at least t2 − t1 + 1 items for date t2 + δ. This δ value
depends on the number of days considered and varies between
24 and 72 hours.

The shifting of deadlines by δ gives some flexibility to the model for
optimization. As we don’t have the historical stock constraints, we only
impose over the whole time window tw to produce the exact same
type and numbers of rolls. We have generated 4 sets of 10 instances for
planning of respectively 4, 6, 8 and 11 days (96, 144, 192 and 264 time
periods).

8.3.2 Evaluation of Nested GCC Propagation

As the paper machine model has lead us to develop a FWC propa-
gation procedure for the Nested GCC from Chapter 4, we have de-
cided to evaluate our new procedure on this particular model. To do
so, we compare several models including different propagation proce-
dures. All these models are based on the one described in Section 8.2.1
and only differ by the propagation procedure for the Nested GCC. We
propose to compare the same three FWC propagation procedures de-
scribed in Chapter 4 and recalled here:

1. Multiple GCCs FWC propagator decomposition with the origi-
nal bounds (φGCCFWCs); there is one GCC FWC propagator for
each range constrained by the original bounds.

2. Multiple GCCs FWC propagator decomposition with strength-
ened bounds from Section 4.3.1 (φPrecompGCCFWCs); there is one
GCC FWC propagator for each range constrained by strength-
ened bounds.

3. The Nested GCC FWC propagator with O(log(p)) time com-
plexity from Section 4.3.2 (φNestedGCCFWC). This version also uses
the stronger bounds after the pre-computation step.

These models and propagation procedures have all been implemented
in the open-source solver OscaR [Osc12]. Similarly to what has been
done in Chapter 4, we have used the replay strategy approach from
Van Cauwelaert [CLS15] (described in Chapter 3). The baseline was
φGCCFWCs and the sequence of nodes was generated using a binary
first fail strategy for 300 seconds per instance.
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In Figure 8.6, we can see that approaches using the pre-computation
step have a much smaller number of backtracks. Note that, as expected,
once the new bounds have been computed, both φPrecompGCCFWCs and
φNestedGCCFWC offer the same pruning. We can also see that for about
35% of the instances, these propagators were able to almost completely
cut the search tree explored by φGCCFWCs. Finally, we can observe that
there are only a bit less than 15% of the instances for which the propa-
gators using pre-computed bounds are not able to achieve more prun-
ing than φGCCFWCs. All these observations on a model using real world
instances give even more credit to the conclusions that we have made
in Chapter 4.
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Figure 8.6: Performance profiles of the three models for the number of back-
tracks.

In Figure 8.7, we can see the profiles of resolution times for the
different propagators. We can observe that both φPrecompGCCFWCs and
φNestedGCCFWC are faster than φGCCFWCs for about 90% of the instances.
The reason is the stronger filtering that is induced by the bounds-
strengthening procedure. The 10% of instances for which both these
variants are slower than φGCCFWCs are those on which they offer no
additional pruning; and even in this case, they are at worst less than
1.5 time slower than φGCCFWCs. We can see however that resolution
times are similar for φPrecompGCCFWCs and φNestedGCCFWC. Again, these
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results on real world instances validate the results we have obtained
on random instances in Chapter 4.
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Figure 8.7: Performance profiles of the three models for the replay time on a
sequence of nodes as explained in Chapter 3.

Energy Consumption Minimization with LNS

This section aims at showing the potential improvement brought by
our model over historical production plans. An LNS is used with our
CP model from Section 8.2.1 over the historical data and we compare
the reductions in terms of cost. The search strategy used is Conflict
Ordering Search [GHPS15]. The LNS setting is the following: at each
iteration, we select 80% of the possible values (i.e., paper types). Vari-
ables associated to these 80% of values are then relaxed. This is done
to relax the production plan except some blocks of production over some
specific paper types. The search is stopped if one of these two condi-
tions is met:

1. 180 seconds have elapsed since the beginning of the search.

2. 200 relaxations have been performed (with a maximum of 1,000

backtracks per relaxation).
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Similarly to the other application chapter, the choice of LNS relaxation
and the associated parameters was performed from experience. We
have run experiments on a set of possible well known LNS relaxations
while varying their parameters, the seed of the random generator, etc.
The relaxation described earlier has obtained the best results on all
instances. Hence, in order to ease the benchmarking process, we have
selected this single relaxation strategy.

Table 8.1 shows the ratio of objectives (historical/optimized value)
obtained. We can see that the cost of transitions between different pa-
per types is on average significantly reduced. However, the variance
over this objective ratio is high: the reduction of transition cost is really
important on some instances but it decreases less on other instances
(and not at all on three instances). The ratio of the energy cost how-
ever has a small variance. On most of the instances, LNS is able to
reduce energy costs by around 22.5%. These results are promising but
somewhat optimistic since it relies on a perfect knowledge of electric-
ity future prices. Since forecasts can, by definition, be wrong, the gain
could be reduced in practice.

Global Energy Transition

Average 6.40 1.29 56.14

Variance 69.46 0.10 84,211.22

Table 8.1: Ratio of historical and optimized objective values (historical/opti-
mized).

8.3.3 Industrial Prototype and Reception

We have designed a working prototype with a GUI for this problem.
This prototype was well received by our industrial partners. Further-
more, as we have been able to test our prototype on real historical data,
we have shown the potential gain in terms of electricity costs that our
optimization procedure could bring to the paper production site. The
gains we have been able to obtain were higher than those expected by
our industrial partners. We have however stated that these gains did
occur under several favorable conditions. First of all, we have had ac-
cess to the exact prices of the electricity market while under real condi-
tions, such framework should rely on forecast prices. Second, we have
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not taken into account the interruptions that could occur in the case of
unexpected events. Nevertheless, being able to obtain such reduction
in terms of electricity costs was very satisfying for our partners. Fur-
thermore, the large reduction of the transition costs between different
paper types was largely appreciated since it was not expected at first.

8.4 future work

We have not discussed the problem of computing electricity price fore-
casts in this chapter. We have made the assumption that the price fore-
casts were reliable and therefore we have not proposed a stochastic
model taking into account the variations that could occur on the price
forecasts. Furthermore, we have not discussed in this chapter the pos-
sibility of re-planning an existing production plan according to a dif-
ference between the actual electricity prices and their forecasts.

Some other results of high interest would be to test the electricity
price forecasts of the Enertop module of N-SIDE1 to obtain a better es-
timate of the real energy gain. Indeed, this work used the exact electric-
ity prices and the gains obtained would probably be lower by working
with an imperfect estimation. It was unfortunately not possible to use
the Enertop module in this work. It would have required to feed the
forecast module with external features (weather forecast, etc.) that we
do not have for the historical data.

For the models we have proposed, it would be interesting to use Vari-
able Objective Large Neighborhood Search (VLNS) [Sch13b] in order
to obtain a better pruning from our two terms composing the objec-
tive or to compute a Pareto front using a multi-objective LNS [SH13].
The CP model could also be extended with stocking costs computa-
tions [Hou+14] since it is not desirable to produce too early before the
deadlines. It would also be of high interest to obtain real data on the
paper pulp production part of the process. This would allow us to cou-
ple the paper machine model with the paper pulp model happening
just before in the production process. This would allow an integrated
optimization of the whole production.

Finally, another aspect that was not covered in this work is the pos-
sibility to vary the speed of the production line. The idea would be to
decrease the speed of the production line – implying a reduction of the
electricity costs – when electricity prices are high. The hygienic paper

1 http://energy.n-side.com/enertop-energy-flexibility-optimization/

http://energy.n-side.com/enertop-energy-flexibility-optimization/
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manufacturing site in Belgium does not do such thing but could do it
in practice. While the managers of the site were reticent at the idea of
decreasing the speed of the production line, good results on historical
data could convince them. For our model, this would require some
serious changes or even a complete rewriting of them.

conclusion

In this chapter, we have described the problem of reducing energy
costs in paper tissue production. To tackle this problem, we propose to
reorganize a large part of the manufacturing process: the production of
paper rolls from paper pulp. According to forecasts of electricity prices,
paper rolls whose production require a larger amount of energy will
be produced when prices are low. On the opposite, paper rolls whose
production require a smaller amount of energy will be produced when
prices are high.

The problem is subject to many constraints; an important one is the
order book that translates into hard production deadlines. To represent
the problem, we propose two CP models including all the constraints.
The first model that we have proposed is a model for the paper ma-
chine, producing paper rolls starting from paper pulp. A second model
represents the production of paper pulp obtained by mixing short and
long wood fibers with water. These models are solved successively
such that the optimized production plan obtained on the paper ma-
chine model will be an input to the paper pulp production model.

The deadline and stock constraints of the problem are expressed
with Nested GCC that has been discussed in Chapter 4. The perfor-
mances of our new propagation procedure was evaluated on instances
generated from historical data. The results we obtained on these his-
torical instances are similar to those that were obtained on randomly
generated instances from Chapter 4. The conclusions about the new
FWC propagation procedure, stating that it achieved larger pruning in
smaller amounts of time, seem thus to be validated by those results.

The paper machine model was solved using an LNS approach and
the objective values after optimization were compared to the historical
ones. The gains on both objectives are substantial and this highlights
the benefits of using our model to reduce electricity costs instead of
deciding the production plan by hand. However, those results were
obtained with full knowledge of the electricity prices instead of fore-
casts. There remains several opportunities to consider other aspects of
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the problem that could potentially lead to a more robust model taking
other parameters into account.
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conclusion

In this thesis, we have been confronted to time-related problems. In
these problems, the aim is to determine when a set of actions can
be placed in time. As these problems are subject to many constraints,
we have decided to use Constraint Programming approaches to solve
them. Most of the time, we have decided to represent our problems
as scheduling problems. The four main categories of scheduling ab-
stractions allowed us to easily describe our problems in a concise and
declarative way. We have also considered production planning prob-
lems and their associated models. Along this work, we have described
two new propagation procedures. These propagation procedures were
then used in several real-world applications.

Efficient Propagators

During our modelization of various scheduling problems, we have dis-
covered that there were no existing efficient propagation procedure
to consider unary resource with transition times. We have thus de-
veloped a dedicated propagation procedure for this constraint. Our
propagation procedure proposes to extend the existing unary resource
propagators from Vilìm with small modifications on the Θ-tree and Θ-
Λ-tree data structures. The propagation procedure we have proposed
is efficient, offers significant additional pruning, and is faster than al-
ternative existing propagators. It is also easy to implement in solvers
already embedding the unary resource propagators from Vilìm.

We have also considered production planning problems. While be-
ing also time-related, they are not modeled as scheduling problems. In-
stead, we have modeled them with a set of unit periods (all of the same
duration) to which we associate a type of production. While modeling
a production planning problem, we have modeled stock and deadline
constraints. To help the propagation procedure, we have proposed a
FWC propagator for the Nested Global Cardinality Constraint. This
propagator allows us to perform more pruning than a classic decom-
position into multiple GCCs.
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Real-World Applications

The two abstractions we have introduced were useful to tackle real-
world problems that have been considered in this thesis. The two first
problems considered patient scheduling in health care treatment cen-
ters. Several models were proposed for these problems and the promis-
ing results seem to indicate that there is a bright future for scheduling
in the health care sector.

First, we have discussed the scheduling of patient treatment sessions
in Proton Therapy centers. We have designed a CP model to tackle this
problem. This model has been able to solve real-world sized instances
with an accurate model. Second, we have considered the scheduling
of patient appointments for their successive treatment sessions in a
PT center. In this approach, we have dedicated our effort to obtain a
reactive model. This approach allows a user to modify an existing ap-
pointment plan to add/remove constraints and obtain a new solution
in very short amounts of time (less than 5 seconds). As this method
has performed well, this proves that approaches combining CP and
LNS can easily be used in a reactive context.

The second problem considered aimed at scheduling patient treat-
ment sessions in a Nuclear Medicine center. This problem is complex
since we have to deal with the management of radioactive resources.
We have proposed a scheduling model for this problem that contained
constraints for which there was no existing propagation procedures.
However, using view-based propagator derivation techniques, we have
been able to obtain propagation procedures using existing propagators
with only a very small time overhead. This proves that even though
some problems might seem complex, the expressibility of CP allows
to model and solve them relatively easily.

Finally, the last application aims at reducing the energy costs of in-
dustrial processes. Electricity price forecasts determine the cost of unit
consumption at each period. We have proposed a production plan-
ning model to shift the production of various products with different
production energy demands. We have had access to historical data
and we have been able to compare historical production plans to op-
timized ones. The versions obtained after optimization proposed non-
negligible energy cost savings. Again, we have shown the practicability
of a CP + LNS approach to solve large instances of this problem.
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Final Words

All the problems we have considered in this thesis were optimization
problems. Even though CP is useful in the case of optimization, its
completeness can be a problem when considering large instances of
complex problems. We have decided to couple CP with LNS to allow
more diversification and to discover high quality solutions faster. This
combination of CP with LNS has proven to work well in practice on
the various problems tackled with real-world instances.

This whole thesis, through the abstractions introduced and the real-
world problems that have been solved, has shown the expressive power
of scheduling. More importantly, several propagation procedures for
hard global constraints have been introduced. This adds even more
tools to the Constraint Programming paradigm. In the case of schedul-
ing, the combination of CP and LNS has proven to solve hard problems
on large instances. This thesis is thus yet another proof of the efficiency
of CP and LNS when tackling scheduling problems.
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perspectives

This thesis has introduced two new propagation procedures and has
tackled several hard real-world time-related problems. This work is
the product of four years of work but many other perspectives remain
to explore. We propose here to list some perspectives opened up by
the content of this thesis.

Unary Resource with Transition Times

We have presented a new propagation procedure for the unary re-
source with transition times by extending Vilìm’s work. The proposed
propagation procedure has however several weaknesses. The propa-
gators introduced all rely on the computation of the ect of a set of
activities. To include transition times, it adds the smallest sequence of
transitions over all the activities whose length is equal to the cardinality
of the considered set. It will thus fail to propose consequent pruning
in the case of sparse transition times.

A recent work – not detailed in this thesis – has been submitted at
the CP2016 conference to consider families of transitions. It proposes to
group activities in families: subsets of activities with null transitions
between each of them. The computation of the ect is no more based
on the cardinality of a set of activities, but on the number of different
families inside a set of activities.

This recent work does however not cover the case where transition
times are non-null but of very different importance. In such cases, the
very large transition times will not be included in the ect computa-
tion. A solution could be to consider families discovered by clustering
means. This would allow to consider transitions between clusters of
activities, permitting the inclusion of large transition times into the
computation of the ect of a set of activities.

Reactive Optimization

We have tackled the Ten Weeks Ahead Appointment Schedule Problem
using reactive optimization. Reactive optimization aims at proposing so-
lutions to a user in a very short amount of time while offering him the
possibility to modify the model. Once a solution has been discovered,
the user has the opportunity to both add and remove constraints from
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the model. Once he is satisfied with its modified model, the solver has
a very short amount of time to discover new feasible solutions to this
model.

To achieve reactive optimization, we have proposed an approach
combining CP and LNS. There exist many critical and industrial ap-
plications that could be solved using reactive optimization. The limits
and extensions of our approach with CP and LNS could be studied
and tested in several other real-world applications.

Multi-Objective Optimization with CP

We have proposed a multi-objective model for the Nuclear Medicine
Problem. This model was solved with a CP + LNS approach. However,
most CP models attempt to aggregate objectives nowadays. This is due
to the complexity and search space expansion brought by the consider-
ation of multiple objectives. However, we could use the specificities of
the CP framework to largely reduce the search space of the problem.
This could be done with the multi-objective LNS introduced in [SH13].

In most multi-objective applications, users are interested by only a
small region of the solution space (i.e., a small portion of the Pareto
front). This small region corresponds to acceptable tradeoffs between
the objectives considered in the problem. Allowing the user to indicate
the region of interest on a first approximation of the Pareto front –
using reactive optimization – could largely reduce the search space.
Indeed, bounding the objectives would allow propagators to remove
large parts of the search space.

Wrap-up

Many other promising leads have been addressed in this thesis at the
end of its chapters. With so many open questions and only so few time
to investigate them, we can conclude that optimization still encloses an
infinity of marvels that remains to be unearthed.





Part V

A P P E N D I X





A
I M P L E M E N TAT I O N A N D
S O U R C E C O D E

I’m sorry, Dave. I’m afraid I can’t do that.
—Hal 9000, 2001: A Space Odyssey

Unfortunately, no one can be told what the Matrix is. You’ll have
to see it for yourself.

—Morpheus, The Matrix

Welcome to the real world.
—Morpheus, The Matrix

One of my most productive days was throwing away 1000 lines of
code.

—Ken Thompson

Talk is cheap. Show me the code.

—Linus Torvalds

227



228 implementation and source code

The reasearch described in this thesis has involved a huge imple-
mentation work. Behind every algorithm described in this thesis are
hidden at least three different implementations into the open source
solver OscaR [Osc12]. The implementation work was performed incre-
mentally and strong efforts were applied to keep a low coupling in
the code, make it clear, concise and easy to maintain. However, the
various pieces of code we have implemented are – or are related to
– propagators. Depending on the events to which they are registered,
propagators can be called up to several times at every node of the
search tree. Hence, their performances are critical and the source code
implementing them should ensure computation times as low as possi-
ble.

Making a strongly uncoupled, clear and concise code implementa-
tion often comes in contradiction with low computation times. We have
dedicated our efforts to find a tradeoff between these two contradic-
tory objectives that seemed to put them in balance. The motto of the
implementation we have performed along this thesis was thus the fol-
lowing one: "fast and clean" in opposition to the two other extremes:
"fast and furious" and "slow and beautiful".

All the code of propagators that has been developed during this the-
sis is available in the OscaR open-source solver [Osc12]. If an attentive
reader wishes to test our implementation, may he feel free to do so
and report bugs or ideas of improvement should he find some.

We will not explain the steps to follow to install and use OscaR as
these may have changed by the time you read these lines. To install and
use the OscaR solver, please visit http://oscarlib.bitbucket.org/

and https://bitbucket.org/oscarlib/oscar/wiki/Home. By the time
you read these lines, the solver itself might have changed and therefore
all the code of the models described in this work might not run on the
last version of the solver. All the pieces of code that you will find in
this thesis are based on the version 3.1.0 of the project. This version
should be available online and it should therefore be possible to get it
and run most pieces of code described here.

a.1 code testing

Each of the code implementation we have developed was tested as
much as possible with unit testing. As every people who has ever
worked on critical pieces of code in a large ecosystem – such as prop-
agators for a CP solver – knows, unit testing alone does not guaran-

http://oscarlib.bitbucket.org/
https://bitbucket.org/oscarlib/oscar/wiki/Home
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tee that the code does not contain any bug. We have therefore imple-
mented the following testing procedure to test the correct implemen-
tation of our propagators.

All the propagators we have developed in this work are global prop-
agators that can be expressed with decompositions of small binary
constraints. We thus proceeded to write two models implementing the
same constraints. In the first model Mb, the considered constraint is
expressed with the decomposition of small binary constraints. The sec-
ond model Mg is the model Mb to which our global propagator has
been added. Both models were run on small instances randomly gen-
erated. At the end of each run, we have tested that the following con-
ditions where respected during the whole search:

smaller or equivalent number of nodes

As the pruning achieved in Mg should be larger than – or at least
equivalent to – the one in Mb, the number of nodes should be smaller
– or equivalent – for Mg.

smaller or equivalent number of backtracks

Similarly to the number of nodes, the number of backtracks for Mg

should be smaller or equivalent than for Mb.

equal number of solutions

While the binary decomposition model Mb should achieve a smaller
pruning than Mg, it has the same deductive power when it comes
to checking a complete assignment. Hence, the number of solutions
should be equivalent for both models. If this is not the case, this
means that Mg has discarded feasible solutions and therefore is not
correct.

This random instance generated testing strategy is correct if two
conditions are met:

the binary decomposition is correct

If the binary decomposition is not correct, this testing does not make
any sense. Two sources of mistakes can happen. First, the propaga-
tion of the binary constraint used could be incorrect. As these were
already heavily tested and validated on a large number of tests, in-
stances and application in the OscaR solver, we have assumed that
this was not the case. Second, the decomposition of the global con-
straint into binary constraint has been wrongly encoded. This has
happened once or twice, but it is easy to find mistakes in such case
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when comparing solutions on very small instances that can be solved
by hand.

the random instances are representative

This second condition is usually incorrect. While there has been a
lot of attempts in coding history to achieve representative testing1, it
was not applicable in the case of global propagators. Hence, it has
happened several times that even though our testing procedure vali-
dated our implementation, we discovered later an instance in which
it produced erroneous results. Indeed, as a lot of data structures, such
as reversibles, sparse sets, etc., are implied in the implementation of
global propagators, it can fail in very specific cases that are not eas-
ily represented in small instances. Every time we have encountered
a bug in our implementation that was not detected by our tests, we
extracted the source of error and put it in a test that was added to the
original test suite.

a.2 a simple model with oscar cp

Writing a CP model in the OscaR open source solver [Osc12] is easy
whether or not you have some knowledges in Scala. One of the main
advantages of the Scala programming language, is that it leaves many
liberties to developers to write a Domain-Specific Language (DSL). The
OscaR CP module has developed its own light DSL allowing models to
be both easy to write and easy to read. We propose here a small exam-
ple of model written in the OscaR CP module. This example illustrates
different pieces of code that will not be shown in further models such
as the import section, how to declare variables, etc. The example is a
classic N-Queens CP model.

The N-Queens problem is as follows: considering a square chess
board of n× n tiles, one has to place n queens on the board such that
they do not attack each other. A queen attacks other pieces on the
same line, on the same column and on the same diagonals (upwards
and downwards). A classic modelization of this problem associates
one variable qi to each of the queens to be placed on the board. As
queens cannot be placed in a same column, each variable qi repre-
sents the position of a queen on the column i. The value associated to
one variable thus becomes the row at which the corresponding queen
is placed. Then, to impose that no two queens can be on the same

1 A good example is the ScalaCheck framework for the Scala language [Nil14].



A.2 a simple model with oscar cp 231

row, an AllDifferent constraint is imposed on all the variables. To
impose that no two queens can be on the same upward diagonal, an
AllDifferent constraint is imposed on view variables qi + i for all
i ∈ [0, n− 1]. The same reasoning is applied for downward diagonal
and an AllDifferent constraint is imposed on view variables qi− i for
all i ∈ [0, n− 1].

An OscaR model for the N-Queens problem is shown in Code 1. At
the top of the code, we import the CP module of the OscaR solver and
all the CP abstractions needed for the model. As the NQueens object
(i.e., singleton class in Scala) extends CPModel, it is defined as a sub-
class of CPModel. This has the advantage that it defines a CP solver as
an implicit value2; all the methods that can be applied on – or that
need as a parameter – this implicit can be declared without referring
to the CP solver in itself. The code defines the number of queens n
considered in the model; here n = 10. The variables of the model are
instantiated as the value queens. They are instantiated as an array of
n variables (indexed from 0 to n− 1) and their domains are initialized
to [0, n− 1]. The three allDifferent constraints mentioned earlier are
then posted with the add function. The search is defined as a binary
first fail strategy on all the variables queens. Finally, the start() in-
struction begins the resolution of the model. When no parameters are
provided, the start() instruction performs a complete exploration of
the search space i.e., all feasible solutions are searched.

As one can see in this example, the definition of a model, a search
strategy and the run of its resolution is simple, clear and concise in the
OscaR CP module. With the help of only ten lines of code, we were
able to full define declaratively a simple model. The source code of the
model itself is very easy to read and understand – it is almost a plain
English declaration of the model.

2 For more information about implicits in Scala, refer to [OSV08].
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1 import oscar.cp._

2

3 object NQueens extends CPModel with App {

4 val nQueens = 10 // Number of queens

5 val Queens = 0 until nQueens

6

7 // Variables

8 val queens = Array.fill(nQueens)(CPIntVar.sparse(0, nQueens - 1))

9

10 // Constraints

11 add(allDifferent(queens))

12 add(allDifferent(Queens.map(i => queens(i) + i)))

13 add(allDifferent(Queens.map(i => queens(i) - i)))

14

15 // Search heuristic

16 search(binaryFirstFail(queens))

17

18 // Execution

19 val stats = start()

20 println(stats)

21 }

Code 1: Model for the N-Queens problem implemented in the OscaR solver.
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a.3 nested gcc

In Chapter 4, we propose a method to strengthen the bounds passed as
arguments to the Nested GCC. This is done in three main steps. These
three steps are performed sequentially at the setup of the constraint:

per-value deductions

Per-value deduction considers a single value with respect to all the vari-
ables. It also fills the bounds for the ranges that were not described
in the initial bounds. Code 2 is a simplified version of the per-value
deduction code from OscaR. The main loop goes through all the val-
ues vi and the forward and backward updates are performed inside
of it. The first internal while loop iterates over increasing i indices
and performs the forward update for both lower and upper bounds.
Similarly, the second internal loop does the backward update over
decreasing i indices.

1 def perValueDeductions() {

2 var vi = 0

3 while (vi < nValues) {

4 var i = 0

5 // Forward update

6 while (i < nVariables) {

7 i += 1

8 lower(vi)(i) = math.max(lower(vi)(i), lower(vi)(i - 1))

9 upper(vi)(i) = math.min(upper(vi)(i), upper(vi)(i - 1) + 1)

10 }

11 // Backward update

12 while (i > 0) {

13 i -= 1

14 lower(vi)(i) = math.max(lower(vi)(i), lower(vi)(i + 1) - 1)

15 upper(vi)(i) = math.min(upper(vi)(i), upper(vi)(i + 1))

16 }

17 vi += 1

18 }

19 }

Code 2: Per-value deductions to strengthen the bounds of the Nested GCC.

inter-value deductions

Inter-value deduction considers a single range of variables with respect
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to all the values bounded over this range. Code 3 is a simplified ver-
sion of the inter-value code from OscaR. The main loop goes through
all the variable ranges i. Inside of it, a first loop computes the sum
of all the lower bounds and the sum of all the upper bounds. Then,
a second loop updates the bounds using the previously computed
sums for inter-value deductions. Note that this function return type is
CPOutcome. Indeed, while browsing the bounds, this function detects
if they are consistent. There are two reasons for which this could fail:
either the upper bound of a value is lower than its lower bound for a
given range, or the sum of the lower bounds over a range exceeds the
number of variables within the range, and the opposite for the sum
of upper bounds.

reduction to a minimal set of bounds

Once the two bound strengthening steps have been performed, the
bounds can be reduced to a minimal set of useful bounds. Code 4 is
a simplified version of the code from OscaR. It first defines two filter
functions. The first one, flatFilter, removes all the bounds that are
in the middle of a plateau. The second filter, slopeFilter, removes
the bounds that are in the middle of an increasing/decreasing slope.
At the end of the function, a while loop applies these filters for both
lower and upper bounds for all the possible values vi.
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1 def interValueDeductions(): CPOutcome = {

2 var i = 1

3 while (i < nVariables) {

4 // Compute the sums of the all values on range 0 to i

5 var lowerSum, upperSum, vi = 0

6 while (vi < nValues) {

7 // The lower bound cannot be higher than the upper bound

8 if (lower(vi)(i) > upper(vi)(i)) {

9 return Failure

10 }

11 lowerSum += lower(vi)(i)

12 upperSum += upper(vi)(i)

13 vi += 1

14 }

15 // Test the sums

16 if (lowerSum > i || upperSum < i) {

17 return Failure

18 }

19 // Update of the bounds

20 vi = 0

21 while (vi < nValues) {

22 lower(vi)(i) = math.max(lower(vi)(i), i - upperSum + upper(vi)(i))

23 upper(vi)(i) = math.min(upper(vi)(i), i - lowerSum + lower(vi)(i))

24 vi += 1

25 }

26 i += 1

27 }

28 Suspend

29 }

Code 3: Inter-value deductions to strengthen the bounds of the Nested GCC.
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1 private def minimalSetOfBounds() {

2 // Bound filtered if equal to previous and next bound

3 def flatFilter(prevIdx: Int, prevVal: Int,

4 nextIdx: Int, nextVal: Int) = {

5 nextVal > prevVal

6 }

7 // Bound filtered if in the middle of an in/decreasing slope

8 def slopeFilter(prevIdx: Int, prevVal: Int,

9 nextIdx: Int, nextVal: Int) = {

10 nextVal - prevVal < nextIdx - prevIdx

11 }

12

13 var vi = 0

14 while (vi < nValues) {

15 filterGeneric(lower(vi), filterSlope, filterFlat)

16 filterGeneric(upper(vi), filterFlat, filterSlope)

17 vi += 1

18 }

19 }

Code 4: Reduction to a minimal set of bounds after bounds strengthening of
the Nested GCC.
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a.4 unary resource with transition times

The work from Chapter 5 has lead to many prototypes and imple-
mentation variations. A clean version of the constraint is provided in
OscaR. We propose here to provide a simplified version of the code of
the many components implemented in OscaR.

a.4.1 Transitions in a Set of Activities

In Section 5.3, we have described several relaxations to compute a
lower bound of the transitions occurring in a set of activities based
only on its cardinality. We propose here to provide a subset of their
implementation.

In Code 5, we present the dynamic programming relaxation im-
plementation similar to the one from OscaR. The double indexed ar-
ray D(m)(u) represents the shortest walk of length exactly m from the
source to u. The three nested for loops compute this value for all the m

and all the u. To obtain tt(m), we browse for all m the walks over u and
we keep the minimal value encountered.

Another approach presented in Section 5.3 proposes to use a mini-
mum cost flow relaxation. A simple implementation of this relaxation
is shown in Code 6. In this implementation, we use the oscar-linprog

package that has a wrapper around the solver LPSolve. After initializa-
tion, the main for loop solves n models, one for each k to get the value
of tt(k).
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1 def dynamicProgramming(ttMatrix: Array[Array[Int]]): Array[Int] = {

2 val n = ttMatrix.length

3 // D(m)(u) is the shortest walk of length exactly m from source to u.

4 val D = Array.fill(n, n)(Int.MaxValue)

5 // Setting initial values

6 for (u <- 0 until n) {

7 D(0)(u) = 0

8 }

9 // Dynamic Programming

10 for (m <- 0 until n - 1) {

11 for (u <- 0 until n) {

12 for (v <- 0 until n) {

13 if (u != v) {

14 val alt = D(m)(v) + ttMatrix(v)(u)

15 if (D(m + 1)(u) > alt) {

16 D(m + 1)(u) = alt

17 }

18 }

19 }

20 }

21 }

22 val aggregatedResults = Array.fill(n)(Int.MaxValue)

23 for (m <- 0 until n) {

24 for (u <- 0 until n) {

25 aggregatedResults(m) = math.min(aggregatedResults(m), D(m)(u))

26 }

27 }

28 aggregatedResults

29 }

Code 5: Relaxation of transitions in a set of activities per cardinality using a
dynamic programming approach.
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1 import oscar.algebra._

2 import oscar.linprog.modeling._

3 import oscar.linprog.interface.lpsolve.LPSolveLib

4

5 def minAssignmentFlow(ttMatrix: Array[Array[Int]]): Array[Int] = {

6 val n = ttMatrix.length

7 val bestPossibleBounds = Array.fill(n)(0)

8 val modifiedTT = Array.tabulate(n, n)((i, j) => {

9 if(i != j) ttMatrix(i)(j)

10 else Int.MaxValue

11 })

12

13 for (k <- 1 until n) {

14 implicit val lpModel = new MPModel(LPSolveLib)

15 implicit val solver = lpModel.solver

16 val x = Array.tabulate(n, n)((i, j) =>

17 MPFloatVar("x" + (i, j), 0.0, 1.0))

18

19 minimize(oscar.algebra.sum(0 until n, 0 until n)(

20 (i, j) => modifiedTT(i)(j) * x(i)(j)

21 ))

22

23 add(oscar.algebra.sum(0 until n, 0 until n)((i, j) =>

24 x(i)(j)} =:= k)

25

26 for (i <- 0 until n) {

27 add(oscar.algebra.sum(0 until n){j => x(i)(j)} <:= 1)

28 add(oscar.algebra.sum(0 until n){j => x(j)(i)} <:= 1)

29 }

30

31 solver.solve

32 bestPossibleBounds(k) = solver.objectiveValue.get.toInt

33 solver.release

34 }

35

36 bestPossibleBounds

37 }

Code 6: Relaxation of transitions in a set of activities per cardinality using a
minimum cost flow approach.
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a.4.2 Propagators

In Section 5.5, we have described several propagators that can be used
for the unary resource with transition times. We propose here to pro-
vide a subset of their implementation. All these propagators rely on
the ThetaLambdaTreeTT data structure.

An implementation of the Detectable Precedences algorithm from
Section 5.5 is shown in Code 7. This implementation is simplified to
ease the reading of the code. It begins by clearing the Θ-tree tree

whose state might have been altered by other algorithms. Then it sorts
two arrays: orderedMaxStartIds and orderedMinEndIds. These arrays
contain indices that will be passed by reference to obtain sorted el-
ements. The main while loop iterates over the activities ordered by
non-decreasing ect. The internal while loop adds activities in tree

while precedences are detected. Then, the ect of the tree is retrieved
and added to the minimal transition to current activity to obtain a new
value for its min start: newStartMins(ectIndex). Finally, the domains
of the start variables are updated by the updateECTs(newStartMins)

instruction.
The Edge Finding algorithm from Section 5.5 uses a Θ-Λ-tree data

structure. Our implementation of ThetaLambdaTreeTT can be used for
both Θ-tree and Θ-Λ-tree structures. A simplified version of the Edge
Finding implementation from OscaR is shown in Code 8. It begins by
filling tree with all the activities and then it sorts activities by non-
decreasing lct. Then its main while loop goes through the activities
by non-increasing lct. Inside the loop, if the Overload Checking con-
dition is verified, a failure is returned. Then, the current activity is
grayed. The internal while loop is repeated as long as the ect of the
tree is larger than the lct of the current activity. In this loop, the gray
activity responsible for ect is retrieved; its index is estIndex. Then
a new value for the min start of the responsible activity is computed:
newStartMins(estIndex). It is then removed from the tree. At the end
of the function, the domains of the start variables are updated by the
updateECTs(newStartMins) instruction.
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1 def detectablePrecedences(startMins: Array[Int], startMaxs: Array[Int],

2 endMins: Array[Int], newStartMins: Array[Int],

3 tree: ThetaLambdaTreeTT,

4 minTTToActi: Array[Int]): CPOutcome = {

5 // Clearing the tree

6 mergeSort(orderedMinStartIds, startMins)

7 tree.clearAndPlaceLeaves(startMins, minDurations)

8

9 // Sorting activities in non-decreasing lst

10 mergeSort(orderedMaxStartIds, startMaxs)

11

12 // Sorting activities in non-decreasing ect

13 mergeSort(orderedMinEndIds, endMins)

14

15 var i, q = 0

16 while (i < nTasks) {

17 val ectIndex = orderedMinEndIds(i)

18 while (q < nTasks &&

19 endMins(ectIndex) > startMaxs(orderedMaxStartIds(q))) {

20 tree.insert(orderedMaxStartIds(q))

21 q += 1

22 }

23 newStartMins(ectIndex) =

24 math.max(newStartMins(ectIndex),

25 tree.ectWithoutActi(ectIndex) + minTTToActi(ectIndex))

26 i += 1

27 }

28

29 // Updating the domains of start variables

30 updateECTs(newStartMins)

31 }

Code 7: Detectable Precedences propagation algorithm for the unary re-
source with transition time constraint.
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1 def edgeFinding(startMins: Array[Int], endMaxs: Array[Int],

2 endMins: Array[Int], newStartMins: Array[Int],

3 tree: ThetaLambdaTreeTT,

4 minTTToActi: Array[Int]) : CPOutcome = {

5 // Inserting all activities in the tree

6 mergeSort(orderedMinStartIds, startMins)

7 tree.fillAndPlaceLeaves(orderedMinStartIds, startMins, minDurations)

8

9 // Sorting activities in non-decreasing lct

10 // This array will be browsed from right to left

11 mergeSort(orderedMaxEndIds, endMaxs)

12

13 var estIndex = 0

14 var j = nTasks - 1

15 while (j > 0) {

16 if(tree.ect._1 > endMaxs(orderedMaxEndIds(j))) {

17 return CPOutcome.Failure

18 }

19

20 tree.grayActivity(orderedMaxEndIds(j))

21

22 j -= 1

23 while(tree.ectBar > endMaxs(orderedMaxEndIds(j))) {

24 estIndex = orderedMinStartIds(tree.responsibleECTBar)

25 newStartMins(estIndex) =

26 math.max(newStartMins(estIndex),

27 tree.ect + minTTToActi(estIndex))

28 tree.remove(estIndex)

29 }

30 }

31

32 updateECTs(newStartMins)

33 }

Code 8: Edge Finding propagation algorithm for the unary resource with
transition time constraint.
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