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Concepts

This chapter defines a set of concepts that are used throughout the dissertation:

• A graph is a set of nodes connected by a set of edges. We say that a graph
is directedif an edge from a nodei to a nodej is not equivalent to an edge
from a nodej to a nodei. If the two edges are equivalent, we say that the
graph isundirected.

• Given a graphg = 〈N,E〉, we have thatNodes(g) = N andEdges(g) =
E.

• Given an edgee = 〈s, d〉 of a directed graphg, s is thesourceof e, andd
its destination. We also say thate is an outgoing edge ofs and an incoming
edge ofd in g.

• AddNodes(g,N) denotes the graph obtained fromg after adding the nodes
in N .

• AddEdges(g,E) denotes the graph obtained fromg after adding the edges
in E.

• RemoveNodes(g,N) denotes the graph obtained fromg after removing the
nodes inN .

• RemoveEdges(g,E) denotes the graph obtained fromg after removing the
edges inE.

• IncEdges(g, n) denotes the set of incoming edges ofn in g.

• OutEdges(g, n) denotes the set of outgoing edges ofn in g.

• Given two graphsg1 = 〈N1, E1〉 andg2 = 〈N2, E2〉, g1 is a (not necessarily
proper)subgraphof g2 (g1 ⊆ g2) if N1 ⊆ N2 andE1 ⊆ E2.

• We consider undirected graphs as a special class of directedgraphs. We say
that the directed graphg is undirected if

∀〈i, j〉 ∈ Edges(g) : 〈j, i〉 ∈ Edges(g) (1)

xiii



xiv Concepts

Given a directed graphgd, thecorresponding undirected graphgu of gd is
defined as follows:

Nodes(gu) = Nodes(gd)
Edges(gu) = {〈i, j〉 | 〈i, j〉 ∈ Edges(gd) ∨ 〈j, i〉 ∈ Edges(gd)}

(2)

• A path from nodei to nodej in the directed graphg is an element of the set
Paths(g, i, j), which is defined as follows:

p ∈ Paths(g, i, j) ↔







p is a subgraph ofg
Nodes(p) = {k1, . . . , kn} ∧ k1 = i ∧ kn = j
Edges(p) = {〈kt, kt+1〉 | 1 ≤ t < n}

(3)

• A simple pathis a path where each node is visited once.

• A Hamiltonian pathof a graphg is a simple path that contains all the nodes
of g.

• Weight(p)is the sum of the weights associated with the edges of the pathp.

• Two nodesu andv areconnectedin gd if the corresponding undirected graph
gu contains a path fromu to v.

• A tree is a graph in which any two nodes are connected by exactly one path.

• A spanning treeof a graph is a selection of edges from the graph that form a
tree spanning every node; that is, no node is not connected tothe tree.

• Theout-treeof a nodei in a directed graphG is a tree rooted ati whose set
of edges is a subset of the edges ofG. This tree connects all the nodes inG
that are reachable fromi.

• The in-tree of a nodei in a directed graphG is the out-tree ofi in GT (the
graph obtained fromG after reversing all the edges).

• Given a treeT ,

– v
∗
−→ w in T , if w is a descendant ofv in T .

– v
+
−→ w in T , if v is different fromw andw is a descendant ofv in T .

• A decision problemis a problem with only two possible solutions: yes or no.



Chapter 1

Context and Contribution

Constrained graph problems have to do with finding graphs respecting a set of
given constraints. One way of constraining the graph is by enforcing reachability
between nodes. For instance, consider the following problem, which we callThe
Bounded Transitive Closure Problem (BTC): given the directed graphsgmin, gmax,
tcgmin andtcgmax, BTC is to find a directed graphg such that:

gmin ⊆ g ⊆ gmax

and
tcgmin ⊆ TC(g) ⊆ tcgmax

(1.1)

whereTC(g) is the transitive closure ofg.
As we will show in section 2.3.1,BTC is a generalization ofThe Disjoint Paths

Problem[GJ79], which makesBTCNP-complete. We find instances of constrained
graph problems in Vehicle Routing [QVDC06, PGPR96, CL97, FLM99], Bioinfor-
matics [DDD04] and Computer Security [SQV06].

We use constraint programming for tackling constrained graph problems. In
this thesis, in particular, we state that the use of a global constraint defined on top
of the notions of transitive closure and dominators play a key role in solving this
kind of problems.

1.1 Constraint programming

A Constraint Satisfaction Problem (CSP) is a problem whose solution must satisfy
a set of given constraints. A CSP is usually represented by a triple 〈V,D,C〉, where
V is the set of variables involved in the problem,D is a function associating each
variable with its domain, andC is the set of constraints that should be respected
[Dec03, MS98].

Notice thatBTC is a constraint satisfaction problem whereV is the singleton
set containingg, the domain ofg is the set of graphs that are subgraph ofgmax and
supergraph ofgmin, andC is the singleton set containing the constrainttcgmin ⊆
TC(g) ⊆ tcgmax.

1
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Figure 1.1: CP Model

In Constraint Programming, constraint satisfaction problems are solved by in-
terleaving two processes: propagation and labeling. In Propagation, we are inter-
ested in filtering the domains of a set of finite domain variables according to the
semantics of the constraints that have to be respected. In Labeling, we are inter-
ested in specifying which alternative should be selected when searching for the
solution.

Propagators are processes that filter the domains of a set of finite domain vari-
ables according to the semantics of the constraint they implement. They share a
common store (see Figure 1.1). This store contains the information that is cur-
rently known about the variables of the problem. This information can be of the
form X = Y (i.e., a variableX is equal to a variableY ), X ∈ D (i.e., the variable
X should be in domainD) or X = a (i.e., the value of the variableX is a). The
latter case is actually a subcase of the second case (i.e.,X = a is equivalent to
X ∈ {a}). As soon as a propagator is able to infer new information from the store,
it puts this new information in the store.

The search of the solution starts with the work of the propagators. Once the
propagators reach a fix point, the labeling process starts. At this point, we may
have three possible situations:

• all the variables are bound to a value. In this case the searchstops since a
solution has been obtained.

• there are some variables that are yet to be determined. In this case, we per-
form a labeling step. A labeling step consists of:

– Selecting the variable whose alternatives are to be explored next.

– Selecting the alternative (of the chosen variable) to explore next.

Once this selection has been made, we add the corresponding constraint to
the store. The addition of this constraint may activate somepropagators, so
we wait until propagators get stable to perform a new labeling iteration.

• there is at least one variable whose domain is empty. In this case, we go back
to the previous labeling step, we impose that the solution tobe found should
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Figure 1.2: AllDiff as a function

be different to the alternative just considered and performa new labeling
iteration after waiting for the stabilization of the propagators.

1.1.1 Propagators as mathematical functions

We see a propagator as a function that maps a set of instances to a set of instances.
The set of instances corresponds to the set of possible instances of the constraint the
propagator implements. For instance, Figure 1.2 showsAllDiff , a propagator im-
plementing an All-different Constraint on a set of finite domain variables [Rég94]
applied on two finite domain variables. The initial domain ofeach variable is the
set{1, 2}, so the corresponding instance set, which corresponds to the Cartesian
product of the domains, is the set{〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉}. As 〈1, 1〉 and〈2, 2〉
are not valid instances to the constraint, these values are dropped from the outgoing
set.

1.1.2 Properties on propagators

We can also see propagators as theorem provers. Assuming that the propagatorf is
implementing a constraintc, if f(S1) = S2, the set of theorems that the propagator
proves is{t : t ≡ ¬c(v) ∧ v ∈ (S1 − S2)}.

Soundness

A propagator is sound if it does not discard any valid value. In logic terms, this
means that all the theorems it proves are logic consequencesof the constraint it
implements:

∀S1,S2,v.f(S1) = S2 ∧ v ∈ (S1 − S2) → ¬c(v) (1.2)
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Completeness

A propagator is complete if it is able to discard all non-valid values. In logic terms,
this means that it is able to prove all the theorems that follow from the constraint it
implements:

∀S1, S2, v : f(S1) = S2 ∧ v ∈ S1 ∧ ¬c(v) → v 6∈ S2 (1.3)

Monotonicity

A propagator is monotonic if the stronger the knowledge on which it works the
stronger the knowledge it is able to infer:

∀S1,S2
.S1 ⊆ S2 → f(S1) ⊆ f(S2) (1.4)

Weak-Completeness

A propagator is weakly-complete if it is always able to map a singleton set to the
empty set when the value in the singleton set is not valid:

∀S1,S2,v.f(S1) = S2 ∧ S1 = {v} ∧ ¬c(v) → S2 = ∅ (1.5)

The propertied just mentioned are a subset of the propertiesof propagators pre-
sented in [Mül01]. Notice that Completeness implies Weak-Completeness. How-
ever, Completeness does not imply Soundness. In fact, givena satisfiable constraint
c, if we associatec with the propagatorf = λS.∅, f would be complete because
all the non valid values are discarded, but it would not be sound because valid
values are discarded too. Usually, propagators are sound, monotonic and weakly-
complete. Completeness is not a must because it may not be possible to achieve
completeness in polynomial time.

We can now use the properties defined above to say in a precise way what
we mean by “implementing a constraint” and “being the semantics of a propa-
gator”. We say thatf implementsc if and only if f is sound, monotonic and
weakly-complete underc. We say that the semantics off is c if and only if c is the
strongest constraint under whichf is sound and complete taking into account that
a constraintc is stronger than a constraintc′ if and only if c entailsc′ (c ⊢ c′).

1.1.3 Composed propagators

We will see thatDomReachability, the propagator we are introducing in this thesis,
is a composed propagator, i.e., internally, it is composed of several propagators. In
this section, we will define the semantics of a composed propagator in terms of the
semantics of the propagators that compose it.

Let F be a set of propagators, and let us consider the following order relation
among sets:
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Figure 1.3: Confluence of propagators

∀S,S′.S ≤ S′ ↔ S ⊆ S′ (1.6)

A propagatorf composed of a set of propagatorsF satisfies the following rule:

f(S) = max{S′ : S′ ≤ S ∧ ∀f∈F .S′ ∈ fix(f)} (1.7)

This means thatf(S) is the biggest common fix point that is less thanS under
the order relation defined by Equation 1.6. Certainly, as ourorder relation is not
total, we need to rely on something else to ensure that this function is well defined.
In this case, we can always ensure that there is a maximal element because our
propagators are monotonic (mathematical) functions. We will elaborate more on
this point in the next section.

1.1.4 Confluence of propagators

Theorem 1. Monotonicity warranties confluence.

Proof. Let us assume thatf is a composed propagator. Suppose also thatf(S)
is not defined because there are two maximal common fix pointsS1 andS2 such
that S1 6< S2 ∧ S2 6< S1, which implies that there exists a valuev such that
v ∈ S1 ∧ v 6∈ S2.

As a consequence of monotonicity we have that:

S ≤ S′ → f1(f2(...fn(S))) ≤ f1(f2(...fn(S′))) (1.8)

assuming thatfi, 1 ≤ i ≤ n, is monotonic.
Then, if v does not belong toS2 = f1(f2(...fn(S))), where∀1≤i≤n.fi ∈ F ,

thenv would not belong tof1(f2(...fn(S1))) either, which would imply thatS1 is
not a fix point. Therefore, it cannot happen that for a givenf(S) there are two fix
pointsS1 andS2 such thatS1 6< S2 ∧ S2 6< S1.

In fact, if we think of propagators as reduction rules and we consider the sets on
which they work as the states of the reduction system, we can say that the reduction
system is confluent. I.e., if from a stateS we reach two statesS1 andS2 such that



6 Chapter 1. Context and Contribution

Figure 1.4: Approximation to the AllDiff propagator

S1 6< S2 ∧ S2 6< S1, then fromS1 andS2 one should be able to reach a stateS′

from which no rule is applicable.

Notice that, due to the fact that we reason in terms of sets, wehave the property
that equivalent states (i.e., sets) have exactly the same representation. So, proving
confluence in our model is simpler than in [AFM99] where two equivalent states
may have different syntactic representation.

1.1.5 Approximation to the propagator

We have defined a propagator as a function that goes from a set of instances to a set
of instances. However, propagators are defined in terms of a set of finite domain
variables in practice. In fact, ifx is one of the variables on which the propagator is
defined, the propagator is supposed to discard from the domain of x those values
that cannot be part of any solution.

Assuming that the propagator is defined in terms ofn variables and that the
variables share the same domain (D), what we do is to approximate the setP(Dn)
to the setSolsSet = {Sols : Sols =

∏

1≤i≤n Di,Di ⊆ D}. Notice that, the first
set is indeed a superset of the second set. For instance, assuming thatD = {1, 2}
andn = 2, we can observe that the set{< 1, 2 >,< 2, 1 >} belongs toP(Dn)
but not toSolsSet.

Certainly, with this approximation, we may lose completeness. In Figure 1.4,
we present the same example of Figure 1.2, but under the approximation intro-
duced. In fact, if we take into account that the tuple< {1, 2}, {1, 2} > represents
the set{1, 2}×{1, 2}, we can observe that elements that were discarded before are
no longer discarded. However, this is a fact of life. The important thing to notice
is that we can be still sound, monotonic and weakly complete.
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1.2 CP(Graph)

CP(Graph)introduces a new computation domain focused on graphs including a
new type of variable, graph domain variables, as well as constraints over these
variables and their propagators [DDD04, DDD05a, Doo06]. CP(Graph) also intro-
duces node variables and edge variables, and is integrated with the finite domain
and finite set computation domain.

The kernel constraints of CP(Graph) are:

• Nodes(G,SN): SN is the set of nodes ofG.

• Edges(G,SE): SE is the set of edges ofG.

• EdgeNode(E,N1 , N2): the edge variableE is an edge from nodeN1 to
nodeN2.

Consistency techniques have been developed, graph constraints have been built
over the kernel constraints and global constraints have also been proposed.

1.3 Levels of consistency

The domain of a finite domain variableX can be represented either by referring ex-
plicitly to the elements that compose it or by referring to the bounds of the domain.
In the second case we say thatMin(X) andMax(X) denote the lower bound and
the upper bound of the domain respectively. That is to say that the domain ofX
is the set of elements greater than or equal toMin(X) and less than or equal to
Max(X).

Given a constraintC defined in terms of a set of finite domain variables, we
identify two basic levels of consistency:

• domain consistency: for every domain, we are interested in removing all the
elements that do not participate in any solution.

• bound consistency: for every domain, we are interested in updating the
bounds so that the lower bound of the domain corresponds to the minimal
value accepted by the constraint and the upper bound to the maximal value
accepted by the constraint.

While domain consistency is a stronger level of consistency, achieving that
level of consistency is unrealistic in many cases. For instance, the size of the
domain of a graph variable is exponential with respect to thenumber of nodes and
edges. Aiming at explicitly keeping the domain would lead touse an exponential
amount of space.

Even though bound consistency is considerably cheaper thandomain consis-
tency, achieving bound consistency may still be prohibited. For graph variables,
being bound consistent means being able to discard from the upper bound all nodes
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and edges that do not participate in any solution, and to include in the lower bound
all nodes and edges that participate in every solution. As wewill see in the follow-
ing chapter, computing this information leads to exponential computations in some
cases.

1.4 Some applications of dominators

Given a flow graph, i.e., a directed graphg with source nodes, nodei dominates
nodej if all paths froms to j containi [AU77, LT79, Geo05]. In this section we
present some applications of this concept in areas different to the one we present
in this thesis.

1.4.1 Detecting natural loops

Dominators have been mostly used in code optimization [AU77] where flow graphs
are used for representing the execution of programs. One of the important tasks in
code optimization is the optimization of loops since programs tend to spend most
of their execution time in their inners loops.

In particular, one is interested in findingnatural loops, i.e., loops having the
two following properties:

• The loop must have a single entry point, called the header of the loop. This
entry point dominates all the nodes in the loop.

• There must be at least one way to iterate the loop.

In order to detect natural loops, we look at theback edgesof the flow graph.
An edge〈j, i〉 is a back edge ifi dominatesj. So, the natural loop involving〈j, i〉
is composed ofi plus all the nodes that reachj without passing throughi.

The emphasis in natural loops is due to the fact that they offer a useful property
that allows us to identify when a loop is included in another one. Given two natural
loopsl1 andl2, if l1 andl2 have different headers, they are either disjoint or one is
included in the other one. The detection of self-contained loops avoids redundant
code optimization.

1.4.2 Detecting domination of species in the ecosystem

In a given ecosystem, a specie depends on another one if the existence of the later
warranties the existence of the former. These dependenciesare the result of the
relation between predators and preys. The relation betweenpredator and prey can
be represented with a directed graph. In this graph, an edge from a speciea to a
specieb means thatb is a predator ofa.

Researchers are interested in determining the impact of removing a particular
specie from the ecosystem taking into account that a speciea disappear when all the
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species of whicha is predator disappear. In [AB04], the authors show an approach
for addressing this question based on the use of dominators.A source node is
added to the dependency graph. This source node is connectedto all the nodes
that do not have incoming nodes. We can see the resulting graph as a flow graph
where the added node plays the role of source and species thatdo not depend on
another species are directly connected to the source. Notice that all the species are
reachable from the source. A specie will then disappear fromthe ecosystem if any
of its dominators disappears.

1.4.3 Detecting equivalent faults in logic circuits

A fault is said to be detected by an input test vector, if when applying the vector
to the circuit, different logic values can be observed, in atleast one of the circuit’s
primary outputs, between the original circuit and the faulty circuit.

Detecting whether two faults are equivalent is important for reducing the num-
ber of tests to be performed in order to decide whether a circuit is faulty or not.
Computing the complete set of fault equivalence classes in acircuit is a classic
problem in digital circuit design. Two faults are functionally equivalent (or indis-
tinguishable) if no input test vector can distinguish them at primary outputs. Func-
tional fault equivalence is a relation that allows faults ina circuit to be collapsed
into disjoint sets of equivalent fault classes [VCAS05].

One of the approaches for deciding whether two faults are equivalent consists in
looking at the structure of the circuit. The structure of thecircuit can be represented
as a directed graph where the nodes correspond to the gates ofthe circuit and the
edges are the lines connecting the output of a gate with the input of another one.
In this context, dominators are used for focusing the examination on the dominator
gates. A dominator gate of a linel is a gate through which all the paths froml to
any primary output pass [AFPB01].

1.5 Contribution

1.5.1 Introduction of new NP-complete problems which are general-
izations of the Disjoint-Paths problem

In this thesis we introduce two new NP-complete problems:

• Given the directed graphsgmin, gmax, tcgmin and tcgmax, The Bounded
Transitive Closure Problem (BTC) is to find a directed graphg such that:

gmin ⊆ g ⊆ gmax

and
tcgmin ⊆ TC(g) ⊆ tcgmax

(1.9)

where TC(g) is the transitive closure ofg.
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• Given a directed graphg, a source nodesrc, a destination nodedst, a set
of mandatory nodesmandnodes, and set of couples of nodesorder, the
Ordered Simple Path with Mandatory Nodes ProblemOSPMNis to find a
path ing from src to dst, going throughmandnodes following order and
visiting each node only once.

Both BTCandOSPMNare generalization of the Disjoint Paths problem. The
k-Disjoint-paths problem consist in findingk pairwise disjoint paths betweenk
pairs of nodes〈s1, d1〉, 〈s2, d2〉, . . . , 〈sk, dk〉. Both the node-disjoint version and
the edge-disjoint version are NP-complete even fork = 2 [SP78].

1.5.2 Introduction of new global constraints on top of transitive clo-
sure and domination

We introduce two global constraints on top of the notions of transitive closure and
dominations, which are suitable for tackling the aforementioned problems as well
as several other problems presented in chapter 2:

• Reachability(g, tcg), which holds iftcg is the transitive closure of the di-
rected graphg.

• Domination(fg, edg), which holds ifedg is the extended dominator graph
(i.e., the graph stating the dominance relation among nodesand edge) of the
flow graphfg.

• DomReachability(fg, edg, tcg), which holds ifedg is the extended domi-
nator graph of the flow graphfg, andtcg is the transitive closure offg.

1.5.3 Introduction of dominators for solving constrained graph prob-
lems

As said before, dominators have been mostly used in code optimization for detect-
ing inner loops. In this thesis, we use dominators for detecting nodes and edges
common to a set of paths in a flow graph. This information is important when
discarding paths that violate the set of given transitive closure constraints.

Let us consider the case presented in Figure 1.5 where we are interested in
finding a simple path (i.e., a path not visiting a node twice) from node 1 to node
22 containing nodes 4, 7, 10, 16, 18 and 21 (which we call mandatory nodes).
Notice that choosing the edge〈1, 5〉 implies that node 5 is visited twice since all
the paths from 5 to 22 containing the mandatory nodes includeedge〈12, 5〉, so we
can discard that branch and try the one involving edge〈1, 15〉.

In order to infer that edge〈1, 5〉 is in all the paths from 5 to 22 containing the
mandatory nodes, we need to take into account that:

• 5 reaches all the mandatory nodes, so the nodes and edges reached from the
mandatory nodes are also reached from 5.



1.5. Contribution 11

Figure 1.5: A simple path from 1 to 22 containing 4, 7, 10, 16, 18 and 21

• node 22 is dominated by edge〈12, 5〉 with respect to any of the mandatory
nodes at the right hand of the graph (i.e., with respect to nodes 16,18 and
21).

This is where the information provided by the dominators becomes fundamen-
tal since as soon as we know that a nodei reaches a nodej we can immediately
infer thati reaches all the nodes that dominatej from i. This inference may avoid
useless exploration as it is the case in our example.

1.5.4 Pruning algorithms and edge-dominator discovering

The pruning rules of the global constraints introduced are systematically derived
from the properties of the constraints and their implementation is done by taking
into account state of the art algorithms for computing dominators and transitive
closure.

We also introduce an efficient approach for computing edges that participate
in all the paths connecting a pair of nodes (edge-dominators) by introducing the
notion of extended dominator graph. In the extended dominator graph we map
edges to nodes and compute the dominance relation on the resulting graph. Thanks
to the fact that the dominance relation can be represented with a dominator tree
[AU77], the edge-dominator are computed at the same complexity.

1.5.5 Evaluation of the approaches introduced in realisticscenarios

We have implemented the global constraints introduced in both Gecode [SLT06]
and Mozart [Moz04], and tested the performance of the implementation with re-
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alistic instances from vehicle routing problems and computer security problems.
The Gecode implementation takes advantage of the implementation of CP(Graph)
that has been already incorporated into Gecode [DZDD06].

1.6 Structure of the thesis

• Chapter 2. In this chapter we first present the different concepts needed for
the definition of the global constraints we are introducing.Then we intro-
duce the constraints and describe a set of problems that can me modelled
in terms of these constraints. Among the problems described, we have the
The Bounded Transitive Closure ProblemandThe Ordered Simple Path with
Mandatory Nodes Problem: two new NP-complete problems that are being
introduced in this thesis. The corresponding NP-complete proofs are also
presented in this chapter.

• Chapter 3. As DomReachabilityis the conjuntion ofReachabilityandDom-
ination, the implementation ofDomReachabilitycovers the implementation
of ReachabilityandDomination.

In this chapter we introduce the algorithms involved in the implementation of
DomReachability. We start by explaining how the pruning rules are system-
atically derived from the properties of the constraints. Then we revisit each
property and derive the corresponding pruning rules. During this process,
we emphasize the pruning gained by the activation of each rule.

The implementation ofDomReachabilityimplies maintaining the transitive
closure graph and the extended dominator graph of the boundsof the flow
graph. So, in this chapter we also study some approaches for maintaining
this information.

• Chapter 4. Gecode[SLT06] is a C++ library that provides an environment
for developing constraint-based systems and applications. Gecodeallows the
construction of new variable domains including propagators as implementa-
tions of constraints and branchings, and search engines.

In this chapter we make a summary of the most relevant concepts inGecode.
Then, we show how propagators are implemented in Gecode by explaining
the implementation of one of the propagators provided byGecode. After
explaining how to deal withCP(Graph)(a new computation domain that has
been added to Gecode), we present the implementation ofDomReachability.

In this chapter we also show the implementation of the labeling strategy we
have designed to deal withOSPMNinstances.

• Chapter 5. In this chapter we explain how we can implementDomReach-
ability using a message passing approach on top of the multi-paradigm pro-
gramming language Oz [Moz04]. As shown in this chapter, the use of a
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concurrent language like Oz for implementing global constraints involves
the implementation of processes that are non-deterministic in general. This
makes Declarative Concurrency not suitable for this need. By using the
methodology introduced in [VH04], we show that the definition of the be-
havior of the agents involved in the implementation of global constraints,
and the non-determinism in the communication of these agents are two or-
thogonal concerns. This separation let us define the behavior of each agent
in a declarative way.

In the implementation ofDomReachabilitywe distinguish two basic compo-
nents: a set of already provided FS/FD propagators and a global (user de-
fined) propagator. Here, a global propagator is shown as an agent that reads
messages from a stream generated by the graph variable on which Dom-
Reachabilityis applied.

We also present a cheap way of discovering dominators based on FS prun-
ing, and introduce an approach for implementing Batch propagation using
message passing, which plays an important role in the reduction of the time
of execution thanks to the minimization of the number of activations of ex-
pensive propagators [QVD05a].

• Chapter 6. In this chapter we present a set of experiments that show that
DomReachabilityis suitable for solving the Simple path with mandatory
nodes problem. In the experiments we observe that the suitability of Dom-
Reachabilityfor dealing with Simple path with mandatory nodes relies on
the following aspects:

– The strong pruning thatDomReachabilityperforms. Due to the compu-
tation of dominators,DomReachabilityis able to discover non-viable
successors early on.

– The information thatDomReachabilityprovides for implementing smart
labeling strategies.DomReachabilityassociates each node with the set
of nodes that it reaches. This information can be used to guide the
search in a smart way. The strategy we used in our experimentstends
to minimize the use of optional nodes.

In this chapter we also show thatDomReachabilityis suitable for dealing
with a problem that we call the Ordered simple path with mandatory nodes
problem (OSPMN) where ordering constraints among mandatory nodes are
imposed, which is a common issue in routing problems. Takinginto account
that a nodei reaches a nodej if there is a path going from nodei to nodej,
one way of forcing a nodei to be visited before a nodej is by imposing thati
reachesj andj does not reachi. The latter is equivalent to imposing thati is
an ancestor ofj in the extended dominator tree of the path. Our experiments
show thatDomReachabilitytakes the most advantage of this information to
avoid branches in the search tree with no solution [QVDC06].
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• Chapter 7. In software security, the execution of some actions is controlled
(allowed or disallowed), in an attempt to restrict their (direct or indirect)
effects. Allowed actions are calledpermissions. Different parts of a program
(subjects) can have different permissions. The ability of asubject to directly
or indirectly induce an effect is called itsauthority.

The propagation of authority can often be expressed in sufficient detail by
reachability in a directed graph. The nodes in the graph eachrepresent a
subject and the edges represent permissions. The reflexive and transitive
closure of the permission graph then represents an upper bound for reachable
authority.

In this chapter, we show that graph reachability constraints have useful appli-
cations in safety analysis and enforcement. We do this by modelling safety
analysis and enforcement in terms of The Bounded TransitiveClosure Prob-
lem, which can be modelled in terms of DomReachability. In order to model
a broader set of security problems, we extend The Bounded Transitive Clo-
sure Problem with the notion of cardinality [SQV06].

• Chapter 8 In this chapter we make some concluding remarks and suggest
some directions in which the work presented in this thesis can be extended.

Part of the work presented in this thesis appears in previously published confer-
ence and workshop proceedings. The list of related publications is shown hereafter:

• F. Spiessens, L. Quesada, and P. Van Roy. Confinement analysis with graph
reachabilty constraints. In International Workshop on Constraints in Soft-
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Chapter 2

Global Constraints based on
Transitive Closure and
Domination

In this chapter we present three global constraints whose semantics are defined in
terms of the notions of transitive closure and domination indirected graphs:

• TheReachabilityconstraint, which has two arguments: a directed graph and
its transitive closure.

• The Dominationconstraint, which has two arguments: a flow graph, i.e.,
a directed graph with a source node, and the dominance relation graph on
nodes and edges of the flow graph.

• The DomReachabilityconstraint, which has three arguments: (1) a flow
graph, (2) the dominance relation graph on nodes and edges ofthe flow
graph, and (3) the transitive closure of the flow graph.

The dominance relation graph represents a dominance relation that identifies
nodes common to all paths from a source to a destination. By extending the dom-
inator graph we can also identify edges common to all paths from a source to a
destination.

After presenting the semantics ofReachability, DominationandDomReacha-
bility, we show a set of problems that can be modeled in terms of them.As all those
problems are NP-complete, the modeling of those problems actually represents a
proof that achieving bound consistency for any of the constraints is NP-complete.

In this chapter we are also introducing two NP-complete problems:

• The Bounded Transitive Closure Problem, where we are interested in finding
a graph respecting respecting some boundaries on itself andits transitive
closure.

17
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Figure 2.1: An example of a flow graph

• The Ordered Simple Path with Mandatory Nodes Problem, wherewe are
interested in finding a simple path containing a set of nodes in given order.

2.1 Transitive closure and Domination

2.1.1 Reachability

A node is reachable from another one if there is a path from theformer to the latter.
This relation between nodes ofg is represented with a graph which is calledthe
transitive closure of g[CLR90].

Definition 1. TC(g) is the transitive closure ofg, i.e.,

〈i, j〉 ∈ Edges(TC(g)) ↔ ∃p : p ∈ Paths(g, i, j) (2.1)

2.1.2 Flow graph

A flow graph is a directed graph with a source node. Figure 2.1 shows an example
of a flow graph. The node that is playing the role of source in this example is
noden1. Flows graphs have been mostly used in Compilers theory to represent
the execution of programs where nodes represent basic blocks of the program and
edges changes in the control flow [AU77].

We will represent a flow graphfg as a triple〈N,E, s〉 whereN is the set of
nodes,E is the set of edges ands is the source. We will occasionally drops when
no reference to the source occurs.
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2.1.3 Dominance relation

Definition 2. Given a flow graphfg and its corresponding sources, a nodei is a
dominator of nodej if all paths froms to j in fg containi [LT79, SGL97]:

i ∈ Dominators(fg, j) ↔ i 6= j ∧ ∀p ∈ Paths(fg, s, j) : i ∈ Nodes(p) (2.2)

Let us consider some interesting properties on dominators:

Theorem 2. The dominance relation is transitive, i.e., ifi dominatesj andj dom-
inatesk, theni dominatesk.

Proof. If k is not reachable from the source, this property is triviallytrue since
every node butk dominatesk. Now, let us assume thatk is reachable from the
source. Every pathp from the source tok containsj becausej is a dominator
of k. The pathp also containsi because this is a dominator ofj, thereforei is a
dominator ofk.

Theorem 2 only applies to reachable nodes though. Notice that if both i andj
are unreachable, Theorem 2 would imply thati dominatesi, which is by definition
not possible.

Theorem 3. If i1 and i2 are both dominators ofj, i1 and i2 appear in the same
order in all the paths from the source toj 1.

Proof. Suppose thati1 andi2 are both dominators ofj. Suppose also the that there
is a pathp1 wherei1 appears first and a pathp2 wherei2 appears first. Then, a path
from the source toj that does not containi2 can be obtained as follows:

• go from the source toi1 usingp1

• go fromi1 to j usingp2

which contradicts the statement thati2 is a dominator.

Corollary 1. All the dominators ofj appear in the same order in every path.

Proof. It follows from the fact that Theorem 3 holds for every pair ofdominators
of j.

Note that the nodes unreachable froms are dominated by all the other nodes.
However, as a consequence of Theorem 3, the nodes reachable from s always have
an immediatedominator.

1A path in a directed graph denotes a sequence of nodes. We say that i appears first thanj in a
path if i is first in the corresponding sequence thanj
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Definition 3. The immediate dominator ofj is the closest dominator ofj:

i = ImDominator(fg, j) ↔
{

i ∈ Dominators(fg, j)
¬∃k ∈ Nodes(fg) : i ∈ Dominators(fg, k) ∧ k ∈ Dominators(fg, j)

(2.3)

The notion ofimmediatedominator allows to represent the whole dominance
relation as a tree, where the parent of a node is its immediatedominator. Notice,
however, that unreachable nodes are not taken into account sinceImDominator(fg, j)
is not defined ifj is not reached froms. In what followsDomTree(fg) will de-
note the dominator tree offg, andDomGraph(fg) a graph representing the whole
dominance relation offg, i.e.,〈i, j〉 ∈ Edges(DomGraph(fg)) if and only if i
dominatesj in fg.

Theorem 4. Given a flow graphfg = 〈N,E〉 and a nodej ∈ N , if all i ∈
N \ {j} dominatesj, and j is reachable from the source infg, thenfg has a
unique Hamiltonian path from the source toj.

Proof. The fact that there is a Hamiltonian path follows from the definition of
domination (Definition 2) since all the nodes butj are dominators and the source
reachesj.

Now, suppose there are two different Hamiltonian pathsp1 andp2 from the
source toj. As p1 andp2 are different, the orders in which the nodes appear are
different, which contradicts Corollary 1.

Definition 4. A back edge is an edge whose destination dominates its source
[AU77].

Back edges are used to detect loops in a flow graph. If〈i, j〉 is a back edge and
bothi andj are reachable from the source, then there is a at least a path from j to i
(sincej dominatesi), which forms a loop when concatenated with the edge〈i, j〉.

Theorem 5. Given a flow graphfg = 〈N,E〉 with no back edge, and a node
j ∈ N , if all i ∈ N \ {j} dominatesj, andj is reachable from the source infg,
thenfg is a Hamiltonian path from the source toj.

Proof. It is enough to prove that, every node inN \ {j} has at most one outgoing
edge. Let us assume the opposite, i.e., that there is a nodei with two outgoing
edgese1 = 〈i, k1〉 ande2 = 〈i, k2〉. As all the nodes inN \ {j} dominatesj, there
is a path wherek1 appears first thank2 (the one usinge1), and there is another one
wherek2 appears first thank1 (the one using edgee2) since neithere1 nor e2 are
back edges. However, this violates Theorem 3.
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The extended dominator graph

We now introduce the notion ofextended dominator graphwhich allows us to take
advantage of dominator algoritms for computing edges that are common to the set
of paths connecting a node with the source of the flow graph.

Definition 5. The extended graph offg, Ext(fg), is obtained by replacing the
edges by new nodes, and connecting the new nodes accordingly. This graph can be
formally defined as follows:

〈N ′, E′, s′〉 = Ext(〈N,E, s〉) ↔







s′ = s
N ′ = N ∪ E
e = 〈i, j〉 ∈ E ↔ 〈i, e〉 ∈ E′ ∧ 〈e, j〉 ∈ E′

(2.4)

Definition 6. The extended dominator graph offg is the dominator graph of its
extended graph.

Figures 2.2, 2.3 and 2.4 show an example of a flow graph, its extended graph,
and its extended dominator tree, respectively. The extended dominator tree has two
types of nodes: nodes that correspond to nodes in the original graph (node domi-
nators), and nodes corresponding to edges in the original graph (edge dominators).
The latter nodes are drawn in squares.

Theorem 6. Given two node dominatorsi andj, if

〈i, j〉 ∈ Edges(DomTree(Ext(fg))) (2.5)

then there are at least two different paths fromi to j in the flow graph.

Proof. The presence ofi andj in DomTree(Ext(fg)) ensures that there is at least
one pathp1 from i to j. As the immediate dominator ofj is a node dominator, there
is no edge appearing in all the paths fromi to j. This means that ife is an edge of
p1, there is another pathp2 not involvinge.

Set dominators

We will now extend the notion of domination to a set of nodes. In a sense, we can
say that this notion of domination is not as strong as the one already introduced
since all the nodes of the set must be removed in order to disconnect the dominated
node from the source. Formally we have that:

Definition 7. A set of nodess is a set dominator of a nodej if every path from
the source toj has a node ins and the removal of any proper subset ofs does not
makej unreachable from the source.

domset ∈ SetDominators(fg, j) ↔
{

∀p ∈ Paths(fg, source, j).∃i ∈ domset : i ∈ Nodes(p)
∀s ⊂ domset.∃p ∈ Paths(fg, source, j).Nodes(p) ∩ s = ∅

(2.6)
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Figure 2.2: Flow graph Figure 2.3: Extended
flow graph

Figure 2.4: Extended
dominator tree

Figure 2.5: Sets{1, 2, 4},{3, 4} and{4, 5, 6} are set dominators of node7

A set dominators1 is maximal in the sense that there is no sets2 ⊃ s1 that is
also a set dominator. This is why, ifj is not reachable from the source, the only
set dominator ofj is ∅. If j is reachable from the source andi is a dominator ofj,
then{i} is a set dominator ofj.

Let us now look at the relation between two setss1 and s2 if both sets are
set dominators of a nodei. If either s1 or s2 is a singleton set, thens1 and s2

are disjoint since a set dominator cannot be a superset of another set dominator.
However, ifs1 ands2 are not singleton, thens1 ands2 may share nodes.

Let us consider the case of figure 2.5 where node 0 plays the role of the source.
In this case we observe that the sets{1, 2, 4},{3, 4} and{4, 5, 6} are all set dom-
inators of node7. Indeed, removing nodes 1, 2 and 4 disconnect node 7 from the
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source, but removing any sub set of{1, 2, 4} does not make 7 unreachable from
the source. This is also the case for sets{3, 4} and{4, 5, 6}.

2.2 Global constraints on Transitive closure and Domina-
tion

2.2.1 TheReachability constraint

Definition 8. TheReachabilityconstraint has two arguments: a directed graph
and its transitive closure.

Reachability(g, tcg) (2.7)

This apparently simple constraint is actually pretty expressive. As we will
show in section 2.3.1, we are able to model NP-complete problems in terms of this
constraint only.

2.2.2 TheDomination constraint

Definition 9. TheDominationconstraint has two arguments: a flow graph, i.e., a
directed graph with a source node and the extended dominatorgraph of the flow
graph:

Domination(fg, edg) (2.8)

In section 2.3.2 we will see thatDominationis enough to model The Simple
Path with Mandatory Nodes Problem and its applications.

2.2.3 TheDomReachability constraint

Definition 10. TheDomReachabilityconstraint is a constraint on three graphs:

DomReachability(fg, edg, tcg) (2.9)

where

• fg is a flow graph whose set of nodes is a subset ofN ;

• edg is the extended dominator graph offg; and

• tcg is the transitive closure offg, i.e,

tcg = TC(fg) (2.10)

The fact that we can already model NP-complete problems withReachability
makes the modelings of NP-complete problems withDomReachabilitynot surpris-
ing sinceDomReachabilityis actually an extension ofReachability. In section
2.3.2 we will show how we can take advantage of the extended dominator graph in
order to express relations on nodes and edges.
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2.2.4 Properties of Reachability, Domination and DomReachability

The definitions ofReachability, DominationandDomReachabilityimply the fol-
lowing properties which are crucial for the pruning that they perform. These prop-
erties define relations between the graphs they have as arguments. These relations
can then be used for pruning, as we show in section 3.2.

Properties between the graph and its transitive closure

1. If 〈i, j〉 is an edge ofg, theni reachesj.

∀〈i, j〉 ∈ Edges(g) : 〈i, j〉 ∈ Edges(tcg) (2.11)

2. If i reachesj, theni reaches all the nodes thatj reaches.

∀i, j, k ∈ N : 〈i, j〉 ∈ Edges(tcg)∧〈j, k〉 ∈ Edges(tcg) → 〈i, k〉 ∈ Edges(tcg)
(2.12)

3. If i does not reachj, 〈i, j〉 is not an edgeedg.

∀i, j ∈ N : 〈i, j〉 6∈ Edges(TC(g)) → 〈i, j〉 6∈ tcg (2.13)

Properties between the flow graph and its extended dominatorgraph

1. If i dominatesj, wherei/j is either a node or an edge, then ,〈i, j〉 is an edge
of edg.

∀i, j ∈ N∪(N×N) : 〈i, j〉 ∈ Edges(DomGraph(Ext(fg))) → 〈i, j〉 ∈ edg
(2.14)

2. If j is directly reachable from the source, i.e.,〈s, j〉 is an edge offg (where
s = Source(fg)), thens is the only dominator ofj.

∀i, j ∈ N, i 6= s : 〈s, j〉 ∈ Edges(fg) → 〈i, j〉 6∈ Edges(edg) (2.15)

Property among the flow graph, its extended dominator graph and its transi-
tive closure

If j is reachable froms andi dominatesj in fg, theni is reachable froms andj is
reachable fromi:

∀i, j ∈ N : 〈s, j〉 ∈ Edges(tcg) ∧ 〈i, j〉 ∈ Edges(edg) →
〈s, i〉 ∈ Edges(tcg) ∧ 〈i, j〉 ∈ Edges(tcg)

(2.16)
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2.3 Problems modeled with Reachability and DomReach-
ability

2.3.1 The bounded transitive closure problem and its variants

In this section we will present a set of problems that are defined on top of the
transitive closure relation. The main contribution of thissection is the proof that
The Bounded Transitive Closure Problem (BTC)is NP complete. We will also
present some variants ofBTCand suggest CP approaches to solve them based on
the global constraints we are presenting in this thesis.

The bounded transitive closure problem

Definition 11. Given the directed graphsgmin, gmax, tcgmin and tcgmax, The
Bounded Transitive Closure Problem (BTC) is to find a directed graphg such that:

gmin ⊆ g ⊆ gmax

and
tcgmin ⊆ TC(g) ⊆ tcgmax

(2.17)

Theorem 7. BTC is NP complete.

Proof. We will show thatBTCis NP complete by reducing The Disjoint Path Prob-
lem (DP) to BTC. The k-Disjoint-paths problem consists in findingk pairwise
disjoint paths betweenk pairs of nodes〈s1, d1〉, 〈s2, d2〉, . . . , 〈sk, dk〉. Both the
node-disjoint version and the edge-disjoint version are NP-complete even fork = 2
[SP78]. So if we express the problem of (node-disjointedly)connecting〈a, b〉 and
〈c, d〉 in gmax in terms ofBTC, then we prove thatBTC is NP complete.

Let p〈a,b〉 andp〈c,d〉 be the paths connecting〈a, b〉 and〈c, d〉 respectively. The
first thing to notice is that, ifp〈a,b〉 andp〈c,d〉 share a nodek, the graph composed
of p〈a,b〉 andp〈c,d〉 would be a graph wherea reachesd andc reachesb. Notice that
in order to reachd from a we just need to go froma to k usingp〈a,b〉, and then
from k to d usingp〈c,d〉.

If we want to avoid thatp〈a,b〉 andp〈c,d〉 share nodes, we need to impose thata
does not reachd andc does not reachb. Then, the problem of finding two disjoint
paths connecting〈a, b〉 and〈c, d〉 in gmax can be reduced to the followingBTC2:

gmin = ∅
gmax = the given graph

tcgmin = {〈a, b〉, 〈c, d〉}
tcgmax = TC(gmax) − {〈a, d〉, 〈c, b〉}

(2.18)

If g is a solution of theBTCthe disjoint paths can be obtained by runningDFS
rooted ata andc respectively. Notice that any path found byDFSwould be correct
since all paths froma to b are pairwise disjoint with all paths fromb to d.

2In the following equation, we will represent a graph as a set of edges.
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Notice thatReachability(g, tcg) is all what we need to modelBTC. gmin,
gmax, tcgmin andtcgmax correspond to the lower and upper bounds ofg andtcg
respectively.

The minimum bounded transitive closure

Definition 12. Given the directed graphsgmin, gmax, tcgmin andtcgmax, and an
integerk, The Minimum Bounded Transitive Closure Problem (MinBTC) is to find
a directed graphg, whose number of edges is at mostk, such that:

gmin ⊆ g ⊆ gmax

and
tcgmin ⊆ TC(g) ⊆ tcgmax

(2.19)

As MinBTC is an extension ofBTC, the fact thatMinBTC is NP complete is
not surprising. Indeed,DP can be reduced toMinBTCby ignoringk.

It is important to observe thatMinBTCis also a generalization ofThe Minimum
Equivalent Digraph Problem (MED)[GJ79]. InMED we are interested in finding
a subgraphg2 of a graphg1 such thatg1 andg2 have the same transitive closure,
andg2 has at mostk edges. Notice that we can trivially reduceMED to MinBTCby
stating that bothtcgmin andtcgmax are equal toTC(g1), gmin is the empty graph,
andgmax = g1.

Our way of modelingMinBTCis by usingReachability(g, tcg) in conjunction
with Size(g, I). The Sizeconstraint forcesg to havei edges. The model is the
following:

Reachability(g, tcg) ∧ Size(g, i) ∧ i ≤ k (2.20)

The maximum bounded transitive closure

Definition 13. Given the directed graphsgmin, gmax, tcgmin andtcgmax, and an
integerk, The Maximum Bounded Transitive Closure Problem (MaxBTC) is to find
a directed graphg, whose number of edges is at leastk, such that:

gmin ⊆ g ⊆ gmax

and
tcgmin ⊆ TC(g) ⊆ tcgmax

(2.21)

MaxBTCis also a generalizationBTCso it is also NP complete. The approach
for modelingMaxBTCis basically the same approach used forMinBTC:

Reachability(g, tcg) ∧ Size(g, i) ∧ i ≥ k (2.22)

In section 7 will elaborate on a serie of problems that arrives in Security that
can be represented asMaxBTCproblems.
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Figure 2.6: A simple path from 1 to 22 containing 4, 7, 10, 16, 18 and 21

2.3.2 The simple path with mandatory nodes problem

Definition 14. The Simple path with mandatory nodes problem (SPMN) is to find a
simple path in a directed graph containing a set of mandatorynodes[Sel02, CB04].
A simple path is a path where each node is visited only once, i.e., given a di-
rected graphg, a source nodesrc, a destination nodedst, and a set of mandatory
nodesmandnodes, we want to find a path ing from src to dst, going through
mandnodes and visiting each node only once.

For instance, consider the case shown in Figure 2.6. We want to find a path
from from node 1 to nodes 22 containing nodes 4, 7, 10, 16, 18 and 21. Notice that
using edge〈1, 5〉 implies that node 5 is visited twice since all paths from 5 to 22,
that contain the mandatory nodes, contain edge〈12, 5〉.

Theorem 8. SPMN is NP complete.

Proof. Hamiltonian Path(finding a simple path between two nodes containing all
the nodes of the graph [GJ79, CLR90]) can be trivially reduced toSPMNby defin-
ing the set of mandatory nodes asNodes(g) \ {src, dst}.

We can modelSPMNin terms ofDomReachabilityby imposing that the source
reaches the destination and that all the mandatory nodes dominates the destination.

Formally, if g is the graph where the simple path is to be found,src anddst are
the source and the destination respectively, andmn is the set of mandatory nodes,
the following constraints are enough to restrictfg to a graph where all the paths
from src to dst contain the mandatory nodes:
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SPMN(g, src, dst,mn, fg) ↔















Subgraph(fg, g)
DomReachability(fg, edg, tcg)
〈src, dst〉 ∈ Edges(tcg)
∀i ∈ mn : 〈i, dst〉 ∈ Edges(edg)

(2.23)

Once we have foundfg, finding the simple path is straightforward. A linear
exploration of the graph will suffice to build the path since all the paths from the
source to the destination will contain the mandatory nodes.

Notice that as a consequence of Theorem 4, ifNodes(g) = mn ∪ {src, dst}
(i.e., if we are to find a Hamiltonian path),fg contains only one path fromsrc
to dst. Notice also that, thanks to Theorem 5, the graph obtained from fg after
removing the back edges is a Hamiltonian path.

We can also take advantage of the fact that unreachable nodesare dominated by
any node in order to enforce reachability between nodes through the impossion of
dominance constraints. For instance, if we want to inforce that a nodei is reachable
from the source we can do so by stating that a nodek does not dominatei.

Assuming thatk 6∈ Nodes(g), the above means thatSPMNcan be expressed
in terms ofDominationas follows:

SPMN(g, src, dst,mn, fg) ↔















Subgraph(fg, g)
Domination(fg, edg)
∀i ∈ mn : 〈i, dst〉 ∈ Edges(edg)
〈k, dst〉 6∈ Edges(edg)

(2.24)

Another way of modeling this problem is by usingReachabilityin conjunction
with thePathconstraint (Path(p, s, d)), which holds ifp is a simple path froms
to d [DDD05b].

SPMN(g, src, dst,mn, fg) ↔























Subgraph(fg, g)
Path(fg, src, dst)
Reachability(fg, tcg)
〈src, dst〉 ∈ Edges(tcg)
∀i ∈ mn : i ∈ Nodes(fg)

(2.25)

As the nodes inmn are included in the set of nodes offg, fg is a simple path
containing the mandatory nodes.

In the previous model, the use ofReachabilityis redundant. In fact, the appli-
cation ofPathensures that the graph assigned tofg is a simple path containing the
mandatory nodes. However, as we will see in Chapter 6, the information provided
by Reachabilityis used to guide the search.
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Figure 2.7: Finding two disjoint pathsFigure 2.8: Finding a simple path pass-
ing through n

2.3.3 The ordered simple path with mandatory nodes problem

Definition 15. The Ordered Simple Path with Mandatory Nodes ProblemOSPMN
is an extension ofSPMNwhere the mandatory nodes are to be visited in a given
order, i.e., given a directed graphg, a source nodesrc, a destination nodedst, a
set of mandatory nodesmandnodes, and set of couples of nodesorder, we want
to find a path ing fromsrc to dst, going throughmandnodes followingorder and
visiting each node only once.

As OSPMNis an extension ofSPMN, it is not surprising thatOSPMNis NP
complete. Nevertheless, we will provide a proof of its NP completeness that does
not rely on the fact ofSPMNbeing NP complete.

Theorem 9. OSPMNis NP complete.

Proof. Once again we will take advantage of the NP completeness of The Disjoint
Path Problem. Suppose that we want to find two disjoint paths between the pairs
〈s1, d1〉 and〈s2, d2〉 in g. Let g′ andn be defined as follows.

n 6∈ Nodes(g)
g′ = AddEdges(g1, E1 ∪ E2)
g1 = AddNodes(g2, {n})
g2 = RemoveNodes(g, {d1 , s2})
E1 = IncEdges(g, d1)[d1/n]
E2 = OutEdges(g, s2)[s2/n]

(2.26)

Finding the two disjoint paths is equivalent to finding a simple path froms1 to d2

passing throughn in g′. The correctness of this reduction relies on the fact that the
concatenation of the two disjoint paths forms a simple path since each disjoint path
is a simple path.

Figure 2.8 shows the the reduction of the two disjoint paths problem of Figure
2.7. The path found in Figure 2.8 corresponds to the concatenation of the two
disjoint paths of Figure 2.7.
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OSPMNcan be modeled in term ofDomReachabilityas follows:

OSPMN(g, src, dst,mn, order, fg) ↔






















Subgraph(fg, g)
DomReachability(fg, edg, tcg)
〈src, dst〉 ∈ Edges(tcg)
∀i ∈ mn : 〈i, dst〉 ∈ Edges(edg)
∀〈i, j〉 ∈ order : 〈j, i〉 6∈ Edges(tcg)

(2.27)

Indeed, given two mandatory nodesi andj, if i should be visited first thanj
(〈i, j〉 ∈ order), it is enough to state thatj does not reachi (〈j, i〉 6∈ Edges(tcg))
in order to ensure that the resulting graphfg is a graph where, in all paths from
src to dst, i is visited first thanj.

2.3.4 The ordered disjoint paths problem

Definition 16. The Ordered Disjoint Path (ODP) is an extension ofDPwhere each
couple is associated with a set of mandatory nodes and an order relation.

Let us start with the case ofthe 2 Ordered node-disjoint path problem (2ODP)
where, given the directed graphg and the tuples〈s1, d1,mn1, order1〉 and
〈s2, d2,mn2, order2〉, the goal is to find two pathsp1 andp2 such thatp1 is a path
from s1 to d1 visiting mn1 respectingorder1, p2 is a path froms2 to d2 visiting
mn2 respectingorder2, andp1 andp2 are node-disjoint.

The2ODP〈g, 〈〈s1, d1,mn1, order1〉, 〈s2, d2,mn2, order2〉〉〉 can be reduced
to theOSPMN〈g′, s1, d2,mn′, order′〉 whereg′ is defined as in the previous re-
duction,mn′ = mn1 ∪ mn2 ∪ {n}, n is defined as before, and

order′ =







order1 ∪
order2 ∪
{〈n1, n2〉 | (n1 ∈ mn1 ∧ n2 = n) ∨ (n1 = n ∧ n2 ∈ mn2)}.

(2.28)
The simple path traverses the nodesmn1 in the orderorder1, and the nodesmn2

in the orderorder2, the nodesmn1 are visited beforen and the nodes inmn2 after
n.

Let Reduce_2_ODP be defined as

Reduce_2_ODP (ODPins) = OSPMNins
ODPins = 〈g, 〈〈s1, d1,mn1, order1〉, 〈s2, d2,mn2, order2〉〉〉

OSPMNins = 〈g′, s1, d2,mn′, order′〉
(2.29)

The functionReduceODP , which reduces any ordered disjoint path problem (ODP)
to OSPMN, can be defined as shown in Figure 2.9. Certainly, we assume that the
pairs〈s1, d1〉, 〈s2, d2〉, . . . ,〈sk, dk〉 are pairwise node-disjoint. However, this con-
dition can be easily fulfilled by duplicating the nodes that are used by more than
one pair.
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ReduceODP(〈g, 〈〈s1, d1,mn1, order1〉, . . . , 〈sk, dk,mnk, orderk〉〉〉)
ospmn := 〈g, s1, d1,mn1, order1〉
for i ∈ {2, 3, . . . , k} do

〈g′, s′, d′,mn′, order′〉 := ospmn
ospmn := Reduce_2_ODP (〈g′, 〈〈s′, d′,mn′, order′〉, 〈si, di,mni, orderi〉〉〉)

end
returnospmn

end

Figure 2.9: Reducing ODP to OSPMN

Note that the conventionalk node-disjoint paths problem can be trivially re-
duced to ODP. We simply need to map each pair〈si, di〉 to 〈si, di, ∅, ∅〉.

2.3.5 The traveling salesman problem

Given a directed graphg, a source nodesrc and a destination nodedst, theTrav-
eling Salesman Problem (TSP)is to find whether there is aHamiltonian Path, i.e.,
a path containing all the nodes, whose length is less than or equal to a given value
max [GJ79].

We can model this problem as follows:

TSP (g, src, dst,max, p) ↔















mn = nodes(g) \ {src, dst}
SPMN(g, src, dst,mn, p)
Size(p, i)
i ≤ max

(2.30)

This definition is usingSPMNas defined in section 2.3.2. Here, we are ba-
sically constrainingp to be a simple path of at mostmax edges fromsrc to dst
containing the nodes inmn.





Chapter 3

Algorithms for DomReachability

In chapter 2 we introduced three global constraints on top ofthe notions of Dom-
ination and Transitive Closure:Reachability, DominationandDomReachability.
As DomReachabilityis the conjuntion ofReachabilityand Domination, the im-
plementation ofDomReachabilitycovers the implementation ofReachabilityand
Domination.

In this chapter we introduce the algorithms involved in the implementation of
DomReachability. We start by explaining how the pruning rules are systematically
derived from the properties of the constraint. Then we revisit each property and
derive the corresponding pruning rules. During this process, we will emphasize
the pruning gained by the activation of each rule.

As we saw in the previous chapter,DomReachability(FG,EDG,TCG) con-
straintsEDG to be the extended dominator graph ofFG andTCG to be the tran-
sitive closure ofFG. In order to discard graphs from the domain ofFG that violate
this constraint, we need to maintain the transitive closuregraph and the extended
dominator graph of the bounds ofFG. So, in this chapter we also study some
approaches for maintaining this information.

3.1 From properties to propagation rules

In this section we present a general approach for transforming properties into prop-
agator rules. In section 3.2, we apply this approach to the properties ofDomReach-
ability in order to get the pruning rules ofDomReachability.

A propagation rule is defined asC
A

whereC is a condition andA is an action.
WhenC is true, the pruning defined byA can be performed.

The definition of theDomReachabilityconstraint and its derived properties give
place to a set of propagation rules which are systematicallygenerated as follows:

33
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3.1.1 Generating derived properties

Given a property of the formP → Q, we generate the corresponding derived
properties by applying the following rules:

• If Q is a conjunction of basic formulasQ1 ∧ Q2 ∧ ... ∧ Qn, the properties
derived fromP → Q1∧Q2∧...∧Qn are generated by applying the following
rule:

P → Q1 ∧ Q2 ∧ ... ∧ Qi ∧ ... ∧ Qn

P → Qi
(3.1)

• If P is a conjunction of basic formulasP1 ∧ P2 ∧ ... ∧ Pn andQ is a ba-
sic formula, then the properties derived fromP1 ∧ P2 ∧ ... ∧ Pn → Q are
generated by applying the following rule:

P1 ∧ P2 ∧ ... ∧ Pn → Q

¬Q ∧ P1 ∧ ... ∧ Pi−1 ∧ Pi+1... ∧ Pn → ¬Pi
(3.2)

3.1.2 Precondition and postcondition rewriting

We approximate a given set by pruning its upper and lower bounds. Given a vari-
ableS that approximates a sets, Max(S) refers to the greatest set to whichS can
be bound, andMin(S) refers to the least set to whichS can be bound.

S gets more determined when elements are removed fromMax(S) or added to
Min(S). The fact that the bounds ofS evolve indicates thatMin(S) andMax(S)
are memory cells. The value thatS denotes becomes totally determined when
Min(S) andMax(S) become equal.

We check thati is in s by checking thati is in Min(S). Similarly, we check
that i is not ins by checking thati is not inMax(S):

i ∈ s

i ∈ Min(S)
(3.3)

i 6∈ s

i 6∈ Max(S)
(3.4)

We ensure thati is in s by addingi to the lower bound ofS. Similarly, we
ensure thati is not ins by removingi from the upper bound ofS:

i ∈ s

Min(S) := Min(S) ∪ {i}
(3.5)

i 6∈ s

Min(S) := Min(S) \ {i}
(3.6)

3.2 Deriving pruning rules

We implement the constraint (2.9) by the propagator that we note

DomReachability(〈FG, s〉, EDG,TCG). (3.7)

FG, EDG andTCG are graph variables, i.e., variables whose domain is a set of
graphs [DDD05b]. A graph variableG is represented by two graphs:Min(G) and
Max(G). The graphg thatG approximates must be a supergraph ofMin(G) and
a subgraph ofMax(G), thereforeMin(G) andMax(G) are called the lower and
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Figure 3.1: Activation dependencies between the graph variables of DomReacha-
bility

upper bounds ofG, respectively. Notice that the sources of the flow graphFG is
a known value.

We will know revisit the properties ofDomReachabilitypresented in Chapter
2 and define the corresponding pruning rules. Figure 3.1 shows the graph of ac-
tivation dependencies between the graph variables of DomReachability. An edge
labeled withr from G1 to G2 means that a change in the domain ofG1 may cause
a change in the domain ofG2 through the application of ruler.

3.2.1 Pruning rules of Property 2.11

If 〈i, j〉 is an edge offg, theni reachesj.

∀〈i, j〉 ∈ Edges(fg) : 〈i, j〉 ∈ Edges(tcg)

This property represents the basic case of the transitive closure. The pruning
rules derived from this property (and from property 2.13) establish the connection
between the bounds ofFG and the bounds ofTCG.

The pruning rules derived from property 2.11 are the following:

• It causes the introduction of edge〈i, j〉 in the lower bound ofTCG when
the edge is in the lower bound ofFG:

〈i, j〉 ∈ Edges(Min(FG))

Edges(Min(TCG)) := Edges(Min(TCG)) ∪ {〈i, j〉}
(3.8)

• It causes the removal of edge〈i, j〉 from the upper bound ofFG when the
edge is not in the upper bound ofTCG:

〈i, j〉 6∈ Edges(Max(TCG))

Edges(Max(FG)) := Edges(Max(FG)) \ {〈i, j〉}
(3.9)
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3.2.2 Pruning rule of Property 2.13

If i does not reachj, 〈i, j〉 is not an edge oftcg.

∀i, j ∈ N : 〈i, j〉 6∈ Edges(TC(fg)) → 〈i, j〉 6∈ tcg

One consequence of this property is that edge〈i, j〉 is removed from the upper
bound ofTCG whenj is not reachable fromi in the transitive closure of the upper
bound ofFG.

〈i, j〉 6∈ Edges(TC(Max(FG)))

Edges(Max(TCG)) := Edges(Max(TCG)) \ {〈i, j〉}
(3.10)

The implementation of this rules makes it necessary to update the transitive clo-
sure of the upper bound ofFG after modifying it. As the upper bound of a graph
variable evolves monotonically, it is possible to considerdecremental approaches
for updating the transitive closure ofFG. By decremental we mean dynamic al-
gorithms in which the only changes considered are removals of nodes and edges
[FMNZ01, RZ02].

3.2.3 Pruning rule of Property 2.14

Let DomGraph be a function that returns the dominator graph of a flow graph,
i.e.,〈i, j〉 ∈ Edges(DomGraph(fg)) ↔ i ∈ Dominators(fg, j).

If i dominatesj then ,〈i, j〉 is an edge ofedg.

∀i, j ∈ N ∪ (N × N) : 〈i, j〉 ∈ Edges(DomGraph(Ext(fg))) → 〈i, j〉 ∈ edg

As we are considering the extended dominator graph offg, i andj may also
be edges offg.

One consequence of property 2.14 is to add the edge〈i, j〉 to the lower bound
of EDG wheni dominatesj in the upper bound ofFG.

〈i, j〉 ∈ Edges(DomGraph(Ext(Max(FG))))

Edges(Min(EDG)) := Edges(Min(EGD)) ∪ {〈i, j〉}
(3.11)

Notice that, as the upper bound ofFG evolves monotonically, oncej is dom-
inated byi in the upper bound ofFG it stays dominated byi. This monotonic
evolution also implies that decremental algorithms for computing dominators can
be considered. However, as the computation of dominators from scratch can be
done in linear time [Geo05], we will restrict our attention to this kind of algorithms
only.
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3.2.4 Pruning rules of Property 2.15

If j is directly reachable from the source, i.e.,〈s, j〉 is an edge offg (wheres =
Source(fg)), thens is the only dominator ofj.

∀i, j ∈ N, i 6= s : 〈s, j〉 ∈ Edges(fg) → 〈i, j〉 6∈ Edges(edg)

The consequences of this property are the following:

• Edge〈i, j〉 is removed from the upper bound ofEDG if edge〈s, j〉 is in the
lower bound ofFG:

〈s, j〉 ∈ Edges(Min(FG))

Edges(Max(EDG)) := Edges(Max(EDG)) \ {〈i, j〉}
(3.12)

• Edge〈s, j〉 is removed from the upper bound ofFG if edge〈i, j〉 is in the
lower bound ofEDG:

〈i, j〉 ∈ Edges(Min(EDG))

Edges(Max(FG)) := Edges(Max(FG)) \ {〈s, j〉}
(3.13)

3.2.5 Pruning rules of Property 2.12

If i reachesj, theni reaches all the nodes thatj reaches.

∀i, j, k ∈ N : 〈i, j〉 ∈ Edges(tcg) ∧ 〈j, k〉 ∈ Edges(tcg) → 〈i, k〉 ∈ Edges(tcg)

The pruning rules derived from this property let us propagate the reached nodes
of a given node back to their ancestors. In a similar way, unreachable nodes are
propagated from a node to its successors.

The pruning rules derived from property 2.12 are the following:

• Edge〈i, k〉 is included in the lower bound ofTCG when edges〈i, j〉 and
〈j, k〉 are in the lower bound ofTCG:

〈i, j〉 ∈ Edges(Min(TCG)) ∧ 〈j, k〉 ∈ Edges(Min(TCG))

Edges(Min(TCG)) := Edges(Min(TCG)) ∪ {〈i, k〉}
(3.14)

• Edge〈i, j〉 is removed from the upper bound ofTCG when edge〈i, k〉 is not
in the upper bound ofTCG and edge〈j, k〉 is in the lower bound ofTCG:

〈i, k〉 6∈ Edges(Max(TCG)) ∧ 〈j, k〉 ∈ Edges(Min(TCG))

Edges(Max(TCG)) := Edges(Max(TCG)) \ {〈i, j〉}
(3.15)

• Edge〈j, k〉 is removed from the upper bound ofTCG when edge〈i, k〉 is not
in the upper bound ofTCG and edge〈i, j〉 is in the lower bound ofTCG:

〈i, k〉 6∈ Edges(Max(TCG)) ∧ 〈i, j〉 ∈ Edges(Min(TCG))

Edges(Max(TCG)) := Edges(Max(TCG)) \ {〈j, k〉}
(3.16)



38 Chapter 3. Algorithms for DomReachability

3.2.6 Pruning rules of Property 2.16

If j is reachable froms andi dominatesj in fg, theni is reachable froms andj is
reachable fromi:

∀i, j ∈ N : 〈s, j〉 ∈ Edges(tcg) ∧ 〈i, j〉 ∈ Edges(edg) →
〈s, i〉 ∈ Edges(tcg) ∧ 〈i, j〉 ∈ Edges(tcg)

The rules derived from this property are the following:

• Edges〈s, i〉 and〈i, j〉 are added to lower bound ofTCG when edge〈s, j〉 is
in the lower bound ofTCG and edge〈i, j〉 is in the lower bound ofEDG:

〈s, j〉 ∈ Edges(Min(TCG)) ∧ 〈i, j〉 ∈ Edges(Min(EDG))

Edges(Min(TCG)) := Edges(Min(TCG)) ∪ {〈s, i〉, 〈i, j〉}
(3.17)

Nodes and edges common to all paths from the source toj get included in
the lower bound ofFG when i is reachable from the source through the
activation of this rule.

• Edge〈s, j〉 is removed from the upper bound ofTCG when edge〈s, i〉 is not
in the upper bound ofTCG and edge〈i, j〉 is in the lower bound ofEDG:

〈s, i〉 6∈ Edges(Max(TCG)) ∧ 〈i, j〉 ∈ Edges(Min(EDG))

Edges(Max(TCG)) := Edges(Max(TCG)) \ {〈s, j〉}
(3.18)

• Edge〈i, j〉 is removed from the upper bound ofEDG when edge〈s, i〉 is not
in the upper bound ofTCG and edge〈s, j〉 is in the lower bound ofTCG:

〈s, i〉 6∈ Edges(Max(TCG)) ∧ 〈s, j〉 ∈ Edges(Min(TCG))

Edges(Max(EDG)) := Edges(Max(EDG)) \ {〈i, j〉}
(3.19)

• Edge〈s, j〉 is removed from the upper bound ofTCG when edge〈i, j〉 is not
in the upper bound ofTCG and edge〈i, j〉 is in the lower bound ofEDG:

〈i, j〉 6∈ Edges(Max(TCG)) ∧ 〈i, j〉 ∈ Edges(Min(EDG))

Edges(Max(TCG)) := Edges(Max(TCG)) \ {〈s, j〉}
(3.20)

• Edge〈i, j〉 is removed from the upper bound ofEDG when edge〈i, j〉 is not
in the upper bound ofTCG and edge〈s, j〉 is in the lower bound ofTCG:

〈i, j〉 6∈ Edges(Max(TCG)) ∧ 〈s, j〉 ∈ Edges(Min(TCG))

Edges(Max(EDG)) := Edges(Max(EDG)) \ {〈i, j〉}
(3.21)
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3.2.7 Showing activation of pruning rules

Let us see the pruning previously introduced in a concrete example. Figures 3.2, 3.3
and 3.4 show a partially defined flow graph with its corresponding partially defined
dominator graph and transitive closure. For the sake of simplicity, in this example,
we will assume that the second argument ofDomReachabilityis a dominance graph
(instead of a extended dominance graph).

Notice, for instance, that we can not say any thing about the domination of
node 3 over node 2 since node 3 trivially dominates node 2 if the source (node 1)
does not reach node 2. The same applies for node 4.

Figure 3.2: Flow graph Figure 3.3: Dominance
graph

Figure 3.4: Transitive
closure

In figures 3.5, 3.6 and 3.7, we show the effect of imposing thatedge< 1, 2 >
is part of the flow graph. This decreases the upper bound of thedominance graph
since neither 3 nor 4 dominate 2. This pruning is caused by rule 3.21 since edge
< 1, 2 > is in the lower bound of the transitive closure and edges< 3, 2 > and
< 4, 2 > are not in the upper bound of the transitive closure.

The presence of edge< 1, 2 > in the flow graph also implies the determination
of the transitive closure as observed in Figure 3.7. This is the result of applying
rules 3.8 and 3.14, which basically update the lower bound ofthe transitive closure
after adding a new edge to the lower bound of the flow graph.

Imposing that edges< 2, 3 > and< 2, 4 > are part of the dominance graph
decreases the upper bound of the flow graph. All the paths fromthe source to node
3, and from the source to node 4 should contain node 2. This is why edges< 1, 3 >
and< 1, 4 > are removed. This pruning is caused by rule 3.13.

It is important to observe that the bigger the flow graph is thesmaller the dom-
inance graph is. Indeed, imposing domination reduces the ways nodes can be con-
nected.
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Figure 3.5: Flow graph Figure 3.6: Dominance
graph

Figure 3.7: Transitive
closure

Figure 3.8: Flow graph Figure 3.9: Dominance
graph

Figure 3.10: Transitive
closure

3.2.8 Optimizing the discovery of dominators

Let us revisit the definition of the extended graph of a flow graph 〈N,E, s〉:

〈N ′, E′, s′〉 = Ext(〈N,E, s〉) ↔







s′ = s
N ′ = N ∪ E
e = 〈i, j〉 ∈ E ↔ 〈i, e〉 ∈ E′ ∧ 〈e, j〉 ∈ E′

The computation of the extended graph of a graph can be done inlinear time
with respect to the size of the graph since it basically consists in traversing the
original graph and performing a constant amount of operation at each step. The
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resulting graph is a graph whose size complexity is equivalent to the original graph:

|N ′| + |E′| = (|N | + |E|) + 2 ∗ |E| = |N | + 3 ∗ |E| < 3 ∗ (|N | + |E|) (3.22)

Nevertheless, the number of nodes of the resulting graph is,in the worst case,
quadratic with respect to the number of nodes of the originalgraph.

As the computation of the dominance tree depends on the size of the graph,
computing the dominance tree of the dominance graph has the same complexity
that computing the dominance tree of the extended graph. However, computing
the transitive closure of the extended dominance tree is more expensive since the
complexity of this operation does depend on the number of nodes.

Pruning rule 3.17 can be optimized by considering the fact that we only need to
activate the rule when edge〈i, j〉 is in Edges(DomTree(Max(FG))) since the
other dominators ofj will be added when considering their immediately dominated
nodes. This means that rule 3.17 can be re-formulated as follows:

〈s, j〉 ∈ Edges(Min(TCG)) ∧ 〈i, j〉 ∈ Edges(DomTree(Ext(Max(FG))))

Edges(Min(TCG)) := Edges(Min(TCG)) ∪ {〈s, i〉, 〈i, j〉}
(3.23)

For instance, suppose that the set of dominators of nodej in Ext(Max(FG))
is {i1, i2} and thati1 is the immediate dominator ofi2, which implies thati2 is
the immediate dominator ofj. Suppose also that〈s, j〉 is in Edges(Min(TCG)).
Then, this rule will add edges〈s, i2〉 and〈i2, j〉 toEdges(Min(TCG)), which im-
plies the addition of nodei2 to bothNodes(Min(FG)) andNodes(Min(TCG)).
As edge〈s, i2〉 is now inEdges(Min(TCG)) andi1 is the immediate dominator
of i2, edges〈s, i1〉, 〈i1, i2〉 are added toEdges(Min(TCG)).

Indeed, even though we are only considering the extended dominance tree all
the dominators of a given nodej get added to the lower bound ofFG when the
sources reachesj. This optimization of the rule avoids unnecessary activations.
If we consider the previous example, we were addingi1 twice (when considering
edges〈s, j〉 and〈s, i2〉) even though the second addition is not needed sincei1 is
already included. With this optimization, we can say that the number of activation
with respect to the length of the branch containingj in the extended dominance
tree is linear.

3.2.9 DomReachability works on approximations

As we said before, graph variables are represented in terms of bounds. However,
there are sets of graphs that cannot be represented in terms of bounds. For instance,
consider the case in Figure 3.11. The domain{g1, g2} cannot be represented in
terms of bounds. This domain is approximated as shown in Figure 3.12. The do-
main of this graph variable is the set of all the graphs with set of nodes{1, 2, 3, 4}
whose edges are included in the set{〈1, 2〉, 〈3, 4〉, 〈1, 4〉, 〈3, 2〉}.

In general, we can say that the domain of a variable is a (not necessarily proper)
sub set of its approximation.



42 Chapter 3. Algorithms for DomReachability

Figure 3.11: The domain{g1, g2} cannot be represented in terms of bounds

Figure 3.12: Approximation of the domain{g1, g2}

Figure 3.13: There are several ways of preventing 4 to be reachable from 1

One implication of approximating the domains is that the effects of impos-
ing a constraint on one of the arguments ofDomReachabilitycannot be directly
propagated to the other two arguments. For instance, suppose that the flow graph
is instantiated as shown in figure 3.13. The effects of imposing the constraint
〈1, 4〉 6∈ tcg can not be propagated to the flow graph since the set of possible
graphs to whichfg can be instantiated, which are shown in Figure 3.14, cannot be
represented in terms of bounds.

3.2.10 Level of consistency of DomReachability

As explained in the previous section, the domain of a graph variable can be only
pruned by modifying the elements in its bounds. This means that, in the best case,
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Figure 3.14: Actual domain offg (in Figure 3.13) after impossing that〈1, 4〉 6∈ tcg

bound consistency is the highest level of consistency that can be achieved. Nev-
ertheless, achieving this level of consistency is still a challenge when considering
constraints likeDomReachabilitysince it may lead to NP computations.

The fact that we can model an NP-complete problem likeSPMN(as shown in
section 2.3.2) in terms ofDomReachabilityimplies thatDomReachabilitycannot
achieve general consistency in polynomial time. Suppose that we need to find
out whether a particular noden in the upper bound ofFG needs to be removed.
For this, we need to see whether there is at least one simple path containing all
the mandatory nodes that containsn. n must be removed from the upper bound
if there is not any simple path. Notice that this correspondsto the definition of
SPMN. As bound consistency relies on the ability to answer this query for every
node in the upper bound, this implies that bound consistencycan not be achieved
in polynomial time.

Notice that, even forReachability(g,tcg)(the constraint introduced in section
2.2.1), checking bound consistency is NP complete. As explained in section 2.3.1,
BTC is the problem we need to solve in order to determine whether aparticular
partial instantiation is consistent. AsBTC is NP complete, checking bound consis-
tency is NP complete too.
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3.3 Algorithms for computing dominators

3.3.1 Aho and Ullman’s algorithm

Aho and Ullman’s algorithm [AU77] relies on the very definition of domination.
As we know,i dominatesj is all paths from the source toj containi. An immediate
consequence of this is thatj should not be reachable from the source after removing
i. So, in order to detect the nodes dominated by a nodei we look at the set of nodes
that are no longer reachable from the source after removingi.

Pre : fg is a flow graph
Post : dom(i) is the set of dominators of nodei in fg

GetDominators(fg)
nodes0 := DFS(fg, Source(fg))
for i ∈ Nodes(fg) do

doms(i) := if i ∈ nodes0 then∅ elseNodes(fg) \ {i} end
end
for i ∈ nodes0 do

nodes1 := DFS(RemoveNode(fg, i), Source(fg))
for j ∈ nodes0 \ (nodes1 ∪ {i}) do

doms(j) := doms(j) ∪ {i}
end

end
returndoms

end

Figure 3.15: Aho and Ullman’s algorithm

The algorithm is presented in Figure 3.15. The input is a flow graphfg and
the output is a mapdom that associates each node with its set of dominators, i.e.,
doms(i) is the set of dominators of nodei in fg. Let us assume thatDFS returns
the reachable nodes.doms(i) is initialized with either∅ or Nodes(fg) \ {i} de-
pending on whetheri is reachable fromSource(fg) (since any node dominates
an non-reachable node). Each node is removed in order to detect the nodes that it
dominates. Therefore the computation of dominators isO(N ∗ (N + E)).

3.3.2 Cooper, Harvey and Kennedy’s algorithm

Cooper, Harvey and Kennedy’s algorithm [CHK] is an iterative algorithm that re-
lies on the fact that the dominators of a noden is the set composed ofn and the
intersection of the dominators of its predecessors. In thiscase the notion of dom-
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ination presented in Chapter 2 is adapted so that each node ispart of its set of
dominators:

doms(n0) = {n0}
doms(n) = (

⋂

p∈preds(n) doms(p)) ∪ {n}
(3.24)

From this definition of domination we can observe that at mostone predecessor
of n can be a dominator ofn sincen can have only one immediate dominator.

Pre :
fg is a flow graph
preds(i) is the set of incoming nodes ofi in fg

Post :
doms(i) is the set of dominators of nodei in fg

GetDominators(fg)
for all nodes,n do

doms[n] := {1..|Nodes(fg)|}
end
changed := true
while (changed) do

changed := false
for all nodes,n, in reverse postorder
newset := (

⋂

p∈preds(n) doms[p]) ∪ {n}

if (newset 6= doms[n]) then
doms[n] := newset
changed := true

end
end

end
returndoms

end

Figure 3.16: Cooper, Harvey and Kennedy’s simplified iterative algorithm for com-
puting dominators

Figure 3.16 shows a simplified version of Cooper et al’s algorithm. In each
iteration the set of dominators is updated according to Equation 3.24. The loop
continues until no further update is performed.

Notice that this algorithm relies on the fact the the source node has no incoming
nodes so(

⋂

p∈preds(n) doms[p]) ∪ {n} is equal to{n} if n is the source.
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In [CHK], Cooper et al suggest a clever way of implementing the set operations
executed at each iteration that allows to compute the dominators inO(N2).

3.3.3 Lengauer and Tarjan’s algorithm

In order to find the dominators of the flow graphG, this algorithm assigns a number
to each node. This number corresponds to the order in which the nodes are visited
following a DFS traversal rooted atr (the source ofG). In what follows, these
numbers will be used to denote the nodes andD will be the resulting DFS-tree,
which will be represented by the arrayparent.

The algorithm is based on the notion ofsemidominatorwhich is defined in
terms of the notion ofsemidominator path. These two notions are defined by
Lengauer and Tarjan [LT79] as follows:

Definition 17. A pathP = (u = v0, v1, ..., vk−1, vk = v) in G is asemidominator
path(sdom path) ifvi > v for 1 ≤ i ≤ k − 1.

Definition 18. Thesemidominatorof a nodev (s(v)) is the minimumu such that
there is a sdom path fromu to v.

Notice that a node only has one semidominator since the DFS number associ-
ated with each node is unique.

In [LT79], Lengauer and Tarjan define a set of properties between dominators
and semidominators. In short, these properties imply that,for anyw 6= r:

• s(w) is a proper ancestor ofw in D.

• d(w) is a (not necessarily proper) ancestor ofs(w).

• The dominators of nodes inG do not change if the edges that are not in
Edges(D) are replaced with the edges in{〈s(w), w〉 : w ∈ Nodes(G) ∧
w 6= r}.This means that the set of dominators can be computed fromD and
the set of semidominators.

Figure 3.17, which is taken from [Geo05], shows the skeletonof Lengauer and
Tarjan’s algorithm (LT). LT maintains a forestF whose trees are composed of
edges ofD. In fact, we can say thatF is a sub graph ofD. The two operations
performed on the forest are:

• link(v) that adds the edge〈parent(v), v〉 to the forest.

• eval(v) returnsrF (v) if v = rF (v). Otherwise, it returnsmin{u : rF (v)
+
−→

u
∗
−→ v} in D.

In the previous definitionsparent(v), is the parent ofv in D andrF (v) is the
root of the tree containingv in F .
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Pre :
G = 〈N,E, r〉 is a flow graph with source noder
D = DFS(G, r)
pred(i) is the set of predecessor nodes ofi in D
parent(i) is the parent ofi in D

Post :
d(i) is the immediate dominator ofi in G

LT(G)
for w ∈ N − {r} in reverse preorder ofD do

s(w) := w
for v ∈ pred(w) do

x := eval(v)
s(w) := min{s(w), s(x)}

end
addw to bucket(s(w))
link(w)
z:=parent(w)
for v ∈ bucket[z] do

deletev from bucket(z)
y := eval(v)
if s(y) < z thend(v) := y elsed(v) := z end

end
end
for w ∈ N − {r} in preorder ofD do

if d(w) 6= s(w) thend(w) := d(d(w)) end
end

end

Figure 3.17: The Lengauer-Tarjan algorithm

In [LT79], Lengauer and Tarjan show that if nodes are processed in reverse
preorder, then all the necessary values will be available when needed. This is why
the first loop in Figure 3.17 considers the nodes in reverse preorder.

The semidominator of a nodeu is chosen by considering the current semidom-
inators of the nodes in the path fromr to u. LT associates each node with the set of
nodes that it semidominates. This association is done through the vectorbucket,
i.e., bucket(i) is the set of nodes semidominated byi. Each nodev is initially
associated with an approximate immediate dominatory. y is an approximation be-
cause it might not be the immediate dominator ofv, but a node whose immediate
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Figure 3.18: An example of a condensation graph

dominator is also the immediate dominator ofv. So, the purpose of the last loop is
to check whethery is indeed the immediate dominator. If this is not the case, the
immediate dominator is updated accordingly.

The complexity of this algorithm depends on howlink andeval are imple-
mented. If the complexity of these functions were constant,LT would be linear
with respect to the size of the graph. In [LT79], Lengauer andTarjan show one
way of implementing these operations that almost achieves this goal. The com-
plexity of the algorithm presented in [LT79] isO(mα(m,n)), wheren andm are
the number of nodes and edges, andα is the inverse of Ackermann’s function.

3.4 Algorithms for computing transitive closure

3.4.1 Frigioni et al’s decremental algorithm

Frigioni et al’s decremental algorithm [FMNZ01] is based onthe notion of graph
condensation. The condensation graph ofG is the graphG′ = 〈N ′, E′〉 where
each node inN ′ corresponds to a strongly connected component inG and an edge
〈u, v〉 is in E′ if and only if there exists an edge inE connecting any of the nodes
in the component ofu to any of the nodes in the component ofv.

An example of graph condensation is shown in Figure 3.18. Nodes 1, 2 and
3 form a strongly connected component and so do nodes 4, 5 and 6. Node 7 is
a strongly connected component on its own. The nodes representing the strongly
connected component are connected as mentioned before. Forinstance, As node1
and node4 are in different connected components, edge〈1_2_3, 4_5_6〉 is in the
set of edges of the condensation graph.

Notice that a condensation graph is always acyclic. Indeed,if the nodes rep-
resenting the strongly connected componentsi andj participate in a cycle in the
condensation graph, the union ofi andj would form a strongly connected com-
ponent too since the nodes ofi would be reachable from the nodes ofj and vice
versa.
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This is why Frigioni et al decompose the problem of maintaining the transitive
closure of a directed graphG = 〈N,E〉 into two sub problems:

• Maintaining the condensation graph ofG.

• Maintaining the association of nodes with strongly connected components.

In the description of the algorithm,n will refer to |N |.

Decremental maintenance of transitive closure for DAGs.

The algorithm presented here is an optimization of Italiano’s algorithm [Ita88] done
by Frigioni et al [FMNZ01]. Italiano associates every nodeu ∈ N with a set
DESC[u] containing all the descendants ofu in G. Each one of those sets is
organized as a out-tree rooted atu. In addition, ann × n matrix of pointers,
calledINDEX, is maintained which allows fast access to nodes in these trees. If
j ∈ DESC[i], INDEX[i, j] points to nodej in DESC[i]; otherwise, it isNull.
INDEX allows to check weather a node is reachable from another in constant
time.

Let 〈i, j〉 be the edge to be deleted. If〈i, j〉 does not belong to anyDESC
tree, the data structure does not need to be updated. If〈i, j〉 belongs toDESC[u],
DESC[u] has to reconstructed since the deletion of the edge splits the tree. In
order to do this, one has to check that there is still a path from u to j. This is done
by checking whether there is an edge〈v, j〉 in DESC[u] such that there is a path
from u to v that avoids〈i, j〉. If such edge exists, edge〈i, j〉 is replaced with〈v, j〉
in DESC[u]. In this case,v is considered ahookfor j. If such edge does not exist,
thenj must be removed fromDESC[u] and the outgoing edges ofj in DESC[u]
should be deleted by applying the same procedure.

In order to find a hook forj, each nodey is associated with the set of tails
of its incoming edgesIN [y]. Assuming that each set is correctly updated after
each edge deletion, checking whether there is a hook forj in DESC[u], after
the deletion of〈i, j〉, is done by checking ifIN [j] ∩ DESC[u] 6= ∅. Indeed, if
IN [j] ∩ DESC[u] 6= ∅ it is because there is at least one node reachable fromu
that is an incoming node ofj.

Notice that nodes that are not hook for a nodej remains in that condition after
edge removals. This means that if it has been already detected thatk is not a hook
for j, k does not need to be reconsidered after removing an edge. Thisis why an
n × n matrix HOOK is maintained.HOOK[u, j] stores the pointer to the first
yet to be considered node inIN [j]. If there is no more nodes to be considered,
HOOK[u, j] is Null.

Frigioni et al optimize the representation of the information by using a sin-
glen×n matrixPARENT containing the information inDESC andINDEX.
PARENT [i, j] stores a pointer to the edge that connectsj to its parent inDESC[i]
if j ∈ DESC[i]. If j 6∈ DESC[i], PARENT [i, j] is Null.
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Figure 3.19 shows the algorithm for deleting an edge〈i0, j0〉. The first thing
done is to updateIN sincei0 is no longer an incoming node ofj0. Then, all the
nodesu whose out-tree contains edge〈i0, j0〉 are considered. In each iteration
a queueQ that keeps the edges to be removed from the out-tree ofu is created.
As 〈i0, j0〉 must be removed, it is put in the queueQ. Then, each edge ofQ is
considered. In each iteration, the first edge〈i, j〉 of Q is dequeued and a valid
replacement is searched. As said before, this replacement exists if HOOK[u, j] is
not Null. If this is the case,〈i, j〉 is replaced with〈HOOK[u, j], j〉 andHOOK
is updated. If not,Null is assigned toPARENT [u, j] indicating thatj is no
longer reachable fromu and all the outgoing edges ofj that are in the out-tree of
u are added toQ sincej cannot be used to reach any nodek from u.

Figure 3.20 shows howHOOK is updated. In this algorithm it is assumed that
the elements ofIN [j] are indexed with respect to the initial graph. So,IN [j][k]
is thekth incoming node ofj in the initial graph. As the index of the hook forj
before removing the edge isGetIndex(IN [j][HOOK[u, j]]), ind (the index of
the hook forj after removing the edge) is initialized with the next index.Notice
that, in this initialization, one relies on the fact that hook candidates are not recon-
sidered since nodes that are not hooks do not become hooks after removing edges.
Onceind is initialized, one loops until either one finds an incoming node that is
reachable fromi or runs out of incoming nodes. In the former case,ind is assigned
to HOOK[u, j]. In the later,Null is assigned toHOOK[u, j] indicating that
there are no more valid replacements.

Figure 3.21 shows the implementation ofReach(i, j). In fact the implementa-
tion of this function is straightforward since it only consists in looking upPARENT
in order to see whetherj is reachable fromi or not.

Deletingm edges takesO(nm0), wheren is the number of nodes andm0 the
number of initial edges. This means that the complexity of updating the transitive
closure after removing one edge is linear with respect to thesize of the graph
in average. This linear cost is due to the fact that each edge is only considered
once in a given out-tree. Once an edge becomes unsuitable forbeing added to the
descendant tree of a node it remains unsuitable.

The complexity ofReach is constant since it is a matrix look up.

Maintaining the association of nodes with strongly connected components.

As the previous decremental algorithm for maintaining transitive closure only con-
siders acyclic graph, the original graphG is transformed into a graphG′ by con-
densing its strongly connected components. The deletion ofan edge fromG does
not necessarily changeG′. Indeed, if the edge that is being deleted is inside a
strongly connected component and the connectivity of the component is not af-
fected by the removal,G′ remains unchanged.

Even though the computation of strongly connected components takes linear
time, the update of the data structures used in the decremental algorithm for the
transitive closure should be done carefully in order to keepthe complexity accept-
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Pre :
PARENT [u, j] is the edge that connectsj to its parent in the out
tree rooted atu. It is Null if j is not reachable fromu.
HOOK[u, j] is the first yet to be considered nodek such that〈k, j〉
is a valid replacement forPARENT [u, j]. It is null is such replacement
does not exist.
IN [j] is the set of incoming nodes ofj

Post :
PARENT ,HOOK andIN are updated considering the removal of〈i0, j0〉

Delete_Edge(〈i0 , j0〉)
IN [j0] := IN [j0] \ {i0}
for u : PARENT [u, j0]==〈i0, j0〉 then

Q=NewQueue
Enqueue(Q,〈i0, j0〉)
while NotEmpty(Q) do

〈i, j〉:=Dequeue(Q)
if HOOK[u, j] 6= Null then

PARENT [u, j]:=〈HOOK[u, j], j〉
Update_Hook(u, j)

else
PARENT [u, j]:=Null
for k : PARENT [u, k] == 〈j, k〉 do

Enqueue(Q,〈j, k〉)
end

end
end

end
end

Figure 3.19: Delete_Edge

able. In particular, one has to deal with the fact that a strongly connected compo-
nent may split into several components after removing an edge. In order to cope
with this, the set of data structures considered are the following:

• A Boolean matrixINDEX whose entryINDEX[i, j] is true or false de-
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Pre :
PARENT [u, j] is the edge that connectsj to its parent in the out
tree rooted atu. It is Null if j is not reachable fromu.
HOOK[u, j] is the first yet to be considered nodek such that〈k, j〉
is a valid replacement forPARENT [u, j]. It is null is such replacement
does not exist.
IN [j][k] is thekth incoming node ofj in the initial graph

Post :
HOOK[u, j] is updated considering the information inIN

Update_Hook(u,j)
ind:=GetIndex(IN ,HOOK[u, j])+1
while PARENT [u, IN [j][ind]] == Null ∧ ind ≤ MaxIndex(IN [j]) do

ind := ind + 1
end
if ind ≤ MaxIndex(IN [j]) then

HOOK[u, j] := ind
else

HOOK[u, j] := Null
end

end

Figure 3.20: Update_Hook

pending on whether there is a path fromi to j.

• An array Scc such that, for allv in N , Scc[v] is the strongly connected
component containingv.

• For each strongly connected componentC one has:

– An arrayIn such thatC.In refers to the incoming edges ofC.

– An arrayOut such thatC.Out refers to the outgoing edges ofC.

– An arrayPARENT such that, for allv in N , C.PARENT [v] is the
edge inDESC[v] that connectsC to v, in caseC is reachable fromv
andv is not insideC. Otherwise,C.PARENT [v] is Null.

– An arrayHOOK such thatC.HOOK[v], is the first yet to be consid-
ered edge inC.In that is a valid replacement forC.PARENT [v].
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Pre :
PARENT [u, j] is the edge that connectsj to its parent in the out
tree rooted atu. It is Null if j is not reachable fromu.

Post :
Reach(u,j) returns true or false depending on whetherj is reachable fromu

Reach(u,j)
if PARENT [u, j]==Null then

return false
else

return true
end

end

Figure 3.21: Reach

– A sparse certificate, which is a sub-graph ofC with the same nodes that
conserves the connectivity between each pair of nodes ofC. In other
words, there is a path fromi to j in C if and only if there is a path in
its certificate.

A sparse certificate of a strongly connected componentC is computed as fol-
lows:

1. Take any noder of C and performDFS rooted atr in order to obtain the
out-treet of i in C.

2. Inverse the sense of the edges inC and performDFS rooted atr again to
obtain the inverse out-treet′ of i.

3. Restore the original direction of the edges int′ and assignt∪ t′ to the sparse
certificate.

In order to delete edge〈i, j〉 the following is done: if〈i, j〉 belongsG′ then the
strongly connected components are not affected, so the decremental algorithm for
computing transitive closure in acyclic graphs is used to update the data structures.
If 〈i, j〉 does not belong toG′ it means that the edge is in a strongly connected
componentC. In this case, if〈i, j〉 does not belong to the sparse certificate ofC,
the edge is simply removed fromC. If 〈i, j〉 belongs to sparse certificate and the
connectivity ofC is not affected by the removal of〈i, j〉, the certificate is rebuilt.
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If the connectivity is affected, thenC is replaced by the components into which it
splits and the data structure are updated accordingly.

The total complexity of this decremental algorithm for computing transitive
closure in general graph isO(n2+nm0) (as shown in [FMNZ01]), which is slightly
higher than the complexity of the algorithm not involving cycles (O(nm0)) when
the graph is not dense, i.e., when the number of edges is proportional to the number
of nodes. This small penalization is due to the update of the data structures when a
component splits into several sub components.

3.4.2 Roditty’s algorithm

Roditty’s algorithm [Rod03] also maintains a forest of trees, but it does not keep
a tree per node. This algorithm maintains two trees per insertion operation. The
edges inserted in each insertion operation are centered on agiven node, i.e., all the
edges are incident edges of the same node.

The two trees associated with an insertion operation whose center node isu
correspond to the in-tree and the out-tree ofu in the resulting graph. Nodes are
grouped into blocks that correspond to the strongly connected components of the
graph that is obtained just after the insertion. In what follows,Gi will be the graph
composed of the two trees that are obtained after thei− th insertion operation, and
Bi will be the set of blocks ofGi.

Center nodes are not repeated. A center node is associated with only one graph.
When inserting a set of edges whose center node has been already used, the graph
corresponding to the previous insertion operation is removed, the indexes of the
graphs and blocks updated, and the trees that are associatedwith the new insertion
operation are built taking into account both set of edges: the edges of the graph
that has been removed and the edges that are being inserted.

The trees of the forest evolve in a decremental way. When deleting a set of
edges from the current graph, blocks that are no longer subset of a strongly con-
nected component in the current graph are replaced by the subblocks that constitute
them. When a set of edges is inserted, the new trees are created without modifying
the previous trees.

As only edges are added/removed, the set of nodes remains constant. LetN be
the set of nodes.G0 is the graph with no edges whose set of nodes isN , andB0 is
{{x} : x ∈ N}.

If the set of edges of the initial graph is not empty, one can assume that the
initial forest is set up by inserting edges in groups of incident edges of a given
node. In order to minimize the number of trees, bigger sets ofincident edges are
inserted first as done in Figure 3.22.

Due to the fact thatGi−1 is a sub graph ofGi, the blocks ofGi are composed
of blocks ofGi−1. So for any indexk, it is always the case that there are at most
2|N | − 1 different blocks in

⋃k
i=1 Bi.

Figure 3.23 shows Roditty’s Algorithm. This algorithm usesthe following
data:
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Figure 3.22: Setting up the forest in order to use Roditty’s algorithm

• n is |N | (the number of nodes of the current graph).

• Index[k] is the center node ofGk.

• Forest[i] representsGi. Each forest contains the following data structures:

– A[i, j] is the index of edge〈i, j〉. A[i, j] is ∞ if 〈i, j〉 has not been
inserted.

– M [i, j] is the index of edge〈i, b〉, whereb is the sub block ofj that is
connected toi through the edge with smallest index.

– col[i] is the column of blocki in M .

– row[i] is the row of blocki in M .

– elem[i] are the nodes of blocki.

– subblock[i] are the sub blocks of blocki.

Let us elaborate on the role of each functions of the algorithm:
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• InitForest just initializesIndex.

• BuildMatrix builds the forest dynamically.Forest[i] is created in terms of
Forest[i − 1]. If a block b in Forest[i] already existed inForest[i − 1]
(|subblock[j]| = 1), then its adjacency information is copied fromForest[i−
1] to Forest[i]. If b has been formed inForest[i] (|subblock[j]| > 1), then
it is connected to every nodev for which there is a sub blockb′ of b such that
b′ is connected tov (M [v,m] := minb∈subblock[j]M [v, Forest[i−1].col[b]]).

• InsertF(Eu,u) addsGk, whereu is Index[k]. If there is a graph in the forest
associated with the same center node, that graph is removed and its edges
are added toGk.

• DeleteF(E′) re-builds the forest dynamically. Blocks that cease to exist are
marked as unreachable. The new blocks that are formed after the removal are
marked as “pending” (“*”). ReconnectTreewill decide whether the blocks
associated with “*” are reachable or not.

Even though the algorithm does not keep an out-tree per node,the informa-
tion in the kept trees is enough to compute the current condensation graph (and
therefore the current transitive closure). This is due to the following facts:

Lemma 1. The current set of strongly connected componentsCs is always a subset
of

⋃k
i=1 Bi.

Proof. This is trivially true for strongly connected components ofsize one. For
strongly connected components containing more than one node, we have to take
into account that they are formed after inserting edges, so,for every strongly con-
nected component, there must be one insertion operation that gave place to the
component.

Lemma 2. If 〈x, y〉 is an inter component edge in the current graph, then there isa
Gi having〈Block(x), Block(y)〉 as one of its edges, whereBlock(v) is the block
containing nodev in Gi.

Proof. The only edges that are condensed are the intra-component ones. So, if
a inter-component edge is added, it remains in the corresponding tree until it is
removed.

The total running time of the algorithm presented in Figure 3.23, after perform-
ing (ins+del) operations, isO((ins + del)n2). This means each update operation
is computed inn2.

In order to answer queries regarding the existence of a path between two given
nodes, a matrixcount is maintained following the approach suggested in [Kin99].
count[i, j] is the number of insertion centers that lie on a path betweeni andj.
Certainly, if count[i, j] is greater than zero, it means that there is at least oneGi

with insertion centeru such thatu is reached fromi andj is reached fromu.
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When adding a newGi to the forest,count is updated by considering the Carte-
sian productInN×OutN , whereInN andOutN are the nodes of the out-tree and
the in-tree composingGi respectively. Eachcount[i, j], 〈i, j〉 ∈ InN × OutN , is
incremented in one because there is at least one more path connectingi andj.

If a set of edges is removed, the algorithm considers the set of couples that
no longer belong toInN × OutN , for eachGi. For each of those couples, the
corresponding cell incount is decremented in one.

Answering each reachability query takes constant time because it consists in
looking up the corresponding cell in the matrix. Updatingcount after an insertion
operation isO(n2) because we only need to consider the graph that is being in-
serted. Updatingcount after a delete operation isO(n2) in average. Even though
it is true that updatingcount with respect to a particularGi is O(n2), it is also
true thatGi evolves decrementally. This means that updatingcount with respect
to Gi gets cheaper each time edges are removed. In the extreme case, it will take
constant time to updatecount, so in average, we may say that the complexity, with
respect to a givenGi is linear.

3.5 Algorithms used in the current implementation of Dom-
Reachability

As explained in sections 3.2.2 and 3.2.3, in the implementation of DomReachabil-
ity, we need to maintain the upper bound of the transitive closure graph and the
lower bound of the extended dominator graph.

We use Lengauer and Tarjan’s algorithm for updating the lower bound of the
extended dominator graph. This choice is based on the fact that this is the algorithm
that works best in practice even though it does not have the smallest complexity
[Geo05].

To update the upper bound of the transitive closure graph, weuse the non decre-
mental algorithm provided by Boost [LLS01]. This algorithmis shown in Figure
3.24. The basic idea is to update the set of reachable nodes ofevery node taking
into account that a node reaches all the reachable nodes of its successors. As two
nodes belonging to the same strongly connected component reach the same set of
nodes, the algorithm works on the condensed graph of the graph given and updates
the information accordingly after computing all the reachable sets. The complex-
ity of this algorithm is O(N*E) in the worst case (i.e., the case where there is no
component containing more than one node).
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InitForest:
k := 0, allocate an arrayIndex of sizen

BuildMatrix( Forest):
M [1 : n, 1 : n] := A,m := n
for i := 1 to k

usingForest[i].
for j := 1 to 2n

if |subblock[j]| = 1 thencol[j] := Forest[i − 1].col[subblock[j][1]]
if |subblock[j]| > 1 then

m := m + 1,col[j] := m
for v := 1 to n

M [v,m] := minb∈subblock[j]M [v, Forest[i − 1].col[b]]

InsertF(Eu,u):
if ∃i such thatIndex[i] = u then

for j := i to k − 1
Index[j] := Index[j + 1], Forest[j] := Forest[j + 1]

else
k := k + 1 and addForest[k]

update arrayssubblock andelem of Forest[k] usingGetSCC(G)
Index[k] := u
BuildMatrix(Forest)
ReconnectTree(Forest[k],Index[k],k)

DeleteF(E′):
UpdateA with E′ andS := GetSCC(G)
for i := 1 to k

subblock′ := UpdateBlocks(Forest[i].subblock, S)
for j := 1 to 2n

if Forest[i].subblock[j] 6= NULL andsubblock′[j] = NULL then
Forest[i].reach[j] := 0

if Forest[i].subblock[j] = NULL andsubblock′[j] 6= NULL then
Forest[i].reach[j] := ∗

Forest[i].subblock := subblock′

BuildMatrix(Forest)
for i := 1 to k do ReconnectTree(Forest[i],Index[i],i)

Figure 3.23: Roditty’s Algorithm
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Pre :
G = 〈N,E〉 is a directed graph
Succ(i) = {j | 〈i, j〉 ∈ Edges(G)}
Rep(i) is the node that represents the strongly connected

component containingi.
CondenseGraph(G) is the condensed graph ofG

Post :
Reach(i) is the set of nodes reachable fromi in G

TC(G)
G′ = CondenseGraph(G)
for each nodeu in Nodes(G′) in reverse topological order

for each nodev in Succ(i)
if (v not inReach(u))

Reach(u) := Reach(u) ∪ {v} ∪ Succ(v)
for eachu in Nodes(G)

if u 6= Rep(u)
u := Reach(Rep(u))

end

Figure 3.24: Boost’s Transitive Closure Algorithm





Chapter 4

Implementing DomReachability
in Gecode using CP(Graph)

Gecode[SLT06] is a C++ library that provides an environment for developing
constraint-based systems and applications.Gecodeallows the construction of new
variable domains including propagators as implementations of constraints and branch-
ings, and search engines.

Search inGecodeis based on recomputation and copying, which allows the
implementation of advanced search engines like adaptive search engines and search
engines on top of batch recomputation. In fact, the use of batch recomputation
drastically reduces the propagation time during recomputation.

Gecodeoffers finite domain constraints and finite set variables implemented on
top of its generic kernel. Thanks to the wayGecodehas been designed, it is simple
to add new computation domains.CP(Graph)[DZDD06] is a new computation
domain that has been added to Gecode.

In this chapter we will make a summary of the most relevant concepts in
Gecode. Then, we will show how propagators are implemented in Gecode by
explaining the implementation ofDistinc: one of the propagators provided by
Gecode. After explaining how to deal withCP(Graph)in Gecode, we will present
the implementation of the ad-hoc propagator ofDomReachabilitysketched in Fig-
ure 5.4. In section 4.6, we will show the implementation of the labeling strategy
we have designed to deal withOSPMNinstances.

Taking into account that there is not a tutorial inGecodethat explains how
to implement a propagator, the explanation of the implementation of theDistinct
constraint would be appreciated by those trying to implement a propagator for the
first time.

4.1 Basic concepts in Gecode

In this section we will present a set of definitions (which aregiven in [SLT06]) that
are fundamental for the presentation of the next sections.

61
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4.1.1 Actor

An actor is either a branching (see section 4.1.2) or a propagator (see section 4.1.7).
Actors provide the functionality that is common for propagators and branchings
such as member functions for copying during cloning, memoryallocation, and so
on.

4.1.2 Branching

A branching defines the shape of the search tree. Branchings are also known as
labeling or distributors, and a branching creates a series of choice points.

4.1.3 Branching description

A branching description speeds up recomputation by providing batch recomputa-
tion. It is created by a branching (see section 4.1.2) and allows to replay the effect
of that branching without the need to first perform constraint propagation.

4.1.4 Computation space

A computation space (space for short) comprises all entities for a constraint prob-
lem to be solved, including all actors (see section 4.1.1) and variables (see section
4.1.9). A space can be seen as corresponding to a node in the search tree. It or-
ganizes constraint propagation, the branching process, exploration, and memory
management.

4.1.5 Modification event

A modification event describes how a view (see section 4.1.11) or variable imple-
mentation (see section 4.1.10) is changed by an update operation performed on
the view or variable. Each variable domain defines its own modification events.
However modification events that describe generic events such as failure, no mod-
ification, or assignment to a single value are predefined (seeGeneric modification
events and propagation conditions).

4.1.6 Propagation condition

A propagation condition defines when a propagator requires to be re-executed. Re-
execution is controlled by the modification events that occur on the variables the
propagator depends on (see section 4.1.7). Propagation conditions and the relation
between propagation conditions and modification events depends on the variable
domain.
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4.1.7 Propagator

A propagator implements a constraint. Execution by a propagator is defined by its
dependencies: the views (referring to some variables) together with their propaga-
tion conditions.

4.1.8 Propagator modification event

A propagator maintains for each variable domain a modification event. This event
is called apropagation modification event. These modification events describe
which modification events occurred on all views (variables)the propagator de-
pends on. A propagator modification event is available through a view or variable
implementation.

4.1.9 Variable

A variable is used for modeling problems, be it for direct modeling or for modeling
through some interface. A variable provides only those operations useful for mod-
eling and excludes in particular operations that can modifythe variable domain
directly. A variable is implemented by a variable implementation (see below).

4.1.10 Variable implementation

A variable implementation implements the variable domain and provides opera-
tions to access and modify the domain.

4.1.11 View

A view offers essentially the same interface as a variable implementation and al-
lows both domain access and modification. Typically, several views exist for the
same variable implementation to obtain several constraints from the same propa-
gator.

4.2 CP(Graph) in Gecode

As explained in [DZDD06, Doo06], CP(Graph) defines a new computation domain
in constraint programming: graph domain variables and constraints over these vari-
ables. The implementation of graph variables use the "view"concept of Gecode
[ST06]. One view implements a graph as a set of nodes and a set of edges, the
other view uses a set of nodes and N sets of adjacent nodes. Some constraints,
such asComplement(G1, G2), Path(G,n1, n2) andPath(G,n1, n2, I, w), are
also provided.

In Figure 4.2, we show the creation of a graph variable (line 1) and the elimi-
nation of the edge〈0, 1〉 from its upper bound (line 2). In this case, we are using
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1 temp la te < c l a s s View0 , c l a s s View1>
2 c l a s s D i s t i n c t :
3 pub l i c InhomBinaryPropagato r < . . . > {
4 p ro tec ted :
5 us ing InhomBinaryPropaga to r < . . . > : : x0 ;
6 us ing InhomBinaryPropaga to r < . . . > : : x1 ;
7 / / / C ons t r uc t o r f o r c l o n i n g p
8 D i s t i n c t ( Space∗ home , bool share , D i s t i n c t& p ) ;
9 / / / C ons t r uc t o r f o r p o s t i n g

10 D i s t i n c t ( Space∗ home , View0 , View1 ) ;
11 pub l i c :
12 / / / Copy propaga to r dur ing c l o n i n g
13 v i r t u a l Actor∗ copy ( Space∗ home ,bool ) ;
14 / / / Per form p r opaga t i on
15 v i r t u a l E xe c S t a t us p r opa ga t e ( Space∗ home ) ;
16 / / / Post p ropaga to r x \ neq y
17 s t a t i c E xe c S t a t us pos t ( Space∗ home , View0 , View1 ) ;
18 } ;
19
20 temp la te < c l a s s View0 , c l a s s View1>
21 c l a s s D i s t i n c t D o i t :
22 pub l i c UnaryPropagato r <View0 , PC_SET_ANY> {
23 p ro tec ted :
24 us ing UnaryPropaga to r <View0 , PC_SET_ANY> : : x0 ;
25 / / / The view t h a t i s a l r e ady as s i gne d
26 View1 y ;
27 / / / C ons t r uc t o r f o r c l o n i n g \ a p
28 D i s t i n c t D o i t ( Space∗ home , bool share , D i s t i n c t D o i t &);
29 / / / C ons t r uc t o r f o r p o s t i n g
30 D i s t i n c t D o i t ( Space∗ home , View0 , View1 ) ;
31 pub l i c :
32 / / / Copy propaga to r dur ing c l o n i n g
33 v i r t u a l Actor∗ copy ( Space∗ home , bool ) ;
34 / / / Per form p r opaga t i on
35 v i r t u a l E xe c S t a t us p r opa ga t e ( Space∗ home ) ;
36 / / / Post p ropaga to r x \ neq y
37 s t a t i c E xe c S t a t us pos t ( Space∗ home , View0 , View1 ) ;
38 } ;

Figure 4.1: Partial Definition of Distinct and DistinctDoit. The complete code
can be obtained from Gecode’s web site (http://www.gecode.org)



4.2. CP(Graph) in Gecode 65

1 fg=OutAdjSetsGraphView (t h i s , fg_ub ) ;
2 GECODE_ME_FAIL(t h i s , fg . _arcOut (t h i s , 0 , 1 ) ) ;

Figure 4.2: Creating a graph variable and removing edge〈0, 1〉 from its upper
bound

1 / / J i n t c g . outN ( I ) => I no t i n t c g . outN ( J )
2 f o r ( i n t i =0; i <fg_ub_numNodes ; i ++){
3 f o r ( i n t j =0; j <fg_ub_numNodes ; j ++){
4 i f ( i != j ) {
5 BoolVar a ( Space , 0 , 1 ) ;/ / a=1 means J i n t c g . outN ( I )
6 BoolVar b ( Space , 0 , 1 ) ;/ / b=1 means I i n t c g . outN ( J )
7
8 dom ( Space , t c g . outN [ i ] , SRT_SUP , j , a ) ;
9 dom ( Space , t c g . outN [ j ] , SRT_SUP , i , b ) ;

10 pos t ( Space , f f ( a && b ) ) ;
11
12 }
13 }
14 }

Figure 4.3: Accessing the adjacency set of a node in the imposition of an antisym-
metric relation

the view OutAdjSetsGraphView which associates each node with its set of outgo-
ing nodes. fg .outN[i ] refers to the FS variable representing the outgoing nodes of
node i in fg.

In Figure 4.3, we show an example where we are accessing the FSvariable
associated with each node of the graph variable tcg. In this particular case, we are
imposing an antisymmetric relation among the nodes of tcg, i.e., if edge〈i, j〉 is in
tcg, edge〈j, i〉 is not. In order to impose this relation, we are reifying the presence
of a node in the set of outgoing nodes of another one. For instance, in line 8 we
are reifying the present of node j in the set of outgoing nodesof i in the Boolean
variable a. This means that a is equal to 1 if and only if j is in the set of outgoing
nodes of i. Once we have reified the presence of the corresponding edges, we im-
pose the antisymmetric relation through the instruction post (Space, ff (a && b)),
which means that it can not be true that both edges are part of the graph.
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1 temp la te < c l a s s View0 , c l a s s View1>
2 E xe c S t a t us
3 D i s t i n c t < . . . > : : pos t ( Space∗ home , View0 x , View1 y ) {
4 i f ( x . a s s i g n e d ( ) )
5 GECODE_ES_CHECK( ( D i s t i n c t D o i t < . . . > : : pos t ( home , y , x )) ) ;
6 i f ( y . a s s i g n e d ( ) )
7 GECODE_ES_CHECK( ( D i s t i n c t D o i t < . . . > : : pos t ( home , x , y )) ) ;
8 ( void ) new ( home ) D i s t i n c t < . . . > ( home , x , y ) ;
9 re tu rn ES_OK ;

10 }

Figure 4.4: Implementation of method post of class Distinct
.

1 t r a n s i t i v e _ c l o s u r e ( fg_ub , f g_ub_ t c ) ;
2 l i s t < pa i r <i n t , i n t > > t c g _ u b _ d e l t a ;
3
4 f o r ( ; tcg_ub ( ) ; + + tcg_ub ) {
5 i n t s= tcg_ub . va l ( ) . f i r s t ;
6 i n t d= tcg_ub . va l ( ) . second ;
7 i f ( ! ( t c g_vs [ s ] && t c g_vs [ d ] &&
8 edge ( s , d , f g_ub_ t c ) . second ) ) {
9 t c g _ u b _ d e l t a . push_back ( tcg_ub . va l ( ) ) ;

10 }
11 }
12
13 I tVa lEdges
14 t c g _ u b _ d e l t a _ i t ( t c g _ u b _ d e l t a . beg in ( ) , t c g _ u b _ d e l t a. end ( ) ) ;
15 GECODE_ME_CHECK(t h i s −>g3 . _arcsOut ( home , t c g _ u b _ d e l t a _ i t ) ) ;

Figure 4.5: Pruning the upper bound of the transitive closure of DomReachability

4.3 Implementing user-defined propagators in Gecode

In order to introduce the framework, in this section we present the implementation
of the Distinct propagator for set variables provided byGecode1. Given two set
variablesS1 andS2, Distinct(S1, S2) holds if and only if the set approximated by
S1 is different to the one approximated byS2.

Figure 4.1 shows the definition of class Distinct that implements Distinct.

1The source code presented in this section has been taken fromthe source code ofGecode
[SLT06]. However, the code has been commented by the author of this thesis.
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Distinct is implemented in terms ofDistinctDoit. Once one of the set variables is
instantiated,Distinct launchesDistinctDoit which is the one that actually performs
the pruning on the non-instantiated variable2 .

A class implementing a propagator inGecodealways has at least the methods
composing the classes in Figure 4.1. Notice that each class has two constructors:
one for creating the propagator and another one for cloning the propagator when
the space to which the propagator belongs is being cloned. When cloning the
space, the search engine invokes method copy, and copy clones the propagator by
invoking the constructor for cloning.

The propagator is created when the method post is invoked. However, in some
cases like the one of method post of class Distinct (see Figure 4.4), the propagator
may reduce to another one depending on the status of its argument at the moment
of posting the propagator. Notice that, if set x is already determined, instead of
creating aDistinct propagator, aDistinctDoit propagator is created. The same
situation occurs if set y is the one that is already instantiated.

The most important method in a class defining a propagator is the methodprop-
agate. This method may return the following values:

• ES_FAILED, if the current domains of the variables violatesthe constraint
implemented by the propagator.

• ES_SUBSUMED, if the current domains of the variables entails the con-
straint implemented by the propagaror.

• ES_FIX, if the the current instantiation of the variables neither violates nor
entail the constraint implemented by the propagator3.

In Figure 4.10, we are showing the propagate method of class DistinctDoit . As
DistinctDoit is launched when one of the set is already instantiated, the first thing
thatpropagatedoes is to check whether the non-instantiated set variable (x0) has
been instantiated (line 6). If this is the case,propagatereturns either ES_FAILED
or ES_SUBSUMED depending on whether the set variables have been instantiated
to the same set or not. If x0 has not been instantiated yet, we check whether
the cardinality of the sets is already known to be different (lines 14 and 15). If
this is so, ES_SUBSUMED is returned. If the cardinalities might be equal, we
check whether one of the set is already known to be not contained in the other
one (lines 21 and 25). Notice that, if set x0 is not contained in set y, there is at
least one element in x0 that is not in y, which means that the two sets are different
and therefore that ES_SUBSUMED should be returned. If the previous checks

2In Figure 4.1, the template arguments in the Definition of Distinct
(<View0,PC_SET_VAL,View1,PC_SET_VAL>) have been omitted in order to respect the
margins).

3When the methods returns ES_FIX, it usually means that the fixpoint has been reached,i.e., that
no further pruning on the domains can be performed by the propagator. However, propagators in
Gecodeare not required to be idempotent, i.e., it is not mandatory to reach the fix point when the
method is invoked.
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have returned neither ES_FAILED nor ES_SUBSUMED, the upperbound of x0
contains the instantiated set (y) and y contains the lower bound of x0. So, if the
cardinality of the upper bound x0 is the same as the cardinality of y (line 30), the
propagator states that the cardinality of x0 is less than thecardinality of y since,
otherwise, the variables would be assigned to the same set. If the cardinality of
the lower bound of x0 is the same as the cardinality of y (line 37), the propagator
states that cardinality of x0 is greater than the cardinality of y in order to avoid
that the variables are assigned to the same value. Notice that in the two last cases
propagatedoes not need to be called again. Indeed, we can say that, after stating
that the cardinality of x0 is less/greater than the cardinality of y, the propagator is
entailed since the rest of the job will be done by the cardinality propagator.

4.4 Implementing DomReachability

We split the implementation ofDomReachabilityinto two part: the one imple-
mented in terms of the FS propagators provided byGecode, and the one that re-
quires the implementation of an ad-hoc propator inGecode.

4.4.1 Using Gecode’s FS propagators

We use pseudo-code for the presentation of the implementation of the rules of
DomReachability that are implemented on top of the propagators already provided
by Gecode. The translation of this pseudo-code into the actualGecodecode is
straightforward. For instance, the code in Figure 4.6 is theactualGecodecode
associated with|tcg.outN(i)| > 0 → i ∈ fg.nodes.

1 I n t V a r c a r d _ t c _ i ( Ex , 0 , n ) ;
2 I n t V a r i n t _ i ( Ex , i , i ) ;
3 BoolVar boo l _ i _a ( Ex , 0 , 1 ) ;
4 BoolVar boo l _ i _b ( Ex , 0 , 1 ) ;
5
6 c a r d i n a l i t y ( Ex , t c g . outN [ i ] , c a r d _ t c _ i ) ;
7 r e l ( Ex , c a r d _ t c _ i , IRT_GR , cero , boo l _ i _a ) ;
8 r e l ( Ex , i n t _ i , SRT_SUB , fg . nodes , boo l _ i _b ) ;
9 bool_ imp ( Ex , boo l_ i_a , boo l_ i_b , boolOne ) ;

Figure 4.6: ActualGecodecode associated with|tcg.outN(i)| > 0 → i ∈
fg.nodes

Transitive closure of DomReachability (Rules 3.8 and 3.14)

|tcg.outN(i)| > 0 → i ∈ fg.nodes (4.1)
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i ∈ fg.nodes → i ∈ tcg.outN(i) (4.2)

Statement 4.1 imposes an implication between the cardinality of tcg.outN(i)
being greater than 0 and the presence of nodei in fg, i.e., a node should be part of
the flow graph in order to reach another one.

Statement 4.2 imposes an implication between the presence of i in fg and i
reaching itself. This is because every node offg reaches itself.

j ∈ tcg.outN(i) → tcg.outN(j) ⊆ tcg.outN(i) (4.3)

Statement 4.3 imposes an implication betweeni reachingj, andtcg.outN(j)
being a subset oftcg.outN(i).

Pruning the upper bound of RN(i) (Rule 3.10)

We first have to ensure that, for every nodei that is already known to belong tofg,
tcg.outN(i) gets determined wheni has no successors:

|fg.outN(i)| = 0 ↔ |tcg.outN(i)| ≤ 1 (4.4)

We also have to ensure that each nodei only reaches itself and the nodes that
its successors reach. The following statement does that:

tcg.outN(i) = {i} ∪
⋃

j∈fg.outN(i)

tcg.outN(j) (4.5)

This is all what is needed for pruning a flow graph without cycles since the
sets of reached nodes of the leaves get bound because of Statement 4.4, and this
information is propagated to the corresponding predecessor because of Statement
4.5.

However, if fg has cycles,tcg do not get determined even iffg is already
determined. For instance, suppose that the lower and upper bound offg is the
graph〈{1, 2, 3}, {〈1, 2〉, 〈2, 1〉}〉. The propagators above mentioned will basically
constraintcg.outN(1) to be equal totcg.outN(2) (andtcg.outN(3) to be{3}).
Additionally, due to Statements 4.1 and 4.2, nodes 1 and 2 getinto the lower bound
of tcg.outN(1) and tcg.outN(2). However, no propagator removes 3 from the
upper bound of neithertcg.outN(1) andtcg.outN(2). Updating the upper bound
of tcg and the lower bound ofedg is the task of the ad hoc propagator presented in
the following section.

4.4.2 The ad hoc propagator of DomReachability

Figure 4.7 shows the skeleton of theGecodeimplementation of the propagate
method of DomReachAdHocPropag.

The first thing to notice is that this propapagator is a propagator on two graph
variables: fg and tcg. DomReachAdHocPropag is awaked when the domain of
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one of its arguments have changed. As the operations performed in the propagate
method are expensive, the highest cost to DomReachAdHocPropag is assigned so
that it is scheduled only when all the other propagators havereached their fix point.

1 temp la te < c l a s s GD_FG, c l a s s GD_TCG>
2 E xe c S t a t us
3 DomReachAdHocPropag < . . . > : : p r opa ga t e ( Space∗ home ) {
4
5 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
6 / / fg <−>t c g i n t e r a c t i o n
7 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
8
9 / / 1 . Computing t he t r a n s i t i v e c l o s u r e o f

10 / / f g ’ s upper bound (TC( fg_max ) )
11 / / 2 . Pruning t c g ’ s upper bound based on TC( fg_max )
12
13
14
15 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
16 / / fg <−>edg i n t e r a c t i o n
17 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
18
19 / / Computing t he e x t e nde d dominator t r e e
20 / / o f f g ’ s upper bound (EDT( fg_max ) )
21
22
23 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
24 / / edg<−>t c g i n t e r a c t i o n
25 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
26
27 / / Pruning t c g ’ s lower bound based on EDT( fg_max )
28
29
30 / / The propaga to r i s e n t a i l e d when t he f low graph
31 / / i s as s i gne d
32 i f ( t h i s −>fg . a s s i g n e d ( ) )
33 re tu rn ES_SUBSUMED;
34
35 re tu rn ES_FIX ;
36 }

Figure 4.7: Skeleton of the Ad Hoc propagator ofDomReachability
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In the implementation of the propagate method we basically have three parts:

• The interaction between the flow graph which consists in updating the upper
bound of the transitive with respect to the transitive closure of the upper
bound of the flow graph.

• The computation of the extended dominator tree of the upper bound of the
flow graph. In the computation of this tree we took advantage of the already
existing implementations of algorithms for computing dominators which are
publicly available [WG04, GWT+04].

• The pruning of the lower bound of the transitive closure taking into account
the information in the extended dominator tree of the upper bound of the
flow graph.

Figure 4.5 shows a fragment of the implementation of the propagate method
of DomReachAdHocPropag. In the implementation of propagate we have taken
advantage of the algorithms provided byThe Boost Graph Library (BGL)[LLS01]
andThe C++ Standard Library[Str97, Jos99, Eck00, Eck03]. For instance, in line
1, the transitive closure of the upper bound (fg_ub_tc) is computed by using the
transitive_closure function provided byBGL.

In order to prune the upper bound of the transitive closure (tcg_ub), we traverse
the list of edges in tcg_ub) and see whether there are edges that should be removed.
An edge is removed from tcg_ub if it is not in fg_ub_tc. The update of the upper
bound is optimized by collecting the edges in the list tcg_ub_delta and removing
them in one single operation (line 15).

4.5 Pseudo-optimizing rules by using ad hoc propagators

Let us consider again the imposition of the antisymmetric relation presented in
Figure 4.3. Notice that, ifn is the number of nodes of the upper bound of the
transitive closure graph, we launchO(n2) sub set propagators. Let us compare this
option with the option of implementing an ad hoc propagator that achieve the same
level of pruning. We show this option in Figure 4.9.

Even though in the second option seems more efficient (with respect to the
computation time) since there is only one propagator takingcare of the filtering, it
performs worse. The reason is that we still need to traverse the whole lower bound
even in cases where the size of the delta (i.e., the edges added) is pretty small when
the propagator is activated. Notice that the number of edgesin the lower bound is
O(n2).

The propagators launched in the first option are constant. Indeed, after one
of those propagator is awaken it takes constant time to execute the corresponding
propagate method since it only consist in checking whether an element is in a set4.

4We are assuming that there are not holes in the set. In general, the complexity of checking
whether an element is in a set in Gecode isO(h), whereh is the number of holes in the set
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1 temp la te < c l a s s SPACE,c l a s s GV1, c l a s s GV2>
2 c l a s s OSPMNBranching : pub l i c Branch ing {
3 p ro tec ted :
4 GV1 fg ;
5 GV2 t c g ;
6 GBD ∗bd ;
7 map< pa i r <i n t , i n t > , i n t > d i s t s ;
8 l i s t < i n t > pendMandNodes ;
9

10 OSPMNBranching ( Space∗ home , bool share , OSPMNBranching& b ) ;
11 pub l i c :
12 / / C ons t r uc t o r f o r c r e a t i o n
13 OSPMNBranching ( Space∗ home , GV1 &fg , GV2 &tcg ,
14 map< pa i r <i n t , i n t > , i n t >&
15 d i s t s , l i s t <i n t >& pendMandNodes ) ;
16 s t d : : pa i r <bool ,GBD∗> ge t O p t i on ( Branch ing∗b ) ;
17 / / Per form branch ing ( s e l e c t s v iew )
18 v i r t u a l unsigned i n t branch (void ) ;
19 / / Return branch ing d e s c r i p t i o n
20 v i r t u a l Branch ingDesc∗ d e s c r i p t i o n (void ) ;
21 / / Per form commit f o r a l t e r n a t i v e a and branch ing
22 / / d e s c r i p t i o n d
23 v i r t u a l E xe c S t a t us
24 commit ( Space∗ home , unsigned i n t a , Branch ingDesc∗ d ) ;
25 / / Per form c l o n i n g
26 v i r t u a l Actor∗ copy ( Space∗ home , bool s ha r e ) ;
27 } ;

Figure 4.8: Definition of the branching implementing the A* labeling strategy used
for solvingOSPMNinstances

So, when the outgoing set of nodes of a given node is modifiedO(n) propagators
are awaken, which leads to an overall complexity ofO(n).

4.6 Implementing user-defined labelling strategies in Gecode

In this section we will explain the labelling strategy used to solve the instance of the
Disjoint Paths Problem reported in [QVDC06]. As explained in section 2.3.3, we
translated the Disjoint Paths instance into a OSPMN instance. So, as our aim is to
find a path where the mandatory nodes are visited in the given order, our labelling
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1 l i s t < pa i r <i n t , i n t > > t c g _ u b _ d e l t a ;
2
3 f o r ( ; t c g _ l b ( ) ; + + t c g _ l b ) {
4 i n t s= tcg_ub . va l ( ) . f i r s t ;
5 i n t d= tcg_ub . va l ( ) . second ;
6 t c g _ u b _ d e l t a . push_back ( make_pa i r ( d , s ) ) ;
7 }
8
9 I tVa lEdges

10 t c g _ u b _ d e l t a _ i t ( t c g _ u b _ d e l t a . beg in ( ) , t c g _ u b _ d e l t a. end ( ) ) ;
11 GECODE_ME_CHECK(t h i s −>g3 . _arcsOut ( home , t c g _ u b _ d e l t a _ i t ) ) ;

Figure 4.9: Pseudo-optimizing the imposition of the antisymmetric relation of fig-
ure 4.3

strategy builds the path incrementally starting from the source. At each labeling
step, we choose the node that is closer to the next mandatory node to be reached.
In fact we can think of our heuristic as a kind of A* heuristic [RN03].

In Figure 4.8, we show the definition of class OSPMNBranching: the class
implementing the labeling strategy we just described. A class implementing a la-
beling strategy inGecodemust be a subclass of the class Branching.

OSPMNBranching has the following attributes:

• fg: the view associated with the flow graph.

• tcg:the view associated with the transitive closure graph.

• bd: a pointer to the descriptor to be considered in the next commit operation.

• dists : the matrix of distances between nodes.

• pendMandNodes: the list of pending mandatory nodes. The mandatory
nodes inpendMandNodes appear in the order they should be visited, so
the first node in pendMandNodes is the next mandatory node to be reached.

A branching also has two constructors: one for launching thebranching and
another that it is used when the space has to be copied. Apart from these two
constructors, a branching has the following methods:

• branch computes the information on which the creation of thedescriptor to
be used in the commit operation is based. The descriptor define the op-
tions associated with the choice point created when the commit operation is
performed. The number options can be zero meaning that no choice point
should be created.
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• description creates the descriptor taking into account theinformation com-
puted by branchbranch

• commit creates the choice point based on the descriptor created by the de-
scription method.

• copy creates a copy of the branching by calling the constructor for cloning.

Descriptors are needed for implementingbatch recomputationin Gecodesince
this allows to consider a set of decision at once by applying the conjunction of the
descriptors associated with each decision. Before explaining the concept ofbatch
recompuptation, let us first refer torecomputation.

As explained in [Sch00], search demands that nodes of the search tree must
possibly be available at a later stage of exploration. A search engine must take
precaution by either memorizing nodes or by means to reconstruct them. States
are memorized by cloning. Techniques for reconstruction are trailing and recom-
putation. While recomputation computes everything from scratch, trailing records
for each state-changing operation the information necessary to undo its effect. The
basic idea of recomputation is to compute a node in the searchtree from the root
node of the search tree and a description of the node’s pathp. One option to com-
pute such a node is to do it inn steps, wheren is the length ofp. This basically
means to perform a commit operation per edge inp. Another option is to do it all at
once by considering the conjunction of the descriptors along the path. The second
option corresponds to the notion ofbatch recompuptationin Gecode.

Apart from the methods already introduced, in OSPMNBranching, we have the
extra method getOption, which choose the edgee on which the choice point will
be defined. The first option of the choice point is to includee to the lower bound.
The second one is to excludee from the upper bound.

The implementation of getOption is shown in Figure 4.11. We first initialize
the map of nodes to their out-going degrees in the lower boundof the transitive
closure graph. This map is kept in tcg_lb_od, i.e., tcg_lb_od[ i ] is the number of
out-going edges of node i in the lower bound of the transitiveclosure graph. Then,
we traverse the list of un-known edges of the flow graph (i.e.,edges that are in the
upper bound but not in the lower bound) in order to pick the edge whose source is
the node that reaches the most nodes and destination is the node that is closer to
next mandatory node.

Notice that by choosing the edge whose source is the node thatreaches the
most nodes,i.e., the node with the higher out-degree in the lower bound of the
transitive closure, we incrementally build the path from the source to the destina-
tion. At the beginning of the search, the source of the edge chosen is the source of
the path (source(path)) sincesource(path) reaches itself, the mandatory nodes
and the destination node. After choosing the first edge of thepath,the source of
the next edge chosen is the successor of source(path) (suc(source(path))) since
suc(source(path)) is the node that reaches most nodes. Notice thatsuc(source(path))
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reaches all the nodes thatsource(path) reaches exceptingsource(path). The sit-
uation will be the same after choosing theith edge of the path, which warranties
that the path is incrementally built from the source to the destination.

4.7 Contribution to Gecode

We are extending the list of graph propagators already available inGecode(CP(Graph))
[DZDD06] by integrating the implementation ofDomReachability. Documenta-
tion on how to useDomReachabilityand examples reproducing the results pub-
lished in this thesis will be available throughCP(Graph)’s web site:

http://cpgraph.info.ucl.ac.be
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1 temp la te < c l a s s View0 , c l a s s View1>
2 E xe c S t a t us
3 D i s t i n c t D o i t <View0 , View1 > : : p r opa ga t e ( Space∗ home ) {
4 / / T e s t i n g whether t he two s e t s have been as s i gne d t o
5 / / t he same s e t
6 i f ( x0 . a s s i g n e d ( ) ) {
7 GlbRanges <View0> x i ( x0 ) ;
8 GlbRanges <View1> y i ( y ) ;
9 i f ( I t e r : : Ranges : : e qua l ( x i , y i ) ) {re tu rn ES_FAILED; }

10 e l s e { re tu rn ES_SUBSUMED; }
11 }
12 / / T e s t i n g whether t he c a r d i n a l i t y o f t he two s e t s i s
13 / / a l r e ady known t o be d i f f e r e n t .
14 i f ( x0 . cardMin () > y . cardMax ( ) ) { re tu rn ES_SUBSUMED; }
15 i f ( x0 . cardMax () < y . cardMin ( ) ) { re tu rn ES_SUBSUMED; }
16 / / T e s t i n g whether ~( y \ s u b s e t e q lub ( x ) ) or
17 / / ~( g lb ( x ) \ s u b s e t e q y ) .
18 / / In both c as e s t he propaga to r i s e n t a i l e d .
19 GlbRanges <View0> x i1 ( x0 ) ;
20 LubRanges <View1> y i1 ( y ) ;
21 i f ( ! I t e r : : Ranges : : s u b s e t ( xi1 , y i1 ) )
22 { re tu rn ES_SUBSUMED; }
23 LubRanges <View0> x i2 ( x0 ) ;
24 GlbRanges <View1> y i2 ( y ) ;
25 i f ( ! I t e r : : Ranges : : s u b s e t ( yi2 , x i2 ) )
26 { re tu rn ES_SUBSUMED; }
27 / / At l e a s t one e lement from X0 ’ s upper bound shou ld
28 / / be removed i n order t o ensure t h a t t he two s e t s are
29 / / d i f f e r e n t .
30 i f ( x0 . l u b S i z e ( ) == y . cardMin ( ) && x0 . l u b S i z e ( ) > 0) {
31 GECODE_ME_CHECK( x0 . cardMax ( home , x0 . l u b S i z e ( )− 1 ) ) ;
32 re tu rn ES_SUBSUMED;
33 }
34 / / At l e a s t one e lement from X0 ’ s upper bound shou ld
35 / / be added i n order t o ensure t h a t t he two s e t s are
36 / / d i f f e r e n t .
37 i f ( x0 . g l b S i z e ( ) == y . cardMin ( ) ) {
38 GECODE_ME_CHECK( x0 . cardMin ( home , x0 . g l b S i z e ( ) + 1 ) ) ;
39 re tu rn ES_SUBSUMED;
40 }
41 re tu rn ES_FIX ;
42 }

Figure 4.10: Implementation of method propagate of class DistinctDoit
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1 temp la te < c l a s s SPACE,c l a s s GV1, c l a s s GV2>
2 s t d : : pa i r <bool ,GBD∗>
3 OSPMNBranching <SPACE, GV1, GV2> : : ge t O p t i on ( Branch ing∗b ) {
4
5 / / I n i t i a l i z i n g out−going degree f o r t he nodes o f t he
6 / / lower bound o f t he t r a n s i t i v e c l o s u r e ( t c g_ l b_od [ i ] )
7 / / − t c g_ l b_od [ i ] i s t he out−degre o f i i n
8
9

10 / / T r av e r s i ng t he l i s t o f edges i n o rder t o p i c k b e s t one
11 BGL_FORALL_EDGES( e , b_fg .UB, GG) {
12 i n t s i d = b_fg .UB[ s ou r c e ( e , b_fg .UB ) ] . i d ;
13 i n t t i d = b_fg .UB[ t a r g e t ( e , b_fg .UB ) ] . i d ;
14
15 / / I f edge <s id , t i d > i s an unknown edge :
16 i f ( ! ( b_fg . LB_v [ s i d ] && b_fg . LB_v [ t i d ] &&
17 edge ( b_fg . LB_v [ s i d ] , b_fg . LB_v [ t i d ] , b_fg . LB ) . second ) ) {
18 i f ( t c g_ l b_od [ s i d ] > maxDegree ) {
19 be s t e dge = make_pa i r ( s id , t i d ) ;
20 maxDegree= t c g_ l b_od [ s i d ] ;
21 minD is t = d i s t s [ make_pa i r ( t i d , pendMandNodes . f r o n t ( )) ] ;
22 }
23 e l s e
24 i f ( t c g_ l b_od [ s i d ]== maxDegree ) {
25 i n t newMinDist =
26 d i s t s [ make_pa i r ( t i d , pendMandNodes . f r o n t ( ) ) ] ;
27 i f ( minDist >newMinDist ) {
28 be s t e dge = make_pa i r ( s id , t i d ) ;
29 minDis t =newMinDist ;
30 }
31 }
32 }
33 }
34
35 i f ( be s t e dge == make_pa i r (−1 ,−1))
36 re tu rn make_pai r (f a l s e , (GBD∗ )NULL) ;
37
38 re tu rn make_pai r (t rue , new GBD( b , bes tedge ,t rue ) ) ;
39 }

Figure 4.11: Implementation of method getOption of class OSPMNBranching





Chapter 5

Implementing DomReachability
Using Message Passing in Oz

Chapter 5 of [VH04] presents message passing as a programming style that al-
lows building highly reliable systems. This style of programming is based on the
asynchronous communication of independent entities (agents). After extending the
kernel language of Oz [Moz04] and giving the formal semantics of the new con-
cepts introduced, the authors show how the behavior of each independent entity
can be defined by using declarative functions.

In this chapter we will explain how we can implementDomReachabilityusing
a message passing approach on top of the multi-paradigm programming language
Oz [Moz04] 1. As we will show in this chapter, the use of a concurrent language
like Oz for implementing global constraints involves the implementation of pro-
cesses that are non-deterministic in general. This makes Declarative Concurrency
not suitable for this need. By using the methodology introduced in [VH04], we
will show that the definition of the behavior of the agents involved in the imple-
mentation of global constraints, and the non-determinism in the communication of
these agents are two orthogonal concerns. This separation allows the behavior of
each agent to be defined in a declarative way.

In the implementation ofDomReachabilitywe will distinguish two basic com-
ponents: a set of already provided FS/FD propagators and a global (user defined)
propagator. Here, a global propagator is shown as an agent that reads messages
from a stream generated by the graph variable on whichDomReachabilityis ap-
plied.

We will also present a cheap way of discovering bridges basedon FS prun-
ing, and introduce an approach for implementing Batch propagation using message
passing, which plays an important role in the reduction of the time of execution
thanks to the minimization of the number of activations of expensive propagators.

1The results presented in this chapter have been published in[QVD05a].

79
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5.1 The DomReachability constraint

As we implement the propagator using FS variables, in this chapter we reformulate
the definition of the constraint given in section 2.2.3. Here, we define the Dom-
Reachability constraint as follows:

DomReachability(g, source, rn, cn, be) ≡ ∀i∈N .
rn(i) = Reach(g, i)∧
cn(i) = CutNodes(g, source, i)∧
be(i) = Bridges(g, source, i)

(5.1)
Where:

• g is a graph whose set of nodes is a subset ofN .

• source is a node ofg.

• rn(i) is the set of nodes thati reaches.

• cn(i) is the set of nodes appearing in all paths going fromsource to i.

• be(i) is the set of edges appearing in all paths going fromsource to i.

• Reach, Paths, CutNodesandBridgesare functions that can be formally de-
fined as follows:

j ∈ Reach(g, i) ↔ ∃p.p ∈ Paths(g, i, j) (5.2)

p ∈ Paths(g, i, j) ↔
p = 〈k1, ..., kh〉 ∈ nodes(g)h ∧ k1 = i ∧ kh = j∧
∀1≤f<h.〈kf , kf+1〉 ∈ edges(g)

(5.3)

k ∈ CutNodes(g, i, j) ↔ ∀p∈Paths(g,i,j).k ∈ nodes(p) (5.4)

e ∈ Bridges(g, i, j) ↔ ∀p∈Paths(g,i,j).e ∈ edges(p) (5.5)

In this chapter cut nodes and bridges will refer to node dominators and edge
dominators respectively. Notice that the two definitions ofDomReachabilityare
equivalent. Thesource of Equation 5.1 is implicit in the flow graphfg of Equation
2.9. Thetcg in equation 2.9 is represented byrn in Equation 5.1 sincern(i)
corresponds to the outgoing nodes ofi in tcg. i ∈ cn(j) means〈i, j〉 ∈ edg.
Similarly, e ∈ be(j) means〈e, j〉 ∈ edg.

The reader may think that Equation 2.9 is stronger than Equation 5.1 because
the former associates an edge with its dominators. However,this information is im-
plicit in Equation 5.1. Notice that, if we want to impose thatnodei dominates edge
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〈j, k〉 (〈i, 〈j, k〉〉 ∈ edg), it is enough to to forcei to dominatej (i ∈ cn(j)) since
any dominator ofj is also a dominator〈j, k〉. We can drop the same conclusion
with respect to edge dominators.

5.2 The DomReachability propagator

We implement the constraint in Equation 5.1 with the propagator

DomReachability(G,Source,RN,CN,BE) (5.6)

In this propagator we have that:

• G is a graph variable [DDD04] whose upper bound (max(G)) is the greatest
graph to whichG can be instantiated, and lower bound (min(G)) is the
smallest graph to whichG can be instantiated. So,i ∈ nodes(G) meansi ∈
nodes(min(G)) andi 6∈ nodes(G) meansi 6∈ nodes(max(G)) (the same
applies for edges). In what follows,{〈N1, E1〉#〈N2, E2〉} will denote a
graph variable whose lower bound is〈N1, E1〉 and upper bound is〈N2, E2〉.
I.e., if g = 〈n, e〉 is the graph thatG approximates, thenN1 ⊆ n ⊆ N2 and
E1 ⊆ e ⊆ E2.

• Source is an integer representing the source in the graph.

• RN(i) is a Finite Integer Set (FS) [DKH+99] variable associated with the
set of nodes that can be reached from nodei. The upper bound of this vari-
able (max(RN(i))) is the set of nodes that could be reached from nodei
(i.e., nodes that are not in the upper bound are nodes that areknown to be
unreachable fromi). The lower bound (min(RN(i))) is the set of nodes
that are known to be reachable from nodei. In what follows{S1#S2} will
denote a FS variable whose lower bound is the setS1 and upper bound is the
setS2.

• CN(i) is a FS variable associated with the set of nodes that are included in
every path going fromSource to i.

• BE(i) is a FS variable associated with the set of edges that are included in
every path going fromSource to i.

5.3 Using Message passing in Oz

We will define the DomReachability propagator using a concurrent functional lan-
guage, namely the declarative subset of Oz. This language isa concurrent con-
straint language in the sense of Saraswat [Sar93]. For our purposes, it can be
considered as a functional language that executes concurrently over a constraint
store. The constraint store consists of a conjunction of primitive constraints. For
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Figure 5.1: The Oz Execution Model (Declarative subset)

Figure 5.2: Architecture of a Graph variable propagator

example, in Figure 5.1 we observe thatY is the integer 42,B is a Finite Domain(FD)
variable whose domain is{0, 1}, S is a FS variable whose lower and upper bounds
are∅ and{5}, Msgs is a list that is partially determined, andZ is a record with
labelperson that has two fields:age whose value is the value of the variableY,
andsex whose value isw.

Information can only be added to the constraint store, by a "tell" operation,
and never removed. Threads synchronize on information becoming available in
the store, by an "ask" operation.

In our framework we distinguish three types of propagators:

• Level 1. These propagators are optimizations of propagators belonging to
the two other levels that are provided by Mozart and implemented in C++.
A propagator in this level can be considered as a thread that waits for infor-
mation to become available, and then adds new information. For example,
the propagator implementing the constraintX=<:Y reduces the upper bound
of X to 10 when the constraint store knows that Y has upper bound 10.

• Level 2. A propagator in this level can be considered as a set of threads, each
of which executes a recursive function that continuously waits for informa-
tion to be added to the store, in order to add other information to the store.
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proc {CreateCounter InitState S}
fun {NextState state(val:Val output:Output) Msg}

NewOutput
in

Output=Val|NewOutput
case Msg of

inc then state(val:Val+1 output:NewOutput)
[] dec then state(val:Val-1 output:NewOutput)
end

end
proc {ProcessMsgs State=state(val:Val output:Output) S}

case S of stop|_ then Output=nil
[] Msg|RestS then

{ProcessMsgs {NextState State Msg} RestS}
end

end
in

thread {ProcessMsgs InitState S} end
end
{CreateCounter state(val:0 output:Output) Msgs}
Msgs=inc|inc|dec|stop|_

Figure 5.3: A thread reading messages from a stream

For instance, in Figure 5.3,CreateCounter creates a thread that reads its
messages from the streamS and updates its state accordingly. This thread
ceases to exist when reading the messagestop. Notice that this thread com-
putes a list containing the state values.

• Level 3. Propagators in this level can be seen as agents: active entities with
which one can exchange messages (see chapter 5 of [VH04]). Anagent is
supposed to receive messages from different threads, so theorder in which
the agent receives the messages is completely indeterministic. This is why
the agent is equipped with a communication channel (port) through which
the messages are sent.

The global propagator of the graph variable that we are goingto introduce in
the next section is a level 3 propagator. The need of the communication channel
comes from the fact that the order in which nodes/edges are introduced/excluded
is not known a priori. Our solution is to have a thread per node/edge watching the
insertion/exclusion of the node/edge. Once the node/edge is include/exclude the
thread (which we call watcher) sends the corresponding message to the port. For
instance, the following is the implementation of a node watcher.Graph.N1.isIn
is 1/0 if N1 is/is not in the graph. Once it is known thatN1 is/is not in the graph the
watcher sends the messageincludeNode(N1)/excludeNode(N1) to the mes-
sage processor.
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S ::= S S Sequence
| X = f(l1 : Y1 . . . ln : Yn) | Value
| X =<number> | X =<atom>
| local X1 . . . Xn in S end | X = Y Variable
| proc {X Y1 . . . Yn} S end | {X Y1 . . . Yn} Procedure
| if X then S elseS end Conditional
| thread S end Thread

Table 5.1: The Oz declarative kernel language.

thread
if Graph.N1.isIn==1 then {Send MsgProcessor includeNode(N1)}
else {Send MsgProcessor excludeNode(N1)} end

end

The interaction between the watchers and the message processor of the graph vari-
able is shown in Figure 5.2. Notice that in this figure there isan additional compo-
nent that we are going to introduce in section 5.4.3.

Each of the pruning rules of Chapter 3.2 can be implemented asa propagator
using this computation model.

The declarative language we introduce here is based on procedures; seman-
tically a procedure is similar to a process in a process calculus. This is because
procedures can create threads and a thread can exist indefinitely as a running en-
tity if it is implementing a propagator. We can still consider the language to be
declarative, however, because it is confluent (see chapter 13 of [VH04]). Because
of the monotonicity of the store, the concurrency executes in a restricted form that
is deterministic and has no race conditions. This is clearlyexplained in chapter 4
of [VH04].

All Oz execution can be defined in terms of a kernel language whose semantics
are given in chapter 13 of [VH04]. We will just refer to the declarative part of it.

Table 5.1 defines the abstract syntax of a statementS in the declarative subset
of the Oz kernel language. Statement sequences are reduced sequentially inside
a thread. All variables are logic variables, declared in an explicit scope defined
by the local statement. Values (records, numbers, etc.) areintroduced explicitly
and can be equated to variables. Procedures are defined at run-time with theproc
statement and referred to by a variable. Procedure applications block until the first
argument references a procedure name. Theif statement defines a conditional
that blocks until its condition istrue or false in the variable store. Threads are
created explicitly with thethread statement. Each thread has a unique identifier
that is used for thread-related operations.

In the following section, we are going to be using a bit of syntactic sugar to
make programs easier to read. We will do so by considering that:
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• proc {...} ... in ... end

is equivalent to

proc {...} local ... in ... end end

• fun {F V1 V2 ... Vn} <Stm> <Exp> end

is equivalent to

proc {F V1 V2 ... Vn R} ... <Stm> R=<Exp> end

where<Exp> is an expression representing a value and<Stm> is any state-
ment.

• fun {...} ... in ... end

is equivalent to

fun {...} local ... in ... end end

Procedures are values in Oz. This means that a variable may bebound to a
procedure. In particular, we have that

proc {X V1...Vn}... end

is equivalent to

X=proc {$ V1...Vn}... end

where the RHS is a procedure value.

5.4 Implementation ofDomReachability

5.4.1 Implementing CP(Graph) using message passing

In [QVD05b], we re-implemented part of CP(Graph) using a Message Passing
approach, for implementingDomReachabilitypropagator. We focussed on graph
variables and provided the following implementation of thetwo first kernel con-
straints:

• {G incN(N)} results inNodes(G,SN) ∧ N ∈ SN

• {G exN(N)} results inNodes(G,SN) ∧ N 6∈ SN

• {G incE(E)} results inEdges(G,SE) ∧ E ∈ SE

• {G exE(E)} results inEdges(G,SE) ∧ E 6∈ SE

• {G isN(N B)} results inNodes(G,SN) ∧ (B = true ∨ B = false) ∧
(N ∈ SN ↔ B = true)

• {G isE(E B)} results inEdges(G,SE)∧(B = true∨B = false)∧(E ∈
SE ↔ B = true)
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Additionally, in our implementation,{G stream($)} is the stream that con-
tains the messages associated with the constraints that have been imposed onG. So,
if we have imposed the constraints:

{G incN(1)} {G incN(2)} {G exE(1#2)} {G incE(2#1)} {G exN(3)}

the partial value ofS would be:

incN(1)|incN(2)|exE(1#2)|incE(2#1)|exN(3)|_

5.4.2 Pruning ofDomReachability

proc {DomReachability G Source RN CN BE}
...
proc {CreateGlobalPropagator G Source RN CN BE}

fun {NextState state(graph:G) Msg}
...

end
proc {ProcessMsgs state(graph:G) Stream}

case Stream of
determined|_ then
%% End of message processing

[] Msg|RestStream then
{ProcessMsgs
{NextState state(graph:G) Msg}
RestStream}

end
end

in
thread

{ProcessMsgs
state(graph:{MakeCompleteGraph NumNodes})
{G stream($)}}

end
end

in
for I in 1..NumNodes do

%% Unary propagators
...
for J in 1..NumNodes do

%% Binary propagators
...

end
end
{CreateGlobalPropagator G Source RN CN BE}

end

Figure 5.4: Skeleton of DomReachability
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The skeleton of the implementation ofDomReachabilityis shown in Figure
5.4. In the implementation ofDomReachabilitythere are two basic components:
a set of already provided FS/FD propagators and a global (user defined) propaga-
tor. In this section, we will elaborate on the different propagators that constitute
DomReachabilityby referring to the pruning rules that they implement.

Notice thatCreateGlobalPropagator creates an agent whose behavior is
defined by the functionNextState. The agent ceases to exist when encountering
the messagedetermined in the stream.determined signals the determination
of the graph variable.G is determined when its lower bound is equal to its upper
bound (i.e.,min(G) = max(G)). The determination ofG implies that no message
comes afterdetermined.

Transitive closure of DomReachability (Rules 3.8 and 3.14)

For every potential node I of G
/*1*/{FD.impl ({FS.card RN.I} >: 0) {G isN(I $)} 1}
/*2*/{FD.impl {G isN(I $)} {FS.reified.isIn I RN.I} 1}

Statement 1 imposes an implication between the cardinalityof RN.I being
greater than 0 and the presence ofI in G. I.e., a node should be part of the graph in
order to reach another one.

Statement 2 imposes an implication between the presence ofI in G andI reach-
ing itself. This is because every node ofG reaches itself.

/*3*/Ss={G sucs($)}

For every potential pair of nodes <I,J> of G
/*4*/{FD.impl {FS.reified.isIn J Ss.I} {ReifiedSubSet RN.J RN.I}
1}

Ss.I is the set of successors ofI. As these variables are already present in the
implementation of graph variables, we simply make the corresponding associations
between those variables andSs(Statement 3).

Statement 4 imposes an implication betweenJ being inSs.I andRN.J being
a subset ofRN.I.

Pruning the upper bound of RN(i) (Rule 3.10)

We first have to ensure that, for everyI that is already known to belong toG, RN.I
gets determined whenI has no successors:

For every potential node I of G
/*5*/{FD.impl

({FS.card RN.I} >: 0)
{FD.impl ({FS.card Ss.I} =: 0) ({FS.card RN.I} =: 1)}
1}

We also have to ensure thatI only reaches itself and the nodes that its succes-
sors reach. The following statement does that:
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/*6*/local
fun {Accumulate Sets J}

if I\=J then S={FS.var.decl} in
/*8*/{Select

{G isInEdge(I#J $)}
RN.J
FS.value.empty
S}

S|Sets
else Sets end

end
/*7*/SucSets={FoldL NodesIds Accumulate nil}
/*9*/ReachedNodes={FS.unionN {FS.value.singl I}|SucSets}

in
/*10*/{Select

({FS.card RN.I} >: 0)
ReachedNodes
FS.value.empty
RN.I}

end

SucSets, defined in Statement 7, is bound to the sets of nodes reached by the
successor. As we may not know a priori whetherJ is going to be successor of
I, the corresponding setS is a set that is either the empty set (in caseJ is not a
successor) orRN.J. This relation is imposed by the application ofSelect:

proc {Select Cond S1 S2 S3}
{FS.subset S3 {FS.union S1 S2}}
{FS.subset {FS.intersect S1 S2} S3}
thread

or Cond=1 S3=S1 [] Cond=0 S3=S2 end
end

end

Depending onCond, Select bindsS3 to S1 or S2. Moreover, asS3 is either
S1 or S2, Select constrainsS3 to have only the elements thatS1 andS2 have and
to include the elements thatS1 andS2 have in common.

Statement 10 is the one that actually constrainsRN.I to be the set contain-
ing I and the nodes reached by the successors ofI. However, this is done on the
condition thatI is a node ofG (i.e.,({FS.card RN.I} >: 0)).

This is all what is needed for pruning a graph without cycles since the sets of
reached nodes of the leaves get bound because of Statement 5,and this information
is propagated to the corresponding predecessor because of Statement 10.

However, ifG has cycles, the reached nodes sets do not get determined even
if G is already determined. For instance, suppose that the lowerand upper bound
of G is graph(1:[2] 2:[1] 3:nil). The propagators above mentioned will
basically constrainRN.1 to be equal toRN.2 (andRN.3 to be{3}). Additionally,
due to Statement 1 and 2, nodes 1 and 2 get into the lower bound of RN.1 and
RN.2. However, no propagator removes 3 from the upper bound of neitherRN.1
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norRN.2.
The upper bound of each reached nodes set is updated in the transition function

of the global propagator ofDomReachability:

fun {NextState state(graph:G) Msg}
case Msg of exE(N1#N2) then

/*11*/NewG={RemoveEdge G N1#N2}
in

/*12*/{FS.subset RN.N1 {FS.value.make {DFS.reach N1 NewG}}}
/*13*/{UpdateCutNodes CN Source NewG}
/*14*/{UpdateBridges BE Source NewG}
state(graph:NewG)

else
state(graph:G)

end
end

The internal state of the global propagator is the upper bound of G. Each time
an edge is removed, this upper bound is updated (Statement 11) and so are the
upper bounds of the reached nodes sets affected (Statement 12). Notice that it is
enough to update the reached nodes set of the origin of the edge removed (N1) since
the rest will be done by Statement 10. Notice thatRN.N1 is updated by imposing
thatRN.N1 is a subset of the nodes reached byN1 in the upper boundG.

Discovering cut nodes

We have to start by keeping track of the cut nodes between the source and each
other node (CN.I). As the set of cut nodes may change when an edge is removed,
we updateCN.I each time an edge removal takes place by invokingUpdateCutNodes

(Statement 13). Notice that, in this statement, we are taking care of Rule 3.112.

/*15*/{FD.impl
{FS.reified.isIn I RN.Source}
{ReifiedSubSet CN.I RN.Source}
1}

/*16*/{FD.impl
{FS.reified.isIn J RN.I}
{G isN(J $)}
1}

In order to perform the pruning of rules derived from 2.16. Weimpose an impli-
cation betweenI belonging toRN.Source andCN.I being a subset ofRN.Source
(Statement 15), and betweenJ belonging toRN.I andJ belonging to the nodes of
G (Statement 16). In fact, this last statement also takes the pruning performed when
we take into account that nodes dominatators are nodes of theflow graph. An ex-
ample illustrating the pruning performed by these statements is shown in Figure

2We present the algorithms that we use for computing cut nodesand bridges in [QVD05b]. These
algorithms are based on DFS [QVD05b].
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5.5. In this example we impose the constraint that node 1 should reach node 9. As
5 is a cutnode between 1 and 9, 5 is included inG and forced to reach 9. Addition-
ally, 1 is constrained to reach 5.

Figure 5.5: Discovering cut nodes

Discovering bridges

As in the previous case,BE.I is updated each time an edge removal takes place by
invoking UpdateBridges (Statement 14).

/*17*/{FD.impl
{FS.reified.isIn I RN.Source}
{ReifiedEdgesInGraph BE.I G}
1}

We impose an implication betweenI belonging toRN.Source and the bridges
betweenSource andI belonging to the edges ofG (Statement 17). This statement
takes into account the fact the edge dominators are edges of the flow graph. An
example illustrating the pruning performed by this statement is shown in Figure
5.6. In this example we impose the constraint that node 1 should reach node 5.
This constraint is enough to determine the only path between1 and 5.

Figure 5.6: Discovering bridges

5.4.3 Batch propagation

In the previous implementation, we compute cut nodes and bridges each time an
edge is removed. This certainly leads to a considerably amount of unnecessary
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Figure 5.7: Building batches

Figure 5.8: Simple Bridge Discovering

computation since the set of cut nodes/bridges evolves monotonically. Another
approach is to consider all the removals at once and make one computation of cut
nodes and bridges per set of edges removed. This optimization can be implemented
by adding a concurrent process to the implementation of graph variables. The task
of this process is to batch together the messages according to their types (as shown
in Figure 5.7). In this way, the transition function of the global propagator of
DomReachabilitywill consider all the edges that have been removed at once:

fun {NextState state(graph:G) batch(exE:Es ...)}
if Es==nil then state(graph:G)
else

NewG={RemoveEdges Es G}
in

{UpdateRNs Es NewG}
{UpdateCutNodes CN Source NewG}
{UpdateBridges BE Source NewG}
state(graph:NewG)

end
end

In fact, this transition function is very similar to the previous one. The only
different thing is thatNewG is considering all the nodes that have been removed.

Statement 6 is a cheap way of computing bridges when there is no cycle. No-
tice that, in the situation of Figure 5.8, the pruning performed by Statement 6 is
enough for discovering the bridges between node 1 and node 6.However, the
global propagator also discovers this information. The point in having this redun-
dancy in propagation is that, thanks to the fact that the expensive propagator works
on batches, there are cases where the expensive computationof bridges is not ac-
tivated. Suppose, for instance, that discovering the bridge 〈2, 4〉 raises a failure
because 4 is not reached by 2. This failure is discovered by the cheap propagator
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Figure 5.9: Three Propagators sharing the events stream of the graph variable on
which they have been imposed

and the expensive one is not activated.

5.5 Using DomReachability with MaxReachability

The approach we have presented here lets us connect several propagators imposed
on the same variable by letting the propagators share the events stream associated
with the graph variable.

In Figure 5.9 we show three propagators sharing the stream ofa graph variable.
As soon as a batch of events is available in the stream, each propagator reads this
batch independently and reacts accordingly.

In this section, we will considerMaxReachability(fg,max): another propa-
gator on graph variables that is basically a reformulation (on top of CP(Graph)) of
the propagator presented in [QGV03].MaxReachability(g, source,max) states
that each node ofg should be reachable fromsource through a path of at most
max cost. The constraint implemented by this propagator can be formally defined
as follows:

MaxReachability(g, source,max) ↔
∀i ∈ nodes(g),∃p ∈ Path(g, source, i) : Weight(p) ≤ max

(5.7)

Where:

• g is a directed graph whose edges are associated with positiveinteger costs.

• max is the upper bound of the weight of the lightest path from nodei to
dest, for every nodei of g.

• Weight(p) is the weight of pathp.
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Figure 5.10: Pruning caused by the interaction betweenDomReachabilityand
MaxReachability

The propagatorMaxReachability(G,Source,Max) implementsMaxReach-
ability. In the implementation we assume thatSource andMax are fixed values.
Notice that achieving bound consistency is polynomial since the information in the
lower bound ofG does not actually matter. Indeed, the presence of an incoming
edgee of a nodei in the lower bound ofG does not mean thate is in the shortest
path fromSource to i. So, in order to check the consistency of the constraint, we
only need to care about the information in upper bound, i.e.,all we need to do is
to find,for every node, the shortest path in the upper bound and check whether the
cost of that shortest path is not greater thanMax.

In Figure 5.10 we show an example of the pruning that can be obtained by the
interaction betweenDomReachabilityandMaxReachability. As explained before,
dashed edges represent edges that are in the upper bound of the graph variables
but not in the lower bound, i.e., edges for which we do not knowwhether they are
part of the graph denoted by the graph variable. By imposing the constraint that all
nodes should be reachable from 1 with a cost of at most 6 (MaxReachability(G, 1, 6)),
we discard node 2 from the set of nodes since the cheapest way of getting to 2 has
cost 10. As node 4 should be reachable from 1, the removal of node 2 from the
upper bound ofG causes the determination of the only path to 4.

In Figure 5.11 we show the stream of batches of events that results from the
interaction betweenDomReachabilityandMaxReachability. The first batch:

batch(incN:nil incE:nil exN:[2] exE:[<1,2>,<2,4>])

is the result of the pruning ofMaxReachability. WhenDomReachabilityreads this
batch it performs the pruning summarized in the second batch:

batch(incN:nil incE:[<1,3>,<3,4>] exN:nil exE:nil)
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Figure 5.11: Stream summarizing the pruning ofDomReachabilityandMaxReach-
ability



Chapter 6

Solving the Simple Path with
Mandatory Nodes Problem with
DomReachability

In this chapter we present a set of experiments that show thatDomReachabilityis
suitable for solving the Simple path with mandatory nodes problem [Sel02, CB04].
This problem consists in finding a simple path in a directed graph containing a set
of mandatory nodes. A simple path is a path where each node is visited only once.
Certainly, this problem can be trivially solved if the graphhas no cycle, since in
that case there is only one order in which we can visit the mandatory nodes [Sel02].
However, the presence of cycles makes the problem NP-complete, since we can
easily reduce the Hamiltonian path problem [GJ79, CLR90] tothis problem.

Note that we can not trivially reduce Simple path with mandatory nodes to
Hamiltonian path. One could think that optional nodes (nodes that are not manda-
tory) can be eliminated in favor of new edges as a preprocessing step, which finds
a path between each pair of mandatory nodes. However, the paths that are precom-
puted may share nodes. This may lead to violations of the requirement that a node
should be visited at most once.

Figure 6.1 illustrates this situation. Mandatory nodes aredrawn with solid
lines. In the second graph we have eliminated the optional nodes by connecting
each pair of mandatory nodes depending on whether there is a path between them.
We observe that the second graph has a simple path going from node 1 to node
4 (visiting all the mandatory nodes) while the first one does not. Therefore the
simple path in the second graph is not a valid solution to the original problem since
it requires node 3 to be visited twice. Note that the Simple path problem with only
one mandatory node, which is equivalent to the 2-Disjoint paths problem [SP78],
is still NP-complete.

In general, we can say that the set of optional nodes that can be used when
going from a mandatory nodea to a mandatory nodeb depends on the path that
has been traversed before reachinga. This is because the optional nodes used in

95
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Figure 6.1: Relaxing Simple path with mandatory nodes by eliminating the op-
tional nodes

the path going from the source toa can not be used in the path going froma to b.

From our experimental measurements, we observe that the suitability of Dom-
Reachabilityfor dealing with Simple path with mandatory nodes relies on the fol-
lowing aspects:

• The strong pruning thatDomReachabilityperforms. Due to the computation
of dominators,DomReachabilityis able to discover non-viable successors
early on.

• The information thatDomReachabilityprovides for implementing smart la-
beling strategies.DomReachabilityassociates each node with the set of
nodes that it reaches. This information can be used to guide the search in
a smart way. The strategy we used in our experiments tends to minimize the
use of optional nodes.

An additional feature ofDomReachabilityis its suitability for dealing with
a problem that we call the Ordered simple path with mandatorynodes problem
(OSPMN) where ordering constraints among mandatory nodes are imposed, which
is a common issue in routing problems. Taking into account that a nodei reaches
a nodej if there is a path going from nodei to nodej, one way of forcing a nodei
to be visited before a nodej is by imposing thati reachesj andj does not reachi.
The latter is equivalent to imposing thati is an ancestor ofj in the extended domi-
nator tree of the path. Our experiments show thatDomReachabilitytakes the most
advantage of this information to avoid branches in the search tree with no solution

6.1 Related work

The cycle constraint of CHIP [BC94, Bou99]cycle(N, [S1, . . . , Sn]) models the
problem of findingN distinct circuits in a directed graph in such a way that each
node is visited exactly once. Certainly, Hamiltonian Path can be implemented
using this constraint. In fact, [Bou99] shows how this constraint can be used to
deal with the Euler knight problem (which is an application of Hamiltonian Path).
Optional nodes can be modelled by putting each optional in a separate elementary
cycle. However, this constraint is not implemented in termsof dominators.
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Sellmann [Sel02] suggests some algorithms for discoveringmandatory nodes
and non-viable edges in directed acyclic graphs. These algorithms are extended by
[CB04] in order to address directed graphs in general with the notion of strongly
connected components and condensed graphs. Nevertheless,graphs similar to our
third benchmark (see Figure 6.6) represent tough scenariosfor this approach since
almost all the nodes are in the same strongly connected component.

CP(Graph) introduces a new computation domain focussed on graphs includ-
ing a new type of variable, graph domain variables, as well asconstraints over these
variables and their propagators [DDD04, DDD05b, Doo06]. CP(Graph) also intro-
duces node variables and edge variables, and is integrated with the finite domain
and finite set computation domain. Consistency techniques have been developed,
graph constraints have been built over the kernel constraints and global constraints
have been proposed. One of those global constraints isPath(p, s, d,maxlength).
This constraint is satisfied ifp is a simple path froms to d of length at most
maxlength. Certainly, Simple path with mandatory nodes can be implemented
in terms ofPath. However, the filtering algorithm ofPathdoes not compute domi-
nators, which makesPathalso sensible to cases like SPMN_52a.

In [BFL06], the authors introduceTree: a global constrain for dealing with di-
rected graph partitioning. This constraints allows to model precedence constraints,
incomparability constraints and degree constraints.OSPMNcan be certainly mod-
eled in terms ofTree, as pointed out in [BFL06]. We will elaborate on this partic-
ular approach in section 6.6.

Dominators are commonly used in compilers for dataflow analysis [AU77].
Dominance constraints also appear in natural language processing, for building
semantic trees from partial information. However, there are not approaches using
dominators for implementing filtering algorithms. Even though the information it
provides is extremely useful, and can be computed efficiently.

6.2 SolvingSimple path with mandatory nodes with Dom-
Reachability

As explained before, a simple path is a path where each node isvisited once, i.e.,
given a directed graphg, a source nodesrc, a destination nodedst, and a set of
mandatory nodesmandnodes, we want to find a path ing from src to dst, going
throughmandnodes and visiting each node only once.

The contribution ofDomReachabilityconsists in discovering nodes/edges that
are part of the path early on. This information is obtained bycomputing dominators
in each labeling step. Let us consider the following two cases1:

1In Figures 6.2 and 6.3, nodes and edges that belong to the lower bound of the graph vari-
able are in solid line. For instance, the graph variable on the left side of Figure 6.2 is a
graph variable whose lower bound is the graph〈{1, 5}, ∅〉, and whose upper bound is the graph
〈{1, 2, 3, 4, 5, 6, 7, 8, 9}, {〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 5〉, 〈3, 5〉, 〈4, 5〉, 〈5, 6〉, 〈5, 7〉, 〈5, 8〉, 〈6, 9〉,
〈7, 9〉, 〈8, 9〉}〉.
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Figure 6.2: Discovering node dominators

Figure 6.3: Discovering edge dominator

• Consider the graph variable on the left of Figure 6.2. Assumethat node 1
reaches node 9. This information is enough to infer that node5 belongs to
the graph, node 1 reaches node 5, and node 5 reaches node 9.

• Consider the graph variable on the left of Figure 6.3. Assumethat node
1 reaches node 5. This information is enough to infer that edges 〈1, 2〉,
〈2, 3〉,〈3, 4〉 and〈4, 5〉 are in the graph, which implies that node 1 reaches
nodes 1,2,3,4,5, node 2 at least reaches nodes 2,3,4,5, node3 at least reaches
nodes 3,4,5 and node 4 at least reaches nodes 4,5.

Note that the Hamiltonian path problem (finding a simple pathbetween two
nodes containing all the nodes of the graph [GJ79, CLR90]) can be reduced to
Simple path with mandatory nodes by defining the set of mandatory nodes as
Nodes(g) \ {src, dst}.

The above definition of Simple path with mandatory nodes can be formally
defined as follows.

SPMN(g, src, dst,mandnodes, p) ↔







p ∈ Paths(g, src, dst)
NoCycle(p)
mandnodes ⊂ Nodes(p)

(6.1)

SPMN stands for “Simple path with mandatory nodes”.NoCycle(p) states that
p is a simple path, i.e., a path where no node is visited twice. This definition of
Simple path with mandatory nodes implies the following property.

DomReachability(p, edg, tc) ∧ 〈Source(p), dst〉 ∈ Edges(tc) ∧
mandnodes ⊂ {i | 〈Source(p), i〉 ∈ Edges(tc)}

(6.2)
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This is because the destination is reached by the source and the path contains
the mandatory nodes. This derived property and the fact thatwe can implement
SPMN in terms of theAllDiff constraint [Rég94] and theNoCycleconstraint
[CL97] suggest the two approaches for Simple path with mandatory nodes summa-
rized in Table 6.1 (which are compared in the next section). In the first approach,
we basically considerAllDiff andNoCycle. In the second approach we additionally
considerDomReachability.

Approach 1
SPMN(g, src, dst,mandnodes, p)

Approach 2
SPMN(g, src, dst,mandnodes, p)
DomReachability(p, edg, tc)
〈Source(p), dst〉 ∈ Edges(tc)
mandnodes ⊂ {i | 〈Source(p), i〉 ∈ Edges(tc)}

Table 6.1: Two approaches for solving Simple path with mandatory nodes

6.3 Experimental results with the implementation of Dom-
Reachability in Oz

In this section we present a set of experiments that show thatDomReachabilityis
suitable for Simple path with mandatory nodes. The experiments have been carried
out with the implementation of DomReachability done in Oz. We will repeat these
experiments with theGecode(CP(Graph))implementation in section 6.7.

In our experimentsApproach 2(in Table 6.1) outperformsApproach 1. These
experiments also show that Simple path with mandatory nodestends to be harder
when the number of optional nodes increases if they are uniformly distributed in
the graph. We have also observed that the labeling strategy that we implemented
with DomReachabilitytends to minimize the use of optional nodes (which is a
common need when the resources are limited).

In Table 6.2, we define the instances on which we made the testsof Tables 6.4
and 6.5. The node id of the destination is also the size of the graph. The column
Order is true for the instances whose mandatory nodes are visited in the order
given. Notice that SPMN_52Order_b has no solution. The timemeasurements are
given in seconds. The number of failures means the number of failed alternatives
tried before getting the solution.

We have made four types of tests in our experiments: usingSPMN with-
out DomReachability(column “SPMN”), usingSPMNandDomReachabilitybut
without considering the dominance graph (column “SPMN+R”), usingSPMNand
DomReachabilitywith the dominance graph (column “SPMN+R+ND”), and using
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Name Figure Source Destination Mand. Nodes Order

SPMN_22 6.4 1 22 4 7 10 16 18 21 false

SPMN_22full 6.5 1 22 all false

SPMN_52a 6.6 1 52 11 13 24 39 45 false

SPMN_52b 6.6 1 52 4 5 7 13 16 19 22 false

24 29 33 36 39 44 45 49

SPMN_52full 6.7 1 52 all false

SPMN_52Order_a 6.6 1 52 45 39 24 13 11 true

SPMN_52Order_b 6.6 1 52 11 13 24 39 45 true

Table 6.2: Simple path with mandatory nodes instances

Opt. Nodes Failures Time

5 30 89

10 42 129

15 158 514

20 210 693

25 330 1152

32 101 399

37 100 402

42 731 3518

47 598 3046

Table 6.3: Performance with respect to optional nodes

Figure 6.4: SPMN_22:A path from 1 to 22 visiting 4 7 10 16 18 21

SPMNandDomReachabilitywith the dominance graph of the extended flow graph
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Figure 6.5: SPMN_22full:A path from 1 to 22 visiting all the nodes

Figure 6.6: SPMN_52a:A path from 1 to 52 visiting 11 13 24 39 45

Figure 6.7: SPMN_52full:A path from 1 to 52 visiting all the nodes

(node+edge dominators (column “SPMN+R+ND+ED”)).
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Problem SPMN SPMN+R

Instance Figure Failures Time Failures Time

SPMN_22 6.4 +130000 +1800 91 6.81

SPMN_22full 6.5 213 1.44 19 0.95

SPMN_52b _ _ _ +900 +1800

SPMN_52full 6.7 3012 143 774 765

SPMN_52Order_a 6.6 +12000 +1800 51 46.33

SPMN_52Order_b _ +12000 +1800 +1500 +1800

Table 6.4: Simple path with mandatory nodes tests (not usingdominators)

Problem SPMN+R+ND SPMN+R+ND+ED

Instance Figure Failures Time Failures Time

SPMN_22 6.4 40 6.55 13 4.45

SPMN_22full 6.5 0 0.42 0 1.22

SPMN_52b _ +700 +1800 100 402

SPMN_52full 6.7 3 8.51 3 45.03

SPMN_52Order_a 6.6 45 81 16 57.07

SPMN_52Order_b _ 81 157 41 117

Table 6.5: Simple path with mandatory nodes tests (using dominators)

As it can be observed in Table 6.4, we were not able to get a solution for
SPMN_22 in less than 30 minutes without usingDomReachability. However, even
though the number of failures is still inferior, the use ofDomReachabilitydoes
not save too much time when dealing with mandatory nodes only. This is due
to the fact that we are basing our implementation ofSPMNon two things: the
AllDiff constraint [Rég94] (that lets us efficiently remove branches when there is
no possibility of associating different successors to the nodes) and theNoCycle
constraint [CL97] (that avoids re-visiting nodes).

The reason whySPMNdoes not perform well with optional nodes is because
we are no longer able to impose the globalAllDiff constraint on the successors of
the nodes since we do not know a priori which nodes are going tobe used. In fact,
one thing that we observed is that the problem tends to be harder to solve when
the number of optional nodes increases. In Table 6.3, all thetests were performed
usingDomReachabilityon the graph of 52 nodes.

Even though, in SPMN_22, the benefit caused by the computation of edge
dominators is not that significant, we were not able to obtaina solution for SPMN_52b
in less than 30 minutes, while we obtained a solution in 402 seconds by comput-
ing edge dominators. So, the computation of edge dominatorspays off in most of
the cases, but node dominators should be computed in order toprofit from edge
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dominators.

6.4 Labeling strategy

DomReachabilityprovides interesting information for implementing smart labeling
strategies, due to the fact that it associates each node withthe set of nodes that it
reaches. This information can be used to guide the search in asmart way. For
instance, we observed that, when choosing first the nodei that reaches the most
nodes and selecting as a successor ofi first a node thati reaches, we obtain paths
that minimize the use of optional nodes (as it can be observedin Figure 6.6).

Nevertheless, in order to reduce the number of failures in finding the solution
of Figure 6.9 (which was solved in around two hours with less than 100 failures),
we favored the nodes that were closer to the mandatory nodes,i.e., if the successors
of the chosen node are not mandatory the chosen successor is the one closest to the
next mandatory node. In fact we can think of our heuristic as akind of A* heuristic
[RN03].

6.5 Imposing order on nodes

An additional feature ofDomReachabilityis its suitability for imposing ordering
constraints on nodes (which is a common issue in routing problems). In fact, it
might be the case that we have to visit the nodes of the graph ina particular (par-
tial) order. We call this version the “Ordered simple path with mandatory nodes
problem” (OSPMN).

Our way of forcing a nodei to be visited before a nodej is by imposing that
i reachesj andj does not reachi. The tests on the instances SPMN_52Order_a
and SPMN_52Order_b show thatDomReachabilitytakes the most advantage of
this information to avoid branches in the search tree with nosolution. Notice that
we are able to solve SPMN_52Order_a (which is an extension ofSPMN_52a) in
57.07 seconds. We are also able to detect the inconsistency of SPMN_52Order_b
in 117 seconds.

Notice that an alternative implementation for ordering constraints is to do it
in terms of the extended dominator graph. As the resulting graph is a path, we
have thati dominatesj if and only if i is reached beforej. Nevertheless, this is
only true ifj is reached from the source since, by definition, unreachablenodes are
dominated any node.

6.6 Modeling OSPMN with the Tree constraint

In [BFL06], the authors introduceTree: a global constrain for dealing with di-
rected graph partitioning. This constraints allows to model precedence constraints,
incomparability constraints and degree constraints.
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6.6.1 Definition of the Tree constraint

Tree(ntree, nprop, ver) holds if g, the graph represented byver, is a forest (a
disjoint union of trees) havingntree trees, of whichnprop are proper trees, i.e.,
trees with at least two nodes.

ver is a collection of nodes. Each nodei is associated with the following
attributes:

• L is the label ofi, i.e.,ver[i].L is i.

• F is the label of the father ofi in the tree containingi, i.e., if ver[i].F = j
then〈j, i〉 ∈ Edges(g) and there is nok 6= j such that〈k, i〉 ∈ Edges(g) 2.

• P is the set of mandatory predecessors ofi, i.e., for every nodej ∈ ver[i].P ,
there is a unique simple path fromj to i in g.

• I is the set of incomparable nodes ofi, i.e., for every nodej ∈ ver[i].I there
is a path ing neither fromi to j nor fromj to i.

• D is the number of outgoing edges ofi in g.

Due to the fact thatg is a forest, precedence means domination. Ifi precedes
j, i is a dominator ofj with respect tor, the root of the tree containingi andj.
Indeed, as there is only one path fromr to j, i trivially fulfills the condition of
being in all the paths fromr to j.

Lorca et al make special emphasis in avoiding redundant information in their
data structures. For the case of the precedence relation, they internally keep a graph
which represents the precedence relations among nodes. When a new precedence
edge is inferred during propagation, they first check whether the edge can not be
computed from the edges that are already in the precedence graph before adding it
to the graph. The invariant they keep is that the whole set of precedence relations
is the transitive closure of the graph kept.

6.6.2 Modeling OSPMN

OSPMNcan be easily modeled in terms ofTree by stating that the mandatory
nodes precede the destination, and are preceded by the source. The order among
nodes is directly modeled by imposing the corresponding precedence constraints.
Formally speaking, we can modelOSPMNas follows:

OSPMN(gmax, src, dst,mn, order, ver) ↔














Subgraph(ver, gmax)
Tree(1, 1, ver)
∀i ∈ mn : src ∈ ver[i].P ∧ i ∈ ver[dst].P
∀〈i, j〉 ∈ order : i ∈ ver[j].P

(6.3)

2In order to make the definition ofTree more intuitive, we have modified the definition of
ver[i].F. In [BFL06], ver[i].F = j if 〈i, j〉 ∈ Edges(g)
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By Subgraph(ver, g) we mean that the graph represented by the collection of
nodesver is a subgraph ofgmax (the graph in which the simple path should be
found).

Any solution to the above CSP bindsver to a tree containing a unique path
from src to dst containing the mandatory nodes. So, once a solution has been
found, finding the simple path is straightforward since it isa matter of running
DFSrooted atsrc.

Thanks to the fact that, in theTree constraint, each node has an out degree
attribute, the CSP can be further refined so that the solutionfound corresponds to
a simple path containing the mandatory nodes.

6.6.3 Dealing with precedence constraints

In chapter 2, we showed one way of ModelingOSPMNin terms ofDomReachabil-
ity only. When comparing this model with the one based onTree, we observe that
theTreemodel is more constrained since the solution is a tree. This additional re-
striction allows to discard potential edges as soon as it is known that its destination
already has an incoming edge.

In the implementation ofTree, the authors take advantage of the notion of
strong articulation point to infer precedence relations among nodes. Given a strongly
connected componentc, we say the noden is a strong articulation point ifc is split
up into several strongly connected components after removing c.

Once the strong articulation points have been computed, theauthors check
whether the removal of them violates the precedence constraints. The removal of a
strong articulation pointp violates a precedence constraint〈i, j〉 if there is no path
from i to j after removingp. If the removal ofp violates the precedence constraint
〈i, j〉, the precedence constraints〈i, p〉 and〈p, j〉 are added to the precedence graph
in case they are not redundant.

Let us consider theOSPMN instance shown in Figure 6.4 where we are in-
terested in finding a simple path from 1 to 22 containing 4 7 10 16 18 21. The
graph we obtain after removing node 22 is a strongly connected component. In
this strongly connected component, we observe that node 12 and 5 are strong ar-
ticulation points. In theTreemodel corresponding to this instance, we have that
precedence〈16, 22〉 is included in the set of precedence constraints. As the removal
of node 12 makes node 22 unreachable from node 16, the precedence constraints
〈16, 12〉 and〈12, 22〉 are added. As the removal of node 5 makes node 22 unreach-
able from node 12 , the precedence constraints〈12, 5〉 and〈5, 22〉 are added. As
edge,〈12, 5〉 is the only outgoing edge of node12, 〈12, 5〉 belongs to the solution.
Notice that stating that edge〈12, 5〉 belongs to the solution implies that edge〈1, 5〉
does not belong to the solution since node 5 can only have one incoming edge.

In the DomReachabilitymodel, edge〈1, 5〉 can not be removed at the initial
propagation phase because in this model node 5 is not forced to have one incoming
edge. Even if the edge were forced to have one incoming edge, we would be still
unable to remove edge〈1, 5〉 because the source of the dominator tree that we keep
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Figure 6.8: In this graph, the set of dominators ofj with respect toi is a proper
superset of the set of strong articulation points of the graph

is node 1 and edge〈12, 5〉 is not an edge dominator of node 22 with respect to node
1. In our approach, the edge〈12, 5〉 is only discovered after choosing edge〈1, 15〉.

The approach of discovering precedence constraints by using strong articula-
tion points applies even in some cases where the nodes are in different components.
For instance, consider the graph in Figure 6.8 and suppose that there is a precedence
constraint〈i, j〉. Even thoughi andj are in different components, it is still possible
to apply the strong articulation points rule since the removal of k (which is a strong
articulation point) makesj unreachable fromi.

However, even thoughs is not a strong articulation point, it should be inferred
thati precedess ,s precedesj andk precedess wheni precedesj. In this particular
case, using dominators instead of strong articulation points leads to better pruning.
However, keeping only one dominator tree is not enough to maintain this difference
in pruning because the dominance relation depends on the source (as shown in the
previous example).

6.7 Experimental results with the implementation of Dom-
Reachability in Gecode(CP(Graph))

In this section we repeat some of the tests presented in section 6.3. In the im-
plementation of the approach, we have used thePath constraint to constraint the
solution to be a simple path [DDD04, DDD05b, Doo06].Path(p, s, d) is satisfied
if p is a simple path froms to d.

The approach can be formally specified as follows:

OSPMN(g, src, dst,mn, order) ↔































Subgraph(fg, g)
Path(fg, src, dst)
DomReachability(fg, edg, tcg)
〈src, dst〉 ∈ Edges(tcg)
∀i ∈ mn : 〈i, dst〉 ∈ Edges(edg)
∀〈i, j〉 ∈ order : 〈i, j〉 ∈ Edges(edg)

(6.4)
In table 6.6, we compare the results that we got with theGecode(CP(Graph))

implementation with those obtained by Lorca et al [BFL06]. We have carried out
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OSPMN instances
Lorca et al [BFL06] DomReachability+Path
Failures Time Failures Time

SPMN_22 0 0.071 5 0.110
SPMN_22full 0 0.036 0 0.070
SPMN_52b 0 1.685 6 0.920
SPMN_52full 0 0.692 0 0.580
SPMN_52Order_a 0 0.892 0 0.500
SPMN_52Order_b 0 0.020 4 0.280

Table 6.6: Tree Vs DomReachability+Path

the experiments in the same machine where the Oz tests were done. This machine
is a 3060 MHz Linux Red Hat machine with 3805136 KB of RAM.

Our first observation is that theGecode(CP(Graph))implementation remark-
ably outperforms the Oz implementation. This is basicly dueto the following rea-
sons:

• Gecode(CP(Graph))is a C++ library whereasOz is compiled into a byte
code, which is emulated.

• TheGecode(CP(Graph))implementation is using state-of-the-art algorithms
for computing dominators and transitive closure [Geo05, LLS01].

• Pathprunes more than the path propagator used in the Oz experiments which
is basically a conjunction of aNoCycleconstraint and anAllDiff constraint.

We also notice that, with this implementation, we are competitive with respect
to Lorca et al’s approach. This implementation also solves the real world case
presented in Figure 6.9 in 58 seconds without failing, whichshows the scalability
of our approach.

6.8 Conclusion

We showed howDomReachabilitycan speed up a standard approach for dealing
with SPMN. Our experiments show that the gain is increased with the presence of
optional nodes.

We presented another approach for solvingSPMNbuilt on top of theTreecon-
straint [BFL06]. We elaborated on the difference in pruningthat this approach has
with respect to our approach.

We compared the two implementations ofDomReachabilityand showed that
the Gecode(CP(Graph))implementation remarkably outperforms theOz imple-
mentation. We also showed that theGecode(CP(Graph))implementation allows
us to be competitive with the approach presented in [BFL06].
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It is important to emphasize that both the computation of node dominators,
and the computation of edge dominators play an essential role in the performance
of DomReachability. The reason is that each one is able to prune when the other
can not. Notice that Figure 6.2 is a context where the computation of edge dom-
inators cannot infer anything since there is no edge dominator. Similarly, Figure
6.3 represents a context where the computation of edge dominators discovers more
information than the computation of node dominators.
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Figure 6.9: A Disjoint Paths instance solved withDomReachabilityinvolving 14
paths in a graph of 165 nodes. This instance was kindly provided by Martin Oell-
rich from the Combinatorial Optimization & Graph AlgorithmCenter at TU Berlin.
This instance will be available in the web site of DomReachability, which will be
reachable through the web site of CP(Graph) (http://cpgraph.info.ucl.ac.be)





Chapter 7

Using DomReachability for
Confinement Analysis

In software security, the execution of some actions is controlled (allowed or disal-
lowed), in an attempt to restrict their (direct or indirect)effects. Allowed actions
are calledpermissions. Different parts of a program (subjects) can have different
permissions. The ability of a subject to directly or indirectly induce an effect is
called itsauthority.

The difference between permission and authority is the difference between ac-
tion and effect. Illegal authority are called “safety properties”. A program breaks a
safety property if the illegal effect is reachable. When analyzing if a program can
break a safety property, the following are important:

1. What permissions are initially available to (the different subjects of) the pro-
gram.

2. How the subjects use their permissions to generate effects.

It was shown in [HRU76] that these kinds of problems are not computable in
general. Therefore, security analysis has to approximate the problem from the safe
side, by looking forproof that the safety property remains unbroken. If no such
proof can be found, the problem isassumedto be unsafe. We can safely approx-
imate a program by considering only the authorityenhancingparts of the actions.
This is amonotonicsafe approximation, which can provide a reasonably accurate
estimate of the original program’s safety, if the preconditions for the actions are
sufficiently detailed.

The propagation of authority can often be expressed in sufficient detail by
reachability in a directed graph. The nodes in the graph eachrepresent a sub-
ject and the edges represent permissions. The reflexive and transitive closure of the
permission graph then represents an upper bound for reachable authority.

For example, consider a set of subjects that can haveread and/orwrite per-
missions to each other. Set up a graph and depict the write-permissions as edges
from the writer to the subject written, and depict the read-permissions as edges that

111
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point towardsthe reader. The edges now all point in the direction of the informa-
tion flow, and the effects of exerting the permissions (the actual flow of information
in the graph) propagate by transitive reachability in the graph.

In this chapter, we show that graph reachability constraints have useful appli-
cations in safety analysis and enforcement. We do not claim that this approach is
appropriate, useful, or feasible inall circumstances.

Most graph-based formal security models have labelled edges to differentiate
between types of permissions, and labelled nodes to differentiate between types
of subjects. To model types of permissions, we can use a dedicated reachability
graph for every permission type. Permissions types that result in the same type
of authority can be represented in a single graph (e.g.read andwrite permissions
provide authority of the type: “pass information” and can berepresented in the
same data-flow graph).

We will show how, in certain conditions and to a certain extent, node types can
be expressed as subgraphs that represent the node’s “inner workings”.

We expect that graph reachability constraints, when used incombination with
purpose built tools for constraint based security analysis[SJV05], can boost the
latter’s expressive power and scalability.

This chapter is structured as follows. In section 7.1 we express a security prob-
lem in terms of the Bounded Transitive Closure problem (BTC). The rest of the
chapter describes several ways of usingDomReachabilityfor safety analysis. Sec-
tion 7.2 demonstrates how to calculate strategic positionsfor interposition of con-
trollable subjects in a network of interacting entities. Section 7.3 explains how
entities with restricted behavior can be expressed by subgraphs and by adding ad-
ditional constraints to the subgraph.

Section 7.4 presents two extensions ofBTC, and discusses their additional ex-
pressive power. We extend the safety analysis to networks ofinterconnected sys-
tems in Section 7.5, and compare the scalability of the extended BTC approach
with an existing approach based on the “Scollar” tool [SJV05]. We then present
future work, that will combine the strength of both approaches.

Remark: This chapter is joint work with Fred Spiessens and was published in
[SQV06]. This work will be also part of Fred Spiessens’s PhD thesis [Spi06].

7.1 Expressing security constraints with DomReachabil-
ity

Our security problems have two concerns:

1. some authority should not be reachable for safety (safetyproperties)

2. some other authority should be reachable for functionality (liveness proper-
ties)
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Both concerns can be expressed in terms ofThe Bounded Transitive Closure
Problem (BTC): given the directed graphsgmin, gmax, tcgmin andtcgmax, find a
directed graphg such that:

gmin ⊆ g ⊆ gmax

and
tcgmin ⊆ TC(g) ⊆ tcgmax

(7.1)

The set of liveness properties will betcgmin, tcgmax will be the complement of
the set of safety properties, andgmin andgmax will just be suitable bounds for the
safe configuration of permissions we are looking for. In section 2.3.1 we proved
thatBTC is NP-complete. This implies that any problem that reduces to it is also
NP-complete.

7.2 Confinement by interposition

Suppose we have a set of previously unconnected, uncontrollable components, and
we want to find out how we can connect them, using controllablecomponents, to
allow them to perform their collaborative tasks, but also prevent them from break-
ing a given security policy. The tools we have to solve this problem are:

• a set of controllable components (subjects) to be strategically inter-positioned
between the uncontrolled components.

• a set of permissions to be granted to the controllable components.

The assignment is: find a configuration (graph) with aminimal number of con-
trollable nodes(not exceeding a fixed practical upper limit), that guarantees the
requirements for liveness (the uncontrolled components get enough authority) as
well as the requirements for safety (the uncontrolled components do not get too
much authority).

7.2.1 Practical example

We take a well known example, expressing a simpleMulti-Level Security Problem
(MLS) [BL74]. Two external subjectsBondandQ, with respective clearancesTop
SecretandConfidential, have to be given access to two external storage devices,
one forTop Secretcontent, and one forConfidentialcontent.

We have to construct the content of a black box in (e.g. Figure7.1), with a
minimal number of components. Since the uncontrollable components cannot be
restricted, their connection to the box is bi-directional.Even the devices are not
trusted to be passive containers, they are unknown components and could be of
any type.

The security policy we want to enforce between these four entities is simply to
make sure that no Top Secret information leaks (down) to the Confidential level.
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Figure 7.1: The∗-property black box

Therefore we will enforce the∗-property(star-property) that states: agents should
be able write to all levels above (and including) their own level of confidentiality,
and read from all levels below (and including) their own level of confidentiality,
but no agent should be able to write strictly below his confidentiality level, or read
strictly above his confidentiality level. This is a policy that specifies both liveness
requirements and safety requirements, so we will express itas suggested in section
7.1.

7.2.2 Expressing the problem in terms of DomReachability

TheBTC for the instance of the problem presented above is:

gmin = ∅
gmax = {〈x, y〉|x, y ∈ {b, q, t, c} ∪ {o1, o2, ..., omax}}

tcgmin = {〈b, t〉, 〈t, b〉, 〈q, c〉, 〈c, q〉, 〈c, b〉, 〈q, t〉}
tcgmax = gmax − {〈b, q〉〈b, c〉〈t, q〉〈t, c〉}

(7.2)

In the problem,b stands for Bond,q for Q, t for the top-secret device, andc for
the confidential device. The controllable nodes areo1, o2,...,omax.

Apart from theBTCconstraints, we have to express the fact thatb, q, t, andc
are uncontrolled, by making sure that all their connectionsare bi-directional. We
therefore added the necessary implication constraints to the problem:

∀0 ≤ x ≤ max, i ∈ {b, q, t, c} : 〈i, ox〉 ∈ g ⇔ 〈ox, i〉 ∈ g (7.3)

To minimize the number of controlled components, we can start with zero con-
trolled nodes, and iteratively add one more, until we find a solution.

We also experimented with a labeling strategy that tends to find the solution
with the least nodes first. By first trying to remove all possible edges from the
controlled node that reaches the most nodes, the strategy tends to minimize both
the number of edges and the number of controlled nodes, although there are cases
where the number of controlled nodes used is not the smallestone possible.

The pruning performed byDomReachability, and the aforementioned labeling
strategy provided the solution in Figure 7.2, in 40ms.



7.3. Confinement by restricted behavior 115

Figure 7.2: A solution with the minimal number of controllable components

Figure 7.3: Data Forwarder (dataflow diode)

7.3 Confinement by restricted behavior

In the previous section we relied on the ability of the systemto enforce the per-
missions. There could for instance have been a reference monitor that checked the
permissions before they were exerted. Alternatively, the internal subjects could be
trusted parts of the system: trusted to behave exactly as allowed by their permis-
sions. Capability systems [DH65] rely on such subjects (called capabilities).

We could as well rely in our home-brewn trusted subjects to behave in “smarter”
ways than simply using or not using certain permissions. We can program them to
use their permissions in a way that would allow the desiredeffectsand prevent the
other ones. This allows for much more accurate analysis of the reachable effects
in a system. An account of the different ways in which the boundaries of authority
can be calculated is given in chapter 8 of [Mil06].

Suppose we want to express the behavior of a subject that onlypasses informa-
tion if:

• other subjects wrote that information to it (it did not read the information
itself from other subjects), and

• it writes that information itself to other subjects (it doesnot reveal that infor-
mation to its own readers)

Such a subject acts as a forward diode for data flow, depicted in figure 7.3. The
full edges denote the access rights and the dashed edges represent the correspond-
ing flow of data. The data-flow is only transitive in one direction: from A to B, as
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behavior graph simplified graph behavior
unrestricted behaviour

hides its writers data from
its readers

data forwarder of figure 7.3

non-tranparent subject

Figure 7.4: Subgraphs for behaviour-based internal dataflow

indicated by the dotted edges. The behaviour of the diode in the middle prevents
data to pass in the three other directions.

We can express similar restricted behavior in a subgraph with four nodes: two
in − ports and twoout − ports, one of each kind for reading, and the other
one for writing. All external edges will be connected to one of the four ports:
the incoming flow to the in-ports, the outgoing flow to the out-ports, the flow via
read permissions to the read-ports, and the flow via write permissions to the write-
ports. These restrictions can directly be expressed inBTC, by removing the illegal
external connections fromgmax.

Figure 7.4 shows some behaviour subgraphs with fourinternal ports (not to
be confused with the graph in figure 7.3). The internal flow (edges) always goes
from an in-ports (left) to an out-ports (right). These subgraphs are to replace the
monolithic subject nodes in thedata-flow graph. The edges here correspond to the
dottededges (flow-through) in the example of figure 7.3. Depending on which of
the four possible edges are present, the behaviour-graph can be simplified (second
column of figure 7.4).

7.4 Extending BTC for additional expressive power

In the previous sections we had to use additional constraints to express the security
problems. We now propose two extensions to the BTC problem that incorporate
the implication constraints that allow us to express interesting security problems.

7.4.1 The conditionalBTC problem (CondBTC)

In section 7.2.2 we had to use extra constraints for all four uncontrolled compo-
nents, to express that they should take only bidirectional connections. This means,
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Figure 7.5: A fraction of thecondgfor the problem in section 7.2.2

if an edge〈A,B〉 is in the graph, then so should〈B,A〉. We can express this con-
dition as an edge from〈A,B〉 to 〈B,A〉 in a graph whose nodes are edges in other
graphs and whose edges represent implications. This allowsus to express inter-
graph conditions on edges. If we consider also the complements of the graphs, (the
complement of graphg is denoted as(g)′), we can express negations as well as
implications.

Therefore we add a directed graphcondg such that:

G1, G2 ∈ {g, (g)′, TC(g), (TC(g))′}

〈eG1

1 , eG2

2 〉 ∈ condg ⇔ (e1 ∈ G1 ⇒ e2 ∈ G2)
(7.4)

The security problems in sections 7.2 and 7.3 are direct applications ofCondBTC.
The implications involving edges of the solution graph and its transitive closure can
be directly represented in terms ofcondg.

Figure 7.5 shows a bi-directional connection constraint as2 edges incondg.

7.4.2 The cardinalBTC problem (CardBTC)

Instead of representing edges in another graph, let the nodes in condg now repre-
sentmixed sets of edges from any of the DomReachability graphs. An edge〈A,B〉
in condg now represents a composite condition: ifall edges in the setA are present,
then so shouldat least oneedge in the setB.

The extended definition ofcondg allows us to simplify the definition of the
problem. TheBTCgraphsgmin, gmax, tcgmin andtcgmax can be defined incondg
as follows:

∀e ∈ gmin : 〈∅, {eg}〉 ∈ condg

∀e 6∈ gmax : 〈∅, {e(g)′}〉 ∈ condg

∀e ∈ tcgmin : 〈∅, {eTC(g)}〉 ∈ condg

∀e 6∈ tcgmax : 〈∅, {e(TC(g))′}〉 ∈ condg

(7.5)

The expressivity ofCardBTCcan be further extended by labelling edges with
constraints on the cardinality of the target set. For instance, figure 7.6 graphically
shows the following constraint in extended Higraph notation [Har95] :



118 Chapter 7. Using DomReachability for Confinement Analysis

Figure 7.6: A graphical presentation of a CardBTC constraint

b1, b2, b3 ∈ {0, 1}
b1 = 1 ⇔ 〈b, c〉 ∈ TC(g)
b2 = 1 ⇔ 〈b, f〉 ∈ TC(g)
b3 = 1 ⇔ 〈b, e〉 ∈ TC(g)
〈a, b〉 ∈ TC(g) ⇒ b1 + b2 + b3 > 1

(7.6)

We can say that, when the label of the edge is ommitted, the implicit constraint
is “> 0”, i.e., at least one of the constraints in the set must be true.

The cardinality constraints involved inCardBTC can be managed by using
standard approaches based on cardinality propagators [VD91]. However, we can
reason at a higher level of abstraction by looking at the Boolean Satisfiability in-
stance that results from associating each basic graph constraint with literals. This
level of abstraction would let us take advantage of BDD propagators to narrow
down the literals composing a given disjunction [HLS05]. Wecould also consider
hybrid approaches, like the one suggested in [HS06], in order to inherit the advan-
tages offered by SAT solvers.

7.4.3 Applying CardBTC for practical security problems

CardBTC allows us to express complex conditions on the propagation of authority
in several ways we did not yet explore:

• It can be used to express more complex ways of authority propagation than
transitive closure.

• It can be used to represent fine-grained conditional behavior of trusted sub-
jects, without the need to represent every subject as a complex subgraph.

7.5 Secure interoperation

In this section we present a security problem for which the scalability of the ap-
proach using DomReachability considerably exceeds that ofScollar [SJV05], a
more general constraint-based tool for security analysis.

A system of interacting subjects can be secure, but when two or more secure
systems become interconnected, the result may again introduce safety breaches.
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A secure reconfiguration removes a set of permissions from the subjects in the
system, to make sure that no authority that was unreachable in any single system
(and may have been forbidden by that systems policy), becomes reachable by the
interconnection.

The use of constraint programming to find secure reconfigurations of interop-
erating systems, is proposed in [BFO05], for systems that are interconnected via
shared subjects. By default, the approach makes no effort toprevent authority be-
tween two subjects that are not both included in a single system. The rationale
behind this decisions is that, while authority between suchsubjects is always due
to the interconnection, no single system can be held responsible for managing these
effects. Additional safety and liveness requirements can be added to the intercon-
nected system.

Following this approach, we show how to use DomReachability, to find a min-
imal secure reconfiguration for a set of interconnected systems. A secure recon-
figuration is a set of permissions such that, when each of these permissions are
revoked in all systems that granted the permission before the interoperation, the
interconnection will make no additional effects reachablebetween two subjects of
the same system. This approach can then easily be extended toinclude additional
constraints on the reachability of effects in the interconnected system.

7.5.1 Calculating secure reconfigurations with Scollar

The constraint based tool “Scollar”, written in Mozart-Oz [VH04, Sch00], analyzes
safety in configurations of permission-restricted and behavior-restricted subjects,
and calculates the minimal (additional) restrictions thatare necessary to guarantee
the safety requirements.

Scollar was recently extended to compute safe reconfigurations for interoper-
ating systems as well. To analyze secure interoperation, the tool first computes the
transitive closures of every individual system, derives from these transitive closures
the safety requirements for the global, interconnected system, and then calculates
a minimal reconfiguration, that removes some initial permissions (and/or behavior
of the trusted subjects, when specified)

Since Scollar’s primarily aim is to analyze small patterns of interacting subjects
with relatively complex behavior, its scalability in termsof number of subjects was
not an initial concern. For secure interoperation, the problems tend to be larger
in number of subjects, and marginally lower in complexity ofthe subject behav-
ior. Recent experiments with the current implementation revealed that the practical
limit allows no more than approximately 100 subjects in the interconnected system,
even when the behavior complexity is reduced to simple on-off (active/passive), no
propagation of permissions is modeled, and the mechanisms for effect propagation
are reduced to simple transitive closure.
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7.5.2 Comparing scalability

We conducted a very preliminary set of experiments to get a rough idea of the
relative scalability of DomReachability in comparison to Scollar.

We can expect that the DomReachability approach will perform best when the
rules that model the propagation of authority are similar toreachability by transitive
closure. At the same time we wanted to test the practical feasibility of modelling
simple restrictive behaviour as subgraphs.

We decided to run a very preliminary and small set of experiments with the
following setup:

• N systems are inter-connected in a network that has a small-world topol-
ogy, generated following the Watts-Strogaz approach [WS98] from a struc-
tured undirected graph in which every system (node) has 4 neighbours. A
small world graph is a graph with a high clustering coefficient (of every sys-
tem, most neighbouring systems are connected) and a low characteristic path
length (mean distance in the network between any two systems).

• SystemsS1 andS2 are connected⇔ they share exactly two subjects.

• Unconnected systems have no common subjects

• Subjects are shared by at most two systems.

• Every system has exactly as many subjects as are required forits connections
to its neighbours in the network.

• Half of the subjects in every system have unrestricted behaviour, the other
half are non-transparent (See Figure 7.4).

The same instances of the generated problems where fed to theScollar based
solver and to the DomReachability based solver. All safety properties were pre-
calculated in Scollar, during the generation of the examples, and were not re-
calculated in the experiments.

The rules that govern data-flow in all systems were kept simple, and are illus-
trated by the following Horn Clauses, used in Scollar:

readPermission(Y,X) ⇒ flow(X,Y )

flow(X,Y ) ∧ flow(Y,Z) ∧ transparent(Y ) ⇒ flow(X,Z)

We made the experiments as simple as was reasonably possible, by considering
only one permission (read), with an effect (data transfer towards the reader) that
propagates transitively when the behavior of the subject transferring the data does
not prevent it. We arranged for 50% of all subjects to be unrestricted (allowing data
to flow through them in all directions), and the other 50% to be non-transparent
(See Figure 7.4). The transparency of a subject was considered to be a fixed and
was not optimized. Only the readPermissions were optimisedin the experiments.
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Figure 7.7:ScollarandDomReachabilitycalculating Secure Reconfigurations
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Figure 7.8: A secure inter-operation problem instance involving 48 subjects. Edges
dropped are in black.

All these restrictions where set up to restrict the influenceof random choices
on our measurements, and improve the accuracy with which ourresults reflect the
influence of the size of the problem (number of systems).

All experiments where conducted on a dedicated Linux machine with 2GB of
memory and 4 processors at 3.06 GHz. Figure 7.7 shows the timeit took to find a
first secure reconfiguration (in seconds), for networks with8 to 52 systems (32 to
208 subjects). We performed only one calculation for every size of the problem.
No results could be calculated in Scollar for problems of more than 24 systems (96
subjects), due to virtual memory exhaustion.

Even if only one problem instance was solved for every size, the results leave
no doubt about the winner in this scalability contest. DomReachability is much
more suited to solve problems of big size.

The labeling strategy implemented on top of the informationcomputed by
DomReachability indeed tends to minimize the number of edges dropped. Figure
7.8 shows an instance of the inter-operation problem. Notice that the number of
edges dropped in order to satisfy the constraints in Figure 7.9 is small with respect
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Figure 7.9: No-reachability constraints of the BTC problemof Figure 7.8

to the total number of edges.
We expect that Scollar is still more suitable for solving complex problems of

small size, to model complex rules and subject behaviour that express a refined
approximation to how authority propagates. It will be interesting future work to
find out exactly where the borderline for choosing between the two approaches
lies, and even more interesting to see how the approaches canbe combined to get
the best of both.

7.6 Conclusion

We have shown how the monotonic propagation of effects can bemodelled with
reachability constraints in a directed graph by associating nodes in the graph with
subjects, and edges with permissions between the corresponding subjects. We elab-
orated on the relation of the resulting constrained graph problem with the Bounded
Transitive Closure problem (BTC) and suggested extensionsof BTC that let us
express more security requirements.

Some of the problems that we have presented can be solved in polynomial time.
For instance, if there is no constraint on neither the lower bound of the intercon-
nected graph of the interoperability problem nor on its transitive closure, theBTC
instance can be solved in polynomial time. Indeed, the emptygraph would be a
valid solution to the problem. Even finding a maximal graph, i.e., a graph which
is not included in another one respecting the safety properties, is still polynomial
since it is always possible to find a graph not containing a particular edge that
respects the safety properties.

The adoption ofDomReachability, which is normally used in combinatorial
problems, is justified because: (a) it offers an incrementalapproach for computing
transitive closure, and (b) it discards invalid edges earlyon, since the addition of
an edge may imply that some other edges are not part of the graph.
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In section 7.2.2 we constrained the size of the graph by usinga size constraint
that takes the edges in the lower bound into account, but not the structure of the
graph. A smarter global constraint would take into account the current boundaries
of the graph and its transitive closure, to anticipate violations of the limit. For
instance, suppose thati reachesj and the shortest pathp from i to j containsx
edges. Suppose also that the size of the graph is less thanmax. Then if the graph
contains at least the edges ingmin, max − |gmin| < |p − gmin| implies that there
is no solution since reachingj from i would imply that the number of edges in the
graph is greater than the limit(max). To detect this kind of information, we can
use an approach like the one suggested in [Sel02] for incrementally keeping the
shortest paths between each pair of nodes.

Towards a synergy of both approaches

We expect DomReachability to be most useful in collaboration with our existing
Scollar tool. Scollar is most suitable to express a system’srules that govern the
propagation of permissions and authority, and a subject’s behaviour. System rules
can express realistic models for propagation, that can takethe restrictions of the
behaviour of the trusted subjects into account. Subject behaviour can be expressed
in a way that depends on the information that a subject has from initial conditions,
and has required during the collaboration with other subjects. Its expressive power
makes Scollar a tool that can (also) be used to study the propagation of authority
in capability systems and patterns of collaborating entities.

The restriction to monotonic approximations (that are safebut may possibly
be too crude) prevents us to directly express the revocationof authority. This is
relevant for capability systems too because, even if accesspermissions cannot be
revoked, it is very well possible (and easy) for a subject to revoke the authority it
used to provide to its clients, for instance by refusing to collaborate any further,
and no longer pass on any data or capabilities to them.

This is where the dominator part of DomReachability can be ofdirect use: to
add expressive power to the safety requirements. Instead ofsimply stating that
some effect (authority) should be prevented, we could instead require that all au-
thority of a certain kind should only ever be available via a trusted subject that is
able to revoke the authority. In the “authority-flow” graph (to be derived from the
access-graph) a trusted subject Alice can revoke all Bob’s authority over a third
subject Carol, if Alice dominates Bob in the authority-flow graph that originates
with Carol.





Chapter 8

Conclusions and Future Work

We have introduced two new NP-complete problems which are generalization of
the Disjoint Paths Problem. We have defined three new constraints: Reachability,
DominationandDomReachabilityfor tackling those problems. We have defined
the operational semantics of the propagators implementingthese constraints by
providing the corresponding pruning rules. We have implemented those pruning
rules on top of state-of-the-art algorithms for computing dominators and transitive
closure.

We have tested our approach in two real-case scenarios:

• Solving constrained path problems. We presented the Ordered Simple
Path with Mandatory Nodes Problem (OSPMN) as an example of constrained
path problems.OSPMN is to find a simple path in a directed graph that
passes through a set of mandatory nodes respecting a given order on the
mandatory nodes. We showed howDomReachabilitycan speed up a stan-
dard approach for dealing withOSPMN. Our experiments show that the gain
is increased when not all the nodes are mandatory.

We compared the two implementations ofDomReachabilityand showed that
theGecode(CP(Graph))implementation remarkably outperforms theOzim-
plementation. We also showed that theGecode(CP(Graph))implementation
allows us to be competitive with the approach presented in [BFL06].

It is important to emphasize that both the computation of node dominators,
and the computation of edge dominators play an essential role in the per-
formance ofDomReachability. The reason is that each one is able to prune
when the other can not.

• Solving computer security problems. We showed how the monotonic
propagation of effects can be modeled with reachability constraints in a di-
rected graph by associating nodes in the graph with subjects, and edges with
permissions between the corresponding subjects. We elaborated on the rela-
tion of the resulting constrained graph problem with the Bounded Transitive
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Closure problem (BTC): the problem of finding a directed graph that respects
a set of reachability constraints (see section 2.3.1).

Even though the techniques presented in this thesis are mostly for dealing
with combinatorial problems, we find, in computer security,polynomial
problems that are better addressed with our approach. The main reason is
that the information inDomReachabilityis updated incrementally.

We now suggest some ways of extending the work presented in this thesis:

8.1 Implementing more sophisticated algorithms for com-
puting transitive closure

As explained in section , the current implementation ofDomReachabilityis com-
puting from scratch the transitive closure of the upper bound of the transitive clo-
sure graph each time a set of edges is removed. We believe thatthe algorithms
presented in section 3.4 should outperform the current algorithm. Notice that each
time we remove a set of edges, we payO(N ∗ E) for updating the upper bound
with the current algorithm. As shown in section 3.4, Rodittysuggests a decremen-
tal approach for updating this information that is linear with respect to the size of
the graph considering a set of edges removed.

8.2 Using dominators for detecting precedences

In section 6.6, we saw that dominators are more powerful thanstrong articulation
points in conjunction with articulation points for detecting precedence constraints.
In fact, we can see that the advantage is still kept even ifunique winnersare con-
sidered to enhance the approach of articulation points.

From the definition of winners given in [BFL05], we say that, given a strongly
connected component (containing at least two nodes), aunique winneris a nodei
such that any tree (subgraph of the component) connecting the nodes of the com-
ponents hasi as a root. Unique winners are used for discovering precedences since
a unique winner is preceeded by all the nodes in the components. This means that,
if i is a unique winner of a component, andj is another node of the component, the
edge〈i, j〉 is invalid.

Nevertheless, there are situations where there are dominators but there are nei-
ther articulation points, nor strongly articulation points, nor unique winners, as
shown in Figure 8.1. In this Figure, rounded rectangles represent strongly con-
nected components. Assuming thats precedest, using dominators in this cases
will let us infer thats precedesd and thatd precedest.
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Figure 8.1: A directed graph, containing a dominator, that has neither articulation
points, nor strong articulation points, nor unique winners

8.3 Towards a global constraint for CardBTC

In chapter 7, we introducedCardBTC: a very simple problem that allows us to
express interesting graph problems on top of the notion of transitive closure and
cardinality constraints. Our current approach for implementing CardBTCis to use
DomReachabilityin conjuntion with Cardinality Constraints [VD91]. However,
we can achieve a stronger level of pruning by taking into account the structure of
the disjunctions and the bounds of the graph variables.

For instance, let us consider the CardBTC instance in Figure8.3, whose se-
mantics is the following:

〈j, d〉 ∈ TC(g) ∧ 〈k, d〉 ∈ TC(g) ∧ (〈i, j〉 ∈ TC(g) ∨ 〈i, k〉 ∈ TC(g)) (8.1)

From the previous constraint we can infer that〈i, d〉 ∈ TC(g). Notice that
this inference cannot be made by only looking at the bounds ofthe graph and its
transitive closure. We also need to take into considerationthat eitheri reachesj
or i reachesk. In order to take this into account, we need to extend the pruning
rules presented in chapter 3 so that the conditions include the information in the
disjuction.

Let us re-write the semantics of the BTC instance as follows:

〈j, d〉 ∈ TC(g) ∧ 〈k, d〉 ∈ TC(g) ∧ 〈i, j〉 ∈ TC(g)
∨

〈j, d〉 ∈ TC(g) ∧ 〈k, d〉 ∈ TC(g) ∧ 〈i, k〉 ∈ TC(g)
(8.2)

We can see that what we are suggesting is actually an application of Construc-
tive Disjunction [VSD95] since〈i, d〉 ∈ TC(g) is inferred from every conjunction
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Figure 8.2:CardBTCinstance associated withSAT3instance of Equation 8.3

composing the disjunction.

8.4 The underlying SAT problem of CardBTC

The price of allowing disjunctions inCardBTCis reflected in its complexity. No-
tice thatSAT3[GJ79] can be trivially reduced toCardBTCby associating each
proposition with an edge ing, which means thatCardBTCis NP-complete even if
no constraint on the transitive closure is imposed. For instance, the followingSAT3
instance is represented in Figure 8.2:

(p ∨ q ∨ s) ∧ (¬p ∨ q ∨ ¬r) ∧ (p ∨ r ∨ t) (8.3)

As explained in chapter 7, the cardinality constraints involved in CardBTC
can be managed by using standard approaches based on cardinality propagators
[VD91]. However, we can reason at a higher level of abstraction by looking at the
Boolean Satisfiability instance that results from associating each basic graph con-
straint with literals. For instance, let us consider the following CardBTCinstance:

(〈i, j〉 ∈ g ∨ 〈j, k〉 ∈ TC(g)) ∧ (〈i, j〉 ∈ g ∨ 〈j, k〉 ∈ TC(g)′) (8.4)

Notice that, the only possible solutions to the aboveCardBTCare graphs con-
taining the edge〈i, j〉. This inference can be made by only looking at the corre-
sponding SAT instance:

(p ∨ q) ∧ (p ∨ ¬q) (8.5)

which is equivalent top.
Notice tha this is an application of Constructive Disjuction too since we are

basically imposing that the intersection of the solutions satisfying every clause
must be true.

Reasoning at the symbolic level would let us take advantage of BDD propa-
gators to narrow down the literals composing a given disjunction [HLS05]. We
could also consider hybrid approaches, like the one suggested in [HS06], in order
to inherit the advantages offered by SAT solvers.
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Figure 8.3: ACardBTCinstance that implies thati reachesd
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