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Concepts

This chapter defines a set of concepts that are used throutjieodissertation:

e A graphis a set of nodes connected by a set of edges. We say that a graph
is directedif an edge from a nodéto a nodej is not equivalent to an edge
from a nodej to a nodei. If the two edges are equivalent, we say that the
graph isundirected

e Given a graply = (N, E), we have thatVodes(g) = N and Edges(g) =
E.

e Given an edge = (s,d) of a directed graply, s is thesourceof e, andd
its destination We also say that is an outgoing edge of and an incoming
edge ofd in g.

e AddNodes(g, N) denotes the graph obtained frgnafter adding the nodes
in N.

e AddEdges(g, E') denotes the graph obtained frgnafter adding the edges
in .

e RemoveNodes(g, N) denotes the graph obtained frgnafter removing the
nodes in\V.

e RemoveEdges(g, E) denotes the graph obtained frgnafter removing the
edges ink.

e IncEdges(g,n) denotes the set of incoming edgeswah g.
e OutEdges(g,n) denotes the set of outgoing edgeswah g.

e Giventwo graphg; = (Ny, Eq) andgs = (Na, Es), g1 is a (not necessarily
proper)subgraphof g» (g1 C go) if Ny C Ny andFE; C Es.

e We consider undirected graphs as a special class of dirgcapths. We say
that the directed graphis undirected if

V(i,j) € Edges(g) : (j,i) € Edges(g) 1)

Xiii
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Concepts
Given a directed graph,, the corresponding undirected grapl, of g, is
defined as follows:

Nodes(g,) = Nodes(gq)
Edges(gu) = {(i,7) | (i,j) € Edges(ga) V (j, 1) € Edges(ga)} o

A pathfrom nodei to nodej in the directed graph is an element of the set
Paths(g,1,j), which is defined as follows:

p is a subgraph of
p € Paths(g,i,j) <> ¢ Nodes(p) = {k1,...,kn} ANk1 =i Nk, =]
Edges(p) = {(ki, k1) | 1 <t <n}
3

A simple pathis a path where each node is visited once.

A Hamiltonian pathof a graphg is a simple path that contains all the nodes
of g.

Weight(p)is the sum of the weights associated with the edges of thezpath

Two nodesu andv areconnectedn gy if the corresponding undirected graph
gy contains a path from to v.

A treeis a graph in which any two nodes are connected by exactly atte p

A spanning treef a graph is a selection of edges from the graph that form a
tree spanning every node; that is, no node is not connectie tioee.

Theout-treeof a nodei in a directed grapld- is a tree rooted atwhose set
of edges is a subset of the edges-bfThis tree connects all the nodesah
that are reachable from

Thein-tree of a nodei in a directed grapld is the out-tree of in G” (the
graph obtained fronds after reversing all the edges).

Given a tre€T’,

— v S winT, if wis a descendant efin 7.
—v X win T, if v is different fromw andw is a descendant afin 7.

A decision problenis a problem with only two possible solutions: yes or no.



Chapter 1

Context and Contribution

Constrained graph problems have to do with finding graphgeing a set of
given constraints. One way of constraining the graph is igremg reachability
between nodes. For instance, consider the following probighich we callThe
Bounded Transitive Closure Problem (BTGiven the directed graphg.in, maz»
tcgmin andtcgmas, BTCIs to find a directed grapi such that:

9min g g g Imazx
and (1.1

tcgmin g TC(Q) g tcgmam

whereT'C(g) is the transitive closure af.

As we will show in section 2.3.BTCis a generalization ofhe Disjoint Paths
Problem[GJ79], which makeBTCNP-complete. We find instances of constrained
graph problems in Vehicle Routing [QVDCO06, PGPR96, CL9MVRO], Bioinfor-
matics [DDD04] and Computer Security [SQVO06].

We use constraint programming for tackling constraineglgnaroblems. In
this thesis, in particular, we state that the use of a globastaint defined on top
of the notions of transitive closure and dominators playyarede in solving this
kind of problems.

1.1 Constraint programming

A Constraint Satisfaction Problem (CSP) is a problem whosgisn must satisfy

a set of given constraints. A CSP is usually representedtigia tV, D, C), where

V is the set of variables involved in the problem,is a function associating each
variable with its domain, and’ is the set of constraints that should be respected
[Dec03, MS93].

Notice thatBTCis a constraint satisfaction problem whéres the singleton
set containingy, the domain ofj is the set of graphs that are subgraply,ef,. and
supergraph of,,:», andC' is the singleton set containing the constrdity,,;, C
TC(g) € tcgmaa-
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Propagator Propagator
/

/
/

4

Figure 1.1: CP Model

In Constraint Programming, constraint satisfaction peois are solved by in-
terleaving two processes: propagation and labeling. Ipdtyation, we are inter-
ested in filtering the domains of a set of finite domain vagaldccording to the
semantics of the constraints that have to be respected. Helihg, we are inter-
ested in specifying which alternative should be selectednaearching for the
solution.

Propagators are processes that filter the domains of a settefdomain vari-
ables according to the semantics of the constraint theyemeht. They share a
common store (see Figure 1.1). This store contains thenr#ton that is cur-
rently known about the variables of the problem. This infation can be of the
form X =Y (i.e., avariableX is equal to a variabl&’), X € D (i.e., the variable
X should be in domairD) or X = « (i.e., the value of the variabl& is a). The
latter case is actually a subcase of the second caseXi.e-, a is equivalent to
X € {a}). As soon as a propagator is able to infer new informatiomftioe store,
it puts this new information in the store.

The search of the solution starts with the work of the propaga Once the
propagators reach a fix point, the labeling process startghis point, we may
have three possible situations:

¢ all the variables are bound to a value. In this case the sestogs since a
solution has been obtained.

e there are some variables that are yet to be determined. dicdise, we per-
form a labeling step. A labeling step consists of:

— Selecting the variable whose alternatives are to be exgploezt.
— Selecting the alternative (of the chosen variable) to exphext.

Once this selection has been made, we add the corresporatistraint to
the store. The addition of this constraint may activate spropagators, so
we wait until propagators get stable to perform a new lalatieration.

e there is at least one variable whose domain is empty. In #ss,ave go back
to the previous labeling step, we impose that the solutidretiound should
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{<1,1>, 2>

<1,2>, S 5 S {<1,2>,
—— n out >

<2,1>, & <2,1>,}

<2,2>} ’

Figure 1.2: AlIDiff as a function

be different to the alternative just considered and perfarmew labeling
iteration after waiting for the stabilization of the propaors.

1.1.1 Propagators as mathematical functions

We see a propagator as a function that maps a set of instanaest of instances.
The set of instances corresponds to the set of possiblegestaf the constraint the
propagator implements. For instance, Figure 1.2 shalziff, a propagator im-
plementing an All-different Constraint on a set of finite ddmvariables [Rég94]
applied on two finite domain variables. The initial domaireath variable is the
set{1,2}, so the corresponding instance set, which correspondstCahntesian
product of the domains, is the sgf, 1), (1,2),(2,1),(2,2)}. As(1,1) and(2,2)
are not valid instances to the constraint, these valuesapped from the outgoing
set.

1.1.2 Properties on propagators

We can also see propagators as theorem provers. Assumirtbehlpopagatoy is
implementing a constrairt if f(57) = S, the set of theorems that the propagator
proves is{t : t = —c(v) Av € (S1 — S2)}.

Soundness

A propagator is sound if it does not discard any valid valuelobic terms, this
means that all the theorems it proves are logic consequeridbe constraint it
implements:

Vshs%y.f(sl) =Sy ANv € (Sl — Sg) — —|c(v) (12)
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Completeness

A propagator is complete if it is able to discard all non-gtalalues. In logic terms,
this means that it is able to prove all the theorems thatvioftom the constraint it
implements:

VS, 8o, v : f(Sl) =Sy AveES A —|C(’U) — v & S (13)

Monotonicity

A propagator is monotonic if the stronger the knowledge ornctviit works the
stronger the knowledge it is able to infer:

Vs,.5,-51 €S2 — f(S1) € f(S2) (1.4)

Weak-Completeness

A propagator is weakly-complete if it is always able to mapngleton set to the
empty set when the value in the singleton set is not valid:

Vs1,50,0-f (S1) = Sa A S1 = {v} A—e(v) — Sy =0 (1.5)

The propertied just mentioned are a subset of the propeft@®pagators pre-
sented in [MUI01]. Notice that Completeness implies WeaknaPleteness. How-
ever, Completeness does not imply Soundness. In fact, gisatisfiable constraint
¢, if we associate: with the propagatorf’ = AS.0), f would be complete because
all the non valid values are discarded, but it would not bendobecause valid
values are discarded too. Usually, propagators are sounmptonic and weakly-
complete. Completeness is not a must because it may not kélgog achieve
completeness in polynomial time.

We can now use the properties defined above to say in a precigemvat
we mean by “implementing a constraint” and “being the semanif a propa-
gator”. We say thatf implementsc if and only if f is sound, monotonic and
weakly-complete undet. We say that the semantics pis c if and only if c is the
strongest constraint under whighis sound and complete taking into account that
a constraint: is stronger than a constraidtif and only if ¢ entailsc’ (c F ).

1.1.3 Composed propagators

We will see thaDomReachabilitythe propagator we are introducing in this thesis,
is a composed propagator, i.e., internally, it is compogeseeral propagators. In
this section, we will define the semantics of a composed gaipa in terms of the
semantics of the propagators that compose it.

Let F' be a set of propagators, and let us consider the followingramlation
among sets:
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Figure 1.3: Confluence of propagators

Vg g8 < S —scy (1.6)

A propagatorf composed of a set of propagatdrsatisfies the following rule:

F(S) =maz{S": 5" < SAVep.S" € fiz(f)} (1.7)

This means thaf (.5) is the biggest common fix point that is less thttiander
the order relation defined by Equation 1.6. Certainly, asavder relation is not
total, we need to rely on something else to ensure that thidifan is well defined.
In this case, we can always ensure that there is a maximalkealebecause our
propagators are monotonic (mathematical) functions. Weehdborate more on
this point in the next section.

1.1.4 Confluence of propagators

Theorem 1. Monotonicity warranties confluence.

Proof. Let us assume that is a composed propagator. Suppose also flia?
is not defined because there are two maximal common fix péinend S, such
that S £ S A Sy £ S1, which implies that there exists a valwesuch that
vESANv ¢ So.

As a consequence of monotonicity we have that:

S <8 — fi(f2(--fn(9))) < fi(fal- fu(S"))) (1.8)

assuming thaf;, 1 < i < n, is monotonic.

Then, ifv does not belong t& = fi(f2(...fn(5))), whereVi<i<p.fi € F,
thenv would not belong tof; (fa(... f(S1))) either, which would imply tha®; is
not a fix point. Therefore, it cannot happen that for a giyéf) there are two fix
pointsS; and.S; such thatS; £ Ss A Sy £ 5. O

In fact, if we think of propagators as reduction rules and amsider the sets on
which they work as the states of the reduction system, weaathat the reduction
system is confluent. l.e., if from a statewe reach two stateS; and.S, such that
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{1,2} - X x — {12}

Bamv

{12} —— ¥ y —{1,2}

Figure 1.4: Approximation to the AlIDiff propagator

S1 £ So A Se £ S1, then fromS; andS; one should be able to reach a state
from which no rule is applicable.

Notice that, due to the fact that we reason in terms of setfawve the property
that equivalent states (i.e., sets) have exactly the sapnesentation. So, proving
confluence in our model is simpler than in [AFM99] where twaiigglent states
may have different syntactic representation.

1.1.5 Approximation to the propagator

We have defined a propagator as a function that goes from &isstances to a set
of instances. However, propagators are defined in terms ef af ginite domain
variables in practice. In fact, if is one of the variables on which the propagator is
defined, the propagator is supposed to discard from the doafiai those values
that cannot be part of any solution.

Assuming that the propagator is defined in terms:ofariables and that the
variables share the same domai») (what we do is to approximate the sét(D")
to the setSolsSet = {Sols : Sols = [[,«,~,, Di, D; € D}. Notice that, the first
set is indeed a superset of the second set. For instancejiagsthatD = {1, 2}
andn = 2, we can observe that the st 1,2 >, < 2,1 >} belongs toZ?(D")
but not toSolsSet.

Certainly, with this approximation, we may lose complegmen Figure 1.4,
we present the same example of Figure 1.2, but under the xapm@tion intro-
duced. In fact, if we take into account that the tuplg[1, 2}, {1,2} > represents
the set{1,2} x {1, 2}, we can observe that elements that were discarded before are
no longer discarded. However, this is a fact of life. The imgot thing to notice
is that we can be still sound, monotonic and weakly complete.
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1.2 CP(Graph)

CP(Graph)introduces a new computation domain focused on graphsdimgjua
new type of variable, graph domain variables, as well astcanss over these
variables and their propagators [DDD04, DDD05a, Doo06](@&H8ph) also intro-
duces node variables and edge variables, and is integratiedhe finite domain
and finite set computation domain.

The kernel constraints of CP(Graph) are:

e Nodes(G,SN): SN is the set of nodes af.
e Fdges(G,SE): SE is the set of edges a¥.

e EdgeNode(E, N1, N2): the edge variabld’ is an edge from nodé/; to
nodeNs.

Consistency techniques have been developed, graph datsstrave been built
over the kernel constraints and global constraints hawelsden proposed.

1.3 Levels of consistency

The domain of a finite domain variablé can be represented either by referring ex-
plicitly to the elements that compose it or by referring te bounds of the domain.
In the second case we say thdtin(X) andMax(X) denote the lower bound and
the upper bound of the domain respectively. That is to sayttigadomain ofX
is the set of elements greater than or equaltin(X ) and less than or equal to
Max(X).

Given a constrainC' defined in terms of a set of finite domain variables, we
identify two basic levels of consistency:

e domain consistencyor every domain, we are interested in removing all the
elements that do not participate in any solution.

e bound consistencyfor every domain, we are interested in updating the
bounds so that the lower bound of the domain correspondsetenthimal
value accepted by the constraint and the upper bound to thamalavalue
accepted by the constraint.

While domain consistency is a stronger level of consisteachieving that
level of consistency is unrealistic in many cases. For imtsathe size of the
domain of a graph variable is exponential with respect tantimaber of nodes and
edges. Aiming at explicitly keeping the domain would leadise an exponential
amount of space.

Even though bound consistency is considerably cheaperdbiarain consis-
tency, achieving bound consistency may still be prohibitEdr graph variables,
being bound consistent means being able to discard fronpieriound all nodes
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and edges that do not participate in any solution, and taidecin the lower bound
all nodes and edges that participate in every solution. AwilVsee in the follow-
ing chapter, computing this information leads to exporacibmputations in some
cases.

1.4 Some applications of dominators

Given a flow graph, i.e., a directed graphwith source node, nodei dominates
nodej if all paths froms to j containi [AU77, LT79, Geo05]. In this section we
present some applications of this concept in areas diffécetihe one we present
in this thesis.

1.4.1 Detecting natural loops

Dominators have been mostly used in code optimization [Awhére flow graphs
are used for representing the execution of programs. Oreeadfriportant tasks in
code optimization is the optimization of loops since progsaend to spend most
of their execution time in their inners loops.

In particular, one is interested in findingatural loops i.e., loops having the
two following properties:

e The loop must have a single entry point, called the headdreofdop. This
entry point dominates all the nodes in the loop.

e There must be at least one way to iterate the loop.

In order to detect natural loops, we look at theck edge®f the flow graph.
An edge(j, i) is a back edge if dominatesj. So, the natural loop involvingj, i)
is composed of plus all the nodes that reaghwithout passing through

The emphasis in natural loops is due to the fact that they afteseful property
that allows us to identify when a loop is included in anothee.oGiven two natural
loopsi; andis, if I; andis have different headers, they are either disjoint or one is
included in the other one. The detection of self-contairmegh$ avoids redundant
code optimization.

1.4.2 Detecting domination of species in the ecosystem

In a given ecosystem, a specie depends on another one ifigieree of the later
warranties the existence of the former. These dependeacgethe result of the
relation between predators and preys. The relation betwestator and prey can
be represented with a directed graph. In this graph, an edged specie: to a
specieb means thab is a predator of.

Researchers are interested in determining the impact ajviexig a particular
specie from the ecosystem taking into account that a spetisappear when all the
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species of whiclu is predator disappear. In [AB04], the authors show an agbroa
for addressing this question based on the use of dominatrsource node is
added to the dependency graph. This source node is conrtectdidthe nodes
that do not have incoming nodes. We can see the resultind gmp flow graph
where the added node plays the role of source and speciedalmatt depend on
another species are directly connected to the source. é\bidt all the species are
reachable from the source. A specie will then disappear fremecosystem if any
of its dominators disappears.

1.4.3 Detecting equivalent faults in logic circuits

A fault is said to be detected by an input test vector, if whpplyging the vector
to the circuit, different logic values can be observed, ileast one of the circuit’s
primary outputs, between the original circuit and the faaltcuit.

Detecting whether two faults are equivalent is importantéalucing the num-
ber of tests to be performed in order to decide whether aitixdaulty or not.
Computing the complete set of fault equivalence classesdincait is a classic
problem in digital circuit design. Two faults are functidigeequivalent (or indis-
tinguishable) if no input test vector can distinguish thdrmranary outputs. Func-
tional fault equivalence is a relation that allows faultsaigircuit to be collapsed
into disjoint sets of equivalent fault classes [VCASO05].

One of the approaches for deciding whether two faults ar&valgmt consists in
looking at the structure of the circuit. The structure oftireuit can be represented
as a directed graph where the nodes correspond to the gétes @fcuit and the
edges are the lines connecting the output of a gate with fha iof another one.
In this context, dominators are used for focusing the exatiin on the dominator
gates. A dominator gate of a lirlgs a gate through which all the paths frdnto
any primary output pass [AFPBO01].

1.5 Contribution

1.5.1 Introduction of new NP-complete problems which are geeral-
izations of the Disjoint-Paths problem

In this thesis we introduce two new NP-complete problems:

e Given the directed graph$.in, Gmazs tCGmin aNdtcgma:, The Bounded
Transitive Closure ProblenB{C) is to find a directed grapi such that:

Imin g g g Imazx
and (2.9)
tcgmin € TC(9) C tcgmax

where TC(q) is the transitive closure @f
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e Given a directed graph, a source nodarc, a destination nodést, a set
of mandatory nodesandnodes, and set of couples of nodesder, the
Ordered Simple Path with Mandatory Nodes Probl@®PMNis to find a
path ing from src to dst, going throughmandnodes following order and
visiting each node only once.

Both BTCandOSPMNare generalization of the Disjoint Paths problem. The
k-Disjoint-paths problem consist in finding pairwise disjoint paths betwedn
pairs of nodessi,dy), (s2,ds), ..., (sk, di). Both the node-disjoint version and
the edge-disjoint version are NP-complete evenkfer 2 [SP78].

1.5.2 Introduction of new global constraints on top of transtive clo-
sure and domination

We introduce two global constraints on top of the notiongafsitive closure and
dominations, which are suitable for tackling the aforenuer@d problems as well
as several other problems presented in chapter 2:

e Reachability(g,tcg), which holds iftcg is the transitive closure of the di-
rected graply.

e Domination(fg,edg), which holds ifedg is the extended dominator graph
(i.e., the graph stating the dominance relation among nadesdge) of the
flow graphfg.

e DomReachability(fg,edg,tcg), which holds ifedg is the extended domi-
nator graph of the flow grapfig, andtcg is the transitive closure ofg.

1.5.3 Introduction of dominators for solving constrained gaph prob-
lems

As said before, dominators have been mostly used in codmigation for detect-
ing inner loops. In this thesis, we use dominators for detgatodes and edges
common to a set of paths in a flow graph. This information isdrtgmt when
discarding paths that violate the set of given transitiosaife constraints.

Let us consider the case presented in Figure 1.5 where wentrested in
finding a simple path (i.e., a path not visiting a node twigejif node 1 to node
22 containing nodes 4, 7, 10, 16, 18 and 21 (which we call ntangaodes).
Notice that choosing the edde, 5) implies that node 5 is visited twice since all
the paths from 5 to 22 containing the mandatory nodes inchdde(12, 5), so we
can discard that branch and try the one involving edge5).

In order to infer that edgél, 5) is in all the paths from 5 to 22 containing the
mandatory nodes, we need to take into account that:

e 5 reaches all the mandatory nodes, so the nodes and edgesddiamm the
mandatory nodes are also reached from 5.
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5
; 5
6

14 21)

Figure 1.5: A simple path from 1 to 22 containing 4, 7, 10, ahd 21

e node 22 is dominated by edgé2, 5) with respect to any of the mandatory
nodes at the right hand of the graph (i.e., with respect tesdd,18 and
21).

This is where the information provided by the dominatorsdoees fundamen-
tal since as soon as we know that a nedeaches a nodg we can immediately
infer thati reaches all the nodes that domingtieom 4. This inference may avoid
useless exploration as it is the case in our example.

1.5.4 Pruning algorithms and edge-dominator discovering

The pruning rules of the global constraints introduced gstesnatically derived
from the properties of the constraints and their implentérias done by taking
into account state of the art algorithms for computing dators and transitive
closure.

We also introduce an efficient approach for computing edgasgarticipate
in all the paths connecting a pair of nodes (edge-dominatyrsntroducing the
notion of extended dominator graph. In the extended domingtaph we map
edges to nodes and compute the dominance relation on themggwaph. Thanks
to the fact that the dominance relation can be representddaviominator tree
[AU77], the edge-dominator are computed at the same coritylex

1.5.5 Evaluation of the approaches introduced in realisticscenarios

We have implemented the global constraints introduced th Becode [SLTO6]
and Mozart [Moz04], and tested the performance of the implaation with re-
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alistic instances from vehicle routing problems and compsecurity problems.
The Gecode implementation takes advantage of the impleti@emtof CP(Graph)
that has been already incorporated into Gecode [DZDDO06].

1.6 Structure of the thesis

e Chapter 2. In this chapter we first present the different concepts reéate
the definition of the global constraints we are introducifdgnen we intro-
duce the constraints and describe a set of problems that eamadelled
in terms of these constraints. Among the problems descrivechave the
The Bounded Transitive Closure ProblamdThe Ordered Simple Path with
Mandatory Nodes Problemwo new NP-complete problems that are being
introduced in this thesis. The corresponding NP-complet®fp are also
presented in this chapter.

e Chapter 3. As DomReachabilitys the conjuntion oReachabilityandDom-
ination, the implementation ddomReachabilitycovers the implementation
of ReachabilityandDomination

In this chapter we introduce the algorithms involved in thelementation of
DomReachabilityWe start by explaining how the pruning rules are system-
atically derived from the properties of the constraintseffwe revisit each
property and derive the corresponding pruning rules. [Rutims process,
we emphasize the pruning gained by the activation of eaeh rul

The implementation oDomReachabilitymplies maintaining the transitive
closure graph and the extended dominator graph of the bamithe flow
graph. So, in this chapter we also study some approachesdmtaiming
this information.

e Chapter 4. GecoddgSLTO06] is a C++ library that provides an environment
for developing constraint-based systems and applicati®@asodeallows the
construction of new variable domains including propagass implementa-
tions of constraints and branchings, and search engines.

In this chapter we make a summary of the most relevant cosge@ecode
Then, we show how propagators are implemented in Gecodefigiexg
the implementation of one of the propagators provideddggcode After
explaining how to deal witlcP(Graph)(a new computation domain that has
been added to Gecode), we present the implementatiDomiReachability

In this chapter we also show the implementation of the lalgettrategy we
have designed to deal withSPMNinstances.

e Chapter 5. In this chapter we explain how we can implem&umReach-
ability using a message passing approach on top of the multi-pangufig-
gramming language Oz [Mo0z04]. As shown in this chapter, the of a
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concurrent language like Oz for implementing global caists involves
the implementation of processes that are non-deternanisieneral. This
makes Declarative Concurrency not suitable for this neeg. uéing the
methodology introduced in [VHO4], we show that the defimitiof the be-
havior of the agents involved in the implementation of globanstraints,
and the non-determinism in the communication of these agaet two or-
thogonal concerns. This separation let us define the behalveEach agent
in a declarative way.

In the implementation dbomReachabilityve distinguish two basic compo-
nents: a set of already provided FS/FD propagators and alg(ober de-
fined) propagator. Here, a global propagator is shown as emt dgat reads
messages from a stream generated by the graph variable ch dbim-
Reachabilityis applied.

We also present a cheap way of discovering dominators bas&® grun-
ing, and introduce an approach for implementing Batch pgapan using
message passing, which plays an important role in the rietuct the time
of execution thanks to the minimization of the number of\adions of ex-
pensive propagators [QVDO05a].

e Chapter 6. In this chapter we present a set of experiments that show that
DomReachabilityis suitable for solving the Simple path with mandatory
nodes problem. In the experiments we observe that the 8ifjtal§ Dom-
Reachabilityfor dealing with Simple path with mandatory nodes relies on
the following aspects:

— The strong pruning thabomReachabilitperforms. Due to the compu-
tation of dominatorsDomReachabilityis able to discover non-viable
successors early on.

— The information thaDomReachabilityprovides for implementing smart
labeling strategieddomReachabilityassociates each node with the set
of nodes that it reaches. This information can be used toegthid
search in a smart way. The strategy we used in our experinemis
to minimize the use of optional nodes.

In this chapter we also show thBXomReachabilityis suitable for dealing
with a problem that we call the Ordered simple path with mémganodes
problem (OSPMN) where ordering constraints among mangatodes are
imposed, which is a common issue in routing problems. Takitgaccount
that a node reaches a nodgif there is a path going from nodeto nodej,

one way of forcing a nodgeto be visited before a nodes by imposing that
reacheg andj does not reach The latter is equivalent to imposing thas

an ancestor of in the extended dominator tree of the path. Our experiments
show thatDomReachabilityakes the most advantage of this information to
avoid branches in the search tree with no solution [QVDCO06].



14 Chapter 1. Context and Contribution

e Chapter 7. In software security, the execution of some actions is ctlett
(allowed or disallowed), in an attempt to restrict theirrédi or indirect)
effects. Allowed actions are callggtrmissionsDifferent parts of a program
(subjects) can have different permissions. The ability sifilgject to directly
or indirectly induce an effect is called igsthority.

The propagation of authority can often be expressed in sificletail by
reachability in a directed graph. The nodes in the graph eggtesent a
subject and the edges represent permissions. The reflexivéransitive
closure of the permission graph then represents an uppadifoureachable
authority.

In this chapter, we show that graph reachability constsdiaie useful appli-
cations in safety analysis and enforcement. We do this byeftiog safety

analysis and enforcement in terms of The Bounded Transitivsure Prob-
lem, which can be modelled in terms of DomReachability. leoito model
a broader set of security problems, we extend The Boundetksitiree Clo-

sure Problem with the notion of cardinality [SQV06].

e Chapter 8 In this chapter we make some concluding remarks and suggest
some directions in which the work presented in this thesisbeaextended.

Part of the work presented in this thesis appears in prelyigublished confer-
ence and workshop proceedings. The list of related pulditais shown hereafter:

e F. Spiessens, L. Quesada, and P. Van Roy. Confinement anaiyisigraph
reachabilty constraints. In International Workshop on €@ints in Soft-
ware Testing, Verification and Analysis (CSTVAQ6), at thehliterna-
tional Conference on Principles and Practice of Const@noigramming
(CP2006), 2006.

e Luis Quesada, Peter Van Roy, Yves Deville, and Raphaél Caleng dom-
inators for solving constrained path problems. In PADL 2606ceedings,
Lecture Notes in Computer Science. Springer, 2006.

e Luis Quesada, Peter Van Roy, and Yves Deville. Speeding opti@ned
path solvers with a reachability propagator. In ColloquiomImplemen-
tation of Constraint and Logic Programming Systems(CICBEG®05), at
the 11th International Conference on Principles and Rmaaif Constraint
Programming (CP2005), 2005.

e Luis Quesada, Peter Van Roy, and Yves Deville. Reachabditonstrained
path propagator implemented as a multi-agent system. InlZd5 Pro-
ceedings, 2005.

e L. Quesada, S. Gualandi, and P. Van Roy. Implementing dilisdd short-
est path propagator with message passing. In 2nd Inten@tiorkshop
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on Multiparadigm Constraint Programming Languages (NDIRL 2003), at
the 9th International Conference on Principles and PraaticConstraint
Programming (CP2003), 2003.

e L. Quesada and P. Van Roy. A concurrent constraint prograigiegpproach
for trajectory determination of autonomous vehicles (auzs). In CP 2002
Proceedings, Lecture Notes in Computer Science. Spriagege.






Chapter 2

Global Constraints based on
Transitive Closure and
Domination

In this chapter we present three global constraints whaseustics are defined in
terms of the notions of transitive closure and dominatiodiiacted graphs:

e TheReachabilityconstraint, which has two arguments: a directed graph and
its transitive closure.

e The Domination constraint, which has two arguments: a flow graph, i.e.,
a directed graph with a source node, and the dominanceorlgtaph on
nodes and edges of the flow graph.

e The DomReachabilityconstraint, which has three arguments: (1) a flow
graph, (2) the dominance relation graph on nodes and edg#® dfow
graph, and (3) the transitive closure of the flow graph.

The dominance relation graph represents a dominanceoreltitat identifies
nodes common to all paths from a source to a destination. Eynding the dom-
inator graph we can also identify edges common to all paih® fa source to a
destination.

After presenting the semantics Reachability Dominationand DomReacha-
bility, we show a set of problems that can be modeled in terms of tAerall those
problems are NP-complete, the modeling of those problemsly represents a
proof that achieving bound consistency for any of the caiirsts is NP-complete.

In this chapter we are also introducing two NP-complete lerols:

e The Bounded Transitive Closure Problem, where we are istiedan finding
a graph respecting respecting some boundaries on itselitaurichnsitive
closure.

17
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Figure 2.1: An example of a flow graph

e The Ordered Simple Path with Mandatory Nodes Problem, wihwerare
interested in finding a simple path containing a set of nodegvien order.

2.1 Transitive closure and Domination

2.1.1 Reachability

A node is reachable from another one if there is a path fronfoitmeer to the latter.
This relation between nodes gfis represented with a graph which is callde
transitive closure of CLR90].

Definition 1. T'C/(g) is the transitive closure af, i.e.,

(1,7) € Edges(T'C(g)) <> Ip: p € Paths(g,1i,7) (2.1)

2.1.2 Flow graph

A flow graph is a directed graph with a source node. Figure [2ovs an example
of a flow graph. The node that is playing the role of source ia #&xample is
noden,. Flows graphs have been mostly used in Compilers theorypiesent
the execution of programs where nodes represent basicdb@fcke program and
edges changes in the control flow [AU77].

We will represent a flow graplfig as a triple(N, E, s) whereN is the set of
nodes,F is the set of edges ands the source. We will occasionally drapvhen
no reference to the source occurs.
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2.1.3 Dominance relation

Definition 2. Given a flow graphf ¢ and its corresponding source a node;i is a
dominator of nodg if all paths froms to j in fg containi [LT79, SGL97]:

i € Dominators(fg,j) <> i # j AVp € Paths(fg,s,j) : i € Nodes(p) (2.2)

Let us consider some interesting properties on dominators:

Theorem 2. The dominance relation is transitive, i.e.j iflominatesj andj dom-
inatesk, theni dominatess.

Proof. If k is not reachable from the source, this property is triviatlye since
every node buk dominatesk. Now, let us assume thétis reachable from the
source. Every patlp from the source td contains; becausej is a dominator
of k. The pathp also containg because this is a dominator gftherefore; is a
dominator ofk. O

Theorem 2 only applies to reachable nodes though. Noti¢efthath i and
are unreachable, Theorem 2 would imply thdbminates, which is by definition
not possible.

Theorem 3. If 4; and iy are both dominators of, i; and i, appear in the same
order in all the paths from the source jo'.

Proof. Suppose that; andi, are both dominators gf Suppose also the that there
is a pathp; wherei; appears first and a path wherei, appears first. Then, a path
from the source tg that does not contaiiy can be obtained as follows:

e go from the source té, usingp;

e go fromiy to j usingp-
which contradicts the statement thiais a dominator. O
Corollary 1. All the dominators of appear in the same order in every path.

Proof. It follows from the fact that Theorem 3 holds for every pairdaiminators
of 5. O

Note that the nodes unreachable frerare dominated by all the other nodes.
However, as a consequence of Theorem 3, the nodes reactable dlways have
animmediatedominator.

A path in a directed graph denotes a sequence of nodes. Waatayappears first thag in a
path if7 is first in the corresponding sequence than
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Definition 3. The immediate dominator gfis the closest dominator gf

i = ImDominator(fg,j) <
i € Dominators(fg,j)
-3k € Nodes(fg) : i € Dominators(fg,k) Nk € Dominators(fg,j)
(2.3)

The notion ofimmediatedominator allows to represent the whole dominance
relation as a tree, where the parent of a node is its immed@teénator. Notice,
however, that unreachable nodes are not taken into acaoeet/sn Dominator(fg, j)
is not defined ifj is not reached from. In what follows DomTree( fg) will de-
note the dominator tree gfy, andDomGraph(fg) a graph representing the whole
dominance relation of g, i.e.(i,j) € Edges(DomGraph(fg)) if and only if i
dominategj in fg.

Theorem 4. Given a flow graphfg = (N, FE) and a nodej € N, ifall i €
N\ {j} dominatesj, and j is reachable from the source ifig, then fg has a
unique Hamiltonian path from the source o

Proof. The fact that there is a Hamiltonian path follows from the migén of
domination (Definition 2) since all the nodes uare dominators and the source
reaches.

Now, suppose there are two different Hamiltonian pathsndp, from the
source toj. As p; andp, are different, the orders in which the nodes appear are
different, which contradicts Corollary 1. O

Definition 4. A back edge is an edge whose destination dominates its source
[AUTT].

Back edges are used to detect loops in a flow grapfi, J is a back edge and
bothi andj are reachable from the source, then there is a at least arpath) to
(sincej dominates), which forms a loop when concatenated with the edgg).

Theorem 5. Given a flow graphfg = (N, E') with no back edge and a node
j e N,ifalli € N\ {j} dominatesj, andj is reachable from the source ify,
then f ¢ is a Hamiltonian path from the source jo

Proof. It is enough to prove that, every nodein\ {j} has at most one outgoing
edge. Let us assume the opposite, i.e., that there is ainattd two outgoing
edges; = (i, k1) andey = (i, k2). As all the nodes iV \ {j} dominatesj, there
is a path wheré:; appears first thaks (the one using;), and there is another one
wherek, appears first thah; (the one using edge,) since neithee; nor e, are
back edges. However, this violates Theorem 3. O
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The extended dominator graph

We now introduce the notion @xtended dominator grapiihich allows us to take
advantage of dominator algoritms for computing edges tteatammon to the set
of paths connecting a node with the source of the flow graph.

Definition 5. The extended graph ofg, Ext(fg), is obtained by replacing the
edges by new nodes, and connecting the new nodes accordiihggygraph can be
formally defined as follows:

s'=s
(N',E',s') = Ext((N,E,s)) < { N =NUE
e=(i,j) € B« (i,e) € E'A{e,j) € E
(2.4)
Definition 6. The extended dominator graph £§ is the dominator graph of its
extended graph.

Figures 2.2, 2.3 and 2.4 show an example of a flow graph, ieneed graph,
and its extended dominator tree, respectively. The exteddminator tree has two
types of nodes: nodes that correspond to nodes in the drigiaph fiode domi-
natorg, and nodes corresponding to edges in the original gregge dominatois
The latter nodes are drawn in squares.

Theorem 6. Given two node dominatorisand j, if
(1,7) € Edges(DomTree(Ext(fg))) (2.5)
then there are at least two different paths fromo j in the flow graph.

Proof. The presence afand;j in DomTree(Ext(fg)) ensures that there is at least
one pathp; fromito j. As the immediate dominator gfis a node dominator, there
is no edge appearing in all the paths fromo 5. This means that i¢ is an edge of
p1, there is another path, not involvinge. O

Set dominators

We will now extend the notion of domination to a set of nod&sa kense, we can
say that this notion of domination is not as strong as the dmeady introduced
since all the nodes of the set must be removed in order torsm the dominated
node from the source. Formally we have that:

Definition 7. A set of nodes is a set dominator of a nodgif every path from
the source tg has a node irs and the removal of any proper subsetsaloes not
makej unreachable from the source.

domset € SetDominators(fg,j) <

Vp € Paths(fg, source,j).3i € domset : i € Nodes(p) (2.6)
Vs C domset.3p € Paths(fg, source,j).Nodes(p) Ns =1
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Figure 2.2: Flow graph Figure 2.3: Extended Figure 2.4: Extended

flow graph dominator tree
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Figure 2.5: Set$1,2,4},{3,4} and{4, 5,6} are set dominators of node

A set dominators; is maximal in the sense that there is no seD s; that is
also a set dominator. This is why, jfis not reachable from the source, the only
set dominator of is (. If j is reachable from the source ahi a dominator ofj,
then{i} is a set dominator of.

Let us now look at the relation between two sefsand s, if both sets are
set dominators of a nodie If either s; or s, is a singleton set, thes, and s
are disjoint since a set dominator cannot be a superset ¢iemset dominator.
However, ifs; andss are not singleton, thesy, ands, may share nodes.

Let us consider the case of figure 2.5 where node 0 plays th@fdhe source.
In this case we observe that the sgts2,4},{3,4} and{4,5,6} are all set dom-
inators of noder. Indeed, removing nodes 1, 2 and 4 disconnect node 7 from the



2.2. Global constraints on Transitive closure and Domamati 23

source, but removing any sub set{df, 2,4} does not make 7 unreachable from
the source. This is also the case for getst} and{4,5,6}.

2.2 Global constraints on Transitive closure and Domina-
tion

2.2.1 TheReachability constraint

Definition 8. The Reachabilityconstraint has two arguments: a directed graph

and its transitive closure.

Reachability(g, tcg) 2.7

This apparently simple constraint is actually pretty expine. As we will
show in section 2.3.1, we are able to model NP-complete pnoblin terms of this
constraint only.

2.2.2 TheDomination constraint

Definition 9. TheDominationconstraint has two arguments: a flow graph, i.e., a
directed graph with a source node and the extended domirmgatgph of the flow
graph:

Domination(fg,edg) (2.8)

In section 2.3.2 we will see th&ominationis enough to model The Simple
Path with Mandatory Nodes Problem and its applications.

2.2.3 TheDomReachability constraint
Definition 10. TheDomReachabilityconstraint is a constraint on three graphs:
DomReachability(fg, edg,tcg) (2.9)
where
e fgis aflow graph whose set of nodes is a subséY pf
e edg is the extended dominator graph f§; and
e tcg is the transitive closure ofg, i.e,
tecg =TC(f9g) (2.10)

The fact that we can already model NP-complete problems Retachability
makes the modelings of NP-complete problems WwitmReachabilitynot surpris-
ing sinceDomReachabilityis actually an extension dReachability In section
2.3.2 we will show how we can take advantage of the extendedrddor graph in
order to express relations on nodes and edges.
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2.2.4 Properties of Reachability, Domination and DomReadbility

The definitions ofReachability Dominationand DomReachabilitymply the fol-
lowing properties which are crucial for the pruning thattperform. These prop-
erties define relations between the graphs they have as amsinThese relations
can then be used for pruning, as we show in section 3.2.

Properties between the graph and its transitive closure

1. If (i, 7) is an edge of, then: reacheg.

V(i,j) € Edges(g) : (i,j) € Edges(tcg) (2.12)

2. If i reacheg, theni reaches all the nodes thateaches.

Vi, j,k € N : (i,5) € Edges(tcg)\(j, k) € Edges(tcg) — (i, k) € Edges(tcg)
(2.12)

3. If i does not reach, (i, j) is not an edgedg.

Vi,j € N : (i, j) & Edges(TC(g)) — (i, j) & tcg (2.13)

Properties between the flow graph and its extended dominatagraph

1. If i dominatesj, wherei/j is either a node or an edge, thefi,,j) is an edge
of edg.

Vi,j € NUNXN): (i,j) € Edges(DomGraph(Exzt(fg))) — (i,j) € edg
(2.14)

2. If j is directly reachable from the source, i.&.,j) is an edge off g (where
s = Source(fg)), thens is the only dominator of.

Vi,j € N,i#s:(s,j) € Edges(fg) — (i, j) & Edges(edg)  (2.15)

Property among the flow graph, its extended dominator graph ad its transi-
tive closure

If j is reachable froms andi dominategj in fg, theni is reachable from andj is
reachable fromi:

Vi,j € N :(s,j) € Edges(tcg) N (i,j) € Edges(edg) —

(s,i) € Edges(tcg) A (i,7) € Edges(tcg) (2.16)
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2.3 Problems modeled with Reachability and DomReach-
ability

2.3.1 The bounded transitive closure problem and its variats

In this section we will present a set of problems that are ddfion top of the
transitive closure relation. The main contribution of teection is the proof that
The Bounded Transitive Closure Problem (BTE€NP complete. We will also
present some variants BfTC and suggest CP approaches to solve them based on
the global constraints we are presenting in this thesis.

The bounded transitive closure problem

Definition 11. Given the directed graph8min, 9maz» tC€Gmin aNd tcgmaz, The
Bounded Transitive Closure Proble®TC) is to find a directed graply such that:

Imin - g - Imazx
and (2.17)
tcGmin € TC(9) C tcgmax

Theorem 7. BTCis NP complete.

Proof. We will show thaBTCis NP complete by reducing The Disjoint Path Prob-
lem (DP) to BTC. The k-Disjoint-paths problem consists in findirig pairwise
disjoint paths betweeh pairs of nodeSs,dy), (s2,d2), ..., (sg,d). Both the
node-disjoint version and the edge-disjoint version areciplete even fot = 2
[SP78]. So if we express the problem of (node-disjointedy)necting(a, b) and
(¢, d) IN gmae in terms ofBTC, then we prove thaBTCis NP complete.

Letpy, ) andp. 4 be the paths connecting, b) and(c, d) respectively. The
first thing to notice is that, ip, ; andp. q share a nodé, the graph composed
of papy @andp,. 4y would be a graph wherereaches! andc reaches. Notice that
in order to reachl from a we just need to go from to k£ usingp, ), and then
from & to d usingp . 4)-

If we want to avoid thap, ;) andp,.. 4 share nodes, we need to impose that
does not reacH andc does not reach. Then, the problem of finding two disjoint
paths connectinga, b) and{c, d) in g, can be reduced to the followirgTC?:

Imin = @
Imaez = the given graph
tcgmin = {{a,b),{(c,d)}
tChmaz = Tc(gmaw) - {(av d>7 <C, b>}
If g is a solution of thdBTCthe disjoint paths can be obtained by runnibigS
rooted atz andc respectively. Notice that any path found B¥¥Swould be correct
since all paths frona to b are pairwise disjoint with all paths fromto d. O

(2.18)

2In the following equation, we will represent a graph as a §etiges.
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Notice thatReachability(g,tcg) is all what we need to modeBT'C. g,in,
Jmaz» t1€Gmin @Ndtcgmqa: correspond to the lower and upper boundg a@indicg
respectively.

The minimum bounded transitive closure

Definition 12. Given the directed graph$in, 9maz, tCGmin aNAdtcgmaz, and an
integerk, The Minimum Bounded Transitive Closure ProbléviinBTC) is to find
a directed graphy, whose number of edges is at mbssuch that:

Imin g g g Imazx
and (2.19)
tcGmin € TC(9) C tcgmax

As MinBTC is an extension oBTC, the fact thatMinBTC is NP complete is
not surprising. Indeed)P can be reduced tslinBTC by ignoringk.

Itis important to observe th&inBTCis also a generalization dihe Minimum
Equivalent Digraph Problem (MED)5J79]. InMED we are interested in finding
a subgraphy, of a graphg; such thaty; and g, have the same transitive closure,
andg, has at most edges. Notice that we can trivially redug=D to MinBTChby
stating that botltcg,,,;,, andtcg,q. are equal td’C'(g1), gmin IS the empty graph,
andgmtw =91

Our way of modelingVlinBTCis by usingReachability(g, tcg) in conjunction
with Size(g, I). The Sizeconstraint forceg to havei edges. The model is the
following:

Reachability(g,tcg) A Size(g,i) Ni < k (2.20)

The maximum bounded transitive closure

Definition 13. Given the directed graph$.in, gmaz, tCGmin aNdtcgmaz, and an
integerk, The Maximum Bounded Transitive Closure Problé&axBTC) is to find
a directed graphy, whose number of edges is at leassuch that:

9min g g g 9Imazx
and (2.21)

tCgmin < TC’(g) C tcOmax

MaxBTCis also a generalizatioBTCso it is also NP complete. The approach
for modelingMaxBTCis basically the same approach usedNonBTC.

Reachability(g,tcg) A Size(g,i) Ni >k (2.22)

In section 7 will elaborate on a serie of problems that asriveSecurity that
can be represented B&axBTCproblems.
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Figure 2.6: A simple path from 1 to 22 containing 4, 7, 10, %ahd 21

2.3.2 The simple path with mandatory nodes problem

Definition 14. The Simple path with mandatory nodes probl&RIN) is to find a
simple path in a directed graph containing a set of mandatmges[Sel02, CB04].
A simple path is a path where each node is visited only oneg, diven a di-
rected graply, a source noderc, a destination nodést, and a set of mandatory
nodesmandnodes, we want to find a path i from src to dst, going through
mandnodes and visiting each node only once.

For instance, consider the case shown in Figure 2.6. We wadimd a path
from from node 1 to nodes 22 containing nodes 4, 7, 10, 16, @d2anNotice that
using edg€(1, 5) implies that node 5 is visited twice since all paths from 529 2
that contain the mandatory nodes, contain edge5).

Theorem 8. SPMNis NP complete.

Proof. Hamiltonian Path(finding a simple path between two nodes containing all
the nodes of the graph [GJ79, CLR90]) can be trivially reducesSPMNby defin-
ing the set of mandatory nodes @®des(g) \ {src, dst}. O

We can modeSPMNin terms ofDomReachabilitypy imposing that the source
reaches the destination and that all the mandatory nodemdtas the destination.

Formally, if g is the graph where the simple path is to be found,anddst are
the source and the destination respectively, andis the set of mandatory nodes,
the following constraints are enough to restrfet to a graph where all the paths
from src to dst contain the mandatory nodes:
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Subgraph(fg,g)
DomReachability(f g, edg,tcg)

(srec,dst) € Edges(tcg)
Vi € mn: (i,dst) € Edges(edg)

SPMN(g, sre,dst,mn, fg) < (2.23)

Once we have foundg, finding the simple path is straightforward. A linear
exploration of the graph will suffice to build the path sindetlze paths from the
source to the destination will contain the mandatory nodes.

Notice that as a consequence of Theorem & dtles(g) = mn U {src,dst}
(i.e., if we are to find a Hamiltonian pathf,g contains only one path fromrc
to dst. Notice also that, thanks to Theorem 5, the graph obtairna ffg after
removing the back edges is a Hamiltonian path.

We can also take advantage of the fact that unreachable acgldeminated by
any node in order to enforce reachability between nodesigfrthe impossion of
dominance constraints. For instance, if we want to infolne¢ & nodé is reachable
from the source we can do so by stating that a nfedees not dominaté

Assuming that ¢ Nodes(g), the above means th&PMNcan be expressed
in terms ofDominationas follows:

Subgraph(fg,g)
Domination(fg,edg)

Vi € mn : (i,dst) € Edges(edg)
(k,dst) & Edges(edg)

SPMN (g, sre,dst,mn, fg) < (2.24)

Another way of modeling this problem is by usiRgachabilityin conjunction
with the Path constraint Path(p, s, d)), which holds ifp is a simple path frons
to d [DDDO5b].

Subgraph(fg,g)
Path(fg, sre,dst)

SPMN(g,sre,dst,mn, fg) <> < Reachability(fg,tcg) (2.25)
(sre,dst)y € Edges(tcg)
Vi e mn: i€ Nodes(fg)

As the nodes imn are included in the set of nodes b, fg is a simple path
containing the mandatory nodes.

In the previous model, the use Beachabilityis redundant. In fact, the appli-
cation ofPathensures that the graph assigned ¢ds a simple path containing the
mandatory nodes. However, as we will see in Chapter 6, tloenrdtion provided
by Reachabilityis used to guide the search.
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Figure 2.7: Finding two disjoint pathgrigure 2.8: Finding a simple path pass-
ing through n

2.3.3 The ordered simple path with mandatory nodes problem

Definition 15. The Ordered Simple Path with Mandatory Nodes Prob@&PMN

is an extension oSPMN where the mandatory nodes are to be visited in a given
order, i.e., given a directed grapi a source noderc, a destination noddst, a

set of mandatory nodesandnodes, and set of couples of nodesder, we want

to find a path ing from src to dst, going throughmandnodes following order and
visiting each node only once.

As OSPMNis an extension 0SPMN it is not surprising thaODSPMNis NP
complete. Nevertheless, we will provide a proof of its NP pteteness that does
not rely on the fact o SPMNbeing NP complete.

Theorem 9. OSPMNis NP complete.

Proof. Once again we will take advantage of the NP completenesseDigjoint
Path Problem. Suppose that we want to find two disjoint patihadeen the pairs
(s1,d1) and(sq, ds) in g. Let g’ andn be defined as follows.

n ¢ Nodes(g)
g = AddEdges(g1,E1 U E3)

g1 = AddNodes(gs, {n}) (2.26)

g2 = RemoveNodes(g,{d1,s2})
Ey = IncEdges(g,dy)[d1/n]
Ey; = OutEdges(g,s2)[s2/n]

Finding the two disjoint paths is equivalent to finding a dienpath froms; to ds
passing through in ¢’. The correctness of this reduction relies on the fact that th
concatenation of the two disjoint paths forms a simple paitteseach disjoint path
is a simple path. O

Figure 2.8 shows the the reduction of the two disjoint patiablem of Figure
2.7. The path found in Figure 2.8 corresponds to the conattenof the two
disjoint paths of Figure 2.7.



30 Chapter 2. Global Constraints based on Transitive Closuild2mination

OSPMNcan be modeled in term &@fomReachabilityas follows:

OSPMN g, src,dst,mn,order, fg) <
Subgraph(fg, g)
DomReachability(fg, edg,tcg)
(sre,dst)y € Edges(teg)

Vi € mn : (i,dst) € Edges(edg)
V(i,j) € order : (j,i) & Edges(tcg)

Indeed, given two mandatory nodeandj, if ¢ should be visited first than
((i,7) € order), itis enough to state thgtdoes not reach ((j, i) ¢ Fdges(tcg))
in order to ensure that the resulting grapis a graph where, in all paths from
srctodst, i is visited first thary.

(2.27)

2.3.4 The ordered disjoint paths problem

Definition 16. The Ordered Disjoint PathdDP) is an extension oDP where each
couple is associated with a set of mandatory nodes and am cetigion.

Let us start with the case tiie 2 Ordered node-disjoint path problem (20DP)
where, given the directed gragtend the tupless;, d;, mny, order;) and
(s9,d2, mna, orders), the goal is to find two paths, andp, such thap is a path
from sy to dy visiting mn; respectingordery, po is a path fromss to ds visiting
mmny respectingorders, andp; andp, are node-disjoint.

The20ODP (g, ((s1,d1, mny,ordery), (s2,ds, mna, ordery))) can be reduced
to the OSPMN(¢’, s1,do, mn’, order’) whereg’ is defined as in the previous re-
duction,mn’ = mny; Umns U {n}, n is defined as before, and

ordery U

order’ = { ordery U
{(n1,n2) | (n1 € mni Ang=n)V (n1 =nAng € mna)}.

(2.28)

The simple path traverses the nodes in the orderorder,, and the nodesin,

in the orderorders, the nodesnn; are visited before: and the nodes imns after

n.
Let Reduce_2_ODP be defined as

Reduce_2_ODP(ODPins) = OSPMNins
ODPins = (g,((s1,d1, mnyi,ordery), (s2,d2, mna,orders)))
OSPMNins = (¢, s1,da,mn’ order’)
(2.29)

The functionReduceO D P, which reduces any ordered disjoint path problem (ODP)
to OSPMN, can be defined as shown in Figure 2.9. Certainly,ssarae that the
pairs(si,dy), (s2,da), ..., (s, d) are pairwise node-disjoint. However, this con-
dition can be easily fulfilled by duplicating the nodes thag ased by more than
one pair.
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ReduceODR{, ((s1,d, mny,ordery), ..., {(sk, di, mny, order))))
ospmn = (g, s1,dy, mnq, ordery)
forie {2,3,...,k} do
(¢',s',d';mn’ order') := ospmn
ospmn := Reduce_2_ODP({¢', {((s',d',mn’ order’), (s;, d;, mn;, order;))))
end
returnospmn
end

Figure 2.9: Reducing ODP to OSPMN

Note that the conventional node-disjoint paths problem can be trivially re-
duced to ODP. We simply need to map each gaird;) to (s;, d;, 0, 0).

2.3.5 The traveling salesman problem

Given a directed grapl, a source noderc and a destination nodést, the Trav-
eling Salesman Problem (TSB)to find whether there is ldamiltonian Pathi.e.,
a path containing all the nodes, whose length is less thagual ¢o a given value
max [GJI79].

We can model this problem as follows:

mn = nodes(g) \ {src,dst}
SPMN (g, src,dst,mn,p)
Size(p,i)

1 < max

TSP(g,src,dst,max,p) < (2.30)

This definition is usingSPMN as defined in section 2.3.2. Here, we are ba-
sically constrainingy to be a simple path of at mostax edges fromsrc to dst
containing the nodes imn.






Chapter 3

Algorithms for DomReachabillity

In chapter 2 we introduced three global constraints on tdbh@hotions of Dom-
ination and Transitive ClosureReachability Dominationand DomReachability
As DomReachabilityis the conjuntion ofReachabilityand Domination the im-
plementation oDomReachabilitycovers the implementation &eachabilityand
Domination

In this chapter we introduce the algorithms involved in tm@liementation of
DomReachabilityWe start by explaining how the pruning rules are systeratiyic
derived from the properties of the constraint. Then we reesch property and
derive the corresponding pruning rules. During this preceg will emphasize
the pruning gained by the activation of each rule.

As we saw in the previous chapté&pm Reachability(FG, EDG,TCG) con-
straintsE DG to be the extended dominator graphfoff and7'C'G to be the tran-
sitive closure ofF'Gz. In order to discard graphs from the domainfad that violate
this constraint, we need to maintain the transitive cloguegph and the extended
dominator graph of the bounds &fG. So, in this chapter we also study some
approaches for maintaining this information.

3.1 From properties to propagation rules

In this section we present a general approach for transfgyimioperties into prop-
agator rules. In section 3.2, we apply this approach to tbpasties oDomReach-
ability in order to get the pruning rules BlomReachability

A propagation rule is defined %WhereC is a condition and4 is an action.
When('is true, the pruning defined by can be performed.

The definition of thddomReachabilitgonstraint and its derived properties give
place to a set of propagation rules which are systematigaiherated as follows:

33
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3.1.1 Generating derived properties

Given a property of the forrP — (), we generate the corresponding derived
properties by applying the following rules:

e If ) is a conjunction of basic formula@; A Q2 A ... A Q,, the properties
derived fromP — Q1 AQ2A...AQ,, are generated by applying the following

rule:
P—>QiNANQaN...ANQ;iN...\NQp
P — Q;

(3.1)

e If P is a conjunction of basic formulaB A P, A ... A P, and@ is a ba-
sic formula, then the properties derived fradta A P, A ... A P, — (@ are
generated by applying the following rule:

PANP,AN NP, — Q
“QANPLN...ANPi_1 NPiyq... NP, — P,

(3.2)

3.1.2 Precondition and postcondition rewriting

We approximate a given set by pruning its upper and lower ®uiven a vari-
ableS that approximates a set M ax(S) refers to the greatest set to whiShcan
be bound, and/in(S) refers to the least set to whichcan be bound.

S gets more determined when elements are removed ftam(.S) or added to
Min(S). The fact that the bounds &fevolve indicates that/in(S) andMaz(S)
are memory cells. The value th&t denotes becomes totally determined when
Min(S) andMax(S) become equal.

We check that is in s by checking that is in Min(S). Similarly, we check
thati is not ins by checking that is not inMaxz(S):

1€S i1 e€s
i) Y T Maa(s) Y

We ensure that is in s by addingi to the lower bound of5. Similarly, we

ensure that is not ins by removing: from the upper bound a$:

1€ 8 1€s
Min(S) := Min(S) U {i} (3:5) Min(S) := Min(S) \ {i} (3:6)
3.2 Deriving pruning rules
We implement the constraint (2.9) by the propagator that ete n
DomReachability((FG, s), EDG, TCG). (3.7)

FG, EDG andTCG are graph variables, i.e., variables whose domain is a set of
graphs [DDDO05b]. A graph variablé is represented by two graphsfin(G) and
Maz(G). The graphy thatG approximates must be a supergraph\dfn(G) and

a subgraph oM axz(G), thereforeMin(G) andMaz(G) are called the lower and
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Figure 3.1: Activation dependencies between the graplabi®s of DomReacha-
bility

upper bounds of-, respectively. Notice that the soure®f the flow graphF'G is
a known value.

We will know revisit the properties dbomReachabilitypresented in Chapter
2 and define the corresponding pruning rules. Figure 3.1 shibes graph of ac-
tivation dependencies between the graph variables of Dactiability. An edge
labeled withr from GG to G5 means that a change in the domairtafmay cause
a change in the domain 6, through the application of rule.

3.2.1 Pruning rules of Property 2.11

If (i,7) is an edge of g, theni reacheg.

V(i,j) € Edges(fg) : (i,j) € Edges(tcg)

This property represents the basic case of the transitosucd. The pruning
rules derived from this property (and from property 2.13akbksh the connection
between the bounds @G and the bounds ¢f CG.

The pruning rules derived from property 2.11 are the foltayvi

e It causes the introduction of edde j) in the lower bound of'C'G when
the edge is in the lower bound &G
(1,7) € Edges(Min(FQ))
Edges(Min(TCQG)) := Edges(Min(TCG)) U{(i,j)}

(3.8)

e |t causes the removal of eddg j) from the upper bound of'G when the
edge is not in the upper bound 61°G:
(i,7) € Edges(Max(TCQ))
Edges(Max(FQ)) := Edges(Maz(FG)) \ {(i,j)}

(3.9)
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3.2.2  Pruning rule of Property 2.13

If ¢ does not reach, (i, j) is not an edge ofcg.

Vi,j € N : (i, j) & Edges(TC(fg)) — (i,j) & teg

One consequence of this property is that edgg) is removed from the upper
bound of’"C'G whenj is not reachable fromin the transitive closure of the upper
bound of FG.

(1,7) & Edges(TC(Max(FQ)))
Edges(Maz(TCQG)) := Edges(Max(TCGQG)) \ {{i,5)}

(3.10)

The implementation of this rules makes it necessary to @gtiattransitive clo-
sure of the upper bound @G after modifying it. As the upper bound of a graph
variable evolves monotonically, it is possible to considecremental approaches
for updating the transitive closure &fG. By decremental we mean dynamic al-
gorithms in which the only changes considered are removat®aes and edges
[FMNZz01, RZ02].

3.2.3 Pruning rule of Property 2.14

Let DomGraph be a function that returns the dominator graph of a flow graph,
i.e.,(i,j) € Edges(DomGraph(fg)) < i € Dominators(fg,j).
If i dominatesj then (i, j) is an edge oédg.

Vi,j € NU(N x N): (i,5) € Edges(DomGraph(Ext(fqg))) — (i,j) € edg

As we are considering the extended dominator grapfigofi and;j may also
be edges of g.

One consequence of property 2.14 is to add the éilgé to the lower bound
of £ DG wheni dominatesj in the upper bound of'G.

(1,7) € Edges(DomGraph(Ext(Maxz(FG))))
Edges(Min(EDG)) := Edges(Min(EGD)) U {(i,j)}

(3.11)

Notice that, as the upper bound Bf7 evolves monotonically, oncgis dom-
inated by: in the upper bound of'G it stays dominated by. This monotonic
evolution also implies that decremental algorithms for pating dominators can
be considered. However, as the computation of dominatora fcratch can be
done in linear time [Geo05], we will restrict our attentianthis kind of algorithms
only.
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3.2.4 Pruning rules of Property 2.15

If j is directly reachable from the source, i.€,j) is an edge offg (wheres =
Source(fg)), thens is the only dominator of.

Vi,j € Nyi# s:(s,j) € Edges(fg) — (i,j) & Edges(edg)
The consequences of this property are the following:
e Edge(i, j) is removed from the upper bound BIDG if edge (s, j) is in the
lower bound ofF'G:

(s,7) € Edges(Min(FGQ))
Edges(Maxz(EDG)) := Edges(Max(EDG)) \ {(i,7)}

(3.12)

e Edge(s, j) is removed from the upper bound 6% if edge (i, j) is in the
lower bound ofE DG:
(i,7) € Edges(Min(EDG))

Edges(Max(FQ)) := Edges(Max(FG)) \ {(s,j)} (3.13)

3.2.5 Pruning rules of Property 2.12
If i reacheg, theni reaches all the nodes thateaches.
Vi, j,k € N : (i,j) € Edges(tcg) A (j, k) € Edges(tcg) — (i, k) € Edges(tcg)

The pruning rules derived from this property let us propagia¢ reached nodes
of a given node back to their ancestors. In a similar way, acirable nodes are
propagated from a node to its successors.

The pruning rules derived from property 2.12 are the follayvi

e Edge(i, k) is included in the lower bound &FC'G when edgesi, j) and
(7, k) are in the lower bound ofC'G:
(1,7) € Edges(Min(TCQ)) A (j, k) € Edges(Min(TCGQG))
Edges(Min(TCQG)) := Edges(Min(TCG)) U {(i, k)}

(3.14)

e Edge(i, j) is removed from the upper bound €' G when edgé€i, k) is not
in the upper bound of'C'G and edg€j, k) is in the lower bound of 'CG:

(i,k) € Edges(Max(TCG)) A (j,k) € Edges(Min(TCG))

Edges(Maz(TCG)) = Bdges(Maz(TCO) (0,7} )

e Edge(j, k) is removed from the upper boundBE'G when edgé€i, k) is not
in the upper bound of'C'G and edg€, j) is in the lower bound of ' C'G:

(i,k) € Edges(Max(TCG)) A (i,j) € Edges(Min(TCGQG))

Edges(Maz(TCG)) = Edges(Mar(TOO)\ (G R} 0
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3.2.6 Pruning rules of Property 2.16

If jis reachable fronrs and: dominategj in fg, theni is reachable frons and; is
reachable fromi:

Vi,j € N :(s,j) € Edges(tcg) N (i,j) € Edges(edg) —
(s,1) € Edges(tcg) A (i,7) € Edges(tcg)
The rules derived from this property are the following:

e Edges(s,i) and(z, j) are added to lower bound @fC'G when edg€s, j) is
in the lower bound of'C'G and edg€(i, j) is in the lower bound oE DG:

(s,j) € Edges(Min(TCG)) A (i,7) € Edges(Min(EDG))
Edges(Min(TCQG)) := Edges(Min(TCG)) U{(s,1), (i,7)}

(3.17)

Nodes and edges common to all paths from the sourgegtt included in
the lower bound off'G when is reachable from the source through the
activation of this rule.

e Edge(s, j) is removed from the upper bound’5€' G when edgés, i) is not
in the upper bound of'C'G and edg€, j) is in the lower bound oE DG:

(s,1) € Edges(Max(TCG)) A (i,j) € Edges(Min(EDG))
Edges(Maz(TCQ)) := Edges(Max(TCGQG)) \ {(s,7)}

(3.18)

e Edge(i, j) is removed from the upper bound BfDG when edgé€ss, i) is not
in the upper bound of'C'G and edg€s, j) is in the lower bound of CG:

(s,i) & Edges(Max(TCG)) A (s,j) € Edges(Min(TCGQG))
Edges(Max(EDG)) := Edges(Max(EDG)) \ {(i,7)}

(3.19)

e Edge(s, j) is removed from the upper bound’B5€' G when edgé€i, j) is not
in the upper bound of' C'G and edg€(, j) is in the lower bound oF DG:

(i,7) € Edges(Max(TCG)) A (i,j) € Edges(Min(EDG))
Edges(Maz(TCQ)) := Edges(Max(TCGQG)) \ {(s,7)}

(3.20)

e Edge(i, j) is removed from the upper bound BfDG when edgé€i, j) is not
in the upper bound of'C'G and edg€s, j) is in the lower bound of C'G:

(1,7) & Edges(Max(TCQ)) A (s,j) € Edges(Min(TCGQG))
Edges(Max(EDQG)) := Edges(Max(EDG)) \ {(i,7)}

(3.21)
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3.2.7 Showing activation of pruning rules

Let us see the pruning previously introduced in a concresengie. Figures 3.2, 3.3
and 3.4 show a partially defined flow graph with its correspromgartially defined
dominator graph and transitive closure. For the sake oflgiityp in this example,
we will assume that the second argumeriDbomReachabilitys a dominance graph
(instead of a extended dominance graph).

Notice, for instance, that we can not say any thing about timaigation of
node 3 over node 2 since node 3 trivially dominates node ziftiurce (node 1)
does not reach node 2. The same applies for node 4.

Figure 3.2: Flow graph Figure 3.3: Dominance Figure 3.4: Transitive
graph closure

In figures 3.5, 3.6 and 3.7, we show the effect of imposing ¢dge< 1,2 >
is part of the flow graph. This decreases the upper bound afdhrénance graph
since neither 3 nor 4 dominate 2. This pruning is caused l&y3121 since edge
< 1,2 > isin the lower bound of the transitive closure and edge3,2 > and
< 4,2 > are not in the upper bound of the transitive closure.

The presence of edge 1, 2 > in the flow graph also implies the determination
of the transitive closure as observed in Figure 3.7. Thisésresult of applying
rules 3.8 and 3.14, which basically update the lower bourtdefransitive closure
after adding a new edge to the lower bound of the flow graph.

Imposing that edges 2,3 > and< 2,4 > are part of the dominance graph
decreases the upper bound of the flow graph. All the pathstinersource to node
3, and from the source to node 4 should contain node 2. Thibyedges< 1,3 >
and< 1,4 > are removed. This pruning is caused by rule 3.13.

It is important to observe that the bigger the flow graph isstinaller the dom-

inance graph is. Indeed, imposing domination reduces tlys wades can be con-
nected.
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Figure 3.5: Flow graph Figure 3.6: Dominance Figure 3.7: Transitive
graph closure

@/\@}\x

Figure 3.8: Flow graph Figure 3.9: Dominance Figure 3.10: Transitive
graph closure

3.2.8 Optimizing the discovery of dominators

Let us revisit the definition of the extended graph of a flonphraV, E, s):

s'=s
(N',E',s') = Ext((N,E,s)) < { N =NUE
e={(i,j) € E < (i,e) € E' N {e,j) € E'

The computation of the extended graph of a graph can be ddireear time
with respect to the size of the graph since it basically &issn traversing the
original graph and performing a constant amount of opamnagioeach step. The
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resulting graph is a graph whose size complexity is equinatethe original graph:
IN'| +|E'| = (IN|+ |E|) + 2% |E| = |[N|+3*|E| <3x(|N|+ |E]) (3.22)

Nevertheless, the number of nodes of the resulting graph tke worst case,
guadratic with respect to the number of nodes of the originaph.

As the computation of the dominance tree depends on the it @raph,
computing the dominance tree of the dominance graph hasathe somplexity
that computing the dominance tree of the extended graph. ekervcomputing
the transitive closure of the extended dominance tree i€ regpensive since the
complexity of this operation does depend on the number oésiod

Pruning rule 3.17 can be optimized by considering the faatte only need to
activate the rule when edde, j) is in Edges(DomTree(Max(FG))) since the
other dominators of will be added when considering their immediately dominated
nodes. This means that rule 3.17 can be re-formulated asvill

(s,7) € Edges(Min(TCG)) A (i,7) € Edges(DomTree(Ext(Maxz(FG))))
Edges(Min(TCQG)) = Edges(Min(TCG)) U{(s,q), (i,7)} (3.23)

For instance, suppose that the set of dominators of padeézt(Max(FG))
is {i1,12} and thati; is the immediate dominator @f, which implies thati, is
the immediate dominator gt Suppose also thas, j) is in Edges(Min(T'CG)).
Then, this rule will add edges, i2) and(is, j) to Edges(Min(TCG)), which im-
plies the addition of nod& to bothNodes(Min(FG)) andNodes(Min(TCGQG)).
As edge(s, i2) is now in Edges(Min(T'CG)) andi; is the immediate dominator
of io, edges(s, i1), (i1, i2) are added t&dges(Min(TCG)).

Indeed, even though we are only considering the extendedndoe tree all
the dominators of a given nodeget added to the lower bound &fG when the
sources reaches This optimization of the rule avoids unnecessary actvesi
If we consider the previous example, we were addintyvice (when considering
edges(s, j) and (s, i2)) even though the second addition is not needed sinee
already included. With this optimization, we can say thatrtimber of activation
with respect to the length of the branch containjngn the extended dominance
tree is linear.

3.2.9 DomReachability works on approximations

As we said before, graph variables are represented in teffimsunds. However,
there are sets of graphs that cannot be represented in tebosrads. For instance,
consider the case in Figure 3.11. The domgjn, g2} cannot be represented in
terms of bounds. This domain is approximated as shown inr&igul2. The do-
main of this graph variable is the set of all the graphs witto§@odes{1, 2, 3,4}
whose edges are included in the §étt, 2), (3,4), (1,4), (3,2)}.

In general, we can say that the domain of a variable is a (rcgssarily proper)
sub set of its approximation.
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g1 e g2 1
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Figure 3.11: The domaifig;, g2} cannot be represented in terms of bounds
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Figure 3.12: Approximation of the doma{w, g- }
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Figure 3.13: There are several ways of preventing 4 to béedde from 1

One implication of approximating the domains is that the&# of impos-
ing a constraint on one of the argumentsDmmReachabilitycannot be directly
propagated to the other two arguments. For instance, sappasthe flow graph
is instantiated as shown in figure 3.13. The effects of inmmpshe constraint
(1,4) ¢ tcg can not be propagated to the flow graph since the set of pessibl
graphs to whichf g can be instantiated, which are shown in Figure 3.14, carmot b
represented in terms of bounds.

3.2.10 Level of consistency of DomReachability

As explained in the previous section, the domain of a grapiabie can be only
pruned by modifying the elements in its bounds. This meaais i the best case,
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Figure 3.14: Actual domain ofg (in Figure 3.13) after impossing thét, 4) & tcg

bound consistency is the highest level of consistency thatbe achieved. Nev-
ertheless, achieving this level of consistency is still alleimge when considering
constraints likeDomReachabilitysince it may lead to NP computations.

The fact that we can model an NP-complete problem 8RMN(as shown in
section 2.3.2) in terms dbomReachabilitymplies thatDomReachabilitycannot
achieve general consistency in polynomial time. Suppoaewe need to find
out whether a particular nodein the upper bound of'G needs to be removed.
For this, we need to see whether there is at least one simfitecpataining all
the mandatory nodes that contaims n must be removed from the upper bound
if there is not any simple path. Notice that this correspotedthe definition of
SPMN As bound consistency relies on the ability to answer thisrgdor every
node in the upper bound, this implies that bound consisteaaynot be achieved
in polynomial time.

Notice that, even foReachability(g,tcg)the constraint introduced in section
2.2.1), checking bound consistency is NP complete. As @éxgyiain section 2.3.1,
BTC s the problem we need to solve in order to determine whettmargcular
partial instantiation is consistent. B Cis NP complete, checking bound consis-
tency is NP complete too.
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3.3 Algorithms for computing dominators

3.3.1 Aho and Uliman’s algorithm

Aho and Ullman’s algorithm [AU77] relies on the very definiti of domination.

As we know,i dominategj is all paths from the source jacontaini. Animmediate
consequence of this is thashould not be reachable from the source after removing
1. S0, in order to detect the nodes dominated by a nedelook at the set of nodes
that are no longer reachable from the source after remaving

Pre : fg is a flow graph
Post : dom(i) is the set of dominators of nodén fg

GetDominators(fg)
nodesg := DFS(fg, Source(fg))
fori € Nodes(fg) do
doms(i) = if i € nodesy then() elseNodes(fg) \ {i} end
end
for ¢ € nodesgy do
nodesy := DF'S(RemoveNode(fg,1i), Source(fg))
for j € nodesg \ (nodes; U {i}) do
doms(j) = doms(j) U{i}
end
end
returndoms
end

Figure 3.15: Aho and Ullman’s algorithm

The algorithm is presented in Figure 3.15. The input is a flosph f¢ and
the output is a magom that associates each node with its set of dominators, i.e.,
doms(i) is the set of dominators of noden fg. Let us assume th&@FSreturns
the reachable nodedoms(i) is initialized with either) or Nodes(fg) \ {i} de-
pending on whether is reachable frontource(fg) (since any node dominates
an non-reachable node). Each node is removed in order totdetenodes that it
dominates. Therefore the computation of dominato3(i&" « (N + E)).

3.3.2 Cooper, Harvey and Kennedy'’s algorithm

Cooper, Harvey and Kennedy’s algorithm [CHK] is an iteratalgorithm that re-
lies on the fact that the dominators of a nodés the set composed of and the
intersection of the dominators of its predecessors. Indase the notion of dom-
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ination presented in Chapter 2 is adapted so that each nquti®f its set of
dominators:

doms(ng) = {no}
doms(n) = ((Mpepredsn) doms(p)) U {n}

From this definition of domination we can observe that at roostpredecessor
of n can be a dominator of sincen can have only one immediate dominator.

(3.24)

Pre :

fgis aflow graph

preds(i) is the set of incoming nodes éfn fg
Post :

doms(1) is the set of dominators of noden fg

GetDominators(fg)

for all nodes;n do
doms[n] := {1..|Nodes(fg)|}

end

changed := true

while (changed) do
changed := false
for all nodesn, in reverse postorder
newset = ([ doms[p]) U {n}

pEpreds(n)
if (newset # doms[n]) then
doms[n| := newset
changed := true
end
end
end
returndoms

end

Figure 3.16: Cooper, Harvey and Kennedy'’s simplified ifeesalgorithm for com-
puting dominators

Figure 3.16 shows a simplified version of Cooper et al's allgor. In each
iteration the set of dominators is updated according to BEqué.24. The loop
continues until no further update is performed.

Notice that this algorithm relies on the fact the the sou#erhas no incoming
nodes sd( "), cas(n) doms[p]) U {n} is equal to{n} if n is the source.
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In [CHK], Cooper et al suggest a clever way of implementirggbt operations
executed at each iteration that allows to compute the ddorman O(N?).

3.3.3 Lengauer and Tarjan’s algorithm

In order to find the dominators of the flow graghthis algorithm assigns a number
to each node. This number corresponds to the order in whechdldes are visited
following a DFS traversal rooted at (the source of). In what follows, these
numbers will be used to denote the nodes ahaill be the resulting DFS-tree,
which will be represented by the arrayrent.

The algorithm is based on the notion sgmidominatomwhich is defined in
terms of the notion osemidominator path These two notions are defined by
Lengauer and Tarjan [LT79] as follows:

Definition 17. A pathP = (u = vg, vy, ..., Vk—1, U = v) IN G is asemidominator
path(sdom path) if; > vfor1 <i <k —1.

Definition 18. Thesemidominatoof a nodev (s(v)) is the minimumu such that
there is a sdom path fromto v.

Notice that a node only has one semidominator since the DRtbeuassoci-
ated with each node is unique.

In [LT79], Lengauer and Tarjan define a set of properties betwdominators
and semidominators. In short, these properties imply fbagnyw # r:

e s(w) is a proper ancestor af in D.
e d(w) is a (not necessarily proper) ancestos@b).

e The dominators of nodes i@ do not change if the edges that are not in
Edges(D) are replaced with the edges {fis(w), w) : w € Nodes(G) A
w # r}.This means that the set of dominators can be computed ffand
the set of semidominators.

Figure 3.17, which is taken from [Ge005], shows the skelefdrengauer and
Tarjan’s algorithm T). LT maintains a fores¥' whose trees are composed of
edges ofD. In fact, we can say thaf' is a sub graph o). The two operations
performed on the forest are:

e [ink(v) that adds the edg@arent(v),v) to the forest.

e cval(v) returnsrp(v) if v = rp(v). Otherwise, it returngwin{u : rp(v) =+,
u = v} in D.

In the previous definitiongarent(v), is the parent ob in D andrp(v) is the
root of the tree containing in F.
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Pre:
G = (N, E,r) is a flow graph with source node
D = DFS(G,r)

pred(i) is the set of predecessor nodes of D
parent(i) is the parent of in D

Post :
d(7) is the immediate dominator éfin G

LT(G)
forw € N — {r} in reverse preorder b do
s(w) :=w
for v € pred(w) do
x = eval(v)
s(w) :=min{s(w), s(z)}
end
addw to bucket(s(w))
link(w)
z:=parent(w)
for v € bucket|z] do
deletev from bucket(z)

y := eval(v)
if s(y) < zthend(v) := y elsed(v) := z end
end
end

forw € N — {r} in preorder ofD do
if d(w) # s(w) thend(w) := d(d(w)) end
end
end

Figure 3.17: The Lengauer-Tarjan algorithm

In [LT79], Lengauer and Tarjan show that if nodes are prosss reverse
preorder, then all the necessary values will be availablenwieeded. This is why
the first loop in Figure 3.17 considers the nodes in reverserger.

The semidominator of a nodeis chosen by considering the current semidom-
inators of the nodes in the path franto u. LT associates each node with the set of
nodes that it semidominates. This association is done ghrthe vectobhucket,
i.e., bucket(i) is the set of nodes semidominated byEach nodev is initially
associated with an approximate immediate domingtgris an approximation be-
cause it might not be the immediate dominatowpbut a node whose immediate
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Original graph Condensation graph

(T——4)
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Figure 3.18: An example of a condensation graph

dominator is also the immediate dominatorofSo, the purpose of the last loop is
to check whethey is indeed the immediate dominator. If this is not the case, th
immediate dominator is updated accordingly.

The complexity of this algorithm depends on hdimk andeval are imple-
mented. If the complexity of these functions were consthmtwould be linear
with respect to the size of the graph. In [LT79], Lengauer @agan show one
way of implementing these operations that almost achigvissgbal. The com-
plexity of the algorithm presented in [LT79] @(ma(m,n)), wheren andm are
the number of nodes and edges, anid the inverse of Ackermann’s function.

3.4 Algorithms for computing transitive closure

3.4.1 Frigioni et al's decremental algorithm

Frigioni et al's decremental algorithm [FMNZ01] is basedtbe notion of graph
condensation. The condensation graphGofs the graphG’ = (N’, E’) where
each node iV’ corresponds to a strongly connected component and an edge
(u,v) is in E' if and only if there exists an edge i connecting any of the nodes
in the component of;, to any of the nodes in the componentvof

An example of graph condensation is shown in Figure 3.18.eNdd 2 and
3 form a strongly connected component and so do nodes 4, 5.ahtb@e 7 is
a strongly connected component on its own. The nodes reyiregehe strongly
connected component are connected as mentioned beforiskorce, As nodé
and nodet are in different connected components, edfe2 3,4 5 6) is in the
set of edges of the condensation graph.

Notice that a condensation graph is always acyclic. Indéelde nodes rep-
resenting the strongly connected componeérdad j participate in a cycle in the
condensation graph, the union ©&andj would form a strongly connected com-
ponent too since the nodes oivould be reachable from the nodesjond vice
versa.
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This is why Frigioni et al decompose the problem of maintagrthe transitive
closure of a directed graphl = (N, E) into two sub problems:

e Maintaining the condensation graph@f

e Maintaining the association of nodes with strongly coneeéaomponents.

In the description of the algorithrm, will refer to | V.

Decremental maintenance of transitive closure for DAGS.

The algorithm presented here is an optimization of Italgatgorithm [Ita88] done
by Frigioni et al [FMNZO1]. Italiano associates every nade= N with a set
DESC|[u] containing all the descendants ofin G. Each one of those sets is
organized as a out-tree rootedat In addition, ann x n matrix of pointers,
called/NDEX, is maintained which allows fast access to nodes in thess.tié

j € DESCYi|, INDEX]i, j] points to nodg in DESCYi]; otherwise, it isNull.
INDEX allows to check weather a node is reachable from anothernstant
time.

Let (i, j) be the edge to be deleted. (if j) does not belong to anp ESC
tree, the data structure does not need to be updatéd.j}fbelongs taD ESC|u],
DESC|[u] has to reconstructed since the deletion of the edge spétsrée. In
order to do this, one has to check that there is still a pati fedo j. This is done
by checking whether there is an edgej) in DESC[u] such that there is a path
from u to v that avoids(i, j). If such edge exists, eddé ;) is replaced withv, j)
in DESC|u]. Inthis casey is considered aookfor ;. If such edge does not exist,
then; must be removed fromv ESC[u] and the outgoing edges ¢in DESC|u]
should be deleted by applying the same procedure.

In order to find a hook forj, each node, is associated with the set of tails
of its incoming edged N[y]. Assuming that each set is correctly updated after
each edge deletion, checking whether there is a hoolk fiar DESC|u], after
the deletion of(¢, j), is done by checking if N[j] N DESC[u] # (. Indeed, if
IN[j] " DESC|u] # 0 it is because there is at least one node reachable drom
that is an incoming node gt

Notice that nodes that are not hook for a ngdemains in that condition after
edge removals. This means that if it has been already ddtd@e: is not a hook
for j, k does not need to be reconsidered after removing an edgeisThtsy an
n x n matrix HOOK is maintained. HOOK |[u, j] stores the pointer to the first
yet to be considered node iV[j]. If there is no more nodes to be considered,
HOOK|u, j]is Null.

Frigioni et al optimize the representation of the inforraatby using a sin-
glen x n matrix PARFEN'T containing the information i ESC andINDEX.
PARENTYi, j] stores a pointer to the edge that connégdtsits parent inD ESC/i]
if j € DESC[i]. If j ¢ DESCJi], PARENTi, j] is Null.
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Figure 3.19 shows the algorithm for deleting an edgejj). The first thing
done is to updaté N sinceig is no longer an incoming node g§. Then, all the
nodesu whose out-tree contains edg#, jo) are considered. In each iteration
a queueq) that keeps the edges to be removed from the out-traeisfcreated.
As (i, jo) must be removed, it is put in the que@e Then, each edge @ is
considered. In each iteration, the first edgej) of @ is dequeued and a valid
replacement is searched. As said before, this replacemists & HOOK [u, j] is
not Null. If this is the case(i, j) is replaced with HOO K [u, j], j) and HOO K
is updated. If not,Null is assigned taPARENT[u, j] indicating thatj is no
longer reachable from and all the outgoing edges ¢fthat are in the out-tree of
u are added t@) sincej cannot be used to reach any nddgom w.

Figure 3.20 shows how OO K is updated. In this algorithm it is assumed that
the elements of N[j] are indexed with respect to the initial graph. $0V[j][%]
is the ky, incoming node ofj in the initial graph. As the index of the hook fgr
before removing the edge GetIndex(IN[j|[HOOK u,j|]), ind (the index of
the hook forj after removing the edge) is initialized with the next indéotice
that, in this initialization, one relies on the fact that kaandidates are not recon-
sidered since nodes that are not hooks do not become hoeksefioving edges.
Onceind is initialized, one loops until either one finds an incomirggle that is
reachable from or runs out of incoming nodes. In the former case] is assigned
to HOOK|[u,j]. In the later,Null is assigned tdd OOK[u, j] indicating that
there are no more valid replacements.

Figure 3.21 shows the implementation®dach(i, 7). In fact the implementa-
tion of this function is straightforward since it only costsi in looking upPARENT
in order to see whethegris reachable from or not.

Deletingm edges take®(nmy), wheren is the number of nodes and, the
number of initial edges. This means that the complexity afatimg the transitive
closure after removing one edge is linear with respect tosthe of the graph
in average. This linear cost is due to the fact that each esigaly considered
once in a given out-tree. Once an edge becomes unsuitaldbeifoy added to the
descendant tree of a node it remains unsuitable.

The complexity ofReach is constant since it is a matrix look up.

Maintaining the association of nodes with strongly conne&d components.

As the previous decremental algorithm for maintainingsrére closure only con-
siders acyclic graph, the original graphis transformed into a grapf’ by con-
densing its strongly connected components. The deleti@m @dge from does
not necessarily chang@’. Indeed, if the edge that is being deleted is inside a
strongly connected component and the connectivity of thpmment is not af-
fected by the removaly’ remains unchanged.

Even though the computation of strongly connected compsnakes linear
time, the update of the data structures used in the decratredgorithm for the
transitive closure should be done carefully in order to kisepcomplexity accept-
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Pre:
PARENT]u, j] is the edge that connecfdo its parent in the out
tree rooted at:. Itis Null if j is not reachable fromu.
HOOK u, j] is the first yet to be considered noksuch that(k, j)
is a valid replacement faPARENT [u, j]. It is null is such replacement
does not exist.
IN[j] is the set of incoming nodes ¢f

Post :
PARENT,HOOK andIN are updated considering the removalf, jo)

Delete_Edgé(io, jo))
INljo] := IN[jo] \ {io}
foru : PARENT[u, jo|==(io, jo) then
Q=NewQueue
EnqueueQ,(io, jo))
while NotEmpty(Y) do
(i, 7):=Dequeuea)
if HOOKu, j| # Null then
PARENT[u, j]:=(HOOK]|u, j], j)
Update_H ook(u, j)
else
PARENT[u, j]:=Null
fork: PARENT[u, k] == (j,k) do
Enqueue@,(j, k))
end
end
end
end
end

Figure 3.19: Delete_Edge

able. In particular, one has to deal with the fact that a gisononnected compo-
nent may split into several components after removing ae etly order to cope
with this, the set of data structures considered are theviailg:

e A Boolean matrix/ NDE X whose entry NDEXi, j] is true or false de-
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Pre :
PARENT]u, j] is the edge that connecfdo its parent in the out
tree rooted at:. Itis Null if j is not reachable fromu.
HOOK u, j] is the first yet to be considered noksuch that(k, j)
is a valid replacement faPARENT [u, j]. It is null is such replacement
does not exist.
INTj][k] is thek,, incoming node ofj in the initial graph

Post :
HOOK]u, j| is updated considering the informationfitv

Update_Hook,j)
ind:=Getindex{ N, HOOK |[u, j])+1

while PARENT [u, IN[j][ind]] == Null \ind < MazIndex(IN]j]) do
ind :=ind + 1
end

if ind < MaxIndex(IN[j]) then
HOOKu, j| = ind
else
HOOK]u, j| == Null
end
end

Figure 3.20: Update_Hook

pending on whether there is a path frorno ;.

e An array Scc such that, for allv in N, Scc[v] is the strongly connected
component containing.

e For each strongly connected componénbne has:

— An arrayn such thatC.In refers to the incoming edges 6f.
— An arrayOut such thatC.Owut refers to the outgoing edges ©f

— Anarray PARENT such that, for alb in N, C.PARENT[v] is the
edge inDESCv] that connectg to v, in caseC' is reachable fromy
andv is not insideC'. OtherwiseC.PARENT [v] is Null.

— An array HOOK such thatC. HOOK [v], is the first yet to be consid-
ered edge irC.In that is a valid replacement fa*. PARENT [v].
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Pre:
PARENT]u, j] is the edge that connecfdo its parent in the out
tree rooted at:. Itis Null if j is not reachable fromu.
Post :
Reach(,,j) returns true or false depending on whetlés reachable from

ReacHu,j)
if PARENT[u,j]==Null then
return false
else
return true
end
end

Figure 3.21: Reach

— A sparse certificate, which is a sub-graptCoivith the same nodes that
conserves the connectivity between each pair of nodés. dh other
words, there is a path fromto j in C if and only if there is a path in
its certificate.

A sparse certificate of a strongly connected compoiieig computed as fol-
lows:

1. Take any node of C' and performDF'S rooted at- in order to obtain the
out-treet of ¢ in C.

2. Inverse the sense of the edge<irand performD F'S rooted atr again to
obtain the inverse out-tre€of i.

3. Restore the original direction of the edge¢’iand assigr Ut’ to the sparse
certificate.

In order to delete edgg, j) the following is done: if(i, j) belongsG’ then the
strongly connected components are not affected, so themeatal algorithm for
computing transitive closure in acyclic graphs is used et the data structures.
If (i, j) does not belong t@ it means that the edge is in a strongly connected
component'. In this case, if(i, j) does not belong to the sparse certificateof
the edge is simply removed frodi. If (i, j) belongs to sparse certificate and the
connectivity ofC' is not affected by the removal df, j), the certificate is rebuilt.
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If the connectivity is affected, thefl' is replaced by the components into which it
splits and the data structure are updated accordingly.

The total complexity of this decremental algorithm for castipg transitive
closure in general graphd(n?+nmy) (as shown in [FMNZ01]), which is slightly
higher than the complexity of the algorithm not involvingctss O (nmg)) when
the graph is not dense, i.e., when the number of edges ispiapeal to the number
of nodes. This small penalization is due to the update of #te structures when a
component splits into several sub components.

3.4.2 Roditty’s algorithm

Roditty’s algorithm [Rod03] also maintains a forest of ggbut it does not keep
a tree per node. This algorithm maintains two trees per tioseoperation. The
edges inserted in each insertion operation are centeredjiweranode, i.e., all the
edges are incident edges of the same node.

The two trees associated with an insertion operation whester node is:
correspond to the in-tree and the out-treeuah the resulting graph. Nodes are
grouped into blocks that correspond to the strongly comtecomponents of the
graph that is obtained just after the insertion. In whabie, G; will be the graph
composed of the two trees that are obtained aftef th&: insertion operation, and
B; will be the set of blocks of~;.

Center nodes are not repeated. A center node is associatednlyi one graph.
When inserting a set of edges whose center node has beetyalrsed, the graph
corresponding to the previous insertion operation is rexdpthe indexes of the
graphs and blocks updated, and the trees that are assowsittidtie new insertion
operation are built taking into account both set of edges:ettiges of the graph
that has been removed and the edges that are being inserted.

The trees of the forest evolve in a decremental way. Whertidgla set of
edges from the current graph, blocks that are no longer soalbsestrongly con-
nected component in the current graph are replaced by thaechs that constitute
them. When a set of edges is inserted, the new trees areccreisi@ut modifying
the previous trees.

As only edges are added/removed, the set of nodes remaistnbrLetV be
the set of noded| is the graph with no edges whose set of nodes iend By is
{{z}:x € N}.

If the set of edges of the initial graph is not empty, one caumme that the
initial forest is set up by inserting edges in groups of iecidedges of a given
node. In order to minimize the number of trees, bigger setaadlent edges are
inserted first as done in Figure 3.22.

Due to the fact thafr; _; is a sub graph of7;, the blocks ofz; are composed
of blocks ofG;_1. So for any index:, it is always the case that there are at most
2|N| — 1 different blocks inJ!_, B;.

Figure 3.23 shows Roditty’s Algorithm. This algorithm udés following
data:
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Figure 3.22: Setting up the forest in order to use Rodittige@dthm

e nis|N| (the number of nodes of the current graph).
o Index|k] is the center node afy.
e Forest[i] representss;. Each forest contains the following data structures:
— Ali, j] is the index of edgéi, j). Ali,j] is oo if (i,7) has not been
inserted.

— MTi, j] is the index of edgei, b), whereb is the sub block ofj that is
connected ta through the edge with smallest index.

— col]i] is the column of block in M.

— rowli] is the row of blocki in M.

— elemli] are the nodes of block

— subblockli] are the sub blocks of block

Let us elaborate on the role of each functions of the algworith
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e InitForestjust initializesIndex.

e BuildMatrix builds the forest dynamicallyForest[i] is created in terms of
Forest[i — 1]. If a block b in Forest[i| already existed iforest[i — 1]
(|subblock[j]| = 1), thenits adjacency information is copied frdforest|i—
1] to Forest[i]. If b has been formed ifforest[i] (|subblock[j]| > 1), then
it is connected to every nodefor which there is a sub blodK of b such that
v'is connected to (M[v, m] := minye supbiock[;) M [v, Forestli—1].col[b]]).

e InsertF(F,,u) addsGy, whereu is Index[k]. If there is a graph in the forest
associated with the same center node, that graph is remonkedsaedges
are added td@+y,.

e DeleteF{’) re-builds the forest dynamically. Blocks that cease toteatie
marked as unreachable. The new blocks that are formed lafteemoval are
marked as “pending” (“*”). ReconnectTrewill decide whether the blocks
associated with “*” are reachable or not.

Even though the algorithm does not keep an out-tree per ribdanforma-
tion in the kept trees is enough to compute the current caadiem graph (and
therefore the current transitive closure). This is due &ftilowing facts:

Lemma 1. The current set of strongly connected componéhiss always a subset
of Ule B;.

Proof. This is trivially true for strongly connected componentssife one. For
strongly connected components containing more than one, voel have to take
into account that they are formed after inserting edgedos@very strongly con-
nected component, there must be one insertion operatidrgéve place to the
component. O

Lemma 2. If (x,y) is an inter component edge in the current graph, then thege is
G; having(Block(z), Block(y)) as one of its edges, whelock(v) is the block
containing nodey in G;.

Proof. The only edges that are condensed are the intra-componest @&o, if
a inter-component edge is added, it remains in the correpgriree until it is
removed. O

The total running time of the algorithm presented in Figug33after perform-
ing (ins+del) operations, i©((ins + del)n?). This means each update operation
is computed im?2.

In order to answer queries regarding the existence of a jiteen two given
nodes, a matrixount is maintained following the approach suggested in [Kin99].
count[i, 7] is the number of insertion centers that lie on a path betwessrd ;.
Certainly, if countli, j] is greater than zero, it means that there is at leasttgne
with insertion center: such that is reached from andj is reached fromu.



3.5. Algorithms used in the current implementation of Dora&tebility 57

When adding a new; to the forestcount is updated by considering the Carte-
sian productfnN x Out N, whereln N andOut N are the nodes of the out-tree and
the in-tree composing; respectively. Eachount[i, j], (i, j) € InN x OutN, is
incremented in one because there is at least one more patbatony: and;.

If a set of edges is removed, the algorithm considers the fsebuples that
no longer belong tdnN x OutN, for eachG;. For each of those couples, the
corresponding cell imount is decremented in one.

Answering each reachability query takes constant time user# consists in
looking up the corresponding cell in the matrix. Updatingnt after an insertion
operation isO(n?) because we only need to consider the graph that is being in-
serted. Updatingount after a delete operation 3(n?) in average. Even though
it is true that updating-ount with respect to a particula; is O(n?), it is also
true thatG; evolves decrementally. This means that updatingnt with respect
to G; gets cheaper each time edges are removed. In the extremet caiidake
constant time to updat@unt, so in average, we may say that the complexity, with
respect to a givety; is linear.

3.5 Algorithms used in the current implementation of Dom-
Reachability

As explained in sections 3.2.2 and 3.2.3, in the implememtatf DomReachabil-
ity, we need to maintain the upper bound of the transitive ciogmaph and the
lower bound of the extended dominator graph.

We use Lengauer and Tarjan’s algorithm for updating the tdveaind of the
extended dominator graph. This choice is based on the faidttis is the algorithm
that works best in practice even though it does not have ttalesh complexity
[Geo05].

To update the upper bound of the transitive closure grapluse¢he non decre-
mental algorithm provided by Boost [LLS01]. This algorithsnshown in Figure
3.24. The basic idea is to update the set of reachable nodasnf node taking
into account that a node reaches all the reachable nodes safdtessors. As two
nodes belonging to the same strongly connected comporegtt the same set of
nodes, the algorithm works on the condensed graph of théh@igpn and updates
the information accordingly after computing all the redalbasets. The complex-
ity of this algorithm is O(N*E) in the worst case (i.e., theseawvhere there is no
component containing more than one node).
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InitForest:
k := 0, allocate an arrayndex of sizen

BuildMatrix( Forest):
M[1:n,1:nl:=Am:=n
fori:=1tok
using Forest[i].
forj:=1to2n
if |subblock[j]| = 1 thencol[j] := Forest[i — 1].col[subblock[j][1]]
if |subblock[j]| > 1 then

m :=m+ L,col[j] :=m
forv:=1ton
M v, m] == minyesuppiockj)M [v, Forest[i — 1].col[b]]

InsertF (£, ,u):
if 3¢ such thatindex[i] = u then
forj:=itok—1
Index[j] :== Index[j + 1], Forest[j] :== Forest[j + 1]
else
k =k + 1 and addForest|k]
update arraysubblock andelem of Forest[k] usingGetSCC(QG)
Indezlk] == u
BuildMatrix(Forest)
ReconnectTred{orest|k|,Index[k] k)

DeleteF(E’):
UpdateA with E' andS := GetSCC(G)
fori:=1tok
subblock! := UpdateBlocks(Forest[i].subblock, S)
forj:=1to2n

if Forest[i].subblock[j] # NULL andsubblock’[j] = NULL then
Forestli].reach[j] := 0
if Forest[i].subblock[j] = NULL andsubblock'[j] # NULL then
Forest[i].reach[j] := *
Forestli].subblock := subblock’
BuildMatrix(F orest)
for i :== 1 to k do ReconnectTreélorest|i],Index[i],i)

Figure 3.23: Roditty’s Algorithm
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Pre :
G = (N, E) is a directed graph
Suce(i) = {j | {i.j) € Edges(G)}
Rep(i) is the node that represents the strongly connected
component containing
CondenseGraph(G) is the condensed graph 6f
Post :
Reach(i) is the set of nodes reachable franm G

TC(G)
G’ = CondenseGraph(G)
for each node: in Nodes(G') in reverse topological order
for each node in Succ(i)
if (v not in Reach(u))
Reach(u) := Reach(u) U {v} U Suce(v)
for eachu in Nodes(G)
if u# Rep(u)
u := Reach(Rep(u))
end

Figure 3.24: Boost’s Transitive Closure Algorithm






Chapter 4

Implementing DomReachability
In Gecode using CP(Graph)

Gecode[SLT06] is a C++ library that provides an environment for eleping
constraint-based systems and applicatiéghscodeallows the construction of new
variable domains including propagators as implementatificonstraints and branch-
ings, and search engines.

Search inGecodeis based on recomputation and copying, which allows the
implementation of advanced search engines like adaptarelsengines and search
engines on top of batch recomputation. In fact, the use afhbetcomputation
drastically reduces the propagation time during recontjmunta

Gecodeoffers finite domain constraints and finite set variablesi@mented on
top of its generic kernel. Thanks to the w@gcodehas been designed, it is simple
to add new computation domain€P(Graph)[DZDDO06] is a new computation
domain that has been added to Gecode.

In this chapter we will make a summary of the most relevantcepts in
Gecode Then, we will show how propagators are implemented in Gedwogd
explaining the implementation ddistinc. one of the propagators provided by
Gecode After explaining how to deal witleP(Graph)in Gecodewe will present
the implementation of the ad-hoc propagatobaimReachabilitysketched in Fig-
ure 5.4. In section 4.6, we will show the implementation @ tabeling strategy
we have designed to deal widSPMNinstances.

Taking into account that there is not a tutorial @ecodethat explains how
to implement a propagator, the explanation of the impleatent of theDistinct
constraint would be appreciated by those trying to implenagoropagator for the
first time.

4.1 Basic concepts in Gecode

In this section we will present a set of definitions (which gireen in [SLT06]) that
are fundamental for the presentation of the next sections.

61
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4.1.1 Actor

An actor is either a branching (see section 4.1.2) or a papagsee section 4.1.7).
Actors provide the functionality that is common for proptga and branchings
such as member functions for copying during cloning, menadigcation, and so
on.

4.1.2 Branching

A branching defines the shape of the search tree. Branchiegalso known as
labeling or distributors, and a branching creates a sefielsaice points.

4.1.3 Branching description

A branching description speeds up recomputation by progitiatch recomputa-
tion. It is created by a branching (see section 4.1.2) amavalto replay the effect
of that branching without the need to first perform constraiepagation.

4.1.4 Computation space

A computation space (space for short) comprises all egtitiea constraint prob-
lem to be solved, including all actors (see section 4.1.#)\emiables (see section
4.1.9). A space can be seen as corresponding to a node inafwh ge2e. It or-
ganizes constraint propagation, the branching proceggoration, and memory
management.

4.1.5 Modification event

A modification event describes how a view (see section 4)lf Yariable imple-
mentation (see section 4.1.10) is changed by an updatetimpeperformed on
the view or variable. Each variable domain defines its ownifitadion events.
However modification events that describe generic everus as failure, no mod-
ification, or assignment to a single value are predefined@ss®eric modification
events and propagation conditions).

4.1.6 Propagation condition

A propagation condition defines when a propagator requirege tre-executed. Re-
execution is controlled by the modification events that oaruthe variables the
propagator depends on (see section 4.1.7). Propagatidlitioos and the relation
between propagation conditions and modification eventgmtdpon the variable
domain.
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4.1.7 Propagator

A propagator implements a constraint. Execution by a prafwags defined by its
dependencies: the views (referring to some variables}tiegsvith their propaga-
tion conditions.

4.1.8 Propagator modification event

A propagator maintains for each variable domain a modiboagivent. This event
is called apropagation modification eventThese modification events describe
which modification events occurred on all views (variablds) propagator de-
pends on. A propagator modification event is available thinoai view or variable
implementation.

4.1.9 Variable

A variable is used for modeling problems, be it for direct miaty or for modeling
through some interface. A variable provides only those atpmrs useful for mod-
eling and excludes in particular operations that can motfiéy variable domain
directly. A variable is implemented by a variable implenagion (see below).

4.1.10 Variable implementation

A variable implementation implements the variable domaid provides opera-
tions to access and modify the domain.

4.1.11 View

A view offers essentially the same interface as a variabj@ementation and al-
lows both domain access and maodification. Typically, séugeavs exist for the
same variable implementation to obtain several consgrdintn the same propa-
gator.

4.2 CP(Graph) in Gecode

As explained in [DZDD06, Doo06], CP(Graph) defines a new aataipon domain
in constraint programming: graph domain variables andtcaings over these vari-
ables. The implementation of graph variables use the "viewitept of Gecode
[STO6]. One view implements a graph as a set of nodes and & selges, the
other view uses a set of nodes and N sets of adjacent nodese Guomatraints,
such asComplement(G1,G2), Path(G,nl,n2) and Path(G,nl,n2,I,w), are
also provided.

In Figure 4.2, we show the creation of a graph variable (lijparid the elimi-
nation of the edgé0, 1) from its upper bound (line 2). In this case, we are using
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template <class View0O, class Viewl>
class Distinct
public InhomBinaryPropagator <...> {
protected:
using InhomBinaryPropagator <...>::x0;
using InhomBinaryPropagator <...>::x1;
I/l Constructor for cloning p
Distinct (Space home, bool share, Distinct& p);
/Il Constructor for posting
Distinct(Space home, View0O, Viewl);

public:
/Il Copy propagator during cloning
virtual Actorx copy (Space home ,bool);

/Il Perform propagation

virtual ExecStatus propagate (Spacéome);

/'l Post propagator x \neq y

static ExecStatus post(Spaeehome, View0, Viewl);

h

template <class ViewO, class Viewl>
class DistinctDoit
public UnaryPropagator <View0O ,PC_SET_ANY> {
protected:
using UnaryPropagator <View0 ,PC_SET_ANY>::x0;
/Il The view that is already assigned
Viewl vy;
/'l Constructor for cloning \a p
DistinctDoit (Space home, bool share, DistinctDoit&);
/Il Constructor for posting
DistinctDoit (Space home, View0O, Viewl);

public:
/Il Copy propagator during cloning
virtual Actorx copy (Space home, bool);

/Il Perform propagation

virtual ExecStatus propagate (Spacédome);

/'l Post propagator x \neq y

static ExecStatus post(Spasehome, View0, Viewl);

Figure 4.1: Partial Definition of Distinct and DistinctDoitThe complete code
can be obtained from Gecode’s web shi#g://www.gecode.olg



N

O O ~NO UL WNPF

4.2. CP(Graph) in Gecode 65

fg=OutAdjSetsGraphViewthis ,fg_ub);
GECODE_ME_FAIL(this ,fg._arcOut (this ,0,1));

Figure 4.2: Creating a graph variable and removing e(ige) from its upper
bound

/lJ in tcg.outN(l) = | not in tcg.outN(J)
for (int i=0;i<fg_ub_numNodes;i++){
for (int j=0;j<fg_ub_numNodes;j++){
it (il=j){
BoolVar a(Space,0,1);/a=1 means J in tcg.outN(l)
BoolVar b(Space,0,1)://b=1 means | in tcg.outN(J)

dom(Space, tcg.outN[i], SRT_SUP, j, a);
dom(Space, tcg.outN[j], SRT_SUP, i, b);
post(Space, ff(a & b));

Figure 4.3: Accessing the adjacency set of a node in the itposf an antisym-
metric relation

the view OutAdjSetsGraphView which associates each notleitsiset of outgo-
ing nodes. fg.outN[i] refers to the FS variable representire outgoing nodes of
node i in fg.

In Figure 4.3, we show an example where we are accessing tharhle
associated with each node of the graph variable tcg. In Hrigcplar case, we are
imposing an antisymmetric relation among the nodes of teg,if edge(, j) is in
tcg, edge(y, i) is not. In order to impose this relation, we are reifying thesence
of a node in the set of outgoing nodes of another one. Forrinstdan line 8 we
are reifying the present of node j in the set of outgoing namfeésin the Boolean
variable a. This means that a is equal to 1 if and only if j ishie $et of outgoing
nodes of i. Once we have reified the presence of the corresmpadges, we im-
pose the antisymmetric relation through the instructiost f®pace, ff(a && b)),
which means that it can not be true that both edges are pdréafraph.
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template <class View0O, class Viewl>
ExecStatus
Distinct <...>::post(Space home, View0 x, Viewl y) {
if (x.assigned())
GECODE_ES CHECK(( DistinctDoit <...>::post (home,y,X)
if (y.assigned())
GECODE_ES CHECK(( DistinctDoit <...>::post(home,x,y)
(void) new (home) Distinct <...>(home,x,y);
return ES _OK;
}

Figure 4.4: Implementation of method post of class Distinct

transitive_closure (fg_ub,fg_ub_tc);
l[ist < pair<int ,int> > tcg_ub_delta;

for (;tcg_ub ();++tcg_ub){
int s=tcg_ub.val (). first;
int d=tcg_ub.val ().second;
if (!'(tcg_vs[s] & tcg_vs[d] &&
edge(s,d,fg_ub_tc).second)){
tcg_ub_delta.push_back (tcg_ub.val());
}
}

ItValEdges
tcg_ub_delta_it(tcg_ub_delta.begin(),tcg_ub_delead ());
GECODE_ME_CHECKf{his —>g3. arcsOut(home,tcg_ub_delta_it));

Figure 4.5: Pruning the upper bound of the transitive clesiDomReachability

4.3 Implementing user-defined propagators in Gecode

In order to introduce the framework, in this section we pnésiee implementation
of the Distinct propagator for set variables provided®gcodé. Given two set
variablesS; and.S,, Distinct(S1, S2) holds if and only if the set approximated by
S1 is different to the one approximated I5y.

Figure 4.1 shows the definition of class Distinct that impbers Distinct

The source code presented in this section has been takentti@msource code oBecode
[SLTO6]. However, the code has been commented by the authbisdhesis.
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Distinct is implemented in terms ddistinctDoit Once one of the set variables is
instantiatedDistinct launchedDistinctDoit which is the one that actually performs
the pruning on the non-instantiated variable

A class implementing a propagator @Gecodealways has at least the methods
composing the classes in Figure 4.1. Notice that each cls$nwo constructors:
one for creating the propagator and another one for cloriegptopagator when
the space to which the propagator belongs is being clonedenVéloning the
space, the search engine invokes method copy, and copysdloa@ropagator by
invoking the constructor for cloning.

The propagator is created when the method post is invokedetAsr, in some
cases like the one of method post of class Distinct (see &4, the propagator
may reduce to another one depending on the status of its arguahthe moment
of posting the propagator. Notice that, if set x is alreadiedeined, instead of
creating aDistinct propagator, aistinctDoit propagator is created. The same
situation occurs if set y is the one that is already instsedia

The most important method in a class defining a propagatbeisiethogrop-
agate This method may return the following values:

e ES_FAILED, if the current domains of the variables violaties constraint
implemented by the propagator.

e ES SUBSUMED, if the current domains of the variables esttike con-
straint implemented by the propagaror.

e ES FIX, if the the current instantiation of the variableghwer violates nor
entail the constraint implemented by the propagétor

In Figure 4.10, we are showing the propagate method of clasgnExDoit . As
DistinctDoit is launched when one of the set is already instantiated, r$tettiing
that propagatedoes is to check whether the non-instantiated set variableh@s
been instantiated (line 6). If this is the capegpagatereturns either ES_FAILED
or ES_SUBSUMED depending on whether the set variables resme instantiated
to the same set or not. If X0 has not been instantiated yet, heekcwhether
the cardinality of the sets is already known to be differdimeé 14 and 15). If
this is so, ES_SUBSUMED is returned. If the cardinalitiegimibe equal, we
check whether one of the set is already known to be not cadaiim the other
one (lines 21 and 25). Notice that, if set x0 is not containedst y, there is at
least one element in X0 that is not in y, which means that tleeswts are different
and therefore that ES_SUBSUMED should be returned. If teeipus checks

2

n Figure 4.1, the template arguments in the Definition of tiD&
(<View0,PC_SET_VAL,Viewl,PC_SET VAL>) have been onttten order to respect the
margins).

3When the methods returns ES_FIX, it usually means that th@ofixt has been reached,i.e., that
no further pruning on the domains can be performed by thegumaior. However, propagators in
Gecodeare not required to be idempotent, i.e., it is not mandatomeach the fix point when the
method is invoked.
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have returned neither ES_FAILED nor ES_SUBSUMED, the upgmemd of x0
contains the instantiated set (y) and y contains the lowantmf x0. So, if the
cardinality of the upper bound x0 is the same as the cartinafliy (line 30), the
propagator states that the cardinality of x0 is less tharc#ndinality of y since,
otherwise, the variables would be assigned to the same fstte tardinality of
the lower bound of x0 is the same as the cardinality of y (liig &e propagator
states that cardinality of x0 is greater than the cardialfty in order to avoid
that the variables are assigned to the same value. Notitettiee two last cases
propagatedoes not need to be called again. Indeed, we can say thatstdteg
that the cardinality of X0 is less/greater than the cardinaf y, the propagator is
entailed since the rest of the job will be done by the cardinplopagator.

4.4 Implementing DomReachability

We split the implementation dbomReachabilityinto two part: the one imple-
mented in terms of the FS propagators provided3®code and the one that re-
quires the implementation of an ad-hoc propatoGecode

4.4.1 Using Gecode’s FS propagators

We use pseudo-code for the presentation of the implementatfi the rules of
DomReachability that are implemented on top of the propagatiready provided
by Gecode The translation of this pseudo-code into the actBetodecode is
straightforward. For instance, the code in Figure 4.6 isatial Gecodecode
associated withcg.out N (i)] > 0 — i € fg.nodes.

IntVar card_tc_i(Ex,0,n);
IntVar int_i(EX,i,i);

BoolVar bool i _a(Ex,0,1);
BoolVar bool_i_b(Ex,0,1);

cardinality (Ex,tcg.outNJ[i],card_tc_i);
rel (Ex, card_tc_i ,IRT_GR,cero,bool i_a);
rel (Ex,int_i ,SRT_SUB, fg.nodes , bool_i_b);
bool imp (Ex, bool i _a,bool i b ,boolOne);

Figure 4.6: ActualGecodecode associated withtcg.outN(i)| > 0 — i €
fg.nodes

Transitive closure of DomReachability (Rules 3.8 and 3.14)
|tcg.outN(i)] >0 — i € fg.nodes 4.1)
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i € fg.nodes — i € tcg.outN (i) (4.2)

Statement 4.1 imposes an implication between the cartir@litcg.out N (i)
being greater than 0 and the presence of riddef g, i.e., a node should be part of
the flow graph in order to reach another one.

Statement 4.2 imposes an implication between the presdncengfg and:
reaching itself. This is because every nodg gireaches itself.

J € teg.out N (i) — teg.out N(j) C teg.out N (i) (4.3)

Statement 4.3 imposes an implication betwéesachingj, andtcg.out N(j)
being a subset afcg.out N (7).

Pruning the upper bound of RN (i) (Rule 3.10)

We first have to ensure that, for every nadbat is already known to belong 1y,
teg.out N (i) gets determined wheirhas no successors:

|fg.outN(i)| =0 < |teg.outN(i)] <1 (4.4)

We also have to ensure that each noedaly reaches itself and the nodes that
its successors reach. The following statement does that:

teg.outN (i) = {i} U U teg.outN(j) (4.5)
JjE€fg.outN (i)

This is all what is needed for pruning a flow graph without egckince the
sets of reached nodes of the leaves get bound because oh&taté.4, and this
information is propagated to the corresponding predecdsstause of Statement
4.5,

However, if f¢g has cyclestcg do not get determined even ffg is already
determined. For instance, suppose that the lower and upperdbof f¢ is the
graph({1,2,3},{(1,2), (2,1)}). The propagators above mentioned will basically
constraintcg.outN (1) to be equal tdcg.outN(2) (andtcg.out N (3) to be{3}).
Additionally, due to Statements 4.1 and 4.2, nodes 1 and &gethe lower bound
of teg.out N (1) andtcg.outN(2). However, no propagator removes 3 from the
upper bound of neitheicg.out N (1) andtcg.out N (2). Updating the upper bound
of tcg and the lower bound afdg is the task of the ad hoc propagator presented in
the following section.

4.4.2 The ad hoc propagator of DomReachability

Figure 4.7 shows the skeleton of tli&ecodeimplementation of the propagate
method of DomReachAdHocPropag.

The first thing to notice is that this propapagator is a prapagon two graph
variables: fg and tcg. DomReachAdHocPropag is awaked wherdomain of
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one of its arguments have changed. As the operations pextbimthe propagate
method are expensive, the highest cost to DomReachAdHpagiis assigned so
that it is scheduled only when all the other propagators he@ehed their fix point.

template <class GD_FG, class GD_TCG>
ExecStatus
DomReachAdHocPropag <... >:: propagate (Spadeome) {

T 1 sk s sk sk sk ook sk sk o ok sk sk ook skosk ok
/Il fg<—>tcg interaction
[ ok ok sk sk sk sk ko o ok ok ok ok sk ok ok sk ok ok

O© O ~NO O WNPF

/I 1. Computing the transitive closure of
10 /1 fg’'s upper bound (TC(fg_max))
11 /[l 2. Pruning tcg’s upper bound based on TC(fg_max)

13
14
15 T 1 sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
16 // fg<—>edg interaction
17 T 1 5 sk ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok
18

19 /I Computing the extended dominator tree
20 /I of fg’s upper bound (EDT(fg_max))

21
22
23 T 1 sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok kR ok
24 /ledg<—>tcg interaction
25 T 1 sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok ok ok
26

27 /1 Pruning tcg’s lower bound based on EDT(fg_max)

30 I/l The propagator is entailed when the flow graph
31 /l is assigned
32 if (this—>fg.assigned())

33 return ES _SUBSUMED,;
34

35 return ES_FIX;

36 }

Figure 4.7: Skeleton of the Ad Hoc propagatoiDm@mReachability
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In the implementation of the propagate method we basicall lthree parts:

e The interaction between the flow graph which consists in tipgahe upper
bound of the transitive with respect to the transitive ciesof the upper
bound of the flow graph.

e The computation of the extended dominator tree of the uppend of the
flow graph. In the computation of this tree we took advantdgbealready
existing implementations of algorithms for computing doators which are
publicly available [WG04, GWTO04].

e The pruning of the lower bound of the transitive closurerigkinto account
the information in the extended dominator tree of the uppgamid of the
flow graph.

Figure 4.5 shows a fragment of the implementation of the ggafe method
of DomReachAdHocPropag. In the implementation of propagat have taken
advantage of the algorithms provided Dye Boost Graph Library (BGLLLS01]
andThe C++ Standard LibranfStr97, Jos99, Eck00, Eck03]. For instance, in line
1, the transitive closure of the upper bound (fg_ub_tc) impated by using the

transitive_closure function provided IBGL.

In order to prune the upper bound of the transitive closwe (ib), we traverse
the list of edges in tcg_ub) and see whether there are edgeshibuld be removed.
An edge is removed from tcg_ub if it is not in fg_ub_tc. The afgdof the upper
bound is optimized by collecting the edges in the list tcg ddita and removing
them in one single operation (line 15).

4.5 Pseudo-optimizing rules by using ad hoc propagators

Let us consider again the imposition of the antisymmetrlati@en presented in
Figure 4.3. Notice that, i is the number of nodes of the upper bound of the
transitive closure graph, we launéhi(n?) sub set propagators. Let us compare this
option with the option of implementing an ad hoc propagatat achieve the same
level of pruning. We show this option in Figure 4.9.

Even though in the second option seems more efficient (wipea& to the
computation time) since there is only one propagator takarg of the filtering, it
performs worse. The reason is that we still need to travéesghole lower bound
even in cases where the size of the delta (i.e., the edged)adgeetty small when
the propagator is activated. Notice that the number of edgise lower bound is
O(n?).

The propagators launched in the first option are constardeeda, after one
of those propagator is awaken it takes constant time to éxeba corresponding
propagate method since it only consist in checking whethelement is in a sét

“We are assuming that there are not holes in the set. In gerleeatomplexity of checking
whether an element is in a set in Gecod®ig:), whereh is the number of holes in the set
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template <class SPACE,class GV1,class GVv2>
class OSPMNBranching :public Branching {
protected:

GVl fg;

GV2 tcg;

GBD xbd;

map<pair<nt ,int >,int> dists;

list <int > pendMandNodes;

OSPMNBranching(Spaee home, bool share, OSPMNBranching& b);
public:

/1l Constructor for creation

OSPMNBranching(Spaee home, GV1 &fg, GV2 &tcg,
map<pair €nt ,int >,int >&
dists , list dnt>& pendMandNodes);

std :: pair ool ,GBD«> getOption(Branchingxb);

/I Perform branching (selects view)

virtual unsigned int branch (void);

/I Return branching description

virtual BranchingDese description oid);

/I Perform commit for alternative a and branching

/I description d

virtual ExecStatus

commit(Space home, unsigned int a, BranchingDese d);

/1l Perform cloning

virtual Actorx copy(Space home, bool share);

Figure 4.8: Definition of the branching implementing the Abgling strategy used
for solving OSPMNinstances

So, when the outgoing set of nodes of a given node is modifigd propagators
are awaken, which leads to an overall complexitygf).

4.6 Implementing user-defined labelling strategies in Ged®

In this section we will explain the labelling strategy usedolve the instance of the
Disjoint Paths Problem reported in [QVDCO06]. As explainadeéction 2.3.3, we
translated the Disjoint Paths instance into a OSPMN ingtaBo, as our aim is to
find a path where the mandatory nodes are visited in the gikeer,cour labelling
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l[ist < pair<int ,int> > tcg_ub_delta;

for (;tcg_Ib ();++tcg_Ib){

int s=tcg_ub.val (). first;

int d=tcg_ub.val ().second;

tcg_ub_delta .push_back (make_pair(d,s));
}

ItValEdges
tcg_ub_delta_it(tcg_ub_delta.begin(),tcg _ub_del¢ad());
GECODE_ME_CHECK{his —>g3. _arcsOut (home,tcg_ub_delta_it));

Figure 4.9: Pseudo-optimizing the imposition of the amtigyetric relation of fig-
ure 4.3

strategy builds the path incrementally starting from therse. At each labeling
step, we choose the node that is closer to the next mandadde/to be reached.
In fact we can think of our heuristic as a kind of A* heuristRNO03].

In Figure 4.8, we show the definition of class OSPMNBranchitige class
implementing the labeling strategy we just described. Aglanplementing a la-
beling strategy irGecodamust be a subclass of the class Branching.

OSPMNBranching has the following attributes:

¢ fg: the view associated with the flow graph.

tcg:the view associated with the transitive closure graph.

bd: a pointer to the descriptor to be considered in the naxineib operation.

dists : the matrix of distances between nodes.

pendMandNodes: the list of pending mandatory nodes. Thedatary
nodes inpend M andN odes appear in the order they should be visited, so
the first node in pendMandNodes is the next mandatory node tedrhed.

A branching also has two constructors: one for launchingbtiamching and
another that it is used when the space has to be copied. Apantthese two
constructors, a branching has the following methods:

e branch computes the information on which the creation ofdcriptor to
be used in the commit operation is based. The descriptor edéfig op-
tions associated with the choice point created when the d¢baparation is
performed. The number options can be zero meaning that rioechoint
should be created.
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e description creates the descriptor taking into accouninfeemation com-
puted by branchbranch

e commit creates the choice point based on the descriptotecrdyy the de-
scription method.

e copy creates a copy of the branching by calling the congirdot cloning.

Descriptors are needed for implementlmgtch recomputatioim Gecodesince
this allows to consider a set of decision at once by applyxegconjunction of the
descriptors associated with each decision. Before exptaiime concept obatch
recompuptationlet us first refer taecomputation

As explained in [Sch00], search demands that nodes of thelstr@e must
possibly be available at a later stage of exploration. Adeangine must take
precaution by either memorizing nodes or by means to reaeisthem. States
are memorized by cloning. Techniques for reconstructientiailing and recom-
putation. While recomputation computes everything fromatab, trailing records
for each state-changing operation the information necgssaindo its effect. The
basic idea of recomputation is to compute a node in the seaggetfrom the root
node of the search tree and a description of the node’sypa@me option to com-
pute such a node is to do it im steps, where: is the length ofp. This basically
means to perform a commit operation per edge iAnother option is to do it all at
once by considering the conjunction of the descriptorsgtbe path. The second
option corresponds to the notion leditch recompuptatiom Gecode

Apart from the methods already introduced, in OSPMNBramghive have the
extra method getOption, which choose the edga which the choice point will
be defined. The first option of the choice point is to inclade the lower bound.
The second one is to excluddrom the upper bound.

The implementation of getOption is shown in Figure 4.11. W& fhitialize
the map of nodes to their out-going degrees in the lower bairite transitive
closure graph. This map is kept in tcg_Ib_od, i.e., tcg_tfipis the number of
out-going edges of node i in the lower bound of the transitlesure graph. Then,
we traverse the list of un-known edges of the flow graph @e&ges that are in the
upper bound but not in the lower bound) in order to pick theeadfose source is
the node that reaches the most nodes and destination is dieettmat is closer to
next mandatory node.

Notice that by choosing the edge whose source is the nodedhehes the
most nodes,i.e., the node with the higher out-degree indwerl bound of the
transitive closure, we incrementally build the path frora fource to the destina-
tion. At the beginning of the search, the source of the edgsenhis the source of
the path §ource(path)) sincesource(path) reaches itself, the mandatory nodes
and the destination node. After choosing the first edge op#th,the source of
the next edge chosen is the successor of source(path)source(path))) since
suc(source(path)) is the node that reaches most nodes. Noticesth@tsource(path))
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reaches all the nodes thaturce(path) reaches exceptingource(path). The sit-
uation will be the same after choosing thg edge of the path, which warranties
that the path is incrementally built from the source to thstidation.

4.7 Contribution to Gecode

We are extending the list of graph propagators alreadyaaiinGecode(CP(Graph))
[DZDDO06] by integrating the implementation @omReachability Documenta-
tion on how to usddomReachabilityand examples reproducing the results pub-
lished in this thesis will be available throu@P (Graph)s web site:

http://cpgraph.info.ucl.ac.be
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1 template <class View0O, class Viewl>
2 ExecStatus
3 DistinctDoit <View0, Viewl >:: propagate (Spagehome) {
/I Testing whether the two sets have been assigned to
/Il the same set
if (x0.assigned()) {
GlIbRanges<View0> xi(x0);
GlbRanges<Viewl> yi(y);
if (lter::Ranges::equal(xi,yi)) feturn ES_FAILED;}
10 else { return ES SUBSUMED; }
11 }
12 [/l Testing whether the cardinality of the two sets is
13 /] already known to be different.
14 if (x0.cardMin()>y.cardMax ()) {return ES SUBSUMED; }
15 if (x0.cardMax()<y.cardMin()) {return ES_SUBSUMED; }
16 [/l Testing whether ~(y \subseteq lub(x)) or
17 Il ~(glb(x) \subseteq vy).
18 /! In both cases the propagator is entailed.
19 GlbRanges<View0> xil(x0);
20 LubRanges<Viewl> yil(y);
21 if (!lter::Ranges::subset(xil,yil))
22 {return ES_SUBSUMED;}
23 LubRanges<View0> xi2(x0);
24 GlbRanges<Viewl> yi2(y);
25 if (!lter::Ranges::subset(yi2,xi2))
26 {return ES_SUBSUMED;}
27 /[l At least one element from X0's upper bound should
28 I/l be removed in order to ensure that the two sets are
29 /I different.
30 if (xO0.lubSize() == y.cardMin() & x0.lubSize () > 0) {

©O© 0o ~NOoO O h

31 GECODE_ME_CHECK(x0 .cardMax (home, x0.lubSize{) 1));
32 return ES_SUBSUMED;
33 }

34 /[l At least one element from X0's upper bound should
35 // be added in order to ensure that the two sets are
36 [/l different.

37 if (x0.9glbSize() == y.cardMin()) {

38 GECODE_ME_CHECK(x0.cardMin (home, x0.glbSize() + 1));
39 return ES SUBSUMED;

40 }

41 return ES_FIX;

42 '}

Figure 4.10: Implementation of method propagate of classtimitDoit
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template <class SPACE,class GV1,class GVv2>
std :: pair ool ,GBD«>
OSPMNBranching<SPACE,GV1,GV2>::getOption (Branchindgp){

/1 Initializing out—going degree for the nodes of the
/1 lower bound of the transitive closure (tcg_Ib_od[i])
/[l — tcg _Ib_od[i] is the outdegre of i in

[l Traversing the list of edges in order to pick best one
BGL_FORALL_EDGES(e, b_fg.UB, GG){

int sid b fg.UB[source(e,b _fg.UB)].id;

int tid b_fg.UB[target(e,b_fg.UB)].id;

/I 1f edge <sid,tid> is an unknown edge:
if (!(b_fg.LB_v[sid] & b_fg.LB_v[tid] &&
edge(b_fg.LB_v[sid],b_fg.LB_v[tid],b_fg.LB).secan){
if (tcg_lb_od[sid]>maxDegree){
bestedge = make_pair(sid,tid);
maxDegree=tcg_Ib_od[sid];
minDist=dists [make_pair(tid ,pendMandNodes . fron)|)
}
else
if (tcg_Ib_od[sid]==maxDegree){
int newMinDist=
dists[make_pair(tid ,pendMandNodes . front ())];
if (minDist>newMinDist){
bestedge = make_pair(sid, tid);
minDist=newMinDist ;
}
}
}
}

if (bestedge == make_pairl,—-1))
return make_pairfalse, (GBDx)NULL);

return make_pairtrue ,new GBD(b, bestedgetrue));

Figure 4.11: Implementation of method getOption of clas®®SIBranching






Chapter 5

Implementing DomReachability
Using Message Passing in Oz

Chapter 5 of [VHO4] presents message passing as a prograrstyle that al-

lows building highly reliable systems. This style of pragraing is based on the
asynchronous communication of independent entities (agehfter extending the
kernel language of Oz [Moz04] and giving the formal semantitthe new con-
cepts introduced, the authors show how the behavior of eaigpendent entity
can be defined by using declarative functions.

In this chapter we will explain how we can implemé&dwmReachabilityusing
a message passing approach on top of the multi-paradigngonoging language
Oz [Moz04]1. As we will show in this chapter, the use of a concurrent laugu
like Oz for implementing global constraints involves theplementation of pro-
cesses that are non-deterministic in general. This makeiagive Concurrency
not suitable for this need. By using the methodology intcztlin [VHO4], we
will show that the definition of the behavior of the agentsoimed in the imple-
mentation of global constraints, and the non-deterministhé communication of
these agents are two orthogonal concerns. This separdiovs dhe behavior of
each agent to be defined in a declarative way.

In the implementation dbomReachabilityve will distinguish two basic com-
ponents: a set of already provided FS/FD propagators andbalgluser defined)
propagator. Here, a global propagator is shown as an aganteads messages
from a stream generated by the graph variable on wbiocmReachabilityis ap-
plied.

We will also present a cheap way of discovering bridges baseBS prun-
ing, and introduce an approach for implementing Batch pyapan using message
passing, which plays an important role in the reduction eftime of execution
thanks to the minimization of the number of activations giexsive propagators.

The results presented in this chapter have been publisH&MB05a].
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5.1 The DomReachability constraint

As we implement the propagator using FS variables, in traptEr we reformulate
the definition of the constraint given in section 2.2.3. Heve define the Dom-
Reachability constraint as follows:

rn(i) = Reach(g, )N\
DomReachability(g, source,rn,cn,be) = Vien. cn(i) = CutNodes(g, source, i)\
be(i) = Bridges(g, source, 1)
(5.1)
Where:

e ¢ is agraph whose set of nodes is a subséY of

e source is a node of.

e rn(i) is the set of nodes thateaches.

e cn(7) is the set of nodes appearing in all paths going frenmarce to i.
e be(i) is the set of edges appearing in all paths going feamce to i.

e Reach Paths CutNodesandBridgesare functions that can be formally de-
fined as follows:

J € Reach(g,1) < 3,.p € Paths(g,1,j) (5.2)

p=(ki,.... k) € nodes(g)" Nky =i Ak =jA

€ Paths(g,i,j) <
P (9,4,9) Vicr<n-(kf,kfi1) € edges(g)

(5.3)

k € CutNodes(g,i,7) < Vpepaths(gij)-k € nodes(p) (5.4)

e € Bridges(9,1,J) < VpePaths(g,ij)-€ € €dges(p) (5.5)

In this chapter cut nodes and bridges will refer to node datonrs and edge
dominators respectively. Notice that the two definitiondDaimReachabilityare
equivalent. Theource of Equation 5.1 is implicit in the flow grapfig of Equation
2.9. Thetcg in equation 2.9 is represented by in Equation 5.1 sincen(q)
corresponds to the outgoing nodesiah tcg. ¢ € cn(j) means(i,j) € edg.
Similarly, e € be(j) means(e, j) € edg.

The reader may think that Equation 2.9 is stronger than kmjuatl because
the former associates an edge with its dominators. Howthistinformation is im-
plicit in Equation 5.1. Notice that, if we want to impose thatle; dominates edge
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(7,k) ((i, (4, k)) € edg), itis enough to to forcé to dominatej (i € en(j)) since
any dominator ofj is also a dominato(j, k). We can drop the same conclusion
with respect to edge dominators.

5.2 The DomReachability propagator

We implement the constraint in Equation 5.1 with the propaga

DomReachability(G, Source, RN,CN, BE) (5.6)

In this propagator we have that:

e (Gis agraph variable [DDD04] whose upper bouneuf(G)) is the greatest
graph to whichG can be instantiated, and lower boundi¢.(G)) is the
smallest graph to whicti’ can be instantiated. Sbe nodes(G) means €
nodes(min(G)) andi ¢ nodes(G) meansi € nodes(max(G)) (the same
applies for edges). In what followd,( N1, E1)# (N2, E2)} will denote a
graph variable whose lower bound(i&7;, F) and upper bound i&Vs, Es).
l.e., if g = (n, e) is the graph tha€&s approximates, the®v; C n C N, and
E1 Q € g EQ.

e Source is an integer representing the source in the graph.

e RN(i) is a Finite Integer Set (FS) [DKFP9] variable associated with the
set of nodes that can be reached from nodehe upper bound of this vari-
able (naz(RN(i))) is the set of nodes that could be reached from node
(i.e., nodes that are not in the upper bound are nodes th&naven to be
unreachable from). The lower boundqin(RN (7))) is the set of nodes
that are known to be reachable from nadén what follows{S;#S5} will
denote a FS variable whose lower bound is thesSsetnd upper bound is the
setsSs.

e C'N(7) is a FS variable associated with the set of nodes that anedied!in
every path going fronbource toi.

e BE(i) is a FS variable associated with the set of edges that anediedl!in
every path going fronbource toi.

5.3 Using Message passing in Oz

We will define the DomReachability propagator using a corentrfunctional lan-
guage, namely the declarative subset of Oz. This languagec@current con-
straint language in the sense of Saraswat [Sar93]. For aynopes, it can be
considered as a functional language that executes contlyraver a constraint
store. The constraint store consists of a conjunction ahipkie constraints. For
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Threads @ @% @P 9
(Propagators)
Y=42

B={0#1}
S={g#{5}}
Store Msgs=inc|inc|dec|stop|_

Z=person(age:Y
sex:w)

p2:proc{s$ S}
{FS.include 2 S}
end

pliproc{$ A}
A>4

end

Variables Procedures

Figure 5.1: The Oz Execution Model (Declarative subset)

Figure 5.2: Architecture of a Graph variable propagator

example, in Figure 5.1 we observe tivas the integer 428 is a Finite Domain(FD)
variable whose domain i, 1}, Sis a FS variable whose lower and upper bounds
are() and {5}, Msgs is a list that is partially determined, ardis a record with
label per son that has two fieldsage whose value is the value of the variabige
andsex whose value isv.

Information can only be added to the constraint store, byell' "bperation,
and never removed. Threads synchronize on informationrbecpavailable in
the store, by an "ask" operation.

In our framework we distinguish three types of propagators:

e Level 1. These propagators are optimizations of propagators gielgrto
the two other levels that are provided by Mozart and impleegtin C++.
A propagator in this level can be considered as a thread thids vor infor-
mation to become available, and then adds new informatian.ekample,
the propagator implementing the constraink: Y reduces the upper bound
of X to 10 when the constraint store knows that Y has upper ¢duin

e Level 2. A propagator in this level can be considered as a set ofderesch
of which executes a recursive function that continuouslytsvar informa-
tion to be added to the store, in order to add other informatiothe store.
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proc {CreateCounter InitState S}
fun {Next State state(val:Val output: Qutput) Mg}
NewQut put
in
Qut put =Val | NewQut put
case Msg of
inc then state(val: Val +1 out put: NewQut put)
[] dec then state(val:Val-1 output: NewQut put)
end
end
proc {ProcessMsgs State=state(val:Val output:Qutput) S}
case S of stop|_ then Qutput=nil
[T Msg|RestS then
{ProcessMsgs {NextState State Msg} RestS}
end
end
in
thread {ProcessMsgs InitState S} end
end
{CreateCounter state(val:0 output: Qutput) Mgs}
Msgs=i nc| i nc| dec| stop| _

Figure 5.3: A thread reading messages from a stream

For instance, in Figure 5.&r eat eCount er creates a thread that reads its
messages from the strea®and updates its state accordingly. This thread
ceases to exist when reading the messagg. Notice that this thread com-
putes a list containing the state values.

e Level 3. Propagators in this level can be seen as agents: activegntith
which one can exchange messages (see chapter 5 of [VHO4]agémt is
supposed to receive messages from different threads, swdbein which
the agent receives the messages is completely indetetiminidis is why
the agent is equipped with a communication channel (porgutdih which
the messages are sent.

The global propagator of the graph variable that we are gtirigtroduce in
the next section is a level 3 propagator. The need of the conimation channel
comes from the fact that the order in which nodes/edges &alirced/excluded
is not known a priori. Our solution is to have a thread per redige watching the
insertion/exclusion of the node/edge. Once the node/esigeciude/exclude the
thread (which we call watcher) sends the corresponding agest® the port. For
instance, the following is the implementation of a node WweatcGr aph. N1.i sl n
is 1/0 if N1 is/is not in the graph. Once it is known thétt is/is not in the graph the
watcher sends the messagec| udeNode( N1) /excl udeNode( N1) to the mes-
sage processor.
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S:=SS Sequence
| X =f(l1:Y1...0,:Ys) | Value
| X =<number- | X =<atonm>
|local X;...X,inSend| X =Y Variable
|proc{X Y;...Y,} Send|{X Y;...Y,} Procedure
| if X then S elseS end Conditional
| thread S end Thread

Table 5.1: The Oz declarative kernel language.

t hr ead
if Graph.NL.isln==1 then {Send MsgProcessor includeNode(N1)}
el se {Send MsgProcessor excludeNode(Nl)} end

end

The interaction between the watchers and the message pooc#she graph vari-
able is shown in Figure 5.2. Notice that in this figure ther@nsdditional compo-
nent that we are going to introduce in section 5.4.3.

Each of the pruning rules of Chapter 3.2 can be implementedpmepagator
using this computation model.

The declarative language we introduce here is based ondums seman-
tically a procedure is similar to a process in a process tacurhis is because
procedures can create threads and a thread can exist itelgfas a running en-
tity if it is implementing a propagator. We can still congidlee language to be
declarative, however, because it is confluent (see chaptef [vH04]). Because
of the monotonicity of the store, the concurrency execuiesrestricted form that
is deterministic and has no race conditions. This is cleexfglained in chapter 4
of [VHO4].

All Oz execution can be defined in terms of a kernel languageseisemantics
are given in chapter 13 of [VHO4]. We will just refer to the twative part of it.

Table 5.1 defines the abstract syntax of a staterientthe declarative subset
of the Oz kernel language. Statement sequences are redegeensally inside
a thread. All variables are logic variables, declared in gplieit scope defined
by the local statement. Values (records, numbers, etc.jnaduced explicitly
and can be equated to variables. Procedures are definedtahruwith thepr oc
statement and referred to by a variable. Procedure applisablock until the first
argument references a procedure name. ifthatatement defines a conditional
that blocks until its condition isr ue or f al se in the variable store. Threads are
created explicitly with the hr ead statement. Each thread has a unique identifier
that is used for thread-related operations.

In the following section, we are going to be using a bit of sgtit sugar to
make programs easier to read. We will do so by considering tha
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° proc {...} ... in ... end
is equivalent to
proc {...} local ... in ... end end

° fun {F V1 V2 ... Vn} <Stnr <Exp> end
is equivalent to

proc {FV1LV2 ... V\n R ... <Stnm R=<Exp> end
where<Exp> is an expression representing a value a8dn® is any state-
ment.
° fun {...} ... in ... end

is equivalent to

fun {...} local ... in ... end end

Procedures are values in Oz. This means that a variable mayplwea to a
procedure. In particular, we have that

proc {X V1...Vn}... end

is equivalent to
X=proc {$ Vi...Vn}... end

where the RHS is a procedure value.

5.4 Implementation of DomReachability

5.4.1 Implementing CP(Graph) using message passing

In [QVDO5b], we re-implemented part of CP(Graph) using a 8ége Passing
approach, for implementinpomReachabilitypropagator. We focussed on graph
variables and provided the following implementation of the first kernel con-
straints:

e {GincN(N) } resultsinNodes(G,SN) AN € SN
e {G exN(N)} results inNodes(G,SN) AN ¢ SN
e {GincE(E)} resultsinEdges(G,SE) A\ E € SE
e {G exE(E)} results inEdges(G,SE)\NE ¢ SE

e {GisN(N B)} results inNodes(G,SN) A (B = true vV B = false) A
(N € SN < B = true)

e {G isE(E B)} resultsinEdges(G,SE)A\(B = trueVB = false)\(E €
SE < B = true)
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Additionally, in our implementation; G st rean( $) } is the stream that con-
tains the messages associated with the constraints trebkan imposed o&a So,
if we have imposed the constraints:

{GincN(1)} {GincN(2)} {GexE(1#2)} {GincE(2#1)} {G exN(3)}
the partial value o8 would be:
incN(1)|incN(2)|exE(1#2)|incE(2#1) | exN(3)| _

5.4.2 Pruning of DomReachability

proc {DonReachability G Source RN CN BE}

proc {Creat ed obal Propagat or G Source RN CN BE}
fun {Next State state(graph: G Mg}

end
proc {ProcessMsgs state(graph: G Streant
case Stream of
det ermi ned| _ then
%% End of nessage processing
[T Msg| Rest Stream t hen
{ProcessMsgs
{Next State state(graph: @ Mg}
Rest St r eant
end
end
in
t hr ead
{ProcessMsgs
st at e( gr aph: { MakeConpl et eG aph NuniNodes})
{G strean($)}}
end
end
in
for I in 1..NumNodes do
%% Unary propagators

for J in 1..NunNodes do
%% Bi nary propagators

end
end
{Creat ed obal Propagat or G Source RN CN BE}
end

Figure 5.4: Skeleton of DomReachability
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The skeleton of the implementation BlomReachabilityis shown in Figure
5.4. In the implementation dbomReachabilitythere are two basic components:
a set of already provided FS/FD propagators and a globat lesmed) propaga-
tor. In this section, we will elaborate on the different pagptors that constitute
DomReachabilitypy referring to the pruning rules that they implement.

Notice thatCr eat ed obal Propagat or creates an agent whose behavior is
defined by the functiomlext St at e. The agent ceases to exist when encountering
the messagdet er ni ned in the streamdet er ni ned signals the determination
of the graph variableG is determined when its lower bound is equal to its upper
bound (i.esin(G) = maz(G)). The determination off implies that no message
comes aftedet er mi ned.

Transitive closure of DomReachability (Rules 3.8 and 3.14)

For every potential node | of G
[«1x/{FD.impl ({FS.card RN.1} > 0) {GisN(Il $)} 1}
[«2+[{FD.impl {GisN(I $)} {FS.reified.isln |l RN.1} 1}

Statement 1 imposes an implication between the cardinafitgN. | being
greater than 0 and the presence af G. |.e., a node should be part of the graph in
order to reach another one.

Statement 2 imposes an implication between the presencen@andl reach-
ing itself. This is because every node@feaches itself.

| *3%] Ss={ G sucs(9)}

For every potential pair of nodes <I,J> of G
[*4x[{FD.inmpl {FS.reified.isln J Ss.I} {ReifiedSubSet RN.J RN. I}
1}

Ss. | is the set of successorslofAs these variables are already present in the
implementation of graph variables, we simply make the epoading associations
between those variables a8sl(Statement 3).

Statement 4 imposes an implication betwadrmeing inSs. | andRN. J being
a subset oRN. | .

Pruning the upper bound of RN (i) (Rule 3.10)

We first have to ensure that, for evaryhat is already known to belong @ RN. |
gets determined whenhas no successors:

For every potential node | of G

[ 5%/ {FD. i npl
({FS.card RN.1} >: 0)
{FD.inmpl ({FS.card Ss.I} = 0) ({FS.card RN.1} = 1)}
1}

We also have to ensure thabnly reaches itself and the nodes that its succes-
sors reach. The following statement does that:
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/+6%/1 oca
fun {Accumul ate Sets J}
if I\=J then S={FS.var.decl} in
/ =8/ {Sel ect
{G islnEdge(l#J $)}
RN. J
FS. val ue. enpty
S}
S| Set s
el se Sets end
end
[ *7+/ SucSet s={ Fol dL Nodesl ds Accurul ate nil}
/ * 9%/ ReachedNodes={ FS. uni onN {FS. val ue. si ngl 1}| SucSet s}
in
[ *10+/ { Sel ect
({FS.card RN.1} >: 0)
ReachedNodes
FS. val ue. enpty
RN. |}
end

SucSet s, defined in Statement 7, is bound to the sets of nodes reaghtbe b
successor. As we may not know a priori whethieis going to be successor of
I, the corresponding s& is a set that is either the empty set (in cdsis not a
successor) oRN. J. This relation is imposed by the applicationS#l ect :
proc {Select Cond S1 S2 S3}

{FS. subset S3 {FS.union S1 S2}}

{FS. subset {FS.intersect S1 S2} S3}

t hr ead

or Cond=1 S3=S1 [] Cond=0 S3=S2 end

end

end

Depending orCond, Sel ect bindsS3 to S1 or S2. Moreover, ass3 is either
S1 orS2, Sel ect constrainss3 to have only the elements thét andS2 have and
to include the elements thal andS2 have in common.

Statement 10 is the one that actually constra&Ns| to be the set contain-
ing | and the nodes reached by the successots Biowever, this is done on the
condition thatl is a node oflG(i.e.,({FS.card RN.1} > 0)).

This is all what is needed for pruning a graph without cyclesesthe sets of
reached nodes of the leaves get bound because of Stateraedtthjs information
is propagated to the corresponding predecessor becausat@ignt 10.

However, if G has cycles, the reached nodes sets do not get determined even
if Gis already determined. For instance, suppose that the lameéupper bound
of Gisgraph(1:[2] 2:[1] 3:nil). The propagators above mentioned will
basically constraifiRN. 1 to be equal ta&rN. 2 (andRN. 3 to be{3}). Additionally,
due to Statement 1 and 2, nodes 1 and 2 get into the lower bduRd. @ and
RN. 2. However, no propagator removes 3 from the upper bound ¢fiereRN. 1
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NOrRN. 2.
The upper bound of each reached nodes set is updated inrisgitna function
of the global propagator domReachability

fun {Next State state(graph: G Mg}
case Msg of exE(NL1#N2) then
/ *11x/ NewG={ RenoveEdge G N1#N2}
in
[*12+/ {FS. subset RN. N1 {FS. val ue. make {DFS.reach N1 NewG} }}
[ *13+/ { Updat eCut Nodes CN Source NewG
[ *14+] { Updat eBri dges BE Source NewG
stat e(graph: NewGQ
el se
stat e(graph: G
end
end

The internal state of the global propagator is the upper tafid-. Each time
an edge is removed, this upper bound is updated (Statemgrantilso are the
upper bounds of the reached nodes sets affected (StateRjentidtice that it is
enough to update the reached nodes set of the origin of tleeredypvedi1) since
the rest will be done by Statement 10. Notice tRit N1 is updated by imposing
thatRN. N1 is a subset of the nodes reached\ayin the upper bound.

Discovering cut nodes

We have to start by keeping track of the cut nodes betweendiee and each
other nodeN. 1 ). As the set of cut nodes may change when an edge is removed,
we updateEN. | each time an edge removal takes place by invokingat eCut Nodes
(Statement 13). Notice that, in this statement, we are ¢pgame of Rule 3.1%.
/ +15%/ { FD. i npl

{FS.reified.isln | RN Source}

{Rei fiedSubSet CN.I RN. Source}

1}

/+16%/ { FD. i npl
{FS.reified.isln J RN. I}
{GisNJ $)}
1}

In order to perform the pruning of rules derived from 2.16. iipose an impli-
cation between belonging taRN. Sour ce andCN. | being a subset &N. Sour ce
(Statement 15), and betweérbelonging toRN. I andJ belonging to the nodes of
G(Statement 16). In fact, this last statement also takesrtirenm performed when
we take into account that nodes dominatators are nodes ébthgraph. An ex-
ample illustrating the pruning performed by these statémienshown in Figure

2\We present the algorithms that we use for computing cut nadé$ridges in [QVDO5b]. These
algorithms are based on DFS [QVDO05b].
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5.5. In this example we impose the constraint that node lldheach node 9. As
5is a cutnode between 1 and 9, 5 is include® and forced to reach 9. Addition-
ally, 1 is constrained to reach 5.

- -
13\\ /é\ @
- P <1,9>eEdges(TC
@ -3 T D ‘,@w\ S
~ y \‘/ P v Node Dominator
A 1% Pruni \/
\4-:\/ \§ rllHng \4—;\/
Edges(Min(TC)):=Edges(Min(TC)ju/t 1 1
g ): g < (5'9>

Figure 5.5: Discovering cut nodes

Discovering bridges

As in the previous cas®E. | is updated each time an edge removal takes place by
invoking Updat eBr i dges (Statement 14).
[ %17+ { FD. i npl

{FS.reified.isln | RN Source}

{Rei fi edEdgesl nGraph BE.| G

1}

We impose an implication betweeérbelonging toRN. Sour ce and the bridges
betweerSour ce andl belonging to the edges af(Statement 17). This statement
takes into account the fact the edge dominators are edgée dlfoiv graph. An
example illustrating the pruning performed by this statetme shown in Figure
5.6. In this example we impose the constraint that node lldheach node 5.
This constraint is enough to determine the only path betviesmd 5.

G P00 nsmery 0000

L= ====__ EdgeDominator L — = = = = = = _ _
Pruning

Edges(Min(TC)):=Edges(Min(TC))u| 32

Figure 5.6: Discovering bridges

5.4.3 Batch propagation

In the previous implementation, we compute cut nodes ardfjesi each time an
edge is removed. This certainly leads to a considerably amoiuunnecessary



5.4. Implementation oDbomReachability 91

incN(nl)lexE(el)llincE(e2)lexE(e3)lexE(e4)l_ Batch Builder | batch(incN:[n1] incE:[e2] exN:nil exE:[el e3 e4])l_

Figure 5.7: Building batches

— w| BERND | » s - -

Figure 5.8: Simple Bridge Discovering

computation since the set of cut nodes/bridges evolves tapiwally. Another

approach is to consider all the removals at once and makeamputation of cut
nodes and bridges per set of edges removed. This optinmizedio be implemented
by adding a concurrent process to the implementation ofrgvapables. The task
of this process is to batch together the messages accoddihgit types (as shown
in Figure 5.7). In this way, the transition function of theolgal propagator of
DomReachabilitwill consider all the edges that have been removed at once:

fun {NextState state(graph: G batch(exE:Es ...)}
if Es==nil then state(graph: Qg
el se
NewG={ RenoveEdges Es G
in
{Updat eRNs Es NewG
{Updat eCut Nodes CN Source NewG}
{Updat eBri dges BE Source NewG
st at e( gr aph: NewQ
end
end

In fact, this transition function is very similar to the prews one. The only
different thing is thaNewGis considering all the nodes that have been removed.

Statement 6 is a cheap way of computing bridges when ther ¢gcie. No-
tice that, in the situation of Figure 5.8, the pruning perfed by Statement 6 is
enough for discovering the bridges between node 1 and nodddivever, the
global propagator also discovers this information. Thepini having this redun-
dancy in propagation is that, thanks to the fact that the esige propagator works
on batches, there are cases where the expensive compuifbadges is not ac-
tivated. Suppose, for instance, that discovering the bri@g4) raises a failure
because 4 is not reached by 2. This failure is discovered dgtleap propagator
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Propagator 1

Graph Var batch(incN:[n1] incE:[e2] exN:nil exE:[el e3 ed])_ Propagator 2

Propagator 3

Figure 5.9: Three Propagators sharing the events streahe @raph variable on
which they have been imposed

and the expensive one is not activated.

5.5 Using DomReachability with MaxReachability

The approach we have presented here lets us connect seagators imposed
on the same variable by letting the propagators share thdsesgeam associated
with the graph variable.

In Figure 5.9 we show three propagators sharing the streangi@ph variable.
As soon as a batch of events is available in the stream, eaplagator reads this
batch independently and reacts accordingly.

In this section, we will conside¥! ax Reachability( f g, max): another propa-
gator on graph variables that is basically a reformulatammtbp of CP(Graph)) of
the propagator presented in [QGVO03J ax Reachability(g, source, max) states
that each node of should be reachable fromvurce through a path of at most
max cost. The constraint implemented by this propagator caiedlly defined
as follows:

Mazx Reachability(g, source, max) <

Vi € nodes(g),3p € Path(g, source,i) : Weight(p) < max ®-7)

Where:

e ¢ is adirected graph whose edges are associated with pasit@ger costs.

e max IS the upper bound of the weight of the lightest path from nod=
dest, for every node of g.

e Weight(p) is the weight of path.
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G G
() 0
5
10 2 2
4 Y
(2) () — )
4 DomReachability(G,1,RN,CN,BE)
2 N / 3 MaxReachability(G,1,6) 3
N : ¥ 4 € RN(1) :

Figure 5.10: Pruning caused by the interaction betwBemReachabilityand
MaxReachability

The propagatoM ax Reachability(G, Source, M ax) implementdMaxReach-
ability. In the implementation we assume tiaturce and M az are fixed values.
Notice that achieving bound consistency is polynomialeite information in the
lower bound ofG does not actually matter. Indeed, the presence of an ingpmin
edgee of a nodei in the lower bound ofy does not mean thatis in the shortest
path fromSource to i. So, in order to check the consistency of the constraint, we
only need to care about the information in upper bound, alewe need to do is
to find,for every node, the shortest path in the upper bouddcheck whether the
cost of that shortest path is not greater tidnz.

In Figure 5.10 we show an example of the pruning that can bairodad by the
interaction betwee®omReachabilittandMaxReachability As explained before,
dashed edges represent edges that are in the upper bourel grfafh variables
but not in the lower bound, i.e., edges for which we do not kmdvether they are
part of the graph denoted by the graph variable. By impogiegbnstraint that all
nodes should be reachable from 1 with a cost of at modf 6 Reachability(G, 1,6)),
we discard node 2 from the set of nodes since the cheapestfwaytiog to 2 has
cost 10. As node 4 should be reachable from 1, the removal @é 2dfrom the
upper bound ot causes the determination of the only path to 4.

In Figure 5.11 we show the stream of batches of events thalisefsom the
interaction betwee®omReachabilitytandMaxReachability The first batch:

batch(incN:nil incEnil exN [2] exE [<1, 2> <2,4>])
is the result of the pruning dflaxReachability WhenDomReachabilityeads this
batch it performs the pruning summarized in the second batch
bat ch(incN:ni| incE [<1,3> <3,4>] exN:nil exEnil)
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DomReachability

batch(incN:mil incE:nil exN:[2] exE:[<1,2>,<2.4>])l
batch(incN:nil incE:[<1,3>,<3,4>] exN:nil exE:nil)l_

MaxReachability

Figure 5.11: Stream summarizing the prunindgpoimReachabilitandMaxReach-
ability




Chapter 6

Solving the Simple Path with
Mandatory Nodes Problem with
DomReachability

In this chapter we present a set of experiments that shovDiiaReachabilitys
suitable for solving the Simple path with mandatory nodedbjam [Sel02, CB04].
This problem consists in finding a simple path in a directegpfgrcontaining a set
of mandatory nodes. A simple path is a path where each nodsitisdvonly once.
Certainly, this problem can be trivially solved if the grapas no cycle, since in
that case there is only one order in which we can visit the ratomg nodes [Sel02].
However, the presence of cycles makes the problem NP-cten@imce we can
easily reduce the Hamiltonian path problem [GJ79, CLR9®hi® problem.

Note that we can not trivially reduce Simple path with mandatnodes to
Hamiltonian path. One could think that optional nodes (isatiat are not manda-
tory) can be eliminated in favor of new edges as a prepraugssep, which finds
a path between each pair of mandatory nodes. However, the {eit are precom-
puted may share nodes. This may lead to violations of thenegent that a node
should be visited at most once.

Figure 6.1 illustrates this situation. Mandatory nodes drevn with solid
lines. In the second graph we have eliminated the optiondésidy connecting
each pair of mandatory nodes depending on whether thereaithdoptween them.
We observe that the second graph has a simple path going foole h to node
4 (visiting all the mandatory nodes) while the first one does rTherefore the
simple path in the second graph is not a valid solution to tiggral problem since
it requires node 3 to be visited twice. Note that the Simpté paoblem with only
one mandatory node, which is equivalent to the 2-Disjoirthgpa@roblem [SP78],
is still NP-complete.

In general, we can say that the set of optional nodes that eamséd when
going from a mandatory node to a mandatory nodé depends on the path that
has been traversed before reachingThis is because the optional nodes used in

95
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o b oo

Figure 6.1: Relaxing Simple path with mandatory nodes byiekting the op-
tional nodes

the path going from the source doccan not be used in the path going franto b.

From our experimental measurements, we observe that ttadbtity of Dom-
Reachabilityfor dealing with Simple path with mandatory nodes reliestmnfol-
lowing aspects:

e The strong pruning thddomReachabilityperforms. Due to the computation
of dominators,DomReachabilityis able to discover non-viable successors
early on.

e The information thaDomReachabilityprovides for implementing smatrt la-
beling strategies. DomReachabilityassociates each node with the set of
nodes that it reaches. This information can be used to ghiglesdarch in
a smart way. The strategy we used in our experiments tendsimine the
use of optional nodes.

An additional feature oDomReachabilityis its suitability for dealing with
a problem that we call the Ordered simple path with mandatoges problem
(OSPMN) where ordering constraints among mandatory naggsgosed, which
is @ common issue in routing problems. Taking into accouatt anode reaches
a nodej if there is a path going from nodeo nodej, one way of forcing a nodée
to be visited before a nodgis by imposing that reacheg and;j does not reach
The latter is equivalent to imposing thiait an ancestor of in the extended domi-
nator tree of the path. Our experiments show amReachabilityakes the most
advantage of this information to avoid branches in the $eiee with no solution

6.1 Related work

The cycle constraint of CHIP [BC94, Bou98jcle(N, [Si,...,S,]) models the
problem of findingN distinct circuits in a directed graph in such a way that each
node is visited exactly once. Certainly, Hamiltonian Patin ©e implemented
using this constraint. In fact, [Bou99] shows how this comist can be used to
deal with the Euler knight problem (which is an applicatidrHamiltonian Path).
Optional nodes can be modelled by putting each optional gparsite elementary
cycle. However, this constraint is not implemented in teahdominators.
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Sellmann [Sel02] suggests some algorithms for discovemagdatory nodes
and non-viable edges in directed acyclic graphs. Theseitdgws are extended by
[CBO04] in order to address directed graphs in general wighribtion of strongly
connected components and condensed graphs. Nevertlggkgsss similar to our
third benchmark (see Figure 6.6) represent tough scerfaridisis approach since
almost all the nodes are in the same strongly connected amenpo

CP(Graph) introduces a new computation domain focussedaphg includ-
ing a new type of variable, graph domain variables, as wealbastraints over these
variables and their propagators [DDD04, DDDO05b, Doo06](@&®@ph) also intro-
duces node variables and edge variables, and is integratiedhe finite domain
and finite set computation domain. Consistency technigage heen developed,
graph constraints have been built over the kernel conséraimd global constraints
have been proposed. One of those global constraititgais(p, s, d, maxlength).
This constraint is satisfied jf is a simple path frons to d of length at most
mazxlength. Certainly, Simple path with mandatory nodes can be impigatke
in terms ofPath However, the filtering algorithm dPathdoes not compute domi-
nators, which makeBathalso sensible to cases like SPMN_52a.

In [BFLOG6], the authors introduc@ree a global constrain for dealing with di-
rected graph partitioning. This constraints allows to nipdecedence constraints,
incomparability constraints and degree constrai@®SPMNcan be certainly mod-
eled in terms offreg as pointed out in [BFL06]. We will elaborate on this partic-
ular approach in section 6.6.

Dominators are commonly used in compilers for dataflow aiglJAU77].
Dominance constraints also appear in natural languageegsot, for building
semantic trees from partial information. However, thee ot approaches using
dominators for implementing filtering algorithms. Evenulgb the information it
provides is extremely useful, and can be computed effigientl

6.2 SolvingSimple path with mandatory nodes with Dom-
Reachability

As explained before, a simple path is a path where each nodsitisd once, i.e.,
given a directed graph, a source nodarc, a destination nodést, and a set of
mandatory nodeswandnodes, we want to find a path ig from src to dst, going
throughmandnodes and visiting each node only once.

The contribution oDomReachabilityconsists in discovering nodes/edges that
are part of the path early on. This information is obtaineddayputing dominators
in each labeling step. Let us consider the following two sase

YIn Figures 6.2 and 6.3, nodes and edges that belong to the lowend of the graph vari-
able are in solid line. For instance, the graph variable am I#ft side of Figure 6.2 is a
graph variable whose lower bound is the gragl, 5}, ¢), and whose upper bound is the graph
({1,2,3,4,5,6,7,8,9},{(1,2), (1, 3),(1,4), (2,5), (3,5), (4, 5), (5,6), (5,7), (5,8), (6, 9),

(7,9), (8,9)}).
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Figure 6.2: Discovering node dominators

r,@_ _>@_ ,@_ .@_ -0 <1,5>eEdges(1;c:) 7-@—>@—>@—>@—>@

|
J::::::,,J Edge Dominator LD == === _ _ 1

(1,2),(1,3),(1,4)
(2,2),(2,3),(2,4),(2,5)
(3,3),(3,4),(3,5)
(4,4),(4,5)

Edges(Min(TC)):=Edges(Min(TC))u

Figure 6.3: Discovering edge dominator

e Consider the graph variable on the left of Figure 6.2. Asstimaé node 1
reaches node 9. This information is enough to infer that fodelongs to
the graph, node 1 reaches node 5, and node 5 reaches node 9.

e Consider the graph variable on the left of Figure 6.3. Asstina¢ node
1 reaches node 5. This information is enough to infer thaeedy, 2),
(2,3),(3,4) and (4,5) are in the graph, which implies that node 1 reaches
nodes 1,2,3,4,5, node 2 at least reaches nodes 2,3,4,53 mbtEast reaches
nodes 3,4,5 and node 4 at least reaches nodes 4,5.

Note that the Hamiltonian path problem (finding a simple gaghween two
nodes containing all the nodes of the graph [GJ79, CLR90}) mreduced to
Simple path with mandatory nodes by defining the set of mangatodes as
Nodes(g) \ {src,dst}.

The above definition of Simple path with mandatory nodes cafobmally
defined as follows.

p € Paths(g, sre, dst)
SPMN (g, sre,dst, mandnodes,p) < < NoCycle(p) (6.1)
mandnodes C Nodes(p)

SPM N stands for “Simple path with mandatory node®’oCycle(p) states that
p is a simple path, i.e., a path where no node is visited twidas @efinition of
Simple path with mandatory nodes implies the following

DomReachability(p, edg, tc) A (Source(p),dst) € Edges(tc) A

mandnodes C {i | (Source(p),i) € Edges(tc)} ©-2)
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This is because the destination is reached by the sourcehandath contains
the mandatory nodes. This derived property and the factwiatan implement
SPMN in terms of theAllDiff constraint [Rég94] and thBoCycle constraint
[CL97] suggest the two approaches for Simple path with mammgaodes summa-
rized in Table 6.1 (which are compared in the next sectiomthé first approach,
we basically considelIDiff andNoCycle In the second approach we additionally
considerDomReachability

Approach 1
SPMN (g, sre,dst, mandnodes, p)

Approach 2

SPMN (g, sre,dst, mandnodes, p)
DomReachability(p, edg, tc)

(Source(p), dst) € Edges(tc)

mandnodes C {i | (Source(p),i) € Edges(tc)}

Table 6.1: Two approaches for solving Simple path with méganodes

6.3 Experimental results with the implementation of Dom-
Reachability in Oz

In this section we present a set of experiments that showDibatReachabilityis
suitable for Simple path with mandatory nodes. The exparisieave been carried
out with the implementation of DomReachability done in Oz Will repeat these
experiments with th&ecode(CP(Graph))mplementation in section 6.7.

In our experimentg\pproach 2(in Table 6.1) outperformépproach 1 These
experiments also show that Simple path with mandatory ntatess to be harder
when the number of optional nodes increases if they are nmijodistributed in
the graph. We have also observed that the labeling strategyme implemented
with DomReachabilitytends to minimize the use of optional nodes (which is a
common need when the resources are limited).

In Table 6.2, we define the instances on which we made thede$tables 6.4
and 6.5. The node id of the destination is also the size of thphg The column
Order is true for the instances whose mandatory nodes aitedvis the order
given. Notice that SPMN_520rder_b has no solution. The timasurements are
given in seconds. The number of failures means the numbeiiletifalternatives
tried before getting the solution.

We have made four types of tests in our experiments: uSiRYIN with-
out DomReachability(column “SPMN”), usingSPMNand DomReachabilitybut
without considering the dominance graph (column “SPMN+R&ngSPMNand
DomReachabilityvith the dominance graph (column “SPMN+R+ND”), and using
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‘ Name ‘ Figure ‘ Source ‘ Destination ‘ Mand. Nodes ‘ Order ‘
SPMN_22 6.4 1 22 4710161821 false
SPMN_22full 6.5 1 22 all false
SPMN_52a 6.6 1 52 1113243945 false
SPMN_52b 6.6 1 52 45713161922 false

24 29 33 36 39 44 45 49

SPMN_52full 6.7 1 52 all false
SPMN_520rder_a| 6.6 1 52 4539241311 true
SPMN_520rder_b| 6.6 1 52 1113243945 true

Table 6.2: Simple path with mandatory nodes instances

Opt. Nodes Failures Time
5 30 89
10 42 129
15 158 514
20 210 693
25 330 1152
32 101 399
37 100 402
42 731 3518
47 598 3046

Table 6.3: Performance with respect to optional nodes

\ 5 ‘\\AIS
2 * 9 12
iy, 40
3 (10 13 20
? 17
(4) 11 14 21)

&

19

Figure 6.4: SPMN_22:A path from 1 to 22 visiting 4 7 10 16 18 21

SPMNandDomReachabilityvith the dominance graph of the extended flow graph
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Figure 6.5: SPMN_22full:A path from 1 to 22 visiting all thedes
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Figure 6.6: SPMN_52a:A path from 1 to 52 visiting 11 13 24 39 45
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Figure 6.7: SPMN_52full:A path from 1 to 52 visiting all thedes

(node+edge dominators (column “SPMN+R+ND+ED")).
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Problem SPMN SPMN+R

Instance ‘ Figure Failures ‘ Time Failures ‘ Time
SPMN_22 6.4 +130000 | +1800 | 91 6.81
SPMN_22full 6.5 213 1.44 19 0.95
SPMN_52b _ _ _ +900 +1800
SPMN_52full 6.7 3012 143 774 765
SPMN_520rder_a| 6.6 +12000 +1800 51 46.33
SPMN_520rder_b| _ +12000 +1800 +1500 +1800

Table 6.4: Simple path with mandatory nodes tests (not ugamginators)

Problem SPMN+R+ND SPMN+R+ND+ED
Instance ‘ Figure Failures ‘ Time Failures Time
SPMN_22 6.4 40 6.55 13 4.45
SPMN_22full 6.5 0 0.42 0 1.22
SPMN_52b _ +700 +1800 100 402
SPMN_52full 6.7 3 8.51 3 45.03
SPMN_520rder_a| 6.6 45 81 16 57.07
SPMN_520rder_b| _ 81 157 41 117

Table 6.5: Simple path with mandatory nodes tests (usingrators)

As it can be observed in Table 6.4, we were not able to get ai@oldor
SPMN_22 in less than 30 minutes without usiigmReachability However, even
though the number of failures is still inferior, the use@dmReachabilitydoes
not save too much time when dealing with mandatory nodes ohhis is due
to the fact that we are basing our implementationrS®fMNon two things: the
AlIDiff constraint [Rég94] (that lets us efficiently remove brascivben there is
no possibility of associating different successors to thdes) and théNoCycle
constraint [CL97] (that avoids re-visiting nodes).

The reason whysPMNdoes not perform well with optional nodes is because
we are no longer able to impose the gloBaDiff constraint on the successors of
the nodes since we do not know a priori which nodes are goihg tesed. In fact,
one thing that we observed is that the problem tends to beeh&wdsolve when
the number of optional nodes increases. In Table 6.3, alietis were performed
usingDomReachabilityon the graph of 52 nodes.

Even though, in SPMN_22, the benefit caused by the compntaticedge
dominators is not that significant, we were not able to otaaalution for SPMN_52b
in less than 30 minutes, while we obtained a solution in 4@®sds by comput-
ing edge dominators. So, the computation of edge dominatys off in most of
the cases, but node dominators should be computed in orgepfib from edge
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dominators.

6.4 Labeling strategy

DomReachabilityprovides interesting information for implementing smaliéling
strategies, due to the fact that it associates each nodeheitbet of nodes that it
reaches. This information can be used to guide the searctsinaat way. For
instance, we observed that, when choosing first the rndbat reaches the most
nodes and selecting as a successarfowét a node thai reaches, we obtain paths
that minimize the use of optional nodes (as it can be obseénvEijure 6.6).

Nevertheless, in order to reduce the number of failures iirfjpthe solution
of Figure 6.9 (which was solved in around two hours with léest100 failures),
we favored the nodes that were closer to the mandatory noee# the successors
of the chosen node are not mandatory the chosen succedseisd closest to the
next mandatory node. In fact we can think of our heuristic ks of A* heuristic
[RNO3].

6.5 Imposing order on nodes

An additional feature oDomReachabilitys its suitability for imposing ordering
constraints on nodes (which is a common issue in routinglenod). In fact, it
might be the case that we have to visit the nodes of the graplparticular (par-
tial) order. We call this version the “Ordered simple pattthwhandatory nodes
problem” (OSPMN)

Our way of forcing a node to be visited before a nodgis by imposing that
i reachesj andj does not reach. The tests on the instances SPMN_520rder_a
and SPMN_520rder_b show thBbmReachabilititakes the most advantage of
this information to avoid branches in the search tree witlsolation. Notice that
we are able to solve SPMN_520rder_a (which is an extensi@P&iN_52a) in
57.07 seconds. We are also able to detect the inconsistéi8yMN_520rder_b
in 117 seconds.

Notice that an alternative implementation for ordering stogints is to do it
in terms of the extended dominator graph. As the resultiraplyiis a path, we
have that: dominates;j if and only if i is reached beforg. Nevertheless, this is
only true if j is reached from the source since, by definition, unreachaddes are
dominated any node.

6.6 Modeling OSPMN with the Tree constraint

In [BFLO6], the authors introduc@ree a global constrain for dealing with di-
rected graph partitioning. This constraints allows to nigadecedence constraints,
incomparability constraints and degree constraints.
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6.6.1 Definition of the Tree constraint

Tree(ntree, nprop,ver) holds if g, the graph represented byr, is a forest (a
disjoint union of trees) havingtree trees, of whichnprop are proper trees, i.e.,
trees with at least two nodes.

ver is a collection of nodes. Each nodds associated with the following
attributes:

e Listhe label ofi, i.e.,ver|[i].L isi.

F'is the label of the father ofin the tree containing, i.e., if ver[i].F' = j
then(j,i) € Edges(g) and there is n& # j such thatk, i) € Edges(g) °.

P is the set of mandatory predecessors @k., for every nodg € ver[i].P,
there is a unique simple path frofmo ¢ in g.

I is the set of incomparable nodesipf.e., for every nodg € ver[i].I there
is a path ing neither fromi to j nor fromj to i.

e D is the number of outgoing edgesiah g.

Due to the fact thay is a forest, precedence means domination. gifecedes
j, i is a dominator ofj with respect tor, the root of the tree containingand ;.
Indeed, as there is only one path fromo j, ¢ trivially fulfills the condition of
being in all the paths fromto ;.

Lorca et al make special emphasis in avoiding redundantrirdtion in their
data structures. For the case of the precedence relateyninternally keep a graph
which represents the precedence relations among nodes s\Miiew precedence
edge is inferred during propagation, they first check whetive edge can not be
computed from the edges that are already in the precedeapé before adding it
to the graph. The invariant they keep is that the whole setexdfgalence relations
is the transitive closure of the graph kept.

6.6.2 Modeling OSPMN

OSPMNcan be easily modeled in terms @f-ee by stating that the mandatory
nodes precede the destination, and are preceded by thessdure order among
nodes is directly modeled by imposing the correspondinggatence constraints.
Formally speaking, we can modelISPMNas follows:

OSPM N (gmax, src,dst, mn, order, ver) <
Subgraph(ver, gmax)
Tree(1,1,ver) (6.3)
Vi € mn : src € ver[i].P N i € ver|dst].P
Y(i,j) € order : i € ver[j].P

°In order to make the definition df'ree more intuitive, we have modified the definition of
verli].F. In [BFLO6], ver[i].F' = j if (i,j) € Edges(g)



6.6. Modeling OSPMN with the Tree constraint 105

By Subgraph(ver, g) we mean that the graph represented by the collection of
nodesver is a subgraph ofmax (the graph in which the simple path should be
found).

Any solution to the above CSP bindsr to a tree containing a unique path
from src to dst containing the mandatory nodes. So, once a solution has been
found, finding the simple path is straightforward since iaisnatter of running
DFSrooted atsrc.

Thanks to the fact that, in th€ree constraint, each node has an out degree
attribute, the CSP can be further refined so that the solditiond corresponds to
a simple path containing the mandatory nodes.

6.6.3 Dealing with precedence constraints

In chapter 2, we showed one way of Modeli@$PMNin terms ofDomReachabil-
ity only. When comparing this model with the one based e we observe that
the Treemodel is more constrained since the solution is a tree. Tddg&ianal re-
striction allows to discard potential edges as soon as itdsvk that its destination
already has an incoming edge.

In the implementation offreg the authors take advantage of the notion of
strong articulation point to infer precedence relationeagnodes. Given a strongly
connected componentwe say the node is a strong articulation point if is split
up into several strongly connected components after remgavi

Once the strong articulation points have been computedatitieors check
whether the removal of them violates the precedence camistrd he removal of a
strong articulation poinp violates a precedence constrajit;) if there is no path
from to j after removingp. If the removal ofp violates the precedence constraint
(1,7), the precedence constrairfisp) and(p, j) are added to the precedence graph
in case they are not redundant.

Let us consider th©SPMNinstance shown in Figure 6.4 where we are in-
terested in finding a simple path from 1 to 22 containing 4 7 aQL& 21. The
graph we obtain after removing node 22 is a strongly condectenponent. In
this strongly connected component, we observe that nodexd 5 are strong ar-
ticulation points. In thelreemodel corresponding to this instance, we have that
precedencél6, 22) is included in the set of precedence constraints. As thevamo
of node 12 makes node 22 unreachable from node 16, the pressedenstraints
(16, 12) and(12,22) are added. As the removal of node 5 makes node 22 unreach-
able from node 12 , the precedence constrajhgs5) and(5,22) are added. As
edge,(12,5) is the only outgoing edge of node, (12,5) belongs to the solution.
Notice that stating that edde&2, 5) belongs to the solution implies that edgde5)
does not belong to the solution since node 5 can only havenmoening edge.

In the DomReachabilitymodel, edgg1,5) can not be removed at the initial
propagation phase because in this model node 5 is not foodeal/e one incoming
edge. Even if the edge were forced to have one incoming edgeyoumld be still
unable to remove edgé, 5) because the source of the dominator tree that we keep
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Figure 6.8: In this graph, the set of dominatorsjofith respect tai is a proper
superset of the set of strong articulation points of the lygrap

is node 1 and edg@ 2, 5) is not an edge dominator of node 22 with respect to node
1. In our approach, the edg&2, 5) is only discovered after choosing edge15).

The approach of discovering precedence constraints by iong articula-
tion points applies even in some cases where the nodes dfteneidt components.
For instance, consider the graph in Figure 6.8 and suppatthtre is a precedence
constraint(z, j). Even though andj are in different components, it is still possible
to apply the strong articulation points rule since the reaho¥ 4 (which is a strong
articulation point) makeg unreachable fron.

However, even thoughis not a strong articulation point, it should be inferred
thati precedes ,s precedeg andk precedes wheni precedeg. In this particular
case, using dominators instead of strong articulationtpdé@ads to better pruning.
However, keeping only one dominator tree is not enough totaia this difference
in pruning because the dominance relation depends on thees(as shown in the
previous example).

6.7 Experimental results with the implementation of Dom-
Reachability in Gecode(CP(Graph))

In this section we repeat some of the tests presented iroee8tB. In the im-
plementation of the approach, we have usedRath constraint to constraint the
solution to be a simple path [DDD04, DDDO05b, DooO&uth(p, s, d) is satisfied
if pis a simple path froms to d.

The approach can be formally specified as follows:

Subgraph(fg,g)
Path(fg,sre, dst)

DomReachability(fg,edg,tcg)
(sre,dst) € Edges(tcg)
Vi € mn: (i,dst) € Edges(edg)
Y{i,j) € order : (i,j) € Edges(edg)
(6.4)
In table 6.6, we compare the results that we got withGleeode(CP(Graph))
implementation with those obtained by Lorca et al [BFLO6Je Wave carried out

OSPMN(g, sre,dst,mn,order) <
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OSPMN instances Lo_rca et al [B_FL06] Do_mReachabiI_ity+Patr
Failures| Time Failures Time
SPMN_22 0 0.071 5 0.110
SPMN_22full 0 0.036 0 0.070
SPMN_52b 0 1.685 6 0.920
SPMN_52full 0 0.692 0 0.580
SPMN_520rder_g 0 0.892 0 0.500
SPMN_520rder_k 0 0.020 4 0.280

Table 6.6: Tree Vs DomReachability+Path

the experiments in the same machine where the Oz tests weee @his machine
is a 3060 MHz Linux Red Hat machine with 3805136 KB of RAM.

Our first observation is that th@ecode(CP(Graph)implementation remark-
ably outperforms the Oz implementation. This is basicly tiuthe following rea-
sons:

e Gecode(CP(Graph))s a C++ library wherea®zis compiled into a byte
code, which is emulated.

e TheGecode(CP(Graph)jnplementation is using state-of-the-art algorithms
for computing dominators and transitive closure [Geo0550QL].

e Pathprunes more than the path propagator used in the Oz expdsinvaith
is basically a conjunction of BoCycleconstraint and aAlIDiff constraint.

We also notice that, with this implementation, we are coitipetwith respect
to Lorca et al's approach. This implementation also soltesreal world case
presented in Figure 6.9 in 58 seconds without failing, wisicbws the scalability
of our approach.

6.8 Conclusion

We showed howbomReachabilitican speed up a standard approach for dealing
with SPMN Our experiments show that the gain is increased with theepiee of
optional nodes.

We presented another approach for soM8®RMNbuilt on top of theTreecon-
straint [BFL06]. We elaborated on the difference in prurtingt this approach has
with respect to our approach.

We compared the two implementations@dmReachabilityand showed that
the Gecode(CP(Graph))mplementation remarkably outperforms tlz imple-
mentation. We also showed that tBecode(CP(Graph)implementation allows
us to be competitive with the approach presented in [BFLO6].
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It is important to emphasize that both the computation ofenddminators,
and the computation of edge dominators play an essentalndhe performance
of DomReachability The reason is that each one is able to prune when the other
can not. Notice that Figure 6.2 is a context where the contipntaf edge dom-
inators cannot infer anything since there is no edge domin&imilarly, Figure
6.3 represents a context where the computation of edge déonéndiscovers more
information than the computation of node dominators.
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Figure 6.9: A Disjoint Paths instance solved willomReachabilitynvolving 14
paths in a graph of 165 nodes. This instance was kindly peavimy Martin Oell-
rich from the Combinatorial Optimization & Graph Algorith@enter at TU Berlin.
This instance will be available in the web site of DomReadhgbwhich will be

reachable through the web site of CP(Gragtidp;//cpgraph.info.ucl.ac.he






Chapter 7

Using DomReachability for
Confinement Analysis

In software security, the execution of some actions is otlett (allowed or disal-
lowed), in an attempt to restrict their (direct or indireefjects. Allowed actions
are calledpermissions Different parts of a program (subjects) can have different
permissions. The ability of a subject to directly or inditednduce an effect is
called itsauthority.

The difference between permission and authority is thedifice between ac-
tion and effect. lllegal authority are called “safety prdjes”. A program breaks a
safety property if the illegal effect is reachable. Whenlyxiag if a program can
break a safety property, the following are important:

1. What permissions are initially available to (the differeubjects of) the pro-
gram.

2. How the subjects use their permissions to generate &ffect

It was shown in [HRU76] that these kinds of problems are notmatable in
general. Therefore, security analysis has to approxinhg@toblem from the safe
side, by looking forproof that the safety property remains unbroken. If no such
proof can be found, the problem @assumedo be unsafe. We can safely approx-
imate a program by considering only the authogtyhancingparts of the actions.
This is amonotonicsafe approximation, which can provide a reasonably aceurat
estimate of the original program’s safety, if the precaond# for the actions are
sufficiently detailed.

The propagation of authority can often be expressed in srificdetail by
reachability in a directed graph. The nodes in the graph eepftesent a sub-
ject and the edges represent permissions. The reflexiveamgitive closure of the
permission graph then represents an upper bound for rachathority.

For example, consider a set of subjects that can Inea&d and/orwrite per-
missions to each other. Set up a graph and depict the writeiggons as edges
from the writer to the subject written, and depict the readagissions as edges that

111
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point towardsthe reader. The edges now all point in the direction of therimf-
tion flow, and the effects of exerting the permissions (thealdlow of information
in the graph) propagate by transitive reachability in thegpbr

In this chapter, we show that graph reachability constsdiatve useful appli-
cations in safety analysis and enforcement. We do not claanthis approach is
appropriate, useful, or feasible &l circumstances.

Most graph-based formal security models have labelled stydifferentiate
between types of permissions, and labelled nodes to diffiete between types
of subjects. To model types of permissions, we can use aatediceachability
graph for every permission type. Permissions types thailtresthe same type
of authority can be represented in a single graph (ead andwrite permissions
provide authority of the type: “pass information” and canrbpresented in the
same data-flow graph).

We will show how, in certain conditions and to a certain ektende types can
be expressed as subgraphs that represent the node’s “ioridngs”.

We expect that graph reachability constraints, when usednmbination with
purpose built tools for constraint based security analf@®/05], can boost the
latter’'s expressive power and scalability.

This chapter is structured as follows. In section 7.1 we e&s®a security prob-
lem in terms of the Bounded Transitive Closure probldi ). The rest of the
chapter describes several ways of uddwmReachabilityor safety analysis. Sec-
tion 7.2 demonstrates how to calculate strategic positionmterposition of con-
trollable subjects in a network of interacting entities.ct8m 7.3 explains how
entities with restricted behavior can be expressed by sybgrand by adding ad-
ditional constraints to the subgraph.

Section 7.4 presents two extensiond3diC, and discusses their additional ex-
pressive power. We extend the safety analysis to network#tefconnected sys-
tems in Section 7.5, and compare the scalability of the elte@BTC approach
with an existing approach based on the “Scollar” tool [SJVO&e then present
future work, that will combine the strength of both apprcesh

Remark: This chapter is joint work with Fred Spiessens and was plugdisn
[SQVO06]. This work will be also part of Fred Spiessens’s PhBsts [Spi06].

7.1 Expressing security constraints with DomReachabil-
ity

Our security problems have two concerns:
1. some authority should not be reachable for safety (safefyerties)

2. some other authority should be reachable for functipnéiveness proper-
ties)



7.2. Confinement by interposition 113

Both concerns can be expressed in term3todé Bounded Transitive Closure
Problem (BTC)given the directed graphg,in, gmaz, t€Gmin @NAtcGmaz, find a
directed graply such that:

Imin S 9 € Gmaz
and (7.2)
tCGmin C TC’(g) C tcqmax

The set of liveness properties will By, , tcgma Will be the complement of
the set of safety properties, apgl;, andg,.... will just be suitable bounds for the
safe configuration of permissions we are looking for. Inisec2.3.1 we proved
thatBTCis NP-complete. This implies that any problem that reduoesis also
NP-complete.

7.2 Confinement by interposition

Suppose we have a set of previously unconnected, uncafti®i¢omponents, and
we want to find out how we can connect them, using controllableponents, to
allow them to perform their collaborative tasks, but alsevent them from break-
ing a given security policy. The tools we have to solve thisbpem are:

e aset of controllable components (subjects) to be strattgioter-positioned
between the uncontrolled components.

e a set of permissions to be granted to the controllable commsn

The assignment is: find a configuration (graph) witiniaimal number of con-
trollable nodes(not exceeding a fixed practical upper limit), that guarestthe
requirements for liveness (the uncontrolled component®eigeugh authority) as
well as the requirements for safety (the uncontrolled camepts do not get too
much authority).

7.2.1 Practical example

We take a well known example, expressing a sinibtdti-Level Security Problem
(MLS) [BL74]. Two external subjectBondandQ, with respective clearancdep
Secretand Confidentia] have to be given access to two external storage devices,
one forTop Secretontent, and one faConfidentialcontent.

We have to construct the content of a black box in (e.g. Figui¢, with a
minimal number of components. Since the uncontrollable mments cannot be
restricted, their connection to the box is bi-direction&len the devices are not
trusted to be passive containers, they are unknown comporaed could be of
any type.

The security policy we want to enforce between these foutiesis simply to
make sure that no Top Secret information leaks (down) to thiefi@ential level.
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Bond Top Secret

Q Confidential

Figure 7.1: Thex-property black box

Therefore we will enforce the-property (star-property) that states: agents should
be able write to all levels above (and including) their owveleof confidentiality,
and read from all levels below (and including) their own levkeconfidentiality,
but no agent should be able to write strictly below his comfiiddity level, or read
strictly above his confidentiality level. This is a policyatispecifies both liveness
requirements and safety requirements, so we will expressstiggested in section
7.1.

7.2.2 Expressing the problem in terms of DomReachability

TheBTCfor the instance of the problem presented above is:

Imin = 0

Imazx {(:J:,y>|:):,y € {bv%tvc}U{017027"'>0mam}} (7.2)
tCGmin {(b, 1), (£,0), (q: ¢), (¢, @), (¢, b), (a, £) } '
tcgmaz = Gmaz — {(b;q)(b, ) (t, q){t, )}

In the problemp stands for Bondg for Q, ¢ for the top-secret device, ardor
the confidential device. The controllable nodesa@res,... 0max-

Apart from theBTC constraints, we have to express the fact that ¢, andc
are uncontrolled, by making sure that all their connectiaresbi-directional. We
therefore added the necessary implication constraintsetpitoblem:

V0 <z <mazx,i € {b,q,t,c}: (i,0,) € g < (0g,1) €g (7.3)

To minimize the number of controlled components, we cart stithh zero con-
trolled nodes, and iteratively add one more, until we findlatsm.

We also experimented with a labeling strategy that tendsntbtfie solution
with the least nodes first. By first trying to remove all poksibdges from the
controlled node that reaches the most nodes, the stratedg te minimize both
the number of edges and the number of controlled nodes,ugjththere are cases
where the number of controlled nodes used is not the smaltespossible.

The pruning performed bipomReachabilityand the aforementioned labeling
strategy provided the solution in Figure 7.2, in 40ms.
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Bond Top Secret
o t— >0«— >0

0,

O
.4—»“42—>.

Q Confidential

Figure 7.2: A solution with the minimal number of controllalzomponents

Figure 7.3: Data Forwarder (dataflow diode)

7.3 Confinement by restricted behavior

In the previous section we relied on the ability of the systenenforce the per-
missions. There could for instance have been a referencéantrat checked the
permissions before they were exerted. Alternatively, tiiernal subjects could be
trusted parts of the system: trusted to behave exactly awedl by their permis-
sions. Capability systems [DH65] rely on such subjectdddatapabilities).

We could as well rely in our home-brewn trusted subjects baie in “smarter”
ways than simply using or not using certain permissions. #veprogram them to
use their permissions in a way that would allow the desaféectsand prevent the
other ones. This allows for much more accurate analysiseofdéhchable effects
in a system. An account of the different ways in which the ltauies of authority
can be calculated is given in chapter 8 of [Mil06].

Suppose we want to express the behavior of a subject thapasges informa-
tion if:

e other subjects wrote that information to it (it did not rede information

itself from other subjects), and

e it writes that information itself to other subjects (it does reveal that infor-
mation to its own readers)

Such a subject acts as a forward diode for data flow, depiotBdure 7.3. The
full edges denote the access rights and the dashed edgeseaweipthe correspond-
ing flow of data. The data-flow is only transitive in one difent from A to B, as
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behavior graph simplified graph | behavior
o R unrestricted behaviour
@)

hides its writers data from

i its readers
e a—— 5 o data forwarder of figure 7.3
WO—»OW WO—»OW
L a— non-tranparent subject

Figure 7.4: Subgraphs for behaviour-based internal dataflo

indicated by the dotted edges. The behaviour of the diodeemtiddle prevents
data to pass in the three other directions.

We can express similar restricted behavior in a subgraph feitr nodes: two
in — ports and twoout — ports, one of each kind for reading, and the other
one for writing. All external edges will be connected to orfethee four ports:
the incoming flow to the in-ports, the outgoing flow to the potis, the flow via
read permissions to the read-ports, and the flow via writmjssions to the write-
ports. These restrictions can directly be express&il@, by removing the illegal
external connections from,,q. .

Figure 7.4 shows some behaviour subgraphs with fotarnal ports (not to
be confused with the graph in figure 7.3). The internal flongésx) always goes
from an in-ports (left) to an out-ports (right). These swapirs are to replace the
monolithic subject nodes in thaata-flow graph The edges here correspond to the
dottededges (flow-through) in the example of figure 7.3. Dependimgvhich of
the four possible edges are present, the behaviour-graphecaimplified (second
column of figure 7.4).

7.4 Extending BTC for additional expressive power

In the previous sections we had to use additional conssr&ingxpress the security
problems. We now propose two extensions to the BTC problexniticorporate
the implication constraints that allow us to express irging security problems.

7.4.1 The conditionalBTC problem (CondBTC)

In section 7.2.2 we had to use extra constraints for all fowontrolled compo-
nents, to express that they should take only bidirectiooahections. This means,
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Figure 7.5: A fraction of theondgfor the problem in section 7.2.2

if an edge(A, B) is in the graph, then so shou{@®, A). We can express this con-
dition as an edge fromA, B) to (B, A) in a graph whose nodes are edges in other
graphs and whose edges represent implications. This allews express inter-
graph conditions on edges. If we consider also the complenedithe graphs, (the
complement of graply is denoted agg)/), we can express negations as well as
implications.

Therefore we add a directed gragihdg such that:

G1,Ga €{g,(9),TC(g),(TC(9))"} (7.4)
(1, e5?) € condg < (e1 € Gy = €3 € Ga) '

The security problems in sections 7.2 and 7.3 are directegtigns ofCondBTC
The implications involving edges of the solution graph a@adransitive closure can
be directly represented in termsa@indg.

Figure 7.5 shows a bi-directional connection constrair2 adges ircondg.

7.4.2 The cardinalBTC problem (CardBTC)

Instead of representing edges in another graph, let thesnodendg now repre-
sentmixed sets of edges from any of the DomReachability grajhedge(A, B)
in condg now represents a composite conditiorallfedges in the set are present,
then so shoulédt least oneedge in the seB.

The extended definition afondg allows us to simplify the definition of the
problem. TheBTCgraphsg,in, gmaz» t€gmin aNdtcgmqa can be defined inondg
as follows:

Ve € Gmin (0,{e9}) € condg

Ve & gmae @ (0,{e\9)'}) € condyg (7.5)

Ve € tegmin = (0, {e"C9)}) € condyg '
(

Ve & tcGmax 0, {e(TC(g))’}> € condg

The expressivity oCardBTCcan be further extended by labelling edges with
constraints on the cardinality of the target set. For insgafigure 7.6 graphically
shows the following constraint in extended Higraph notafidar95s] :
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TC(g) >1 TC(g)y [TC(g)
<a,b> 1\ <b,c> <b,f>
s

Figure 7.6: A graphical presentation of a CardBTC constrain

b17b27b3 S {07 1}

by =1< (bc) € TC(g)

bo=1< (b, f) € TC(9) (7.6)
bs =1< (bye) € TC(g)

<a,b> GTC(g) =b;+by+b3>1

We can say that, when the label of the edge is ommitted, thkdingonstraint
is “> 07, i.e., at least one of the constraints in the set must be true

The cardinality constraints involved i@ardBTC can be managed by using
standard approaches based on cardinality propagatorsiVIwever, we can
reason at a higher level of abstraction by looking at the BawolSatisfiability in-
stance that results from associating each basic graphraoriswith literals. This
level of abstraction would let us take advantage of BDD pgapars to narrow
down the literals composing a given disjunction [HLSO05]. ®éeld also consider
hybrid approaches, like the one suggested in [HS06], inrdadmherit the advan-
tages offered by SAT solvers.

7.4.3 Applying CardBTC for practical security problems

CardBTC allows us to express complex conditions on the grajen of authority
in several ways we did not yet explore:

e |t can be used to express more complex ways of authority gedfwa than
transitive closure.

e It can be used to represent fine-grained conditional beha¥ivusted sub-
jects, without the need to represent every subject as a exrspbgraph.

7.5 Secure interoperation

In this section we present a security problem for which tredadaility of the ap-
proach using DomReachability considerably exceeds th&coflar [SIV05], a
more general constraint-based tool for security analysis.

A system of interacting subjects can be secure, but when twoooe secure
systems become interconnected, the result may again uteosafety breaches.
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A secure reconfiguration removes a set of permissions frarstibjects in the
system, to make sure that no authority that was unreachalaeyi single system
(and may have been forbidden by that systems policy), besogsehable by the
interconnection.

The use of constraint programming to find secure reconfigunstof interop-
erating systems, is proposed in [BFOOQ5], for systems thairderconnected via
shared subjects. By default, the approach makes no effpretent authority be-
tween two subjects that are not both included in a singleegystThe rationale
behind this decisions is that, while authority between sudbjects is always due
to the interconnection, no single system can be held reg@erier managing these
effects. Additional safety and liveness requirements @added to the intercon-
nected system.

Following this approach, we show how to use DomReachabititfind a min-
imal secure reconfiguration for a set of interconnectedesyst A secure recon-
figuration is a set of permissions such that, when each ottpesmissions are
revoked in all systems that granted the permission befarenteroperation, the
interconnection will make no additional effects reachdideveen two subjects of
the same system. This approach can then easily be extendedude additional
constraints on the reachability of effects in the intercariad system.

7.5.1 Calculating secure reconfigurations with Scollar

The constraint based tool “Scollar”, written in Mozart-Q4{04, Sch00], analyzes
safety in configurations of permission-restricted and feinaestricted subjects,
and calculates the minimal (additional) restrictions tir&t necessary to guarantee
the safety requirements.

Scollar was recently extended to compute safe reconfigumsfior interoper-
ating systems as well. To analyze secure interoperatierntot first computes the
transitive closures of every individual system, derivesifithese transitive closures
the safety requirements for the global, interconnectetesysand then calculates
a minimal reconfiguration, that removes some initial pesmiss (and/or behavior
of the trusted subjects, when specified)

Since Scollar's primarily aim is to analyze small patterhteracting subjects
with relatively complex behavior, its scalability in terrmsnumber of subjects was
not an initial concern. For secure interoperation, the el tend to be larger
in number of subjects, and marginally lower in complexitytloé subject behav-
ior. Recent experiments with the current implementatioeaéed that the practical
limit allows no more than approximately 100 subjects in titericonnected system,
even when the behavior complexity is reduced to simple 6(aofive/passive), no
propagation of permissions is modeled, and the mechanmnefféct propagation
are reduced to simple transitive closure.
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7.5.2 Comparing scalability

We conducted a very preliminary set of experiments to getughiddea of the
relative scalability of DomReachability in comparison wo8ar.

We can expect that the DomReachability approach will perfbest when the
rules that model the propagation of authority are similaetchability by transitive
closure. At the same time we wanted to test the practicalligiis of modelling
simple restrictive behaviour as subgraphs.

We decided to run a very preliminary and small set of expeanisavith the
following setup:

e N systems are inter-connected in a network that has a smalthwapol-
ogy, generated following the Watts-Strogaz approach [WW88& a struc-
tured undirected graph in which every system (node) hasghheurs. A
small world graph is a graph with a high clustering coeffici@f every sys-
tem, most neighbouring systems are connected) and a lowatkaistic path
length (mean distance in the network between any two sy$tems

e SystemsS; and.S, are connectee: they share exactly two subjects.
e Unconnected systems have no common subjects
e Subjects are shared by at most two systems.

e Every system has exactly as many subjects as are requirisl donnections
to its neighbours in the network.

e Half of the subjects in every system have unrestricted iebgvthe other
half are non-transparent (See Figure 7.4).

The same instances of the generated problems where fed &ctilar based
solver and to the DomReachability based solver. All safepperties were pre-
calculated in Scollar, during the generation of the exaspénd were not re-
calculated in the experiments.

The rules that govern data-flow in all systems were kept sngohd are illus-
trated by the following Horn Clauses, used in Scollar:

readPermission(Y, X) = flow(X,Y)
flow(X,Y) A flow(Y, Z) Atransparent(Y) = flow(X, Z)

We made the experiments as simple as was reasonably pobsillensidering
only one permission (read), with an effect (data transfesatds the reader) that
propagates transitively when the behavior of the subjecisterring the data does
not prevent it. We arranged for %0of all subjects to be unrestricted (allowing data
to flow through them in all directions), and the othe/6@ be non-transparent
(See Figure 7.4). The transparency of a subject was coesiderbe a fixed and
was not optimized. Only the readPermissions were optimiséte experiments.
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[ Scollar
100 [l DomReachability

Time (seconds)
s}
o

.\ .\
32 48 64 80 96 112 128 144 160 176 192 208
Number of Subjects

Figure 7.7:ScollarandDomReachabilitycalculating Secure Reconfigurations

Figure 7.8: A secure inter-operation problem instanceluing 48 subjects. Edges
dropped are in black.

All these restrictions where set up to restrict the influeotceandom choices
on our measurements, and improve the accuracy with whichesuits reflect the
influence of the size of the problem (humber of systems).

All experiments where conducted on a dedicated Linux ma&chith 2GB of
memory and 4 processors at 3.06 GHz. Figure 7.7 shows thettiowk to find a
first secure reconfiguration (in seconds), for networks With 52 systems (32 to
208 subjects). We performed only one calculation for evérg sf the problem.
No results could be calculated in Scollar for problems ofertban 24 systems (96
subjects), due to virtual memory exhaustion.

Even if only one problem instance was solved for every stze résults leave
no doubt about the winner in this scalability contest. Domdkability is much
more suited to solve problems of big size.

The labeling strategy implemented on top of the informatemputed by
DomReachability indeed tends to minimize the number of sdfyepped. Figure
7.8 shows an instance of the inter-operation problem. Mdtat the number of
edges dropped in order to satisfy the constraints in Figigrés&mall with respect
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It

Figure 7.9: No-reachability constraints of the BTC probleffigure 7.8

to the total number of edges.

We expect that Scollar is still more suitable for solving g@ex problems of
small size, to model complex rules and subject behaviourekgaress a refined
approximation to how authority propagates. It will be ietging future work to
find out exactly where the borderline for choosing betweenttto approaches
lies, and even more interesting to see how the approachdsecemmbined to get
the best of both.

7.6 Conclusion

We have shown how the monotonic propagation of effects camdwelled with
reachability constraints in a directed graph by assogatiodes in the graph with
subjects, and edges with permissions between the cormisigosubjects. We elab-
orated on the relation of the resulting constrained grapblpm with the Bounded
Transitive Closure problem (BTC) and suggested extensiériBTC that let us
express more security requirements.

Some of the problems that we have presented can be solvelyimopdal time.
For instance, if there is no constraint on neither the lowamid of the intercon-
nected graph of the interoperability problem nor on itsdiéve closure, th&TC
instance can be solved in polynomial time. Indeed, the erg@ph would be a
valid solution to the problem. Even finding a maximal grapé,, ia graph which
is not included in another one respecting the safety prigseris still polynomial
since it is always possible to find a graph not containing diqudar edge that
respects the safety properties.

The adoption ofDomReachability which is normally used in combinatorial
problems, is justified because: (a) it offers an incremeaparoach for computing
transitive closure, and (b) it discards invalid edges earlysince the addition of
an edge may imply that some other edges are not part of thb.grap
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In section 7.2.2 we constrained the size of the graph by wsiige constraint
that takes the edges in the lower bound into account, butheostructure of the
graph. A smarter global constraint would take into accohatdurrent boundaries
of the graph and its transitive closure, to anticipate viofes of the limit. For
instance, suppose thateachesj and the shortest pathfrom ¢ to j containsx
edges. Suppose also that the size of the graph is lessrithan Then if the graph
contains at least the edgesginn, max — |gmin| < |p — gmin| iMmplies that there
is no solution since reachingfrom i would imply that the number of edges in the
graph is greater than the limit{ax). To detect this kind of information, we can
use an approach like the one suggested in [Sel02] for increie keeping the
shortest paths between each pair of nodes.

Towards a synergy of both approaches

We expect DomReachability to be most useful in collaboratigth our existing
Scollar tool. Scollar is most suitable to express a systeuiés that govern the
propagation of permissions and authority, and a subjeet®our. System rules
can express realistic models for propagation, that can ttekeestrictions of the
behaviour of the trusted subjects into account. Subjeciietr can be expressed
in a way that depends on the information that a subject has iindgial conditions,
and has required during the collaboration with other subjdts expressive power
makes Scollar a tool that can (also) be used to study the gatipa of authority
in capability systems and patterns of collaborating eiti

The restriction to monotonic approximations (that are safemay possibly
be too crude) prevents us to directly express the revocati@uthority. This is
relevant for capability systems too because, even if agoesaissions cannot be
revoked, it is very well possible (and easy) for a subjeckimke the authority it
used to provide to its clients, for instance by refusing thatmrate any further,
and no longer pass on any data or capabilities to them.

This is where the dominator part of DomReachability can bdiigct use: to
add expressive power to the safety requirements. Insteatnglly stating that
some effect (authority) should be prevented, we could @&tstequire that all au-
thority of a certain kind should only ever be available viawsted subject that is
able to revoke the authority. In the “authority-flow” gragh pe derived from the
access-graph) a trusted subject Alice can revoke all Balilsoaity over a third
subject Carol, if Alice dominates Bob in the authority-flonagh that originates
with Carol.






Chapter 8

Conclusions and Future Work

We have introduced two new NP-complete problems which anergdization of
the Disjoint Paths Problem. We have defined three new camistré&keachability
Dominationand DomReachabilityfor tackling those problems. We have defined
the operational semantics of the propagators implemeitkinge constraints by
providing the corresponding pruning rules. We have implaied those pruning
rules on top of state-of-the-art algorithms for computiognihators and transitive
closure.

We have tested our approach in two real-case scenarios:

e Solving constrained path problems. We presented the Ordered Simple
Path with Mandatory Nodes Proble@$PMN as an example of constrained
path problems.OSPMNis to find a simple path in a directed graph that
passes through a set of mandatory nodes respecting a giden am the
mandatory nodes. We showed h@emReachabilitycan speed up a stan-
dard approach for dealing withSPMN Our experiments show that the gain
is increased when not all the nodes are mandatory.

We compared the two implementationsismReachabilityand showed that
theGecode(CP(Graph)mplementation remarkably outperforms tBeim-
plementation. We also showed that tBecode(CP(Graph)mplementation
allows us to be competitive with the approach presented HiL[B].

It is important to emphasize that both the computation ofenddminators,
and the computation of edge dominators play an essentelimaihe per-
formance ofDomReachability The reason is that each one is able to prune
when the other can not.

e Solving computer security problems. We showed how the monotonic
propagation of effects can be modeled with reachabilitystamts in a di-
rected graph by associating nodes in the graph with subjeatsedges with
permissions between the corresponding subjects. We el@oon the rela-
tion of the resulting constrained graph problem with the iad Transitive
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Closure problemBTC): the problem of finding a directed graph that respects
a set of reachability constraints (see section 2.3.1).

Even though the techniques presented in this thesis ardynfosidealing
with combinatorial problems, we find, in computer securjpglynomial
problems that are better addressed with our approach. Thergason is
that the information irDomReachabilitys updated incrementally.

We now suggest some ways of extending the work presentedsithésis:

8.1 Implementing more sophisticated algorithms for com-
puting transitive closure

As explained in section , the current implementatiorboimReachabilitys com-
puting from scratch the transitive closure of the upper looointhe transitive clo-
sure graph each time a set of edges is removed. We believéhthalgorithms
presented in section 3.4 should outperform the currentigthgo. Notice that each
time we remove a set of edges, we gayN = E) for updating the upper bound
with the current algorithm. As shown in section 3.4, Rod#itiyggests a decremen-
tal approach for updating this information that is lineathaiespect to the size of
the graph considering a set of edges removed.

8.2 Using dominators for detecting precedences

In section 6.6, we saw that dominators are more powerful simg articulation
points in conjunction with articulation points for detegjiprecedence constraints.
In fact, we can see that the advantage is still kept evenitgjue winnersare con-
sidered to enhance the approach of articulation points.

From the definition of winners given in [BFLO5], we say that;emn a strongly
connected component (containing at least two nodeshigue winneris a node;
such that any tree (subgraph of the component) connectigdtes of the com-
ponents hasas a root. Unique winners are used for discovering precesesince
a unique winner is preceeded by all the nodes in the compen€his means that,
if ¢ is a unique winner of a component, ajits another node of the component, the
edge(i, 7) is invalid.

Nevertheless, there are situations where there are damsnat there are nei-
ther articulation points, nor strongly articulation p@innor unique winners, as
shown in Figure 8.1. In this Figure, rounded rectanglesesgmt strongly con-
nected components. Assuming thaprecedeg, using dominators in this cases
will let us infer thats precedesl and thatd precedes.
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Figure 8.1: A directed graph, containing a dominator, tree heither articulation
points, nor strong articulation points, nor unique winners

8.3 Towards a global constraint for CardBTC

In chapter 7, we introduce@ardBTC a very simple problem that allows us to
express interesting graph problems on top of the notionawisitive closure and
cardinality constraints. Our current approach for implatimg CardBTCis to use
DomReachabilityin conjuntion with Cardinality Constraints [VD91]. Howaye
we can achieve a stronger level of pruning by taking into antthe structure of
the disjunctions and the bounds of the graph variables.

For instance, let us consider the CardBTC instance in Fi§uBewhose se-
mantics is the following:

(4,d) € TC(g) A (k,d) € TC(g) A ({i,5) € TC(g) V (i, k) € TC(g)) (8.1)

From the previous constraint we can infer thiatd) € T'C(g). Notice that
this inference cannot be made by only looking at the boundkeofyraph and its
transitive closure. We also need to take into considerdtian eitheri reaches;
or i reachest. In order to take this into account, we need to extend theipgun
rules presented in chapter 3 so that the conditions incloeenformation in the
disjuction.

Let us re-write the semantics of the BTC instance as follows:

(4,d) € TC(g) A (k,d) € TC(g) A (i, j) € TC(g)
vV (8.2)
(4,d) € TC(g) Ak, d) € TC(g) A (i, k) € TC(g)
We can see that what we are suggesting is actually an appticait Construc-
tive Disjunction [VSD95] sincéi, d) € TC(g) is inferred from every conjunction
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Figure 8.2:CardBTCinstance associated wiBAT 3instance of Equation 8.3

composing the disjunction.

8.4 The underlying SAT problem of CardBTC

The price of allowing disjunctions i@ardBTCis reflected in its complexity. No-
tice that SAT3[GJ79] can be trivially reduced t€ardBTCby associating each
proposition with an edge in, which means thatardBTCis NP-complete even if
no constraint on the transitive closure is imposed. Foaimst, the followindgSAT3
instance is represented in Figure 8.2:

(pVagVs)AN(—pVaqgV-r)AN(pVrVt) (8.3)

As explained in chapter 7, the cardinality constraints ved in CardBTC
can be managed by using standard approaches based on ligrgirgagators
[VD91]. However, we can reason at a higher level of abstvadhy looking at the
Boolean Satisfiability instance that results from assowatach basic graph con-
straint with literals. For instance, let us consider théofeing CardBT Cinstance:

((i.4) € gV (j, k) € TC(9)) A ((i,4) € gV (j. k) € TC(g))  (8:4)

Notice that, the only possible solutions to the ab@adBTCare graphs con-
taining the edgdi, j). This inference can be made by only looking at the corre-
sponding SAT instance:

(pVag)A(pV—q) (8.5)

which is equivalent te.

Notice tha this is an application of Constructive Disjuntimo since we are
basically imposing that the intersection of the solutioatisfying every clause
must be true.

Reasoning at the symbolic level would let us take advantdd@D® propa-
gators to narrow down the literals composing a given digjonc[HLS05]. We
could also consider hybrid approaches, like the one sugd@stiHSO06], in order
to inherit the advantages offered by SAT solvers.
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>0 >1

TC{g)| [TClg)
<i,j> <i,k>
S S~

Figure 8.3: ACardBTCinstance that implies thatreaches!
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