
Solving Balancing and
Bin-Packing problems with
Constraint Programming

Pierre Schaus

Thèse présentée en vue de l’obtention du grade
de Docteur en Sciences de l’Ingénieur

August 2009

Ecole polytechnique de Louvain
Département d’Ingénierie Informatique

Université catholique de Louvain
Louvain-la-Neuve

Belgium

Thesis committee:
Yves Deville (director) INGI, UCLouvain, Belgium
Jean Charles Régin Sophia-Antipolis, Nice, France
Pascal Van Hentenryck Brown, Providence, USA
Yves Crama HEC, ULG, Belgium
Peter Van Roy INGI, UCLouvain, Belgium
Olivier Bonaventure (president) INGI, UCLouvain, Belgium

This work could not have been achieved without the support of the
following persons.

My parents who encourage me to finish this thesis (even by coming
in Providence). They are great example for their five children.

My wife Caro who supports me everyday. She’s always there to
remind me what is the most important in my life and helps me to find
a good balance between work, family and friends.

Yves Deville my advisor who gave me many opportunities to partic-
ipate in conferences and meet very interesting people. Yves, thank you
also for giving responsibilities and autonomy to your Phd students and
for generating such a good team spirit in the Be-Cool group.

Jean-Charles Régin that I met early during my thesis at the Samos
summer school. From my point of view, he did one of the most influ-
ential works in constraint-programming. One year before my thesis he
published a paper that kept me busy during three years. Thank you
Jean-Charles for all your advices and input during this work.

Pascal Van Hentenryck that I visited during three months at Prov-
idence. It was a great honor for me to work with the father of modern
constraint programming, and the creator with Laurent Michel of the
most influential optimization systems. This was a wonderful visit from
the scientific and also from the relational point of view. I really appre-
ciated how you made my stay at Providence enjoyable even if I was far
from Caro and Tom.

Jean-Noël Monette which is my colleague since the beginning. I
could not have dreamed of a better person to share my office: he can
solve your technical problems because he is very smart and he is always
ready to take a break with you. I hope we will have the opportunity to
work together for many years. Thank you also to Grégoire Dooms and
Stéphane Zampelli that were my models when I started with Jean-Noël.

The member of the jury who accepted to read and comment this
thesis. Especially Yves Crama that noticed that some problems solved
with dedicated algorithms in this thesis can be seen as minimization
of separable convex functions that can be solved with well known algo-
rithms. This remark will probably give new perspectives to extend this
work.

Finally I want to thank the Be-Cool members, the colleagues of
the 3d floor, the free-runners of Ingi, Stéphanie Landrain and all other
people that I forgot for the pleasant years spent at the INGI department.

Contents

Contents 3

1 Introduction 5

2 CP Background 9
2.1 Variables, Domains and Constraints 9
2.2 The Search and Pruning Process 10
2.3 Classical Consistency Notions 10
2.4 Set Variables . 11
2.5 Redundant Constraints . 11

3 Balancing Constraints 13
3.1 Introduction . 13
3.2 Measuring the balance . 15
3.3 Related Work . 18
3.4 Variance Constraint . 19

3.4.1 Filtering of ∆min 22
3.4.2 Filtering of X . 31
3.4.3 Experimental Comparison of the Q-bound-consistent

and Z-bound-consistent propagators 38
3.5 Mean Absolute Deviation Constraint 40

3.5.1 Q-bound-consistency for deviation 41
3.5.2 Z-bound-consistency for deviation 46
3.5.3 Experimental Comparison of the Q-bound-consistent

and Z-bound-consistent propagators 58
3.6 Applications using Spread and Deviation 59

3.6.1 Assembly Line Balancing Problem 59
3.6.2 Nurses to patients assignment problem 67
3.6.3 Softening an ideal given distribution 83

3

4 Contents

4 Bin-Packing Constraints 87
4.1 Bin-Packing Constraint 87

4.1.1 Related Work . 87
4.1.2 Paul Shaw’s Global Constraint 88
4.1.3 Additional Filtering for the Bin Packing Global

Constraint . 91
4.2 Bin-Packing with Precedence Constraints 108

4.2.1 A CP Model for the Bin Packing with Precedence
Constraints . 109

4.2.2 A Global Constraint for the BPPC 111
4.2.3 Experimental results 113

5 Conclusion 119

6 Annexes 123

Bibliography 127

1
Introduction

Constraint Programming (CP) can be summarized with the famous
equation1:

CP = modeling + search.

A problem is modeled in a declarative language by stating the variables
and the constraints, then a solution is found by exploring a search tree
with a backtracking algorithm until a solution is found. An alternative
definition of CP 2 that illustrates better the content of this thesis is:

CP = filtering + search.

Constraints act at each node of the search tree by removing inconsistent
values from the domain (act of filtering), pruning the search tree when
a domain becomes empty. Constraints only communicate through the
domain of the variables (the domain store). Constraint programming
can be seen as a decomposing technique where constraints encapsulate
sub-problems that can be solved efficiently. This approach to solve com-
binatorial problems has two advantages:

1. re-usability: constraints are building blocks that can be used in
various problems, and

2. flexibility: very efficient OR algorithms (e.g. network flows) can
be integrated into the constraints to solve large sub-problems very
efficiently.

1I think from Pascal Van Hentenryck
2This one is from Jean-Charles Régin

6 Introduction

This work focus on the filtering algorithm for two types of con-
straints:

1. Balancing or Fairness Constraints working on the variance and the
mean absolute deviation of a vector of variables with a fixed mean,
and

2. Bin-Packing Constraints linking the placement of sized/weighted
items into bins and the capacity of the bins.

Contributions

Most of the constraints that we study are not new and can be expressed
in most of the existing CP solvers by decomposing them into smaller
constraints. The contributions of this work are on the filtering algo-
rithms of these constraints. We improve the existing filtering functions
of these constraints by making global reasoning rather than letting the
system work separately on the decomposition3.

New Filtering Algorithm:

• Balancing Constraints: When starting this thesis the first paper on
balancing constraints introducing spread [31] was just published.
This constraint considers a variable mean and restricts the variance
of a set of variables. It was not implemented and while the filtering
of the variance variable was correct, we suspect that the descrip-
tion of the filtering on the set of variables has some problems. We
restrict here our attention on the particular case of a fixed mean
having many practical applications. This simplification allows us
to design and implement for the first time a reasonably simple fil-
tering algorithm for spread. We also introduce a new balancing
constraint (deviation) similar to spread but for the mean abso-
lution deviation rather than the variance. This constraint has the
advantage to simplify even more the filtering algorithms compared
to spread.

• Bin-Packing Constraints: We improve a failure detection algo-
rithm introduced by Paul Shaw [52]. We also introduce some pre-
liminary new ideas to filter bin-packing constraints using network

3This idea is also not new, the most famous example being the filtering algorithm
for the allDifferent constraint [37].

Introduction 7

flows. Finally we extend the Bin-Packing constraint with a set of
precedence relations between items that must be satisfied. We in-
troduce a strong formulation using redundant constraints for this
problem as well as a global filtering algorithm.

New Bound-Consistency Notions: Another contribution of this
work is a better characterization of the classical bound-consistency no-
tion in CP. We distinguish the Q-bound-consistency and the Z-bound-
consistency following that values can take rational or integer values in
the relaxation. For constraints like allDifferent which are discrete
by nature this differentiation has no reason to be. But for spread and
deviation the question arises and the filtering algorithms designed for
these two consistencies are quite different and lead to different strengths
of filtering in theory and in practice.

Modeling of new problems in CP: Efficient CP models are intro-
duced to solve problems that were not approached by constraint pro-
gramming:

1. the assembly line balancing problems and the

2. the nurse assignment balancing problem.

3. the soft-distribute constraint, a soft-version of a particular case
of the global cardinality constraint with equal lower and upper
bounds for the cardinality of each value.

Publications: The content of this thesis led to some publications ac-
cepted in refereed international conferences:

• P. Schaus, Y. Deville, P. Dupont, and J-C. Régin. Simplification
and extension of the spread constraint. In Future and Trends of
Constraint Programming, pages 95–99. ISTE, 2007

• P. Schaus, Y. Deville, P. Dupont, and J.C. Régin. The devia-
tion constraint. In 4th International Conference Integration of
AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems (CPAIOR), volume 4510 of Lec-
ture Notes in Computer Science, pages 269–284, Brussels, Belgium,
2007. Springer

8 Introduction

• P. Schaus, Y. Deville, and P. Dupont. Bound-consistent deviation
constraint. In 13th International Conference on Principles and
Practice of Constraint Programming (CP), volume 4741 of Lecture
Notes in Computer Science, pages 620–634, Providence, RI, USA,
September 2007. Springer

• P. Schaus and Y. Deville. A global constraint for bin-packing with
precedences: Application to the assembly line balancing problem.
In Proceedings of the Twenty-Third AAAI Conference on Artifi-
cial Intelligence, pages 369–374, Chicago, Illinois, USA, July 2008.
AAAI Press

• P. Schaus, P. Van Hentenryck, and J.C. Régin. Scalable load
balancing in nurse to patient assignment problems. In 6th In-
ternational Conference Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Prob-
lems (CPAIOR), Lecture Notes in Computer Science, Pittsburgh,
Pennsylvania, USA, 2009. Springer

2
CP Background

The chapter introduces Constraint Programming preliminaries useful for
the reading of the subsequent chapters.

2.1 Variables, Domains and Constraints

Let X be a finite-domain (discrete) variable. The domain of X is a set
of ordered values that can be assigned to X and is denoted by Dom(X).
The minimum (resp. maximum) value of the domain is denoted by
Xmin = min(Dom(X)) (resp. Xmax = max(Dom(X)). An integer
interval between integer numbers a and b is denoted [a..b] ⊆ Z while the
rational interval is denoted [a, b] ⊆ Q. An assignment on the variables
X = [X1, X2, ..., Xn] is denoted by the tuple x and the ith entry of this
tuple by x[i]. The extended rational interval domain of Xi is IQ

D(Xi) =
[Xmin

i , Xmax
i] and its integer interval domain is IZ

D(Xi) = [Xmin
i .. Xmax

i].
Let X = [X1, X2, ..., Xk] be a sequence of variables. A constraint C

on X is defined as a subset of the Cartesian product of the domains of
the variables in X: C ⊆ Dom(X1)×Dom(X2)× ...×Dom(Xk). A tuple
x = (x1, ..., xk) ∈ C is called a solution to C. A value v ∈ Dom(Xi) for
some i = 1, ..., k is inconsistent with respect to C if it does not belong
to a tuple of C, otherwise it is consistent. C is inconsistent if it does not
contain a solution. Otherwise, C is called consistent.

A constraint satisfaction problem, or a CSP , is defined by a finite
sequence of variables X = [X1, X2, ..., Xn], together with a finite set of
constraint C each on a subset of X. The goal is to find an assignment

10 CP Background

Xi := v with v ∈ Dom(Xi) for i = 1, ..., n, such that all constraints are
satisfied. This assignment is called a solution to the CSP .

2.2 The Search and Pruning Process

The solution process of constraint programming interleaves constraint
propagation, or propagation in short, and search. The search process
essentially consists of an enumeration of all possible variable-value com-
binations, until a solution is found or it is proved that none exists. We
say that this process constructs a search tree. To reduce the exponential
number of combinations, constraint propagation is applied to each node
of the search tree: Given the current domains and a constraint C, the
propagator for C removes domain values that do not belong to a solution
to C. This is repeated for all constraints until no more domain value
can be removed (fix point). The removal of inconsistent domain values
is called filtering.

It is also possible to make optimization in Constraint Programming
by minimizing or maximizing one variable of the problem. The classical
Branch and Bound (B&B) scheme is applied to constraint programming.
When a solution is found during the search process, a constraint is dy-
namically added to the problem constraining the next solution to be
better. The last solution found when the search is completed is then
proved to be optimal.

2.3 Classical Consistency Notions

In order to be effective, filtering algorithms should be efficient, because
they are applied many times during the search process. They should
furthermore remove as many inconsistent values as possible. If a filtering
algorithm for a constraint C removes all inconsistent values from the
domains with respect to C, we say that it makes C domain-consistent1:

Definition 1 (domain-consistency). A constraint
C(X1, . . . , Xn) ⊆ Dom(X1)×. . .×Dom(Xn) (n > 1) is domain-consistent
if for all i ∈ {1, . . . , n} and every value vi ∈ Dom(Xi), there exists a
tuple (x1, . . . , xn) ∈ C such that xi = vi.

1also called (Generalized) Arc Consistency (GAC)

2.4 Set Variables 11

It is possible to achieve domain-consistency in polynomial time for some
constraints such as AllDiff but for other constraints such as SUM this
would be too costly. In such cases a weaker notion of consistency is used
such as the bound-consistency:

Definition 2 (bound-consistency). A constraint C(X1, ..., Xn) (n >
1) is bound-consistent with respect to domains Dom(Xi) if for all i ∈
{1, ..., n} and each value vi ∈ {Xmin

i , Xmax
i }, there exist values Xmin

j ≤
vj ≤ Xmax

j for all j ∈ {1, ..., n} − i such that (v1, ..., vn) ∈ C.

The idea of the bound-consistency is to bound the domain of each
variable by an interval and make sure that the end-points of the intervals
obey the domain-consistency requirement. If not, the upper and lower
bounds of the intervals can be tightened until bounds-consistency is
achieved.

2.4 Set Variables

Set variables in CP [11] allow to represent a set rather than a single
value. The classical representation of the domain of a set variable S
is represented by two sets S and S with S ⊆ S (subset-bound repre-
sentation [11]). The lower bound S represents the values that must be
in the set, and S represents the values that may figure in the set; i.e.
S ⊆ S ⊆ S. The subset-bound representation is generally enhanced
with a finite domain variable representing the cardinality of the set.

Note that recently, an other promising representation of set domains
have been proposed in [13, 17] but it is not yet available in any solver.
We refer to [12] for more information about different structured domains
that have been proposed in CP.

2.5 Redundant Constraints

Redundant constraints (also called implied or surrogate constraints) are
constraints which are implied by the constraints defining the problem.
They do not change the set of solutions, and hence are logically redun-
dant. Adding redundant constraints to the model may however further
reduce the search space by allowing more pruning either by

• expressing a property of the solutions of problem that doesn’t ap-
pear in the formulation, or by

12 CP Background

• improving the communication between existing constraints of the
problem.

Redundant constraints have been successfully applied to various prob-
lems such as car sequencing [8]. We refer to [54] for more examples of
successful applications using redundant constraints.

3
Balancing Constraints

3.1 Introduction

Balancing constraints appears to be useful in many real applications
especially when humans are involved. One often want the actors of the
application to be treated equally. For example, in assignment problems,
solutions with the workloads distributed fairly should be preferred. In
rostering problems, the bad shifts (e.g. night or weekend shifts) should
be evenly distributed. A non exhaustive list of applications and problems
where the balance property is important is given next.

• The Balanced Academic Curriculum Problem (BACP)1: The goal
is to assign a period to each course in a way that the prerequisite
relationships are satisfied and the academic load of each period is
balanced. It is quite natural to ask a good repartition of work
among the periods of the curriculum such that there is no peri-
ods with a huge peak of work and periods with almost nothing
to do. This last constraint makes BACP a Constraint Optimiza-
tion Problem where the objective is to maximize the balancing
property.

• The (Vertical) Assembly Line Balancing Problem (ALBP)2. A
given number of workstations are placed along a conveyor belt.

1Problem 30 of CSPLIB (www.csplib.org)
2This problem has several variants, see [4] for a detailed classification of all the

variants

14 Balancing Constraints

The workpieces are consecutively launched down the line from sta-
tion to station until the end of the line. Some operations are per-
formed on any workpieces in each station. The problem is to assign
all the operations to the workstations such that the workload of
the stations is nearly the same while satisfying various constraints
such as precedences between the operations [4]. The balance re-
quirement has a double objective here. First it allows to optimize
the speed of the line. Secondly, if a station represents a set of tasks
achieved by an operator (manual assembly line), the total work of
each station should be balanced such that all the operators have
almost the same quantity of work.

• Assigning patients to nurses [30]: This problem is to assign group
of infants throughout the shift. The large variation in infant con-
ditions along with several complicating side constraints makes it
difficult to develop balanced nurse work loads. Distributing work
fairly among nurses is essential for optimal quality of care.

• Balancing the assignment of customers among employees [21]: To
handle the orders, a mail order firm assigns its customer to em-
ployees such that customers having last names beginning with the
same letter are assigned to the same employee to ease the track-
ing of orders. To be fair from an employee point of view and to
minimize the deviation of the processing times of customers, the
management wants the number of customers assigned to each em-
ployee to be as close as possible to the average number of customers
per assignments.

• Nurse rostering [53]: Nurses must be allocated to morning, af-
ternoon and night shifts while satisfying the staffing requirements
and various constraints such as the personnel work rules and ad-
ministrative requirements. As explained by Simonis, balancing the
workload between persons or within the schedule for a single per-
son can have a big impact on the perceived quality of the solution.

• Generating Spatially Balanced Scientific Experiment Designs [14]:
This problem arises in the design of scientific experiments. For
example, in agronomic field experiments, one has to test and com-
pare different soil treatments. Gomes et al. shows that a good
design can be given by Latin square which is spatially balanced.

3.2 Measuring the balance 15

• The completion time variance problem [29] is to find a sequencing
of tasks minimizing the sum of the absolute (squared) deviations of
the completion times to the average completion time of the set of
tasks. This problem is applicable to any service or manufacturing
setting where uniformity of services is desired.

• Softening of cardinality constraint: Assume you have n objects to
allocate to m resources and you have an idea of the ideal repar-
tition. This ideal repartition might be a preference rather than
a hard constraint. A solution to model this situation is to use a
global cardinality constraint [34] gcc([D1, . . . , Dm], [X1, . . . , Xn])
where Xi is the resource allocated to object i and Dj is the num-
ber of objects allocated to resource j. The desired value for Dj is δj
and we have that

∑n
j=1 δj = n to have a valid preference distribu-

tion. We introduce variables Yj = Dj−δj . We have the redundant
constraint that

∑
j Yj = 0 and we wish that the violation variables

Yi to be well balanced around 0.

• Balancing the violations among soft constraints in over-constrained
problems: Most real constrained problems are over-constrained.
Petit et al. suggest in [32] a framework where the violation of each
constraint is represented by a violation variable. They also express
that the violations must be homogeneously distributed.

3.2 Measuring the balance

For all these problems, the perfect balance is in general not possible. In
the BACP the overall load of s is known since the loads of each course
are part of the description of the problem. A hard balancing constraint
would impose all periods to take a same load s/n if n is the number
of periods in the curriculum. This often results in an over-constrained
problem without solution. One possibility is to relax the hard balancing
constraint with respect to some violation measure.

For a set of variables X = [X1, X2, ..., Xn] and a given fixed sum s, a
violation measure of the perfect balance property can be defined as the
Lp-norm of the vector [X−s/n] with s/n = [s/n, s/n, ..., s/n] such that∑n

i=1Xi = s. The Lp-norm of [X−s/n] is defined as (
∑n

i=1 |Xi − s/n|p)
1
p

with p ≥ 0.
Following the scheme proposed by Régin et al. [36] to soften global

constraints, we define a violation of the perfect balance constraint as

16 Balancing Constraints

a cost variable Lp in the global balance constraint. The constraint
soft-balance(X, s, Lp) holds if and only if Lp-norm([X − s/n]) = Lp
and

∑n
i=1Xi = s.

The interpretation of the violation to the mean for some specific
norms is given below.

• L0: |{Xi|i ∈ [1..n] ∧Xi 6= s/n}| is the number of values different
from the mean.

• L1:
∑

i∈[1..n] |Xi − s/n| is the sum of deviations from the mean.

• L2:
∑

i∈[1..n](Xi − s/n)2 is the sum of square deviations from the
mean.

• L∞: maxi∈[1..n] |Xi − s/n| is the maximum deviation from the
mean.

None of these balance criteria subsumes the others. For instance, the
minimization of L1 does not imply in general a minimization of criterion
L2. This is illustrated on the following example. Assume a constraint
problem with four solutions given in Table 3.1. The most balanced
solution depends on the chosen norm. Each solution exhibits a mean of
100 but each one optimizes a different norm.

sol. num. solution L0 L1 L2 L∞
1 100 100 100 100 30 170 2 140 9800 70
2 60 80 100 100 120 140 4 120 4000 40
3 70 70 90 110 130 130 6 140 3800 30
4 71 71 71 129 129 129 6 174 5046 29

Table 3.1: Illustration showing that no balance criterion
defined by the norm L0, L1, L2 or L∞ sub-
sumes the others. The smallest norm is indi-
cated in bold character. For example, solution
2 is the most balanced according to L1.

They are several alternatives to the Lp norm to enforce a balance
property. One can also minimize:

• the maximum value: maxi∈[1..n]{Xi} or

3.2 Measuring the balance 17

Figure 3.1: minimization of the maximum load

• the maximum range: maxi∈[1..n]{Xi} −mini∈[1..n]{Xi}.

The minimization of the maximum value is popular to solve the
BACP [5, 18] or the SLBP [22]. Unfortunately this can result in very
poor quality solutions from the point of view of L1 or L2. The Fig-
ure 3.1 illustrates this on the instance Hahn with 7 workstations from
the benchmark data set of Scholl [48]. The left solution is obtained by
minimization of the maximum workload and the right solution by mini-
mization of the L1 criterion. The maximum value of the left solution is
2336 against 2418 for the right solution and the mean absolute deviation
is 298 against 222. On this instance we have a degradation of 3.5% from
the point of view of the maximum value criterion but the L1 criterion is
improved by 25.5%.

A constraint for L0 can easily be implemented using an
atleast(i, [X1, ..., Xn], s/n) constraint for |{X ∈ X |X 6= s/n}| ≤ i and
a sum([X1, ..., Xn], s) constraint to ensure a sum of s. In statistics, the
usual indices to measure the balance of a set of data is either the standard
deviation which corresponds to the L2 criterion or the mean absolute
deviation (MAD) corresponding the L1 criterion. Which one should we
prefer ? This old debate is certainly not closed (see for example [15]).
The least we can say is that L2 is more sensitive to outliers than L1.
On practical problems like the simple assembly line balancing problems
some studies try to optimize the L1 criterion [33, 27] and others the L2

criterion [38]. At the best of our knowledge, neither of these works use

18 Balancing Constraints

exact methods to optimize the balancing with respect to L1 or L2.

Section 3.3 presents the related works in CP on balancing constraints.
Section 3.4 presents a global constraint and its propagators for the L2

criterion called spread. Then Section 3.5 presents a global constraint
and is propagators for the L1 norm called deviation. We study thor-
oughly in these two sections the spread and deviation constraints with
a fixed mean (or fixed sum). It was not a limitation for the applications
we have encountered during this thesis since for every of them the sum
is known. For example, in assembly line balancing problems, the total
work to be distributed among workstation is given (sum of the durations
of the tasks). In rostering problems, the number of shifts to distribute
is also given. In the patient to nurses assignment problem, the amount
of work for each infant is also known [30].

3.3 Related Work

Balancing Global Constraints: The pioneering work in CP on bal-
ancing constraints is the introduction of the spread constraint in [31]
by Pesant and Régin. It constrains the variance and the mean over a set
of variables. The filtering algorithm of the variance variable in [31] was
the basis of all the other filtering algorithms that have been developed
for spread in this work. We are not aware of other works in CP on
balancing constraints and their filtering.

Soft Global Constraints: Many real problems are over-constrained.
To solve these problems with exact techniques like CP, some constraints
need to be relaxed. Petit et al. suggest in [32] a framework where the vio-
lation of each constraint is represented by a violation variable. In partic-
ular several filtering algorithms of soft global constraints have been sug-
gested (for instance soft-alldifferent or the soft-gcc, soft-regular
... [57, 58]. We consider that balancing constraints fit in this framework
since they are soft versions of the perfect balance in which every variable
takes a same value.

3.4 Variance Constraint 19

Resource Allocation Problems: Optimizing the balance with a
given sum value can be expressed as

min
n∑
i=1

fi(Xi)

such that :
n∑
i=1

Xi = s

where fi(Xi) is a function that measures the violation for variable Xi of
not being equal to the mean s/n. These kind of problems are known as
resource allocation problems [19] and are well solved when the functions
fi are convex and differentiable.

3.4 Variance Constraint

A global constraint for the variance was first introduced in [31]. Sim-
plifications and extensions of the propagators for spread were further
developed in [42].

Definition 3. Given finite domain variables X = (X1, X2, ..., Xn), an
integer value s and a finite domain variable ∆, spread(X, s,∆) holds if
and only if ∑

i∈[1..n]

Xi = s and ∆ ≥ n ·
∑

i∈[1..n]

|Xi − s/n|2.

A convenient way to compute the sum of square deviations often
used in the remaining is

n ·
∑

i∈[1..n]

|Xi − s/n|2 = n ·
∑

i∈[1..n]

X2
i − s2. (3.1)

As s is integer, this quantity is integer. This is why it is more convenient
to work with n ·

∑
i∈[1..n] |Xi − s/n|2 than with

∑
i∈[1..n] |Xi − s/n|2.

Example 1. Tuple x = (4, 6, 2, 5) ∈ spread([X1, X2, X3, X4], s = 17,∆ =
40) but x = (3, 6, 2, 6) /∈ spread([X1, X2, X3, X4], s = 17,∆ = 40) be-
cause 4 · (32 + 62 + 22 + 62)− 172 = 51 > 40.

Three questions can occur at this point:

1. What level of consistency should be used to filter spread?

20 Balancing Constraints

2. Why do we use ∆ ≥ n ·
∑

i∈[1..n] |Xi − s/n|2 instead of ∆ = n ·∑
i∈[1..n] |Xi − s/n|2 in Definition 3?

3. Why is a global constraint necessary if actually spread(X, s,∆)
can be decomposed into two simple arithmetic constraints as sug-
gested by its Definition 3?

Which consistency for spread?

Achieving the domain consistency for spread would be NP-complete.
Indeed a particular case of spread is the sum constraint which is well
known to be NP-complete for the domain consistency. The natural
choice is then the bound-consistency filtering. As shown in next ex-
ample, the bound-consistency definition (see Definition 2) let-us some
flexibility of interpretation:

Example 2. Assume 4 variables X1, . . . , X4 all with domain {0, 1}. Con-
sider a spread constraint with parameters spread([X1, . . . , X4], s =
2,∆ ∈ [0.. +∞]). Clearly only a an assignment with two 0 and two
1 can achieve a sum of 2. It means that ∆ can be fixed to 4 ∗ 2− 4 = 4.
But if we forget the integrality requirement (which is allowed by the
definition), the solution X1 = X2 = X3 = X4 = 0.5 is also valid tuple of
spread and hence ∆ can only be restricted to the interval [0, 4].

Since both interpretations are possible because of the sentence ”there
exist values Xmin

j ≤ vj ≤ Xmax
j for all j ∈ {1, ..., n} − i such that

(v1, ..., vn) ∈ C” from Definition 2, we distinguish the integer case from
the rational case in the next definition:

Definition 4 (Q-bound-consistency and Z-bound-consistency). A con-
straint C(X1, ..., Xn) (n > 1) is Q-bound-consistent (resp. Z-bound-
consistent) with respect to domains Dom(Xi) if for all i ∈ {1, ..., n} and
each value vi ∈ {Xmin

i , Xmax
i }, there exist values vj ∈ IQ

D(Xj) (resp.
vj ∈ IZ

D(Xj)) for all j ∈ {1, ..., n} − i such that (v1, ..., vn) ∈ C.

The idea of the Q-bound-consistency (resp. Z-bound-consistency)
is to bound the domain of each variable by an rational (resp. integer)
interval and make sure that the end-points of the intervals obey the
domain-consistency requirement. If not, the upper and lower bounds of
the intervals can be tightened until bounds-consistency is achieved.

We present filtering algorithms for spread for both Q and Z-bound-
consistencies.

3.4 Variance Constraint 21

Why ∆ ≥ n·
∑

i∈[1..n] |Xi−s/n|2 instead of ∆ = n·
∑

i∈[1..n] |Xi−s/n|2?

The answer to this question is simply that it is an NP-Hard problem to
achieve a bound consistent filtering on ∆max. Filtering ∆max requires
to solve the following optimization problem which is shown to be an
NP-Hard in Theorem 1.

∆Q = max
x
{n ·

∑
i∈[1..n]

(x[i]− s/n)2 s.t.
∑

i∈[1..n]

x[i] = s (3.2)

and ∀i ∈ [1..n] : x[i] ∈ IQ
D(Xi)}

Theorem 1. Computing ∆Q is NP-Hard.

Proof. It is possible to reduce the subset sum problem [10] to the prob-
lem of computing ∆Q. This problem is not more difficult than the par-
ticular case where s = 0:

∆Q = max
n∑
i=1

|n ·Xi|

such that :
n∑
i=1

Xi = 0

Xi ∈ IQ
D(Xi), 1 ≤ i ≤ n

Given a set of n positive values {b1, ..., bn−1, T}, the subset sum problem
consists in finding if there exists a set of binary values {y1, ..., yn−1}, yi ∈
{0, 1}, 1 ≤ i < n such that

∑n−1
i=1 yi.bi = T . The reduction is the follow-

ing:

• Xmin
i = − bi

2 and Xmax
i = bi

2 for 1 ≤ i < n.

• Xn =
∑n−1

i=1 bi
2 − T .

• There is a solution to the subset sum problem if and only if ∆Q ≥
n·
∑n−1

i=1

(
bi
2

)2
+n·

(∑n−1
i=1 bi

2 − T
)2

. This constraint on the optimal

value ensures that the optimal solution is such that Xi ∈ {− bi
2 ,

bi
2 }.

The solution to the subset sum problem is then given by yi = 1 if
Xi = bi

2 and yi = 0 if Xi = −bi
2 .

22 Balancing Constraints

Note that filtering ∆max is not really important since we are generally
interested in minimizing the variance instead of maximizing it. Hence
only a good lower bound is required.

Why is a global filtering for spread more efficient than its de-
composition?

The necessity of a global filtering rather than a decomposition is illus-
trated with a two variable example on Figure 3.2. Assume two variables
X1, X2 with unbounded finite domains and the constraint

spread([X1, X2], s,∆ ∈ [0,∆max]).

The shaded circle on Figure 3.2 delimits the set of points such that
2(X1 − s/n)2 + 2(X2 − s/n)2 ≤ ∆max. The diagonal line is the set of
points such that X1 + X2 = s. The unbounded domains for X1 and
X2 are bound-consistent for the mean constraint. The vertically shaded
rectangle defines the domain of X1 after a bound-consistent filtering for
2(X1 − s/n)2 + 2(X2 − s/n)2 ≤ ∆max. The set of solutions for spread
is the bold diagonal segment obtained by intersecting the circle surface
and the diagonal line. It can be seen on the figure that more filtering is
possible. The Q-bound-consistent filtering on the bold diagonal segment
leads to a domain for X1 defined by the diagonally shaded rectangle. In
conclusion a Q-bound-consistent filtering for the decomposition leads
to Dom(X1) = Dom(X2) = [s −

√
∆max/2, s +

√
∆max/2] while a Q-

bound-consistent filtering for spread([X1, X2], s,∆ ∈ [0,∆max]) leads to
domains Dom(X1) = Dom(X2) = [s−

√
∆max/2, s+

√
∆max/2].

Two propagators can be imagined for the spread constraint: Increas-
ing of ∆min given domains of variables in X and the value s, and narrow-
ing of Dom(Xi) given the values ∆max, s, and the domains Dom(Xj)
for j ∈ {1, .., n} − i.

3.4.1 Filtering of ∆min

The filtering of ∆min requires to find a good lower bound for it given
domains of variables in X and the value s. Régin and Pesant explain in

3.4 Variance Constraint 23

s /2, s /2

Dom X2

X
1
X

2
=s

2 X 1−s /n
22  X2−s / n

2max

max /2

Dom X1

Figure 3.2: Comparison of the global filtering for spread
with the decomposition for the two variable
case.

[31] how to solve the minimization problem:

∆Q = min
x
{n ·

∑
i∈[1..n]

(x[i]− s/n)2 s.t.
∑

i∈[1..n]

x[i] = s (3.3)

and ∀i ∈ [1..n] : x[i] ∈ IQ
D(Xi)}

Their algorithm consider that the domains of X are rational intervals.
This lower bound can be strengthened by considering integer intervals:

∆Z = min
x
{n ·

∑
i∈[1..n]

(x[i]− s/n)2 s.t.
∑

i∈[1..n]

x[i] = s (3.4)

and ∀i ∈ [1..n] : x[i] ∈ IZ
D(Xi)}

Since ∆Z ≥ d∆Qe, the filtering rule is ∆min ← max(∆min,∆Z). Next
example illustrates the difference between ∆Z and ∆Q.

24 Balancing Constraints

Example 3. Assume two variables X = (X1, X2) with domains [−5..5]
and a sum constraint s = 1. Obviously ∆Q = 0 is obtained with the
tuple x = (0.5, 0.5) while ∆Z = 1 is obtained with the tuple x = (1, 0)
or x = (0, 1).

First we explain in details the O(n · log(n)) algorithm from [31] to
compute ∆Q then we adapt this algorithm to compute ∆Z.

The key point of the algorithm given in the next theorem is a clear
characterization of an optimal solution to the problem of minimization
of the sum of square deviations with a given sum. This theorem says
that in an assignment of sum s minimizing the sum of square deviations,
there cannot exist two values that can be made closer by moving both
of them inside their corresponding domains.
Theorem 2. x ∈ argminy{n ·

∑
i∈[1..n](y[i] − s

n)2 s.t.
∑

i∈[1..n] y[i] =

s and ∀i : y[i] ∈ IQ
D(Xi)} ⇔ @ (i, j) such that: i 6= j, x[i] < Xmax

i ,
x[j] > Xmin

j and x[i] < x[j].

Proof. We denote by opt(x) the left member of the bi-conditional symbol
and by ¬p(x) the right member.

(⇒) p(x)⇒ ¬opt(x): Assume it is possible to find a pair i, j such
that x[i] < Xmax

i , x[j] > Xmin
j and x[i] < x[j], then it is possible

to transform the assignment x into a assignment x′ also of sum s
with n ·

∑
i∈[1..n](x

′[i]− s
n)2 < n ·

∑
i∈[1..n](x[i]− s

n)2. We define the
positive value δ = min{((x[j]−x[i])/2), (Xmax

i −x[i]), (x[i]−Xmin
i)}

and x′[k] = x[k] ∀k 6= i, j, x′[j] = x[j] − δ, x′[i] = x[i] + δ. If we
define ∆(x) = n ·

∑
i∈[1..n](x[i]− s

n)2 = n ·
∑

i∈[1..n] x[i]2−s2. Then
∆(x)−∆(x′) = −n · (2δ2 + 2δ · (x[i]− x[j])) ≥ 2nδ2 > 0 because
(x[j]− x[i]) ≥ 2δ.

(⇐) ¬opt(x) ⇒ p(x): We assume that x is not optimal and we
consider x′ a modified version of x also of sum s. Without loss of
generality, we consider that the k first entries were increased,the
l next were decreased and the other unchanged: (x′[i] − x[i]) =
δi > 0 for i ∈ [1..k], (x[i]− x′[i]) = δi > 0 for i ∈ [k + 1..k + l] and
x[i] = x′[i] for i ∈ [(k + l + 1)..n]. The sum s is preserved from x
to x′ if

∑k
i=1 δi −

∑k+l
i=k+1 δi = 0. The difference between the sum

of square deviations can be written as:

∆(x)−∆(x′) = n · (
k+l∑
i=1

−δ2
i − 2 ·

k∑
i=1

x[i]δi + 2 ·
k+l∑

i=k+1

x[i]δi).

3.4 Variance Constraint 25

We show that this difference is strictly negative (i.e. x′ does not
improve x) if every increasing entry is larger than every decreasing
entry, ∀i ∈ [1..k], ∀j ∈ [k + 1..k + l] : x[i] > x[j]. A lower bound
on (

∑k
i=1 x[i]δi) is ((mini∈[1..k] x[i]) ·

∑k
i=1 δi) and an upper bound

on (
∑k+l

i=k+1 x[i]δi) is ((mini∈[1..k] x[i]) ·
∑k+l

i=k+1 δi). Hence we have:
∆(x)−∆(x′) < n · (−

∑k+l
i=1 δ

2
i + 2 · (mini∈[1..k] x[i]) · (−

∑k
i=1 δi +∑k+l

i=k+1 δi)) = −n ·
∑k+l

i=1 δ
2
i < 0.

An assignment x such that @ i, j with x[i] < Xmax
i , x[j] > Xmin

j and
x[i] < x[j] is called a ν-Qcentered assignment in [31]:

Definition 5 (ν-Qcentered assignment [31]). A ν-Qcentered assignment
x ∈ Qn on X with ν ∈ Q is such that ∀i ∈ [1..n] :

x[i] =


Xmax
i if Xmax

i < ν
Xmin
i if Xmin

i > ν
ν otherwise.

Corollary 1 ([31]). x ∈ argminy{n·
∑

i∈[1..n](y[i]−s/n)2 s.t.
∑

i∈[1..n] y[i] =

s and ∀i : y[i] ∈ IQ
D(Xi)} if and only if x is a ν-Qcentered assignment of

sum s.

The optimal value ∆Q can be obtained from a tuple which is ν-
Qcentered and exhibiting a sum of s. Note that by definition of a
ν-Qcentered assignment, this tuple is completely defined by the value
ν. The algorithm from [31] searches for the value ν such that the ν-
Qcentered assignment exhibits a sum of s.

For a given value ν, the sum of the corresponding ν-Qcentered as-
signment is ∑

Xmin
i >ν

Xmin
i +

∑
Xmax

i <ν

Xmax
i +

∑
ν∈IQ

D(Xi)

ν. (3.5)

In order to simplify the notations, we denote by:

• R(ν) the (Right) variables {Xi s.t. Xmin
i > ν},

• L(ν) the (Left) variables {Xi s.t. Xmax
i < ν} and by

• M(ν) the (Medium) variables {Xi s.t. Xi /∈ (R(ν) ∪ L(ν))}.

26 Balancing Constraints

The cardinality of the sets R(ν), L(ν) and M(ν) are denoted respectively
r(ν), l(ν) and m(ν). Let us furthermore define

• ES(ν) =
∑

Xi∈R(ν)X
min
i +

∑
Xi∈L(ν)X

max
i (Extrema Sum), and

• ES(2)(ν) =
∑

Xi∈R(ν)(X
min
i)2 +

∑
Xi∈L(ν)(X

max
i)2.

When no ambiguity is possible, the ν argument will be dropped.
With the introduced notations, the sum of the ν-Qcentered assign-

ment (3.5) can be simply written as ES + m · ν. Our objective to
find the lower bound ∆Q is achieved if we can find a value ν such that
ES +m · ν = s.

Non empty intervals such that every domain either completely sub-
sume it or do not overlap it, have the property that for every value ν
inside it, the quantities R(ν), L(ν), M(ν) and ES(ν) are constant. This
is more formally stated in Property 1.

Property 1. All intervals I = [a, b] ⊂ Q with a < b such that ∀i ∈ [1..n] :
(I ⊆ IQ

D(Xi)) ∨ (I ≥ IQ
D(Xi)) ∨ (I ≤ IQ

D(Xi)) have the property that
for every a < (ν1, ν2) < b the following equalities hold: R(ν1) = R(ν2),
L(ν1) = L(ν2), M(ν1) = M(ν2) and ES(ν1) = ES(ν2).

Proof. Direct consequences of the definitions of R, L, M and ES.

Property 1 leads naturally to an extension of the definitions of R, L,
M and ES to intervals I such as the ones considered in the Property 1:

• R(I) the variables {Xi s.t. Xmin
i ≥ max(I)},

• L(I) the variables {Xi s.t. Xmax
i ≤ min(I)},

• M(I) the variables {Xi s.t. Xmin
i ≤ min(I) and Xmax

i ≥ max(I)}
and

• ES(I) =
∑

Xi∈L(I)X
max
i +

∑
Xi∈R(I)X

min
i .

Note that M(I) = X− (R(I) ∪ L(I))}.
When ν varies inside such an interval I, the sum ranges in the interval

SI(I) = [ES(I) +m(I) ·min(I), ES(I) +m(I) ·max(I)] (SI stands for
Sum Interval). If s does not fall in SI(I) then the value ν we are
looking for does not lie inside I neither. On the contrary if s belongs
to this interval, ν is the solution of the equation s = ES +m · ν that is
ν = (s− ES)/m.

3.4 Variance Constraint 27

There are at most 2·n−1 intervals I to consider (when all the bounds
are different). These are obtained by sorting the set of upper and lower
bounds of every variable Xi into increasing order. Any two consecutive
values of this sorted sequence form an interval I satisfying Property 1.

Definition 6. Let B(X) be the sorted sequence in non-decreasing order
of the set of bounds

⋃
i{Xmin

i , Xmax
i }. Let I(X) be the set of intervals

defined by a pair of two consecutive elements of B(X). The kth interval
of I(X) is denoted by Ik. For an interval I = Ik we define the operator
prev(I) = Ik−1, (k > 1) and succ(I) = Ik+1.

Example 4 (Building I(X)). Let X = {X1, X2, X3} with Dom(X1) =
[1..3], Dom(X2) = [2..6] andDom(X3) = [3..9] then I(X) = {I1, I2, I3, I4}
with I1 = [1, 2], I2 = [2, 3], I3 = [3, 6], I4 = [6, 9]. We have prev(I3) = I2

and succ(I3) = I4.

Observe that for two consecutive intervals Ik and Ik+1 taken from
I(X), the sum intervals are also contiguous: max(SI(Ik)) = min(SI(Ik+1)).
It is then possible to make an algorithm to filter the lower bound of ∆.
Algorithm 8 computes ∆Q by iterating over the contiguous intervals
SI(Ik) until the sum lies inside it.

Algorithm 1: Filtering of ∆
Data: I(X) and for all I ∈ I(X): m(I) and ES(I).
Result: ∆min ← max{∆Q,∆min}.
forall I ∈ I(X) do1

if s ∈ SI(I) then2

ν ← (s− ES(I))/m(I)3

∆Q ← n ·
(
ES(2)(I) +m(I) · ν2

)
− s2

4

∆min ← max{∆Q,∆min}5

break6

Algorithm 8 executes inO(n) once I(X) is computed and that ES(I)
and m(I) are available for every I ∈ I(X). Unfortunately, computing
I(X) requires to sort the bounds, hence O(n log(n)) time. Algorithm
8 also needs the values ES(I) and m(I). For a given I, these can be
obtained in Θ(n) by scanning every variable once. This would rise the
overall complexity of Algorithm 8 toO(n2) since in the worst case, ES(I)
and m(I) must be computed for every I ∈ I(X). A smarter procedure is
possible to compute ES(I) and m(I) in linear time for every I ∈ I(X).

28 Balancing Constraints

Lemma 1 explains how the values ES(I) can be computed in linear time
for all I ∈ I(X) once l(I), r(I) are given for all I ∈ I(X). Finally
Algorithm 10 computes l(I), r(I) and m(I) for all I ∈ I(X) in linear
time too. This last algorithm can be easily understood with the invariant
given in the pseudo code.

Lemma 1 ([31]). ES(Ik+1) = ES(Ik) + (pk+1 − qk+1) · max(Ik) where
pk+1 = l(Ik+1)− l(Ik) and qk+1 = r(Ik)− r(Ik+1).

Algorithm 2: Compute I(X) and l(I), r(I),m(I) for all I ∈ I(X)
Data: The sorted sequence of the set of bounds

B(X) = 〈b1, b2, ..., bk〉 and for each bound bi the
information b+i = |{Xi|Xmax

i = bi}| and
b−i = |{Xi|Xmin

i = bi}|.
Result: I(X) and for all I ∈ I(X): m(I), l(I) and r(I).
lc← b+11

rc← n− b−12

I ← list()3

for i← 2 to k do4

/* invariant:
lc = |{Xj |Xmax

j ≤ bi−1}| and rc = |{Xj |Xmin
j ≥ bi}| */

I ← [bi−1, bi]5

I.add(I)6

l(I) = lc7

r(I) = rc8

m(I) = n− l(I)− r(I)9

lc← lc+ b+i10

rc← rc− b−i11

The complete filtering algorithm dominated by a complexity ofO(n log(n))
is:

• sort the bounds (O(n log(n))),

• compute I(X) and for all I ∈ I(X) : r(I), l(I) and m(I) with
Algorithm 10 (Θ(n)),

• compute ES(I) for all I ∈ I(X) with Lemma 1 (O(n)),

• filter ∆ with Algorithm 8 (O(n)).

3.4 Variance Constraint 29

i Ii R(Ii) L(Ii) M(Ii) ES(Ii) ES(2)(Ii) IS(Ii)
1 [1, 2] x2, x3 φ x1 5 13 [6, 7]
2 [2, 3] x3 φ x1, x2 3 9 [7, 9]
3 [3, 6] φ x1 x2, x3 3 9 [9, 15]
4 [6, 9] φ x1, x2 x3 9 45 [15, 18]

Table 3.2: Relevant values computed from Example 5.

Example 5 (Computing ∆Q). Variables and domains are from Example 4
and the sum considered is s = 10. Relevant values necessary to compute
∆Q are given in Table 3.2. Since s ∈ IS(I3): ν = (s − ES)/m =
(10− 3)/2 = 3.5 and ∆Q = 3 · (ES(2)(I3) +m(I3) · 3.52)− 102 = 0.5. For
s = 9, s ∈ IS(I2) and s ∈ IS(I3). Whichever interval is chosen between
I2 and I3, the value ν is the same. Consequently the value for ∆Q is
also the same.

The remaining of the section explains how to compute ∆Z ≥ d∆Qe
that will allow to achieve Z-bound-consistency rather than Q-bound-
consistency on spread.

As shown in the next theorem, the optimal solution obtained with
integer assignments is very similar to the one obtained on rational do-
mains in Theorem 2.

Theorem 3. x ∈ argminy{n ·
∑

i∈[1..n](y[i] − s
n)2 s.t.

∑
i∈[1..n] y[i] =

s and ∀i : y[i] ∈ IZ
D(Xi)} if and only if

∑
i∈[1..n] x[i] = s and @ i, j such

that x[i] < Xmax
i , x[j] > Xmin

j and x[i] + 1 < x[j].

Proof. Similar to proof of Theorem 2:

(⇒) take δ = 1.

(⇐) All the δi’s are integer and greater or equal to 1. We show that
the difference (∆(x) − ∆(x′)) is non positive if every increasing
entry is at most one smaller than every decreasing entry, ∀i ∈
[1..k], ∀j ∈ [k + 1..k + l] : x[i] + 1 ≥ x[j]. A lower bound on
(
∑k

i=1 x[i]δi) is ((mini∈[1..k] x[i]) ·
∑k

i=1 δi) and an upper bound on
(
∑k+l

i=k+1 x[i]δi) is ((mini∈[1..k] x[i]+1) ·
∑k+l

i=k+1 δi). Hence we have:
∆(x)−∆(x′) < n · (−

∑k+l
i=1 δ

2
i +(mini∈[1..k] x[i]) · (−2 ·

∑k
i=1 δi+2 ·∑k+l

i=k+1 δi) + 2 ·
∑k+l

i=k+1 δi) = n · (−
∑k+l

i=1 δ
2
i + 2 ·

∑k+l
i=k+1 δi) ≤ 0.

30 Balancing Constraints

Definition 7. A Zcentered assignment x is such that ∀i : x[i] ∈ IZ
D(Xi)

and @ i, j such that x[i] < Xmax
i , x[j] > Xmin

j and x[i] + 1 < x[j].

Algorithm 3 computes a Zcentered assignment of sum s. This

Algorithm 3: An inefficient algorithm to compute a Zcentered
assignment of sum s.

Result: A Zcentered assignment x of sum s.
x← a valid assignment of sum s1

while ∃ i, j such that x[i] < Xmax
i , x[j] > Xmin

j and2

x[i] + 1 < x[j] do
x[i]← x[i] + 13

x[j]← x[j]− 14

algorithm can be easily implemented but is very inefficient. A smarter
method is possible. The idea is that it is always possible to distribute the
m entries assigned to ν on the integer values bνc and dνe while conserving
a sum of s. Clearly, such an assignment is Zcentered since the values
assigned to ν are distant by at most one after the transformation.

The distribution of the m entries on bνc and dνe while conserving
the sum of s is given in the following. The value ν always takes the form
of (s − ES)/m and there are exactly m entries assigned to ν. Hence it
is always possible to distribute these m entries on bνc and dνe without
modifying the sum. The only question to answer is how many of them
must be assigned to bνc and to dνe? Let us denote by ν+ the number
of entries that must be assigned to dνe and by ν− the number of entries
that must be assigned to bνc. Of course ν+ + ν− = m. Looking at the
Figure 3.3, the sum is preserved if

ν− · ((s− ES) mod m) = (m− ν−) · (m− (s− ES) mod m).

Hence the repartition on bνc and dνe is:

ν− = m− (s− ES) mod m

ν+ = (s− ES) mod m.

Algorithm 8 can be modified into Algorithm 4 to achieve a bound-
consistent filtering of ∆ with the computation of ∆Z.

3.4 Variance Constraint 31

m⋅=s−ES
m

s−ES mod m
m⋅⌊⌋

m⋅⌈⌉

m−s−ES mod m

Figure 3.3: Distances between ν = (s − ES)/m, bνc and
dνe.

Algorithm 4: Bound consistent filtering of ∆
Data: I(X) and for all I ∈ I(X): m(I) and ES(I).
Result: ∆min ← max{∆Z,∆min}.
forall I ∈ I(X) do1

if s ∈ SI(I) then2

ν ← (s− ES(I))/m(I)3

ν+ ← (s− ES(I)) mod m(I)4

ν− ← m− (s− ES(I)) mod m(I)5

∆Z ← n ·
(
ES(2)(I) + ν+ · dνe2 + ν− · bνc2

)
− s2

6

∆min ← max{∆Z,∆min}7

break8

Example 6. Variables are the same as in Example 5 and the sum is s =
10. From Example 5, s ∈ IS(I3) and ν = (s−ES)/m = (10−3)/2 = 3.5.
The repartition of overlapping variables between bνc and dνe is given
by ν+ = (s − ES(I)) mod m(I) = (10 − 3) mod 3 = 1 and ν− = 1.
Consequently ∆Z = 3 · (ES(2)(I3) + 42 + 32)− 102 = 2.

3.4.2 Filtering of X

Only the propagation of the upper bound of Xi is considered here since
the propagation of its lower bound is a symmetrical problem with respect
to the mean s/n. The propagation of Xi is achieved in [42] by computing
the largest consistent value assuming the domains of other variables are
rational intervals:

32 Balancing Constraints

X
Q
i = max

x
{x[i] s.t. n ·

∑
i∈[1..n]

(x[i]− s/n)2 ≤ ∆max and (3.6)

∑
i∈[1..n]

x[i] = s and ∀j : x[j] ∈ IQ
D(Xj)}.

The Z-bound-consistent upper bound for Xi is obtained by allowing
integer assignments only that is by replacing Q by Z in expression (3.6).

Algorithm to compute X
Q
i

The idea of the algorithm from [31] it to start from the a ν-Qcentered
assignment x of sum s found with Algorithm 8. This assignment is the
one with minimal sum of square deviations ∆Q. If x[i] = Xmax

i , the
upper bound of the variable Xi is consistent. Otherwise the optimal
value XQ

i is obtained by successively assigning Xi to increasing values
until either the minimal sum of square deviations reaches ∆max or it is
proved that Xmax

i is consistent. At that point, XQ
i is equal to the current

value considered for Xi. This procedure is valid since the increasing
values assigned to Xi range from x[i] to Xmax

i and that the minimal
sum of square deviations ∆Q increases quadratically when the value
assigned to Xi increases.

A detailed description of the Algorithm 6 follows. Let us denote by
xi the current value assigned to Xi and by d = xi − x[i] the distance of
the current value of Xi to the ith entry in the starting ν-Qcentered as-
signment x of sum s. Let us furthermore denote by ∆Q′, SI ′, ES′,m′, ν ′

the modified values if Xi were assigned to xi = x[i] + d.
The interval I from I(X) is such that s ∈ SI(I). It is first assumed

that Xi ∈ R(I) such that x[i] = Xmin
i (by definition of a ν-Qcentered

assignment). Recall that if Xi ∈ M(I) then x[i] = ν = (s − ES(I))/m
and if Xi ∈ L(I) then x[i] = Xmax

i and no filtering of the upper bound
is possible.

The following lemma gives the expression of the quadratic evolution
of ∆Q with d i.e. when xi increases. An illustration of Lemma 2 is given
on Figure 3.4.

Lemma 2. if d ≤ s−min(IS(I)) then

1. ES′(I) = ES(I) + d,

3.4 Variance Constraint 33

2. ES′(2)(I) = ES(2) + d2 + 2d ·Xmin
i ,

3. IS′(I) = IS(I) + d,

4. ν ′ = ν − d/m and

5. ∆Q′ = n · (ES′(2)(I) +m · ν ′2)− s2

∆Q′ = n ·
(
ES(2)(I) + d2 + 2dXmin

i +m · (ν − d
m)2

)
− s2

∆Q′ = ∆Q + n · (d2 + 2dXmin
i + d2/m− 2dν).

I 1

I 2

I
prev I 


 '=−d /m

d *


Q

x i

d


Q'


max

effects

Figure 3.4: Consequences of the increasing of xi by d :
∆Q′ increases quadratically and ν ′ decreases
by d/m.

From Lemma 2, the minimal sum of square deviations increases
quadratically with d. The maximum consistent value for Xi is the non
negative solution of the following second degree equation:

∆Q + n · (d2 + 2dXmin
i + d2/m− 2dν) = ∆max.

The non negative solution of this equation is d∗ = −b+
√
b2−ac
a where

a = n · (1 + 1/m), b = n · (xi − ν) and c = ∆Q −∆max. This reasoning
is valid as long as d ≤ s − min(IS(I)) otherwise, ν ′ moves outside the
interval I and the modified values in Lemma 2 are no longer valid. If
d∗ ≤ s−min(IS(I)) thenXQ

i = x[i]+d∗. Otherwise, x[i]+s−min(IS(I))
is a consistent value for Xi and larger values for xi must be considered.

34 Balancing Constraints

The procedure is repeated with the current interval prev(I) instead of
I. Indeed when Xi ← xi = x[i] + s −min(IS(I)), the value ν ′ is equal
to min(I) = max(prev(I)) and s = min(IS′(I)) = max(IS′(prev(I))).

The process is repeated until one valid solution of the second degree
equation d∗ ≤ s−min(IS(I)) is found or the current interval considered
is equal to I1.

Until now it was assumed that Xi ∈ R(I). The case Xi ∈M(I) can
also lead to the filtering of Xmax

i . This case can be reduced to the same
procedure as for the case Xi ∈ R(I):

• The xi starts to increase from ν rather than from Xmin
i as pre-

viously. Hence, the interval I is conceptually split in two in the
value ν: I ′ = [min(I), ν] and [ν,max(I)].

• The value XQ
i is computed on this modified configuration by con-

sidering that the domain of Xi is now [ν,Xmax
i].

• The same procedure as described previously can be applied since
with this modified domain we have that Xi ∈ R(I ′).

We say that the interval I is conceptually split because actually we only
need to adapt the computation of m′(I), ES′(I) and ES′(2) from Lemma
2. For xi = Xmin

i +d and an interval I ∈ I(X) such that xi > min(I), if
Xi ∈M(I) then m′(I ′) = m(I)−1 where I ′ = [min(I),min{min(I), xi}].
The reason is that IQ

D(Xi) subsumes I ′ hence if Xi ← xi, then Xi belongs
to R(I ′) and not to M(I ′) anymore. The unified procedure to adapt
the values m′(I), ES′(I) and ES′(2) for interval I when Xi ← xi with
xi ≥ min(I) is given in Procedure 5.

The algorithm is given in Algorithm 6. In lines 1-5, the current value
for xi is initialized to Xmin

i if Xi ∈ R(I) and to v if Xi ∈ L(I). In the
main loop in lines 6-23, the algorithm tries to discover is there is a value
for xi such that the value of the sum of square deviations reaches the
maximum value ∆max while keeping the value ν in the current interval
I. If this is not possible (line 14) and that the upper bound Xmax

i is
not yet proved to be consistent (line 21), the procedure is repeated on
the previous interval prev(I) with xi increased (line 20) such that the
current value ν is equal to max(I) in the next iteration of the loop.

The complexity of the Algorithm 6 is linear in the number of intervals
in I which is smaller than 2n − 1. It is applied for each variable Xi to
make the filtering Xmax

i ← min(Xmax
i , bXQ

i c) and a similar procedure

3.4 Variance Constraint 35

Procedure getUpdatedValues(xi, I)

Data: xi ∈ IQ
D(Xi) and xi ≥ min(I), I ∈ I(X)

Result: Let I ′ = [min(I),min{max(I), xi}] and
X′ = {X1, ..., Xi−1, Xi ← xi, Xi+1, ..., Xn}. Return the
values m(I ′), ES(I ′) and ES(2)(I ′) computed with
respect to X′.

d← xi −Xmin
i1

m′ ← m(I)2

ES′ ← ES(I) + d3

ES′(2) ← ES(2)(I) + d2 + 2dXmin
i4

if Xi ∈M(I) then5

m′ ← m′ − 16

ES′ ← ES′ +Xmin
i7

ES′(2) ← ES′(2) + (Xmin
i)2

8

return m′, ES′, ES′(2)9

is used to filter the lower bounds Xmin
i . Hence the overall complexity

of filtering X is O(n2). This complexity can actually be improved to
O(n · log(n)) by doing a dichotomic search on the intervals I rather than
a linear search. The dichotomic search is valid since the sum of square
deviation increases piecewise quadratically and continuously with the
current value xi.

Once again, the filtering with the value XQ
i is not Z-bound-consistent

because it corresponds to an assignment with some variables assigned
to ν which might be not integer. Line 16 of the Algorithm 6 computes
the Z-bound-consistent upper bound for Xi given X

Q
i and the current

interval I. We explain in the following the procedure getXZ
i (xi, I) de-

tailed in Procedure 7 running in O(m). The main steps of the procedure
are illustrated on Figure 3.5. Line 1, rounds down the value XQ

i . This
corresponds to the arrow A on the Figure 3.5. Lines 2-5 compute the
sum of square deviation corresponding to a Zcentered assignment of sum
s with Xi assigned to XZ

i . We can use the getUpdatedValues procedure
to do this in constant time. Since the Qcentered assignment of sum s
has been transformed into a Zcentered assignment of sum s, the sum
of square deviations might have increased (∆Z > ∆Q = ∆max). In this
case, the current value XZ

i at line 1 is not consistent for Xi and there is

36 Balancing Constraints

Algorithm 6: Filtering of Xi

Data: I s.t. s ∈ IS(I), Xi ∈ X
Result: Xmax

i ← min{XQ
i , X

max
i }

if Xi ∈ L(I) then return /* Xmax
i is consistent */1

ν ← (s− ES(I))/m(I)2

xi ← Xmin
i3

if Xi ∈M(I) then4

xi ← ν5

repeat6

m′, ES′, ES′(2) ← getUpdatedValues(xi, I)7

IS′ ← ES′ +m′ ·min(I)8

if m′ > 0 then9

ν ′ ← (s− ES′)/m10

∆Q ← n · (ES′(2) +m′ · ν ′2)− s2
11

d1 ← s− IS′12

d2 ← (−b+
√
b2 − a · c)/a /* a, b, c def. in text */13

if d2 ≤ d1 then14

xi ← xi + d2 /* xi = X
Q
i */15

X
Z
i ← getXZ

i (xi, I) /* b-c upper bound */16

Xmax
i ← min{Xmax

i , X
Z
i }17

return18

else19

xi ← xi + d120

if xi ≥ Xmax
i then return /* Xmax

i is consistent */21

I ← prev(I)22

until I = I123

Xmax
i ← min{Xmax

i , xi}24

3.4 Variance Constraint 37

some opportunity to decrease it even more by steps of 1 until a consistent
value for Xmax

i is found (lines 6-8).

⌊⌋


1

⌊⌋

⌈⌉

X i
Q

X i
Z

1

A

B

B

Figure 3.5: Illustration of the main steps of the Procedure
7

Note that no more than m iterations are needed because as shown
on the Figure 3.5 with arrows B, each time the XZ

i is decreased by 1, one
variable assigned to bνc must be increased in the Zcentered assignment
(to maintain the correct sum s). We are guaranteed than within at
most m steps the Zcentered assignment will corresponds to a Qcentered
assignment which was proved to exhibit a sum of square deviations ≤
∆max in Algorithm 6. It remains to explain how to update in constant
time the value ∆Z in line 7 each time XZ

i is decreased by one. We refer
to arrows B of Figure 3.5 for the visual explanation and to the next
transformations to obtain the formula.

∆Z′ ← n ·
(
ES′(2) + 1− 2XZ

i + (ν+ + 1) · dνe2 + (ν− − 1) · bνc2)
)
− s2

← ∆Z + n · (1− 2XZ
i + dνe2 − bνc2)

← ∆Z + n · (1− 2XZ
i + (dνe − bνc) · (dνe+ bνc))

← ∆Z + n · (1− 2XZ
i + 1 · (2dνe − 1))

← ∆Z + 2n · (dνe −XZ
i)

38 Balancing Constraints

Procedure getX
Z
i (xi, I)

X
Z
i ← bxic1

m′, ES′, ES′(2) ← getUpdatedValues(XZ
i , I)2

ν+ ← (s− ES′) mod m′3

ν− ← m− ν+4

∆Z ← n ·
(
ES′(2) + ν+ · dνe2 + ν− · bνc2

)
− s2

5

while ∆Z > ∆max do6

∆Z ← ∆Z + 2n · (dνe −XZ
i)7

X
Z
i ← X

Z
i − 18

return X
Z
i9

The term 1− 2XZ
i is the resulting modification on ES′(2) caused by

the decreasing by one of XZ
i , and the +1 and −1 applied respectively

on ν+ and ν− is because one variable assigned to bνc is increased by
one. The other lines are simple algebraic manipulations to simplify the
formula.

3.4.3 Experimental Comparison of the Q-bound-consistent
and Z-bound-consistent propagators

We propose to experiment the gain obtained with the global constraint
developed for spread with respect to its decomposition into two arith-
metic constraints. Since the design of the Z-bound-consistent propaga-
tors complexify even more the filtering algorithms, it is also natural to
experiment if it is worth using them. We propose to experiment this on
the Balanced Academic Curriculum Problem (BACP). We modified the
largest instance available from CSPLib to generate 100 instances from
it. This largest instances is composed of 12 periods, 66 courses having
a weight between 1 and 5 (credits) and 65 prerequisites relations. We
generate a random instance from this one by assigning to each course a
random weight between 1 and 5 and by randomly keeping 50 out of the
65 prerequisites. The Comet model is given in Listing 3.1. Lines 6-7 ask
for the minimization of the variance variable. Lines 9-14 in the subject
to block post the constraints of the problem. The global constraint mul-
tiknapsack links the placement variables x of the courses with the load

3.4 Variance Constraint 39

Listing 3.1: BACP Comet Model

1 Solver<CP> cp();
2 var<CP>{int} x[courses](cp,periods);
3 var<CP>{int} l[periods](cp,0..totCredit);
4 var<CP>{int} vari(cp,0..System.getMAXINT());
5 cp.timeLimit(30);
6 minimize<cp>
7 vari
8 subject to{
9 cp.post(multiknapsack(x,credits,l));

10 cp.post(spread(l,totCredit,vari));
11 forall(i in prerequisites){
12 cp.post(x[prereq[i].a]<x[prereq[i].b]);
13 }
14 }
15 using{
16 while(!bound(x)){
17 selectMin(i in courses:!x[i].bound()) (x[i].getSize()){
18 tryall<cp>(p in periods: x[i].memberOf(p)) by(l[p].getMin())
19 cp.post(x[i]==p);
20 onFailure
21 cp.post(x[i]!=p);
22 }
23 }
24 }

variables l of the periods: l[j] =
∑

i(x[i] = j) · credits[i]. The branching
heuristic implemented in the using block line 15-24 selects the course
which can be placed in the fewest number of period (line 17), then this
course is placed in the least loaded periods first.

The results on the 100 BACP instances are summarized on table 3.3.
The first line gives the number of instances solved and proved optimal.
One can see that the decomposition cannot solve any instances and the
Z-bound-consistent propagators outperform significantly the Q-bound
consistent ones. The second line reports the number of instances for
which the best objective value among the three approaches is reached. It
appears that the gap between the Q-BC and the Z-BC decreases slightly

40 Balancing Constraints

Table 3.3: Results on the 100 BACP instances.

decomposition spread Q-BC spread Z-BC
#solved 0 12 74
#best 2 64 100

but remains significant. This means that the Z-BC propagators are not
only useful to prove optimality but also to reach a better objective.

3.5 Mean Absolute Deviation Constraint

The definition of the deviation constraint is the following:

Definition 8. Given a sequence of finite domain integer variables X =
[X1, X2, ..., Xn], one sum value s and one deviation variable ∆, the con-
straint deviation(X, s,∆) holds if and only if

s =
n∑
i=1

Xi and
∑

i∈[1..n]

|n ·Xi − s| ≤ ∆

Note that:

• We work with the deviation of the scaled variables |n·Xi−s| rather
than |Xi − s/n| because the former is always an integer while the
latter is not when the sum s is not a multiple of n (S mod n 6= 0).

• The definition considers
∑

i∈[1..n] |n · Xi − S| ≤ ∆ rather than∑
i∈[1..n] |n ·Xi − S| = ∆ because achieving bound-consistency for

the latter is NP-Hard.

As for spread two kinds of consistencies can be achieved for deviation
The Q-bound-consistency and the Z-bound-consistency. As the filtering
algorithms for these two consistencies are not related as was the case
for spread, we start with the simplest filtering achieving the Q-bound-
consistency in Section 3.5.1 then we explain the Z-bound-consistent fil-
tering algorithm in Section 3.5.2

3.5 Mean Absolute Deviation Constraint 41

3.5.1 Q-bound-consistency for deviation

Definition 9. For a scaled variable n ·Xi and a given value s, the upper
bounds on the right and left deviation are respectively

• rd(n ·Xi, s) = max(0, n ·Xmax
i − s) and

• ld(n ·Xi, s) = max(0, s− n ·Xmin
i).

The sum of these values over X = [X1, X2, ..., Xn] are respectively

• RD(n ·X, s) =
∑

i∈[1..n] rd(n ·Xi, s) and

• LD(n ·X, s) =
∑

i∈[1..n] ld(n ·Xi, s).

The same idea holds for the lower bounds on the deviations:

• rd(n ·Xi, s) = max(0, n ·Xmin
i − s).

• ld(n ·Xi, s) = max(0, s− n ·Xmax
i).

• RD(n ·X, s) =
∑

i∈[1..n] rd(n ·Xi, s).

• LD(n ·X, s) =
∑

i∈[1..n] ld(n ·Xi, s).

For a variable Xi ∈ X we define:

• LDi(n ·X, s) = LD(n ·X, s)− ld(n ·Xi, s) and

• RDi(n ·X, s) = RD(n ·X, s)− rd(n ·Xi, s).

To alleviate notations, (n · X, s) are sometimes omitted. For example
LD(n ·X, s) is simply written LD.

Example 7. Let X = [X1, X2, X3, X4] be four variables with domains
Dom(X1) = [8, 10], Dom(X2) = [4, 7], Dom(X3) = [1, 5] andDom(X4) =
[3, 4]. The following table exhibits the quantities introduced in Defini-
tion 9 for s = 20.

42 Balancing Constraints

i rd(4 ·Xi, 20) ld(4 ·Xi, 20) rd(4 ·Xi, 20) ld(4 ·Xi, 20)
1 20 0 12 0
2 8 4 0 0
3 0 16 0 0
4 0 8 0 4∑
i 28 28 12 4

RDi(4 ·X, 20) LDi(4 ·X, 20) RDi(4 ·X, 20) LDi(4 ·X, 20)
1 8 28 0 4
2 20 24 12 4
3 28 12 12 4
4 28 20 12 0

The filtering for deviation is based on the next theorem stating
that the sum of deviations above and under the mean are equal.

Lemma 3. Let X = [X1, ..., Xn]. The equality s =
∑

i∈[1..n]Xi holds if
and only if

∑
n·X>s(n ·X − s) =

∑
n·X<s(s−X).

Proof. s =
∑

X∈XX can be rewritten 0 =
∑

X∈X n ·X−s =
∑

n·X>s(n ·
X − s) +

∑
n·X<s(n ·X − s) +

∑
n·X=s(n ·X − s) =

∑
n·X>s(n ·X − s)−∑

n·X<s(s− n ·X).

Property 2. Let X = [X1, ..., Xn]. Whatever the value of s, an assign-
ment on X satisfies:

•
∑

n·X>s(n ·X − s) ∈ [RD(n ·X, s), RD(X, s)] and

•
∑

n·X<s(s− n ·X) ∈ [LD(n ·X, s), LD(X, s)].

Theorem 4. deviation(X, s,∆) is consistent only if the following con-
ditions are satisfied:

1. RD(n ·X, s) ≤ ∆max

2

2. LD(n ·X, s) ≤ ∆max

2

3. RD(n ·X, s) ≥ ∆min

2

4. LD(n ·X, s) ≥ ∆min

2

5.
[
LD(n ·X, s), LD(n ·X, s)

]
∩
[
RD(n ·X, s), RD(n ·X, s)

]
6= φ

Proof. 1. If RD(n ·X, s) > ∆max

2 then
∑

n·X>s(n ·X − s) >
∆max

2
(Property 2). Hence

∑n
i=1 |n ·Xi − s| > ∆max (by Lemma 3).

3.5 Mean Absolute Deviation Constraint 43

2., 3. and 4. similar to 1.

5. Direct consequence of Lemma 3 and Property 2.

Filtering of ∆min

The filtering of ∆ to achieve the Q-bound-consistency requires to solve
the following optimization problem: the minimization of the sum of
deviations from a given sum s allowing rational assignments.

∆Q = min
x
{n ·

∑
i∈[1..n]

|x[i]− s/n| s.t.
∑

i∈[1..n]

x[i] = s (3.7)

and ∀i ∈ [1..n] : x[i] ∈ IQ
D(Xi)}

The filtering using this value is

∆min ← max(∆min,∆Q).

The remaining of this section mainly explains how ∆Q can be com-
puted in linear time with respect to the number of variables n = |X|.
Finding ∆Q is an NP-Hard problem as proved in [44].

Next Definition characterizes an optimal solution to the problem of
finding ∆Q.

Definition 10 (up and down centered assignment). Let X = [X1, ..., Xn]
and x = [x1, ..., xn] ∈ IQ

D(X1)× ...×IQ
D(Xn) be an assignment on X. Let

sum(x) denote the sum of assigned values: sum(x) =
∑

i∈[1..n] x[i].
An assignment x is said to be up-centered when:

n · x[i]
{

= n ·Xmin
i if n ·Xmin

i ≥ sum(x)
≤ sum(x) otherwise

In other words, each variable with minimum domain value larger than
the mean of the assigned values takes its minimum domain value and
the other variables take values smaller than the mean of the assigned
values.

An assignment x is said to be down-centered when:

n · x[i]
{

= n ·Xmax if n ·Xmax ≤ sum(x)
≥ sum(x) otherwise

44 Balancing Constraints

In other words, each variable with maximum domain value smaller than
the mean of the assigned values takes its maximum domain value and the
other variables take values larger than the mean of the assigned values.

Example 8. Considering the variables and domains of Example 7, the
following assignment is up-centered for s = 17:

x = [x1, x2, x3, x4] = [8, 4, 2, 3]

Theorem 5. An assignment is an optimal solution to the problem of
finding ∆Q if and only if it is a down-centered assignment or an up-
centered assignment of sum s.

Proof. (if) Given an assignment x with sum(x) = s, the only way to
decrease the sum of deviations while conserving the sum s is to find a
pair of variables Xi, Xj such that n · x[i] > s,x[i] > Xmin

i , n · x[j] <
s,x[j] < Xmax

j and to decrease n · x[i] and increase n · x[j] by the same
quantity to make them closer to s. By definition of a left and down
centered assignment, it is impossible to find such a pair Xi, Xj . Hence,
up-centered and a down-centered assignments are optimal solutions.

(only if) Assume an assignment x is neither down-centered nor up-
centered such that sum(x) = s. It is possible to find at least two variables
Xi, Xj ∈ X. One with n · x[i] > s and x[i] > Xmin

i (violation of up-
centered) and one with n · x[i] < s and x[j] < Xmax

j (violation of down-
centered). Let us define δ = min(n · x[i] − max(n · Xmin

i , s), min(n ·
Xmax
j , s)− n · x[j])). The assignment x is not optimal since the sum of

deviations can be decreased by 2δ by modifying the assignment on Xi

and Xj : n · x′[i] = n · x[i]− δ and n · x′[j] = n · x[j] + δ.

Theorem 6. If deviation is consistent then

∆Q = 2 ·max(LD (n ·X), s), RD(n ·X, s)) .

Proof. Assume LD ≥ RD, then it is possible to build a down-centered
assignment x with sum(x) = s and which is optimal by Theorem 5. For
this assignment

∑
n·x[i]<s(s − n · x[i]) = LD (by Definition 9 of LD).

Since
∑

n·x[i]>s(n·x[i]−s) =
∑

n·x[i]<s(s−n·x[i]) (by Lemma 3), the sum
of deviations for this down-centered assignment is

∑
i∈[1..n] |n ·x[i]−s| =

2.LD. The case LD ≤ RD is similar. The assignment is up-centered
instead of down-centered.

3.5 Mean Absolute Deviation Constraint 45

Example 9. The variables and domains considered here are the same as
those in Example 7. A mean s = 20 is considered. Using the computed
values LD(n ·X, 20) = 4 and RD(n ·X, 20) = 12 from Example 7, it can
be deduced that ∆Q = 2.max(4, 12) = 24. Consequently, filtering on ∆
for deviation(X, s = 20,∆ ∈ [0, 28]) leads to Dom(D) = [24, 28].

Filtering on X

The filtering of Dom(Xi) is based on the computation of the values XQ
i

and XQ
i :

X
Q
i and XQ

i are the optimal values to the following problems:

X
Q
i = max(Xi) and XQ

i = min(Xi) (3.8)

such that :
n∑
j=1

n ·Xj = s (3.9)

n∑
j=1

|n ·Xj − s| ≤ ∆max (3.10)

Xj ∈ IQ
D(Xj), 1 ≤ j ≤ n, j 6= i (3.11)

The filtering rule on the domain of Xi can be simply written:

Dom(Xi)←− Dom(Xi) ∩ [XQ
i , X

Q
i] (3.12)

Theorem 7. For a variable Xi, assuming the constraint is consistent, the
following equalities hold:

n ·XQ
i = min

(
∆max

2
, LDi(n ·X, s)

)
−RDi(n ·X, s) + s.

n ·XQ
i = −min

(
∆max

2
, RDi(n ·X, s)

)
+ LDi(n ·X, s) + s.

Proof. Only Xi is considered because the proof for XQ
i is symmetrical

with respect to s. Two cases can be considered:

• LDi ≤ ∆max

2 : By Lemma 3 the deviation above the mean and
under the mean must be equal. Hence the optimal solution is such
that XQ

i − s + RDi = LDi. Constraint (3.10) is not tight in this
case.

46 Balancing Constraints

• LDi >
∆max

2 : By Lemma 3 the constraint (3.9) means that the
deviation above the mean and under the mean must be equal. The
conjunction of constraint (3.9) with constraint (3.10) means that
the deviation of the scaled variables above and under the sum s
are equal and at most ∆max/2. Hence the optimal solution is such
that n ·XQ

i − s + RDi = ∆max

2 . Constraint (3.10) is tight in this
case.

If both cases are considered together, the equality n ·XQ
i − s+RDi =-

min(∆max

2 , LDi) holds at the optimal solution.

The filtering procedure on X applies rule (3.12) once on each Xi ∈
X. This can be achieved in linear time with respect to the number of
variables.

Example 10. Variables and domains considered are the same as in Exam-
ple 7. The constraint considered is deviation(X = [X1, X2, X3, X4], s =
20,∆ ∈ [0, 28]). Values XQ

i and XQ
i are:

i X
Q
i XQ

i

1 (min(14, 28)− 0 + 20)/4 = 8.5 (−min(14, 8) + 4 + 20)/4 = 4
2 (min(14, 24)− 12 + 20)/4 = 5.5 (−min(14, 20) + 4 + 20)/4 = 2.5
3 (min(14, 12)− 12 + 20)/4 = 5 (−min(14, 28) + 4 + 20)/4 = 2.5
4 (min(14, 20)− 12 + 20)/4 = 5.5 (−min(14, 28) + 0 + 20)/4 = 1.5

Hence filtering rule (3.12) leads to filtered domains: Dom(X1) = [8, 8],
Dom(X2) = [4, 5], Dom(X3) = [3, 5] and Dom(X4) = [3, 4].

3.5.2 Z-bound-consistency for deviation

The previously presented filtering algorithm are simple and efficient.
However, for integer finite domains, these algorithms are Z-bound-consistent
only when s mod n = 0 that is when the mean s/n is an integer. The
reason is the relaxing assumption that the domains are rational intervals
instead of integer intervals when computing the bounds.

When the domains of the Xi’s are integer intervals [Xmin
i ..Xmax

i], the
corresponding Z-bound-consistent filtering rules are obtained by substi-
tuting Q by Z in Equations 3.7, 3.8 and 3.11. Nevertheless, the values
XQ
i and X

Q
i can be used for integer domains as well since they are

obtained by relaxing the domains. The relations between the bounds

3.5 Mean Absolute Deviation Constraint 47

are XZ
i ≥ XQ

i , XZ
i ≤ X

Q
i and ∆Z ≥ ∆Q. In the particular case of

s mod n = 0, the bounds are completely equivalent.

Filtering of ∆min

As illustrated in the following example, the relaxing assumption of ratio-
nal interval domains can lead to miss some possible filtering with respect
to a Z-bound-consistent filtering on ∆min.
Example 11 (Filtering of ∆). Assume two variables X = (X1, X2) with
domains [−5..5] and a sum constraint s = 1. Obviously ∆Q = 0 is
obtained with the tuple x = [0.5, 0.5] while ∆Z = 2 is obtained with the
tuple x = [1, 0] or x = [0, 1].

Example 11 showed that when every domain overlaps the mean, the
lower bound ∆Q for the deviation is equal to 0 since every variable can
be assigned to the mean s/n. This lower bound is not bound-consistent
when the mean is rational (when s mod n 6= 0). Next theorem gives a
lower bound for ∆ that can be computed in constant time and greater
than 0 in this case.
Theorem 8. A lower bound for the deviation ∆ is:

0 ≤ 2 · (n− s mod n) · (s mod n) ≤ ∆Z.

Proof. This lower bound is obtained by enlarging every domainDom(Xi)
such that s/n gets inside: ∀i ∈ [1..n] : s/n ∈ [Xmin

i , Xmax
i]. Then in an

assignment of minimum deviation, every variable are either assigned to
s↓ or to s↑ = s↓+n. If we denote by y the number of variables (n·Xi) as-
signed to s↓ , the sum constraint can be written: y ·s↓+(n−y)·(s↓+n) =
s · n. Hence y = n − (s − s↓) = n − s mod n. Using this, a lower
bound of ∆Z is (n− s mod n) · (s mod n) + (s mod n) · (n− s mod n) =
2 · (n− s mod n) · (s mod n).

The lower bound introduced in Theorem 8 is bound-consistent only
if every domain overlaps the mean s/n. The remaining of this sec-
tion introduces a linear time algorithm to compute a valid assignment
satisfying the sum constraint and minimizing the sum of deviations in
the general case when the domains do not necessarily overlap the mean.
More formally the algorithm computes a tuple x satisfying the relation3:

argmin
x
{(

n∑
i=1

|n · x[i]− s|)
∣∣∀i : x[i] ∈ IZ

D(Xi) and
n∑
i=1

x[i] = s}.

3argminx f(X) is the set of x such that f(x) is minimal.

48 Balancing Constraints

To alleviate notations, the tuple n ·x is used instead of x. Note that
n ·x corresponds to an integer assignment only if it is composed of values
which are multiple of n. The algorithm executes in two phases: a greedy
part followed by a repair part.

• Greedy: The sum constraint is dropped. Each n · x[i] is set to the
closest multiple of n from s in Dom(n ·Xi).

• Repair: If the sum constraint is satisfied that is
∑n

i=1 x[i] = s,
then n ·x is a solution to the problem. Otherwise the sum is larger
or smaller than s. We consider the larger case:

∑n
i=1 x[i] > s (the

other case is similar). Then some entries of n ·x must be decreased
until the sum constraint is satisfied. An entry n·x[i] = s↑ > n·Xmin

i

is called an overlapping entry. The choice of the entries to decrease
is important. Decreasing an entry which is smaller than s by n
results in an augmentation by n of the sum of deviations. But
decreasing an overlapping entry by n (that is from n · x[i] = s↑

to s↓) only increases the sum of deviations by (2 · (s mod n) −
n) (see Figure 3.6). This last quantity is smaller or equal to n.
Consequently, all overlapping entries are first considered in any
order to be decreased by n to satisfy the sum constraint. If the sum
constraint is not yet satisfied after this operation, the following
property holds:

∀i : n · x[i] ≤ s or n ·Xmin
i ≥ s.

In other words, each entry n · x[i] lies either on the lower bound
of the corresponding variable domain or lies below s and can if
necessary be further decreased. Consequently every entry below
s, not yet on its lower bound, can be decreased at most to its lower
bound (n ·Xmin

i). This results in an augmentation of the sum of
deviations equal to the amount of the decreasing. These entries are
used to satisfy the sum constraint. They are decreased maximally
in an arbitrary order until the sum constraint is satisfied.

The greedy part is achieved by iterating once over the variables.
There are at most n overlapping variables candidates to a repair. Finally,
there are at most n variables needed to be further decreased to satisfy
the sum constraint. Hence the total complexity is O(n) to compute the
bound-consistent lower bound ∆Z.

3.5 Mean Absolute Deviation Constraint 49

Lemma 4. The greedy + repair algorithm computes an assignment x
such that

∑n
i=1 x[i] = s and

∑n
i=1 |n · x[i]− s| = ∆Z.

Proof. It can be verified that tuple x after the greedy part until the
termination of the algorithm satisfies the following invariant:

x ∈ min
y
{(

n∑
i=1

|n · y[i]− s|)
∣∣ n∑
i=1

y[i] =
n∑
i=1

x[i] and ∀j : y[j] ∈ IQ
D(Xj)}.

Since each modification of x make the sum over x strictly closer to s
and since the algorithm terminates whenever the sum is equal to s, the
correctness follows.

s

n
s mod n

n−s mod n

n⋅x [i]

s =⌊ s /n ⌋⋅n

s 
=⌊ s / n ⌋⋅nn

Figure 3.6: Decreasing of an overlapping variable by n.
The horizontal plain line represents the sum
constraint s. The horizontal dashed lines are
placed at s↑ and s↓.

Example 12 (Computing ∆Z). Assume six variables with domain bounds
represented on Figure 3.7 and given in the following table:

i 1 2 3 4 5 6
Xmax
i 16 12 14 16 12 15

Xmin
i 11 10 12 15 10 12

n ·Xmax
i 96 72 84 96 72 90

n ·Xmin
i 66 60 72 90 60 72

The sum constraint is s = 76. After completion of the greedy part,
the tuple n ·x is equal to (78, 72, 78, 90, 72, 78). An illustration of n ·x is
given on the left of Figure 3.7 (symbols ◦). For this tuple

∑n
j=1 n ·x[j] =

468 > 456. Since the sum is too high, some entries of n · x must be
decreased. First candidates are overlapping entries n · x[1], n · x[3] and

50 Balancing Constraints
60

66
72

78
84

90
96

s ●

●

●

●

●

●

60
66

72
78

84
90

96

s

● ● ●

●

●

●

Figure 3.7: Illustration of Example 12 to compute ∆Z.
Horizontal lines represents the multiples of
n = 6. On the left, the result of the greedy
part and on the right the result of the repair
part are represented with symbol ◦

n ·x[6]. The decrease by n = 6 of any two of them is sufficient to satisfy
the sum constraint. The right of Figure 3.7 shows the final tuple n · x.
The value of ∆Z is then

∑n
j=1 |n · x[j]− s| = 32.

Filtering of X

As illustrated in the following example, the relaxing assumption of ratio-
nal interval domains can lead to miss some possible filtering with respect
to a Z-bound-consistent filtering on X.

Example 13 (Filtering of X). Assume ten variables with domains [−5..5],
a sum constraint s = 7 and a maximum sum of deviations ∆max = 42.
One can see that XQ

i = 7
10 + 21

10 = 2.8 and XQ
i = 7

10 −
21
10 = −1.4.

This solution is obtained if eight variables are assigned to the mean
7/10 and the other two are as far as possible from the mean that is one
above the mean and the other below the mean at an equal distance 21

10 .
For this configuration, the maximum deviation ∆max = 42 is reached.
When only integer assignments are permitted, the result is XZ

i = 1 and
XZ
i = 0. Indeed, for an assignment composed of seven values 1 and

three values 0, the maximal deviation is reached (∆max = 42). Clearly
there is no other integer assignment with a lower deviation. Hence the
Q-bound consistent filtering would achieve Dom(Xi) = [−1..2] while a
Z-bound-consistent filtering would give Dom(Xi) = [0..1].

3.5 Mean Absolute Deviation Constraint 51

This section explains how to compute X
Z
i the maximum value in

IZ
D(Xi) consistent with deviation(X, s,∆) . Note that computing XZ

i

is a similar problem symmetric with respect to s. The previous section
gives an algorithm to find the minimum deviation in linear time. A
shaving process using this algorithm can be sketched:

• Assign Xi to increasing values of its extended domain IZ
D(Xi).

• For each value compute ∆Z.

• XZ
i is the largest value in IZ

D(Xi) with ∆Z ≤ ∆max.

The complexity of this shaving procedure is O(e · n) for Xi where e is
the size of the largest domain over X and O(e · n2) for all variables in
X.

A better algorithm is possible to lower the complexity to O(n). In-
deed, for each variable Xi, it is possible to compute a function over the
domain interval IZ

D(Xi) giving for each value the minimum deviation
if Xi were assigned to that value. We will see that this function has
a simple analytical form composed of two contiguous increasing linear
functions. Given this function, XZ

i is found in constant time by in-
tersecting it with the horizontal line at ∆max (see Figure 3.8). In the
following we show how the two segments composing the function can be
computed for every variables in O(n) allowing the Z-bound consistent
filtering of X in O(n).


Z


max

I
i
ℤ

X
i
ℤ

Figure 3.8: Computation of XZ
i on basis of the minimum

deviation function defined on IZ
D(Xi).

The computation of the function giving the minimum deviation on
the domain of Xi is conceptually based on any assignment mi on X
which maximizes the ith entry among all the assignments of minimal

52 Balancing Constraints

sum of deviations ∆Z :

mi ∈ argmax
n·x

{x[i]
∣∣∀j 6= i : x[j] ∈ IZ

D(Xj) and
n∑
j=1

|n · x[j]− s| = ∆Z

and
n∑
j=1

x[j] = s}.

Any assignment with the ith entry larger than mi[i] has a deviation
larger than the deviation of mi. If mi[i] ≥ n ·Xmax

i , then X
Z
i = Xmax

i .
We now assume mi[i] < n ·Xmax

i .
The minimum deviation function on [mi[i], n·Xmax

i] can take different
forms following the value mi[i]. Three cases are possible for mi[i] given
in Property 3.

Property 3.

• If mi[i] < s↓ then mi[i] = n ·Xmax
i .

• If mi[i] = s↓ then ∀j 6= i : either mi[j] = n ·Xmin
i or mi[j] ≤ s↓.

• If mi[i] ≥ s↑ then ∀j 6= i : either mi[j] = n ·Xmin
i or mi[j] ≤ s↑.

Property 3 can be verified starting from an assignment obtained from
the greedy+ repair algorithm from previous section and then by increas-
ing the ith entry as much as possible while keeping the sum constraint
satisfied and the deviation unchanged. Each case from Property 3 is
considered in turn in the next three paragraphs giving the evolution of
the minimum deviation on IZ

D(Xi) for each case.

Case mi[i] < s↓:

In this case, n · XZ
i = mi[i] because the entry mi[i] cannot be in-

creased since it is already to its maximum possible value.

Case mi[i] = s↓:

If mi[i] is increased by n, the only entries which can be decreased
are below s↓ (Property 3). Consequently when mi[i] is increased by n
the deviation increases by n − (s − s↓) + (s↑ − s). Term n represents
the decrease of an entry below s↓ and the term −(s − s↓) + (s↑ − s)

3.5 Mean Absolute Deviation Constraint 53

represents the increase by n of mi[i]. If mi[i] is further increased by n,
the deviation increases by 2 ·n. Indeed, mi[i] ≥ s↑ and the other entries
candidate to be decreased are below s↓.

Example 14. This example considers 4 variables with domains given in
next table:

i 1 2 3 4
Xmax
i 7 5 6 7

Xmin
i 3 0 5 5

n ·Xmax
i 28 20 24 28

n ·Xmin
i 12 0 20 20

The sum constraint is s = 17. Hence s↓ = 16 and s↑ = 20. The as-
signment m1 = (16, 12, 20, 20) is represented on Figure 3.9 with symbols
◦. The deviation of this assignment is 12. If m1[1] is increased by 4 that
is from 16 to 20, the deviation increases by −(s−s↓)+(s↑−s) = −1+3.
For the sum constraint s = 17 to remain satisfied, another entry must
be decreased by 4. The only possible entry is m1[2] making the devia-
tion increase by 4. The deviation of m1 is thus increased from 12 to 18
when m1[1] is set to 20 (represented by the symbols 4 on the Figure
3.9). If m1[1] is further increased, the deviation is increased by 2 · 4 = 8
at every step. Hence when m1[1] is increased to 28 the deviation is 34
(represented by the symbol •)

0
4

8
12

16
20

24
28

s
●

●

● ●

● m1

●

ev
ol

d

16 20 24 28

12
18

34

●

●

Figure 3.9: Figure of Example 14. On the left is the repre-
sentation of m1 with symbols ◦ and the suc-
cessive values of m1[1]. On the right is the
evolution of the deviation with the successive
values of m1[1].

54 Balancing Constraints

Case mi[i] ≥ s↑:

If mi[i] is increased by n the deviation of mi increases by n. For the
sum constraint to remain satisfied, another entry must also be decreased
by n. To keep the deviation of mi minimal, priority must be given to
entries mi[j] = s↑ > n · Xmin

j . Indeed, the decrease of such an entry
induces a smaller increase in the deviation than for an entry under s. The
whole effect on the deviation is an augmentation of n−(s↑−s)+(s−s↓) =
2.(s−s↓). Note that if only entries n·Xmin

j < mi[j] ≤ s↓ are available, the
deviation augments by 2 ·n. This reasoning makes it possible to predict
the evolution of the deviation inO(1) on basis of two information’s about
mi:

• mi[i].

• oi = #{mi[j]
∣∣j 6= i and mi[j] = s↑ and mi[j] > n · Xmin

j }. This
number corresponds to the number of entries in mi that can be
decreased by n causing an augmentation of the deviation of only
−(s↑ − s) + (s− s↓).

The minimum deviation increases by 2 · (s− s↓) every n during oi steps.
After that it increases by 2 · n every n.
Example 15. This example considers 4 variables with domains given in
next table:

i 1 2 3 4
Xmax
i 10 5 6 2

Xmin
i 3 4 3 0

n ·Xmax
i 40 20 24 8

n ·Xmin
i 12 16 12 0

The sum constraint is s = 17. Hence s↓ = 16 and s↑ = 20. Assign-
ment m1 = (20, 20, 20, 8) is represented on Figure 3.10 with symbol ◦.
The deviation of this assignment is 18 and o1 = 2 because of the second
and third entries. The evolution of the deviation is given on the Figure
3.10.

Computation of the evolution of the minimum deviation for
every variable

The previous subsection explains how the minimum deviation on IZ
D(Xi)

evolves starting from a special assignment called mi. We briefly sum-
marize the possible cases of evolution of the deviation when mi[i] is
incremented by n.

3.5 Mean Absolute Deviation Constraint 55
0

4
8

16
24

32
40

s
● ● ●

●

● m1
●

ev
ol

d

20 24 28 32 36 40
18

22
46

●

●

Figure 3.10: Figure of Example 15. On the left is the rep-
resentation of m1 and the successive values
of m1[1]. On the right is the evolution of the
deviation with the successive values of m1[1].

• mi[i] < s↓: The deviation can not increase anymore.

• mi[i] = s↓: The deviation increases first by n− (s− s↓) + (s↑ − s)
the first time m[i] is increased by n. Then it increases by 2 · n
every increase by n of mi[i].

• mi[i] ≥ s↑: The deviation increases by 2 · (s−s↓) every n during oi
steps. After that it increases by 2 · n every increase by n of mi[i].

The only necessary information to predict the evolution of the deviation
is the entry mi[i] and the counter oi. To simplify the notations we denote
by m[i] the entry mi[i] and by o[i] the counter oi. Algorithm 8 computes
m[i] and o[i] for 1 ≤ i ≤ n in O(n). The algorithm assumes that the
deviation constraint is consistent.

• Lines 4-5 do a greedy assignment for each variable multiple of n
closest from s inside its domain.

• Lines 9-13 consider the case when the sum constraint is (by chance)
respected after the greedy assignment.

• Lines 15-21 try to make the sum constraint satisfied by moving
assignment of variables which overlap the value s.

• Lines 22-23 update the sets overlaps and overlaps(s↑) after the
possible modifications in lines 15-23.

56 Balancing Constraints

Algorithm 8: Compute m and o

nx,m, o integer arrays of size n;1

sum← 0 /*
∑n

i=1 nx[i] */;2

s∗ ← (s− s↓) ≤ (s↑ − s) ? s↓ : s↑ /* cl. mul.of n to s */;3

for i← 1 to n do4

Set nx[i] to the multiple of n closest to s in [n ·Xmin
i , n ·Xmax

i];5

overlaps← {i | nx[i] = s↑ > n ·Xmin
i or nx[i] = s↓ < n ·Xmax

i } ;6

overlaps(s↑)← {i ∈ overlaps | nx[i] = s↑} ;7

sum←
∑n

i=1 nx[i] ;8

if sum = n · s then9

for i← 1 to n do10

m[i]← nx[i] ;11

if i ∈ overlaps(s↑) then o[i]← #overlaps(s↑)− 1 ;12

else o[i]← #overlaps(s↑) ;13

else14

if (sum > n · s and s∗ = s↑) or15

(sum < n · s and s∗ = s↓ and s∗ 6= s) then16

δ ← sum > n · s ? − n : n ;17

for i ∈ overlaps do18

if sum = n · s then break ;19

else20

nx[i]← nx[i] + δ ; sum← sum+ δ ;21

overlaps←22

{i|nx[i] = s↑ > n ·Xmin
i or nx[i] = s↓ < n ·Xmax

i } ;23

overlaps(s↑)← {i ∈ overlaps | nx[i] = s↑} ;24

if sum = n · s then25

for i← 1 to n do26

if i ∈ overlaps and #overlaps(s↑) > 0 then27

m[i] = s↑ ; o[i] = #overlaps(s↑)− 1 ;28

else29

m[i] = nx[i] ;30

o[i] = #overlaps(s↑) ;31

else if sum > n · s then32

for i← 1 to n do33

m[i] = nx[i] ; o[i] = 0;34

else /* sum < n · s */35

for i← 1 to n do36

m[i] = nx[i] + n · s− sum;37

if n ·Xmin
i < s < n ·Xmax

i and #overlaps(s↑) > 0 then38

o[i] = #overlaps(s↑)− 1 ;39

else o[i] = #overlaps(s↑) ;40

41

3.5 Mean Absolute Deviation Constraint 57

• Lines 24-31 consider the case where the sum constraint could be
satisfied after modifications of lines 15-23.

• Lines 32-35 and 36-41 holds respectively when the sum is too large
or too low even after the modifications of lines 15-23. If the sum is
too large, some entries must be decreased. It is implicitly assumed
that entries j 6= i can be potentially decreased. Hence m[i] =
nx[i] and o[i] is 0 because, all other entries are already at their
minimum or under s. If the sum it too small, m[i] is obtained
by increasing nx[i] such that the sum is satisfied. If the ith entry
was overlapping, o[i] is the current number of overlapping entries
minus one.

It can be seen that Algorithm 8 has a time complexity of O(n). In-
deed, in all cases a constant number of operations is performed for each
variable.

Example 16. This example considers the following domains:

i 1 2 3 4 5 6
Xmax
i 16 11 14 14 12 15

Xmin
i 11 9 12 13 10 12

n ·Xmax
i 96 66 84 84 72 90

n ·Xmin
i 66 54 72 78 60 72

The sum constraint is s = 74, n · s = 444 and s∗ = s↓ = 72.

• Lines 4-8: After the greedy assignment, nx = (72, 66, 72, 78, 72, 72).
The sum is 432 which is smaller than 444. Hence the condition to
execute lines 9-13 is not satisfied. We have also overlaps = {1, 3, 6}
and overlaps(s↑) = φ.

• Lines 15-23 will result in nx = (78, 66, 78, 78, 72, 72). The sum is
now 444, overlaps = {1, 3, 6} and overlaps(sup) = {1, 3}.

• Since sum = n.s is satisfied, lines 24-32 are executed next. Entries
1, 3 and 6 satisfy the if statement line 26 while entries 2, 4 and
5 does not. Hence results are m = (78, 66, 78, 78, 72, 78) and o =
(1, 2, 1, 2, 2, 1)

58 Balancing Constraints

3.5.3 Experimental Comparison of the Q-bound-consistent
and Z-bound-consistent propagators

As we did for spread in Section 3.4.3, we propose to experiment if
the Z-bound-consistent propagators make a big difference compared to
the simpler ones for the Q-bound-consistency. Note that the Q-bound-
consistent propagators are fairly easy to implement in about 40 lines
of C++ code. On the contrary, the Z-bound-consistent ones require
about 450 lines of C++ code and are much more difficult to implement.
The difference of difficulty of implementation of the Z and Q-bound-
consistent propagators for deviation is much more important than the
difference of difficulty of the Z and Q-bound-consistent propagators for
spread. This is because for deviation, the Z-bound-consistent algo-
rithm is completely different than the Q-bound-consistent one and is
not simply an improvement as it is the case for spread.

One can see on Table 3.4 that the Z-bound-consistent propagators
allow to solve significantly more instances. For all the 14 instances that
could be solved by the Q-bound-consistent propagators, the mean is ei-
ther an integer or at a distance of 1/12 from an integer. This is not sur-
prising since the Z and Q-bound-consistent propagators are completely
equivalent when the mean is an integer and are very close in terms of
pruning when the mean is almost an integer. Unfortunately there is no
reason that all the instances present this property. The second line of
the results is also interesting since it shows that, most of the time, the
Q-bound-consistent propagators find a solution which is as good as the
one obtained with the Z-bound-consistent propagators but the gap of
20 instances remains important. Interestingly the Z-bound-consistent
propagators do not obtain 100/100. This can be explained by several
reasons. The two instances where the Q-bound-consistent propagators
were strictly better than the Z-bound-consistent propagators could not
be solved and proved optimal by neither approach. The difference can
mainly be explained because the search tree explored is not necessarily
the same. The heuristic is non-deterministic hence two different levels
of propagation can lead to different search trees. Note also that the
size of the search tree explored in the given timeout with the Z-bound-
consistent propagators might be smaller because the algorithm, even if
linear, is more costly.

3.6 Applications using Spread and Deviation 59

Table 3.4: Results on the 100 BACP instances.

decomposition deviation Q-BC deviation Z-BC
#solved 0 14 69
#best 6 78 98

3.6 Applications using Spread and Deviation

In this section we apply spread and deviation on two real applica-
tions namely the Assembly Line Balancing Problem [4] (ALBP) and the
problem of Fair Assignment of Nurses to Patients in a hospital (FANP)
[30].

3.6.1 Assembly Line Balancing Problem

In this simplest form, this problem is to assign tasks to a given number of
workstations such that the precedences between the tasks are satisfied.
The classical objective is to minimize the maximum workload among the
stations. This problem is called the Simple Assembly Line Balancing
Problem of type II (SALBP2). An alternative objective is to equalize
as much as possible the workloads. This problem is called the Vertical
SALBP2 (VSALBP2) (see [4] for a detailed classification of assembly
line balancing problems).

We are interested in this section to the VSALBP2. For this problem,
the L1 balancing criterion has already been applied on the vertical ALBP
in [33] in a heuristic procedure. The L2 criterion has also been used in
[38] with genetics algorithms. To the best of our knowledge, no exact
method to optimize the balancing with respect to L1 or L2 has never
been applied on the VSALBP2. We experiment spread and deviation
on some real instances coming from the Scholl benchmark data set [48]
to solve exactly the VSALBP2 with constraint programming.

The heuristic

Very efficient procedures exist for the initialization of a local search
procedure for the SALBP2 [50]. We suggest to reuse such a method to
build an initial solution and to use this initial solution to drive the depth
first search rapidly toward high quality solutions. Before going further

60 Balancing Constraints

into the explanation of the CP-heuristic we explain the algorithm to
build a good initial solution.

Let us introduce some vocabulary from [50] specific to the assembly
line balancing problems allowing to describe concisely the procedure of
initialization:

• c is the cycle time. All the stations have a duration lower or equal
to it. SALBP2 try to minimize the cycle time.

• tj is the task time for j ∈ [1..n]

• tsum is the sum of all task times (
∑

j tj)

• tmax is the maximum task time

• Pj is the set of tasks which must precede task j immediately (pre-
decessors)

• Fj is the set of tasks which must follow task j immediately (suc-
cessors, followers)

• P ∗j is the set of all tasks which must precede task j

• F ∗j set of all tasks which must follow task j

• m is the number of stations

• Ej = d(tj +
∑

h∈P ∗j
th)/ce earliest station for task j.

• Lj = m − d(tj +
∑

h∈F ∗j
th)/ce + 1 latest station to which task j

can be assigned.

• Sk is the set of tasks which are currently assigned to station k ∈
[1..m]

• t(Sk) is the station time of station k, t(Sk) ≤ c

The approach to build a good initial solution is to use a dichotomic
search method on the cycle time using a greedy procedure as sub-routine
to shrink the cycle time interval. The greedy procedure solves a satis-
faction problem heuristically: for a given cycle time is there a feasible
solution ? We first detail the greedy procedure given in Algorithm 9
then we explain the dichotomic search using it.

3.6 Applications using Spread and Deviation 61

The greedy procedure findFeasible given in Algorithm 9 assigns the
tasks in a topological order from the left most workstation to the right
most one passing to the next when no tasks can be assigned to the cur-
rent one without exceeding the cycle time c. For each of the n iterations,
the algorithm pick up a task such that all its direct predecessors have
already been placed (line 7 or 12). Since more than one task can satisfy
this property, line 7 chose heuristically a task with the largest duration.
The idea is that largest task should be preferred earlier to allow more
flexibility in the following stations. Indeed, it is preferable to terminate
with the smallest tasks and, when actually line 7 places the last task in
the station before moving to the next one, it is better to fill it as much
as possible. In line 12, the current station is empty and we chose a
task with the most successors in the transitive closure of the precedence
graph. The idea is that many tasks must still be placed after this one
hence we prefer to assign it in an early workstation. Since it is prob-
ably not the last one of the station, there is not reason to choose the
largest one at this point. The algorithm returns true when all the tasks
have been assigned. It returns false in line 11 when more stations than
the available number m are necessary to assign the remaining tasks in
C. The algorithm findFeasible can easily be randomized by replacing
the argmaxk∈C{tk | ...} with a argmax[p]k∈C{tk | ...} which means that
instead of taking a task with maximum duration, one task is randomly
chosen among the p largest ones 4 (we use p = 5). Algorithm findFeasi-
ble is very fast (in O(n)) but it can return false negative. We propose to
use its randomized version several times to (we hope) reduce the risk of
false negative answers. Instead of executing findFeasible only once, its
randomized version is called several times and false is returned only if
all the answers are negative (we call it 5 times). We call this modified
procedure findFeasible*.

We use the binary search from [50] using the findFeasible* algo-
rithm as subroutine. The search maintains two values: LB (lower
bound) and UB (upper bound). The UB value is the smallest cycle
time for which we have a solution and LB is the value for which we
think there are no solution with a cycle time smaller than it. Initially
we set LB to d

∑
j tj/me and UB to

∑
j tj (solution with every task

in the same station). The binary search shrinks the interval [LB,UB]
dichotomically until LB = UB. Each iteration, a value for the cycle
time c = b(LB + UB)/2c is tried with the algorithm findFeasible*. If

4This is achieved with the selectMax[p] selector in Comet

62 Balancing Constraints

Algorithm 9: findFeasible
Data: c the cycle time with c ≥ tmax

Result: true and a feasible solution sol if such a one is found,
false otherwise

front← 1 /* the current workstation */1

C ← {1, ..., n} /* candidate tasks i.e. not yet placed */2

sol[1..n] /* station where each task is placed */3

j ← −14

forall iter ∈ [1..n] do5

if {tk | t(Sfront) + tk ≤ c ∧ Pj ∩ C = φ} 6= φ then6

j ← argmaxk∈C{tk | t(Sfront) + tk ≤ c ∧ Pj ∩ C = φ}7

else8

front← front+ 19

if front > m then10

return false11

j ← argmaxk∈C{|F ∗k | | Pj ∩ C = φ}12

sol[j]← front13

C ← C \ {j}14

return true, sol15

3.6 Applications using Spread and Deviation 63

Table 3.5: Results of the initialization on the 302
SALBP2 instances from [48]

best av. dev. (%) max. dev. (%)
results from [50] 34 2.29 10.67

our results 47 1.56 7.69

findFeasible* succeeds to find a solution, UB is set to the cycle time of
the solution otherwise LB is set to c+ 1.

The results obtained for the initialization on the 302 instances of
the benchmarks from [48] are presented on Table 3.5 and are compared
with the best results obtained with the initializations from [50]. The
reported measures are the same as in 3.5 that are: the number of times
the best known solution is reached, the average deviation from the best
known solution and the maximum deviation of the best known solution
among all the instances. The comparison is very fair since in [50] they
experiment 13 different initializations and we report for each measure
the best one obtained among the 13. For the three criteria, our results
are better. Note that it is also an encouraging results for the local search
methods which are highly dependent on the quality of the initialization
on this problem.

Recall that we are not interested to solve the SALBP2 problem but
the VSALBP2. We are interested in good initializations for the SALBP2
because they are also good for the VSALBP2. Indeed, minimizing the
cycle time also tends to equalize the durations of the station. The frag-
ment of Comet code 3.2 gives the heuristic implementation. The de-
cision variables are the vector ws[] that is for each tasks the station it
is assigned to. The next variable chosen for the instantiation is the one
which impacts on most of the tasks (measured with P ∗i + F ∗i) in the
precedence graph and ties are broken by preferring the tasks with the
smallest domain (first fail). For the value heuristic, if the station of the
initial solution is still present in the domain of the task, it is first placed
into this station (lines 4-7). If on the contrary this station is not present,
the stations are tried by increasing load (lines 8-13). The illustration
of the heuristic on the placement of the first 11th tasks is illustrated
on the Figure 3.11 with a Comet visualization. The precedence graph
is on top of the figure with bigger circles for the tasks already placed.

64 Balancing Constraints

Listing 3.2: Heuristic for the VSALBP

1 while(!bound(ws)){
2 selectMax(i in tasks:!ws[i].bound())
3 (predAll[i].getSize()+succAll[i].getSize(),−ws[i].getSize()){
4 if(ws[i].memberOf(initial[i])){
5 try<cp>{cp.post(ws[i]==initial[i]);} |
6 {cp.post(ws[i]!=initial[i]);}
7 }
8 else{
9 tryall<cp>(s in stations) by(load[s].getMin())

10 cp.post(ws[i]==s);
11 onFailure
12 cp.post(ws[i]!=s);
13 }
14 }
15 }

On the bottom right is the initial solution. When a task is placed, it is
removed from the initial solution and moved in the partial CP solution
on the bottom left. By construction our heuristic first dives to rebuild
exactly the initial solution. What is interesting to see is which task in
the precedence graph are first assigned.

As it is shown on an numeric example on Table 3.1, minimizing one
balancing criteria does not always mean minimizing the others. Never-
theless we think that the least squares criterion L2 of spread and the
mean absolute deviation L1 of deviation are quite similar. One ques-
tion that occur is: How good is the minimization of L2 with respect to
L1 and vice versa?

As first experiment, we minimize L2 with spread on the Hahn in-
stance with 10 stations from [48] and we report on Figure 3.12, for
each solution encountered during the Branch and Bound, respectively
the standard deviation5, the mean absolute deviation and the maximum
(called cycle time on this application). Of course, the standard devi-
ation decreases strictly since it is the objective function to minimize.
More interesting is that, as expected, the mean absolute deviation and

5the standard deviation is illustrated instead of the variance such that it can be
illustrated on the same axis as the mean absolution deviation.

3.6 Applications using Spread and Deviation 65

Figure 3.11: Illustration of the heuristic behavior for the
VSALBP2 with a Comet visualization.

66 Balancing Constraints

Sol number during the B&B search

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

●

● ● ●

● ● ●

● ● ● ● ● ● ● ●

0 50 100 150

19
.0

5
24

.7
9

30
.5

2
36

.2
6

42

17
7

18
3.

5
19

0
19

6.
5

20
3

ax
is

of
 s

ta
nd

ar
d

de
v.

 a
nd

 m
ea

n
ab

s.
 d

ev
.

ax
is

of
 c

yc
le

 ti
m

e

● cycle time
mean abs. dev.
standard. dev.

Figure 3.12: Illustration of the evolution of the standard
deviation, the mean absolute deviation and
the cycle time when minimizing L2.

the cycle time do not strictly decrease along the solutions. Globally the
allure of the mean absolute deviation curve is decreasing but this is not
the case for the cycle time. Indeed sometimes the cycle time increases
by a large amount during the search. This illustrates the close proxim-
ity of spread and deviation and their difference with respect to the
minimization of the maximum. This also illustrates that the VSALBP2
and the SALBP2 are two distinct problems and that SALBP2 can only
be considered as a rough approximation of the VSALBP2.

As next experiment we continue to compare spread and deviation
on the VSALBP2. We chose several instances among the largest ones
from [48]. The names and the number of tasks of the precedence graphs
we will work on are given on Table 3.6. For each of these precedence
graphs we solve the problem for 6, 8 and 10 workstations with spread
and deviation with a timeout of 200 seconds and we report on Table
3.7 the standard deviation (sd), the mean absolute deviation (mad), the
time, the number of fails and if the objective was proved optimal or not.

The minimization of L2 gives for 36/36 instances, the solution with
the smallest sd, and for 26/36 instances, the minimization of L1 gives
minimum sd. The minimization of L1 gives for 32/36 instances the

3.6 Applications using Spread and Deviation 67

Table 3.6: Names and number of tasks of selected in-
stances from [48]

instance # tasks
BUXEY 29

GUNTHER 35
HAHN 53
LUTZ1 32
LUTZ2 89
LUTZ3 89

MITCHELL 21
ROSZIEG 25

SAWYER30 30
TONGE70 70

WARNECKE 58
WEE-MAG 75

minimum mad and the minimization of L2 gives for 35/36 instances
the minimum mad. This surprising result is due to the instances that
could not be terminated in the due time. The minimization of L2 is
a more radical criterion (more sensitive to outliers). Consequently it
generally leads to smaller search trees as can be seen with the number
of fails. When a timeout occurs in both search trees of L1 and L2, the
last solution in the tree of L2 is of better quality for L2 but also for
L1 when compared to the last solution in the search tree of L1. Also
because the search tree seems smaller with L2, two instances could only
be solved by L2 (GUNTHER 10 and LUTZ3 10).

The conclusion of this experiment is that we would prefer using
spread rather that deviation for the VSALBP2 because it produces
smaller search trees and also gives excellent results for L1 (sometimes
even better when the search is interrupted by a timeout).

3.6.2 Nurses to patients assignment problem

This paper considers the daily assignment of new born infant patients
to nurses in a hospital described in [30]. In this problem, some infants
require little attention, while others need significant care. The amount
of work required by the infant during one shift is called the acuity. A

68 Balancing Constraints

Table 3.7: Comparison of spread and deviation on
VSALBP2 instances

inst. caract. Minimization of L2 Minimization of L1

name st. opt. fails time sd. mad. opt. fails time sd. mad.
BUXEY 6 1 4 0.2 0.58 0.33 1 3 0.2 0.58 0.33
BUXEY 8 1 5 0.2 0.50 0.50 1 5 0.2 0.50 0.50
BUXEY 10 1 464 1.1 0.80 0.68 1 1720 2.3 0.80 0.68
GUNTHER 6 1 8 0.4 1.61 1.17 1 7 0.4 1.61 1.17
GUNTHER 8 1 11250 11.3 1.58 1.12 1 13128 14.0 1.58 1.12
GUNTHER 10 1 49706 45.7 0.90 0.76 0 209005 200.0 1.27 1.10
HAHN 6 1 164 1.6 4.41 3.83 1 207 1.5 4.71 3.83
HAHN 8 1 89 1.9 22.36 15.69 1 102 1.9 25.45 14.69
HAHN 10 0 165646 200.0 27.69 23.94 0 133012 200.0 30.17 23.94
LUTZ1 6 1 61 0.4 55.12 40.22 1 62 0.4 55.70 40.22
LUTZ1 8 1 328 0.7 57.48 50.00 1 1150 1.2 57.48 50.00
LUTZ1 10 1 135 0.6 73.06 53.60 1 728 0.9 73.06 53.60
LUTZ2 6 1 2 6.5 0.37 0.28 1 2 6.4 0.37 0.28
LUTZ2 8 1 18 7.5 0.48 0.47 1 19 7.6 0.48 0.47
LUTZ2 10 1 171 10.2 0.50 0.50 1 1031 10.6 0.50 0.50
LUTZ3 6 1 480 10.1 0.58 0.33 1 32692 39.5 0.58 0.33
LUTZ3 8 0 195136 200.0 3.08 2.62 0 213777 200.0 3.08 2.62
LUTZ3 10 1 167389 162.7 0.66 0.60 0 201979 200.0 4.65 3.60
MITCHELL 6 1 1 0.1 0.50 0.50 1 1 0.1 0.50 0.50
MITCHELL 8 1 0 0.1 0.60 0.44 1 0 0.1 0.60 0.44
MITCHELL 10 1 39 0.2 1.50 1.20 1 59 0.2 1.50 1.20
ROSZIEG 6 1 1 0.1 0.37 0.28 1 1 0.1 0.37 0.28
ROSZIEG 8 1 9 0.2 0.70 0.56 1 10 0.2 0.70 0.56
ROSZIEG 10 1 111 0.3 1.36 1.00 1 114 0.3 1.36 1.00
SAWYER 6 1 7 0.3 0.58 0.33 1 5 0.3 0.58 0.33
SAWYER 8 1 8 0.3 0.50 0.50 1 13 0.3 0.50 0.50
SAWYER 10 1 1285 2.1 0.80 0.68 1 5605 6.1 0.80 0.68
TONGE 6 0 61377 200.0 0.58 0.33 0 61958 200.0 0.58 0.33
TONGE 8 0 83209 200.0 2.38 2.25 0 55048 200.0 2.54 2.25
TONGE 10 0 54730 200.0 2.05 1.60 0 108290 200.0 3.07 2.40
WARNECKE 6 1 842 4.1 0.00 0.00 1 372 3.2 0.00 0.00
WARNECKE 8 0 122976 200.0 2.96 2.12 0 106093 200.0 3.16 2.12
WARNECKE 10 0 92548 200.0 1.54 1.08 0 90722 200.0 1.54 1.08
WEE-MAG 6 1 21 3.8 0.37 0.28 1 98 3.8 0.37 0.28
WEE-MAG 8 1 5 3.6 0.48 0.47 1 5 3.6 0.48 0.47
WEE-MAG 10 0 100877 200.0 0.94 0.72 0 96489 200.0 1.30 1.10

3.6 Applications using Spread and Deviation 69

nurse is in charge of a group of infants and the total amount of acuity is
the workload of the nurse during that shift. For ensuring an optimal care
quality and perceived fairness for the nurses, it is essential to balance
the workload. In addition, the problem features various side constraints:

• A nurse can work in only one zone, but the patients are located in
p different zones.

• A nurse cannot be responsible of more than childrenmax infants.

• The total amount of acuity of a nurse cannot exceed acuitymax.

The balance objective and the various constraints make it very difficult
to find a good solution in a reasonable time. Since nurses only work in
one zone, the number of nurses assigned to each zone has already a huge
impact on the quality of the balancing. In [30], the problem was tackled
using a MIP model, but the results were not satisfactory. In this paper,
we present a series of increasingly sophisticated constraint programming
models in order to reach the required solution quality and scalability.

We start by presenting the instances proposed in [30] then we de-
scribes the MIP model and its limitations. A first CP model able to solve
two-zones instances is introduced. This model is then improved with a
two-step approach that first assigns the nurses in each zone and then
assign the infants to nurses to balance the load optimally. Finally we
show that the second step can be decomposed by zones without losing
the optimality guarantees. This final model is instrumental in solving
large instances with dozens of zones and hundreds of patients.

Problem Instances

Reference [30] specifies a statistical model to generate instances very
similar to their real instances. This statistical model was also used to
measure the robustness of their solution technique with respect to the
number of nurses, the number of infants, and the number of zones. The
model contains a single parameter: the number of zones. The maximum
acuity per nurse is fixed to acuitymax = 105 and the maximum number
of infants per nurse is fixed to childrenmax = 3. The instance generator
fixes the number of nurses, the number of infants, the acuity, and the
zone of each infant. The different steps to generate an instance are as
follows:

70 Balancing Constraints

• The number of patient in a zone is obtained with a Poisson random
variable with mean 3.8 and offset by 10.

• The acuity Y of a patient is obtained by first generating a num-
ber X ∼ Binomial(n = 8, p = 0.23) and then the number Y ∼
Unif(10 · (X + 1), 10 · (X + 1) + 9).

• The number of nurses made available is obtained by solving a First
Fit Decreasing (FFD) procedure in each zone. The total number
of nurses available is then the sum of the amount of nurses found
in each zone by the FFD procedure. The FFD procedure starts by
ranking the patients in decreasing acuity. Then the patient with
the highest acuity is assigned to the first nurse. The next infants
are assigned successively to the first nurse that can accommodate
them without violating the maximum acuity and the number of
patient constraints.

The MIP Model

In this section, we recall the main variables of the MIP model from [30].
We also describe the limitation of the MIP model and suggest that a CP
approach may address them. Due to space reasons, we do not reproduce
the entire MIP model but readers can consult [30] for more details. The
technical details presented here are sufficient for our purposes. The MIP
model contains four family of variables:

1. Xij = 1 if infant i is assigned to nurse j and 0 otherwise;

2. Zjk = 1 if nurse j is assigned zone k and 0 otherwise;

3. Yk,max is the maximum acuity of a nurse in zone k;

4. Yk,min is the minimum acuity of a nurse in zone k.

All these variables are linked with linear constraints to enforce the con-
straints of the problem. The objective function, we call the range-sum
criteria, consists of minimizing the sum of the acuity ranges of the p
zones, i.e.,

p∑
k=1

(Yk,max − Yk,min).

3.6 Applications using Spread and Deviation 71

Figure 3.13: Comparison of Two Solutions on a 6 Nurses,
14 Infants, and 2 zones Problem. The left so-
lution is obtained by minimizing the range-
sum criteria. The right solution is obtained
by minimizing the L2 norm presented subse-
quently.

The MIP model has a fundamental limitation: The objective function
may produce poorly balanced workloads. It tends to equalize the work-
load inside the zones but may produce huge differences among the work-
load of different zones. This is illustrated in Figure 3.13. The workloads
are depicted in the upper right corner of each Comet visualization. The
left solution is obtained by minimizing the range-sum criteria and the
right solution by minimizing the L2 norm to be defined precisely in the
next section. The range-sum objective is minimal on the left because
the workloads inside each of the two zones are identical. Unfortunately,
nurses in the first zone work twice as much as those in the second zone.
The right solution is obtained by minimizing the L2 norm and is sig-
nificantly more appealing. This illustrates clearly that “the high level
objective that all nurses should be assigned an equal amount of patient
acuity” [30] is not properly captured with the range-sum criteria.

72 Balancing Constraints

It is not immediately obvious how to remedy these problems. The
L2 criteria presented in the next section is non-linear and is not easily
modeled in a MIP approach. In addition, a CP approach may exploit
the combinatorial structure in the bin-packing and the side-constraints,
while the MIP relaxation is generally bad for bin-packing like problems.
Finally, there are important symmetries that are not removed in their
model: For a given solution, the nurses are completely interchangeable.

We now turn to the CP approaches after having reviewed load bal-
ancing constraints in constraint programming.

A Basic CP model.

We now present a CP model which addresses all the issues raised for the
MIP model. Let m be the number of nurses, n the number of patients,
and ai be the acuity of patient i. The set of patients in zone k is denoted
by Pk and [P1, ...,Pp] forms a partition of {1, ..., n}, i.e.,

∀1 ≤ k1, k2 ≤ p : Pk1 ∩ Pk2 = φ (3.13)⋃
1≤k≤p

Pk = {1, ..., n}. (3.14)

For each patient i, we introduce a decision variable Ni ∈ [1..n] which
represents her/his nurse. The workload of nurse j is the variable Wj ∈
[0..acuitymax] and the number of patients of nurse j is Cj ∈ [1..childrenmax].
The complete model in Comet is shown in Listing 3.3. The objective
and constraints are expressed as follows. (We use shorter names in the
text).

• The objective to minimize is the L2 norm modeled using the spread
constraint over the workload variables [W1, ...,Wm] (lines 12–13
and 15).

• To express that nurses have a total acuity of at most acuitymax, we
link the variables Ni, Wj , and the acuities with a global packing/-
multiknapsack constraint Pack([N1, ..., Nn], [a1, ..., an], [W1, ...,Wm])
[52] (line 16).

• A global cardinality constraint [34] is used to model that a nurse
takes care of at most childrenmax infants for each nurse (line 17).

• The constraint that a nurse can work in at most one zone is mod-
eled by introducing set variables representing the set of nurses

3.6 Applications using Spread and Deviation 73

Table 3.8: Patients to Nurses Assignment Problem with
2 zones and minimization of L2 with spread.

m n #fails time(s) avg workload sd. workload
11 28 511095 170.2 86.09 2.64
11 29 1126480 302.0 80.27 1.76
10 26 104931 24.7 76.50 2.29
12 30 259147 136.5 83.42 1.93
10 28 2990450 1138.5 91.80 6.84
10 26 779969 206.9 88.40 2.29
12 29 555243 198.2 80.08 2.72
10 27 931858 343.9 90.60 5.33
10 25 1616689 434.5 82.70 7.32
8 22 4160 1.2 87.50 3.12

working in each zone NSk =
⋃
i∈Pk

Ni. The set NSk is main-
tained with a global constraint unionOf. Then the pairwise empty
intersections between the set variables are enforced with a global
disjoint constraint. The Comet uses a reformulation with chan-
neling constraints and a global cardinality constraint as explained
in [35] p38 or in [2] (line 18).

The search is implemented in the using block in lines 20–29. The search
dynamically breaks the value symmetries originating from the nurse in-
terchangeability. The patient having the largest acuity is selected first
in lines 21–22. Then the search tries to assign a nurse to this patient
starting first with those with the smaller load (lines 24–27). The sym-
metry breaking is implemented by considering already assigned nurses
and at most one nurse without any patient yet (a similar technique was
used for the steel mill slab problem in [16]). Value mn is the maximal
index of a nurse already assigned to a patient. The tryall statement
considers all the nurse indexes until mn+1 (nurse mn+1 having currently
no patient).

As a first experiment we generate 10 instances with 2 zones as was the
case for the real instances studied in [30]. These instances have about
10–15 nurses, 20–30 infants, and cannot be solved by the MIP model
from [30] minimizing the range-sum objective. All the instances could
be solved optimally with our Comet model in less than 30 minutes (the

74 Balancing Constraints

Listing 3.3: Patient-Nurse Assignment Model

1 var<CP>{int} nurseOfPatient[patients];
2 var<CP>{int} acuityByNurse[1..nbNurses](cp,1..105);
3 var<CP>{int} spreadAcuity(cp,0..System.getMAXINT());
4 var<CP>{int}[] nurseOfPatientByZone[zones];
5 forall(i in zones) {
6 nurseOfPatientByZone[i] =
7 new var<CP>{int}[1..nbPatientsInZone[i]](cp,nurses);
8 }
9 int k = 1;

10 forall(i in zones,j in 1..nbPatientsInZone[i])
11 nurseOfPatient[k++] = nurseOfPatientByZone[i][j];
12 minimize<cp>
13 spreadAcuity
14 subject to {
15 cp.post(spread(acuityByNurse,totAcuity,spreadAcuity));
16 cp.post(multiknapsack(nurseOfPatient,acuity,acuityByNurse));
17 cp.post(cardinality(minNbPatients,nurseOfPatient,maxNbPatients));
18 cp.post(pairwiseDisjoint(nurseOfPatientByZone,nurses));
19 }
20 using {
21 forall(p in patients: !nurseOfPatient[p].bound())
22 by (−acuity[p],nurseOfPatient[p].getSize()) {
23 int mn = max(0,maxBound(nurseOfPatient));
24 tryall<cp>(n in nurses: n <= mn + 1)
25 by (acuityByNurse[n].getMin())
26 cp.label(nurseOfPatient[p],n);
27 onFailure
28 cp.diff(nurseOfPatient[p],n);
29 }
30 }

3.6 Applications using Spread and Deviation 75

Zone 1 Zone 2

x1 x2

A1
x1

Figure 3.14: Illustration of a solution of the relaxation
solved to find the number of nurses in each
zone.

time constraint specified in [30] by the hospital to find the assignment).
Table 3.8 depicts the experimental results.

A Two-Step CP Model

The basic CP model can solve 2-zones instances but has great difficulty
to solve the problem for 3 zones or more. We propose to simplify the
resolution by pre-computing the number of nurses that are assigned to
each zone. This facilitates the resolution by

1. removing one degree of flexibility which is the number of nurses in
each zone.

2. removing the disjointness constraint since the set of nurses that
can be assigned to each patient can be pre-computed.

The drawback is that the resulting solution might be sub-optimal if these
numbers are not the right ones. Indeed, the number of nurses assigned to
each zone has a crucial impact on the quality of the balancing. However,
after visualizing some optimal solutions, we observed that the workloads
of the nurses are extremely well balanced (almost the same) inside the
zones.

This suggested solving a relaxation of the problem to discover a
good repartition of the nurses to the zones. The relaxation allows the

76 Balancing Constraints

acuity of a child in a zone to be distributed among the nurses of that
zone (continuous relaxation of the acuity). Since the acuity of a child
can be split, the relaxed problem will have an optimal solution where
the nurses of a zone have exactly the same workload Ak

xk
, i.e., the total

acuity Ak =
∑

i∈Pk
ai of the zone k divided by the number of nurses xk

in that zone k. This is schematically illustrated on Figure 3.14 for a two-
zone relaxation problem. The reason that the optimal solution of the
relaxation will take this configuration is that as long as two workloads
can be made closer, the L2 criterion can be decreased as it was shown
in Theorem 2.
Since the optimal solution of the relaxed problem must have a same
workload for the nurses inside a same zone, the mathematical formula-
tion of the relaxed problem is the following.

min
p∑

k=1

xk ·

Ak
xk
−

p∑
j=1

Aj
m

2

(3.15)

s.t.

p∑
k=1

xi = m (3.16)

xk ∈ Z+
0 (3.17)

The workload of all the nurses of zone k is Ak
xk

and the average workload

is
∑p

j=1
Aj

m . Hence the contribution to the L2 criterion for the xk nurses

of zone k is xk ·
(
Ak
xk
−
∑p

j=1
Aj

m

)2
. We describe a greedy procedure to

solve optimally this optimization problem.
First note that by developing the objective (3.15), it appears that it

is equivalent to minimize
∑p

k=1
Hk
xk

where Hk = A2
k. Hence the reformu-

lated problem to solve is

min f(x1, ..., xk) ≡
p∑

k=1

Hk

xk
(3.18)

s.t.

p∑
k=1

xi = m (3.19)

xk ∈ Z+
0 (3.20)

with m integer and m ≥ p. We can solve this problem optimally with a
O(p+m · log p) greedy procedure:

3.6 Applications using Spread and Deviation 77

1. Start with xi = 1 for i ∈ [1..p].

2. Increment xk by 1 with k = argmaxi{Hi
xi
− Hi

xi+1}.

3. Repeat previous step until
∑

i∈[1..p] xi = m.

The complexity is obtained using a heap data structure to select in
O(log p) the k = argmaxi{Hi

xi
− Hi

xi+1} at each iteration and it takes a
linear time O(p) to initialize it.

We proof in Theorem 9 that the procedure reaches an optimal so-
lution. This proof makes use of the next Lemma 5 and its Corollary
2.

Lemma 5. Let X = x1, ..., xp be an assignation with ∀i ∈ [1..p] : xmi ≥ 1.
For k = argmaxi{Hi

xm
i
− Hi

xm
i +1} we have that ∀ α ∈ Z+, i ∈ [1..p]:

Hi

xi + α
− Hi

xi + α+ 1
≤ Hk

xk
− Hk

xk + 1

Proof. By definition of k, ∀ i ∈ [1..p] we have Hi
xi
− Hi

xi+1 ≤
Hk
xk
− Hk

xk+1 .
For a given i we have Hi

xi+α+1 −
Hi

xi+α+2 ≤
Hi
xi+α

− Hi
xi+α+1 . By transitivity

the lemma follows.

Corollary 2. Let us consider 4 different assignations:

1. Xm = xm1 , ..., x
m
p be an assignation of x1, .., xm with

•
∑

i∈[1..p] x
m
i = m and

• ∀i ∈ [1..p] : xmi ≥ 1.

2. X̃m = xm1 , ..., x
m
k−1, x

m
k + 1, xmk+1, ..., x

m
p with k = argmaxi{Hi

xm
i
−

Hi
xm

i +1}.

3. Xm+1 = xm+1
1 , ..., xm+1

p with

•
∑

i∈[1..p] x
m+1
i = m+ 1,

• xm+1
i > xi for i ∈ [1..l],

• xm+1
i ≤ xi for i ∈ [l + 1..p] and

• ∀i ∈ [1..p] : xm+1
i ≥ 1.

4. X̃m+1 = xm+1
1 − 1, xm+1

2 , ..., xm+1
p .

78 Balancing Constraints

We have that f(Xm)− f(X̃m) ≥ f(X̃m+1)− f(Xm+1).

Proof. f(Xm) − f(X̃m) = Hk
xm

k
− Hk

xm
k +1 and f(X̃m+1) − f(Xm+1) =

Hk

xm+1
1 −1

− Hk

xm+1
1

. The corollary is then a direct consequence of Lemma 5

by taking i = 1 and α = xm+1
1 − 1− xmk .

Theorem 9. The greedy procedure builds an optimal solution to problem
(3.18).

Proof. We prove it by taking m =
∑

i∈[1..p] xi as induction parameter.
We denote by fm the optimal objective for parameter m ≥ p.

• Basis step: clearly, for m = p, we have no other choice than as-
signing xi = 1 for all i ∈ [1..p] hence this solution has an objective
equal to fp.

• Induction step: assume that the current solution Xm = x1, ..., xp
is optimal: f(Xm) = fm (induction hypothesis). We prove that
modifying the solution into X̃m = xm1 , ..., x

m
k−1, x

m
k +1, xmk+1, ..., x

m
p

with k = argmaxi{Hi
xm

i
− Hi

xm
i +1} leads to an optimal solution for

m+ 1: f(X̃m) = fm+1. We prove it by contradiction: we assume
that the solution X̃m is not optimal for m + 1. It means that
there exists another solution Xm+1 = xm+1

1 , ..., xm+1
p which is op-

timal: f(Xm+1) = fm+1 < f(X̃m). Without loss of generality we
assume that xm+1

1 > xm1 , ..., x
m+1
l > xml , x

m+1
l+1 ≤ xml+1, ..., x

m+1
p ≤

xmp . Then we can transform this solution into X̃m+1 = xm+1
1 −

1, xm+1
2 , ..., xm+1

p . By corollary 2 we have that f(Xm)− f(X̃m) ≥
f(X̃m+1)− f(Xm+1). If we combine it with the contradiction hy-
pothesis f(X̃m) > f(Xm+1) we obtain that f(X̃m) > f(X̃m+1)
which contradicts our induction hypothesis that Xm is optimal.

Remarq. As Yves Crama pointed out, the problem 3.18 is a discrete
resource allocation problem with separable objective convex function.
The algorithm we rediscovered is named INCREMENT in p54 of [19] and
its correctness is proved differently in [19] using Generalized Lagrange
multiplier method.

3.6 Applications using Spread and Deviation 79

Zone 1 Zone 2

x1 x2

A1
x1

⌈ A1/ x1⌉
⌊ A1/ x1⌋

Figure 3.15: Illustration of the Lower Bound on L2 us-
ing the Pre-Computation of the Number of
Nurses in Each Zone.

The pre-computation of the number of nurses assigned to each zone can
also be used to compute a lower bound on the L2 criterion. Inside a
zone, the average load is µk = Ak/xk. Since the acuity of patients are
integers, we can strengthen the lower bound of the objective (3.15) by
enforcing the workloads of nurses of zone k to be either bµkc or dµke.
This is illustrated on Figure 3.15. The total workload of zone k must
remain Ak. Hence the distribution of the workload among bµkc and dµke
are given respectively by αk = Ak+xk ·(1−dµke) and βk = xk−αk. The
lower bound on the spread variable ∆Z computed with formula (3.1) is
then

m ·
p∑

k=1

(αk · dµke2 + βk · bµkc2)− (
p∑

k=1

Ak)2. (3.21)

The two-step CP model in Comet is given in Listing 3.4. The model
assumes that the xk (named nbPatientsInZone[k] in the program) are
already computed in the fragment. The main differences with respect to
the previous Comet model in Listing 3.3 is the definition of the domains
in line 11. The patients of one zone i can only take the nurses that have
been affected to this zone defined by the range nursesOfZone[i]. The
search in the using block lines 23–36 is a little bit more complicated:
all the patients of one zone are assigned before the patients of the next
zone are assigned. The dynamic symmetry breaking scheme is the same

80 Balancing Constraints

Table 3.9: Patients to Nurses Assignment Problem with
2 zones with precomputation of the number of
nurses in each zone

m n #fails time(s) avg workload sd. workload lb. sd.
11 28 25385 4.5 86.09 2.64 2.23
11 29 4916 1.4 80.27 1.76 0.62
10 26 458 0.1 76.50 2.29 2.29
12 30 17558 6.7 83.42 1.93 1.19
10 28 29865 4.8 91.80 6.84 6.81
10 26 3705 1.0 88.40 2.29 1.43
12 29 6115 1.2 80.08 2.72 0.64
10 27 1109 0.4 90.60 5.33 5.22
10 25 3299 0.6 82.70 7.32 6.71
8 22 127 0.0 87.50 3.12 3.04

but adapted to this by zone assignment.
Table 3.9 reports the results obtained on the same 2-zones instances

as for Table 3.8 with the pre-computation of the number of nurses as-
signed to each zone. The last column is the lower bound obtained with
equation (3.21). A first observation is that the computation times are
greatly reduced. It does not exceed 10 seconds while it exceeded 1000
seconds for the most difficult instances. One can see that our method
finds the correct number of nurses since the standard deviation with
previous model are exactly the same (hence optimum) as the optimal
values in Table 3.8. It is also interesting to see that the lower bound
is reasonably close to the optimum values which also validates the ap-
proach.

Since the instances with 2 zones can now be solved easily, we tried
to solve instances with 3 zones. The results are presented on Table 3.10.
Only 6 instances could be solved optimally within 30 minutes when pre-
computing the number of nurses in each zone.

A Two-Step CP Model with Decomposition

The previous approach can solve easily two-zone problems but has diffi-
culties to solve 3 zones problems and instances with more that 3 zones

3.6 Applications using Spread and Deviation 81

Listing 3.4: Two steps Patient-Nurse Assignment Model

1 Solver<CP> cp();
2 var<CP>{int} nurseOfPatient[1..nbPatients];
3 var<CP>{int} acuityByNurse[1..nbNurses](cp,1..105);
4 var<CP>{int} spreadAcuity(cp,0..System.getMAXINT());
5 var<CP>{int}[] nurseOfPatientByZone[1..nbZones];
6 range nursesOfZone[zones];
7 int l=1;
8 forall(i in zones){
9 nursesOfZone[i] = l..l+nbNurseInZone[i]−1;

10 nurseOfPatientByZone[i] =
11 new var<CP>{int}[1..nbPatientsInZone[i]](cp,nursesOfZone[i]);
12 l += nbNurseInZone[i];
13 }
14 int k = 1;
15 forall(i in zones,j in 1..nbPatientsInZone[i])
16 nurseOfPatient[k++] = nurseOfPatientByZone[i][j];
17 minimize<cp> spreadAcuity
18 subject to {
19 cp.post(spread(acuityByNurse,totAcuity,spreadAcuity));
20 cp.post(multiknapsack(nurseOfPatient,acuity,acuityByNurse));
21 cp.post(cardinality(minNbPatients,nurseOfPatient,maxNbPatients));
22 }
23 using {
24 forall(i in zones){
25 forall(p in nurseOfPatientByZone[i].rng():
26 !nurseOfPatientByZone[i][p].bound())
27 by(−acuityByZone[i][p],nurseOfPatientByZone[i][p].getSize()){
28 int shift = i==1? 0 : nursesOfZone[i−1].getUp();
29 int mn = max(0,maxBound(nurseOfPatientByZone[i]))+shift;
30 tryall<cp>(n in nursesOfZone[i]: n <= mn + 1)
31 by (acuityByNurse[n].getMin())
32 cp.label(nurseOfPatientByZone[i][p],n);
33 onFailure
34 cp.diff(nurseOfPatientByZone[i][p],n);
35 }
36 }
37 }

82 Balancing Constraints

Table 3.10: Patients to Nurses Assignment Problem with
3 zones with precomputation of the number
of nurses in each zone

sol m n #fails time(s) avg workload sd. workload lb. sd.
1 15 42 19488 5.3 84.20 3.04 2.93
1 18 43 3619310 919.2 79.78 5.84 5.49
0 17 43 9023072 1800.0 81.41 4.75 3.45
1 17 42 483032 106.9 83.82 5.65 5.59
0 18 43 7124370 1800.0 81.00 7.11 4.94
1 14 38 590971 145.2 85.36 3.08 2.16
0 19 48 3786580 1800.0 87.42 3.18 2.30
1 16 44 3888210 839.8 84.88 6.70 6.39
0 19 49 5697272 1800.0 86.00 2.70 1.95
1 17 41 61250 17.3 82.18 3.40 3.07

are intractable. It thus seems natural to decompose the problem by zone
and to balance the workload of nurses inside each zone independently
rather balancing the workload of all the nurses globally. Interestingly,
this decomposition preserves optimality, i.e., it reaches the same solu-
tion for the L2 criterion than the two-step approach of Section 3.6.2 for a
given pre-computation of the number of nurses assigned in each zone. In
other words, given the pre-computed number of nurses in each zone, it
is equivalent to minimize L2 among all the nurses at once or to minimize
L2 separately inside each zone. We now prove this result formally.

Lemma 6. Minimizing n ·
∑xk

i=1(yi−Ak/xk)2 such that
∑xk

i=1 yi = Ak is
equivalent to minimizing n ·

∑xk
i=1(yi−(Ak/xk+c))2 such that

∑xk
i=1 yi =

Ak.

Proof. The first objective can be reformulated from formula (3.1) as
xk ·

∑xk
i=1 y

2
i − A2

k. The second one can be reformulated after some
algebraic manipulations as c2 · x2

k + xk ·
∑xk

i=1 y
2
i −A2

k. Since they differ
only by a constant term, they are equivalent.

Corollary 3. It is equivalent to minimize L2 among all the nurses at once
or to minimize L2 separately inside each zone.

3.6 Applications using Spread and Deviation 83

Table 3.11: Patients to Nurses Assignment Problem with
3 zones with precomputation of the number
of nurses in each zone and decomposition by
zone

m n #fails time(s) avg workload sd. workload lb. sd.
15 42 203 0.1 84.20 3.04 2.93
18 43 608 0.1 79.78 5.84 5.49
17 43 8134 1.1 81.41 4.46 3.45
17 42 345 0.1 83.82 5.65 5.59
18 43 24994 3.2 81.00 5.77 4.94
14 38 151 0.0 85.36 3.08 2.16
19 48 3695 0.8 87.42 3.07 2.30
16 44 384 0.1 84.88 6.70 6.39
19 49 2056 0.4 86.00 2.49 1.95
17 41 776 0.2 82.18 3.40 3.07

Proof. This follows directly from Lemma 6. If the minimization of L2

is achieved globally for all the nurses, the least square L2 criterion is
computed with respect to the global average load of all the nurses that
is wrt

∑p
k=1Ak/m. This corresponds to choosing c in Lemma 6 equal to

the difference between the average load in zone k and the global average
load: c =

∑p
k=1Ak/m−Ak/xk.

We solved again the 3-zone instances with the decomposition method.
The results are given on Table 3.11. One can observe that, as expected,
the objectives are the same for the instances that could be solved op-
timally in Table 3.10. For the remaining ones, the algorithm produces
strictly better solutions. The time is also significantly smaller. Figure
3.16 shows a Comet visualization of a solution for a 15 zones instance
with 81 nurses and 209 patients. This instance could be solved in only
7 seconds and 10938 fails.

3.6.3 Softening an ideal given distribution

Many combinatorial problems are over-constrained. For solving these
with constraint programming some constraints must be relaxed. In par-
ticular we explain here how to relax the fact that an array of variables

84 Balancing Constraints

Figure 3.16: Solution for a 15 zones instance.

must follow a given ideal distribution of values. This constraint occurs
in rostering problems where each day a set of workers must cover some
needs and the number of workers that must be assigned to each type of
needs is known in advance.

Example 17. Assume 10 workers that might achieve 5 different activi-
ties. The possible activities of each workers according to their skills or
availability are respectively

{1, 3}, {1}, {2, 4}, {1, 2}, {1, 2, 5}, {5, 3}, {1, 2}, {3, 1}, {1, 4}, {2}.

The number of workers required for each activity are respectively 2, 0, 3, 1, 4.
This small problem is over-constrained since 4 workers are required for
activity 5 but only 2 can achieve this activity.

The constraint is defined precisely in next definition:

Definition 11. We call

soft-distributeµ([X1, . . . , Xn], [δ1, . . . , δm], V)

the constraint
m∑
j=1

µ(|#{i|Xi = j} − δj |) ≤ V

where the value parameters satisfy
∑m

j=1 δj = n (valid ideal distribution)
and µ is a function measuring the violation.

A possible model for this problem is to use the combination of a
global cardinality constraint gcc together with a balancing constraint
like spread or deviation:

• The gcc constraint computes the cardinalities Dj = #{i|Xi = j},

• We introduce a variable Yj = Dj−dj . Since we know that
∑

j Yj =
0, spread or deviation with a sum value s = 0 can be used to
balance the violations among the values.

3.6 Applications using Spread and Deviation 85

Listing 3.5: Modeling of soft-distribute constraint
with spread

1 Solver<CP> cp();
2 int d [1..5] = [2,0,3,1,4];
3 var<CP>{int} Y[1..5](cp,−10..10);
4 var<CP>{int} D[1..5](cp,0..10);
5 set{int} domains[1..10] =
6 [{1,3},{1},{2,4},{1,2},{1,2,5},{5,3},{1,2},{3,1},{1,4},{2}];
7 var<CP>{int} X[i in 1..10](cp,domains[i]);
8 var<CP>{int} viol(cp,0..System.getMAXINT());
9

10 minimize<cp>
11 viol
12 subject to{
13 cp.post(cardinality(D,X),onDomains);
14 forall(i in 1..5){
15 cp.post(Y[i]==D[i]−d[i]);
16 }
17 cp.post(spread(Y,0,viol));
18 }
19 using{
20 labelFF(X);
21 }

A model with spread uses a quadratic violation function µ(x) = x2 while
a model with deviation uses the linear violation function µ(x) = x. A
complete model for example 17 modeling soft-distribute with spread
is given in Listing 3.5.

Note that using deviation to model soft-distribute is not re-
ally interesting since the violation measured would be the same as with
soft-gcc computing the sum of over-flow under-flow for each value and
efficient domain consistent filtering algorithms exist for this constraint6

[58, 57].

6To the best of our knowledge, this constraint is currently only implemented in
Comet using a filtering algorithm described in [46]

86 Balancing Constraints

4
Bin-Packing Constraints

Many real problems have a bin-packing component (line balancing, ros-
tering...). To tackle such problems with constraint programming, it is
important to capture the structure of the bin-packing sub-problem as
much as possible to prune efficiently the search space. Paul Shaw in-
troduced a global constraint for bin-packing very efficient both in terms
of speed and quality of filtering [52]. It allows to solve problems with a
bin-packing component that are intractable without using it.

In some problems, in addition to the bin-packing component, we
have precedence constraints between items. The bin-packing with prece-
dences sub-problem is ubiquitous in line balancing problems. We give
filtering algorithms for this constraint and show the effectiveness of the
approach on standard line balancing benchmarks.

4.1 Bin-Packing Constraint

4.1.1 Related Work

Several work has been achieved in CP on the filtering of the binary knap-
sack constraints which are closely related to the bin-packing constraint:

• Trick introduced in [55] a pseudo-polynomial time dynamic pro-
gramming algorithm to achieve domain consistency on a binary
knapsack constraint.

• When the capacity is large, Sellmann proposes in [51] to pal-
liate the pseudo-polynomial time by weakening the propagation

88 Bin-Packing Constraints

strength by dividing down item sizes and bin capacities.

For the bin-packing constraint, to the best of our knowledge, there only
exists the filtering introduced by Shaw [52]. Achieving domain consis-
tency for a bin-packing constraint is an NP-complete problem. This is
why propagators must make some relaxations on the problem in order to
be efficient. The filtering algorithm proposed by Paul Shaw essentially
works separately on each bin with a knapsack reasoning and detects non
packable bins or non packable items into bins. The relaxation is that an
item can be used in more than one bin. Shaw also introduces a failure
detection test based on fast bin-packing lower bound algorithm. In the
next Section 4.1.2, we recall the filtering introduced by Shaw.

We refer to [7] for an extended bibliography review of the literature
on the bin-packing problem and its variants.

4.1.2 Paul Shaw’s Global Constraint

The Pack([B1, ..., Bn], [s1, ..., sn], [L1, ..., Lm]) constraint is composed of

• n variables [B1, ..., Bn] representing for each item the bin where it
is placed (Dom(Bi) = {1, . . . ,m})

• n positive values [s1, ..., sn] representing the size of each item.

• a number of available bins m.

• m variables [L1, ..., Lm] representing the load of each bin
(Dom(Li) = {0, . . . ,

∑
i si})

The semantic of the constraint is Li =
∑n

j=1 ((Bj = i) · sj) ∀i ∈
[1..m]. This constraint can be easily expressed with binary variables
Xij and reified constraints: Xij = 1 ↔ Bj = i ∀i, j ∈ [1..m] × [1..n],
Li =

∑
j Xij · sj . This simple model is improved with the redundant

constraint
∑n

j=1 sj =
∑m

i=1 Li allowing a better communication between
the loads and hence a stronger filtering [52]. We recall some useful
definitions from [52].

• The possible set Pi for a bin i is the set of items that can be packed
into bin i that is Pi = {j ∈ [1..n] | i ∈ Dom(Bj)}.

• The required set Ri of a bin i is the set of items packed into bin i
that is Ri = {j ∈ [1..n] | Dom(Bj) = {i}}.

4.1 Bin-Packing Constraint 89

• The candidate set is Ci = Pi \Ri.

• The set of unpacked items is U =
⋃m
i=1Ci.

• For a set of items indices S, sum(S) =
∑

i∈S si.

In addition to the bin-packing model described above, the filtering of
Shaw is composed of a binary-knapsack reasoning on each bin separately
and of an inconsistency test based on the computation of a bin-packing
lower bound.

Knapsack Filtering

Achieving domain consistency for Pack is NP-Complete. Shaw consider
the relaxation of dividing the problem into packing each bin i separately
with its candidate set inside its allowed load range [Lmin

i , Lmax
i]. This is

a relaxation since a same item might be used to pack two different bins.
The set of sets of additional items which can be packed while re-

specting the constraints on load is

Mi = {A | A ⊆ Ci ∧ Lmin
i ≤ sum(Ri ∪A) ≤ Lmax

i }.

Three filtering rules can occur when examining Mi

• If Mi is empty then the bin i is not packable and the constraint
fails.

• If an item is present in every sets of Mi then this item is assigned
to the bin i.

• If an item is present in none of the sets composing Mi then bin i
can be removed from the domain of this item.

Is also possible to filter the load variable Li by deducing illegal bin loads.
This filtering can be achieved with with a pseudo polynomial dynamic
programming algorithm in O(|Cj |(Lmax

j)2) [55]. Since this complexity
becomes prohibitive when the load capacity are large, Shaw relaxes the
problem with a very efficient algorithm capable to detect non-packable
bins. This algorithm is a relaxation since all non packable bins may not
be detected. Shaw introduces the concept of neighboring subsets of Ci.

Definition 12 ([52]). Two subsets C1
i , C

2
i are said to be neighboring if

there is no other subset of Ci whose items sum a value strictly between
sum(C1

i) and sum(C2
i).

90 Bin-Packing Constraints

Hence if two neighboring subsets C1
i , C

2
i are detected with sum(C1

i) <
Lmin
i ≤ Lmax

i < sum(C2
i) then the constraint fails because by definition

of neighboring subsets, the bin i is not packable. Shaw gives a proce-
dure NoSum(X,α, β) which returns true when it detects two neighboring
subsets X1, X2 on X with sum(X1) ≤ α ≤ β ≤ sum(X2). This pro-
cedure executes in O(|X|). Unfortunately NoSum will sometimes return
false when actually there exists two neighboring subsets satisfying the
condition. This is because all neighboring subsets are not generated by
the procedure.

The three pruning rules described above can be reformulated with
NoSum as:

• If NoSum(Ci, Lmin
i − sum(Ri), Lmax

i − sum(Ri)) then fail.

• If for a candidate item j ∈ Ci, NoSum(Ci\j, Lmin
i −sum(Ri), Lmax

i −
sum(Ri)) then Bj ← i.

• If for a candidate item j ∈ Ci, NoSum(Ci \ j, Lmin
i − sum(Ri) −

sj , L
max
i − sum(Ri)− sj) then Dom(Bj)← Dom(Bj) \ i.

When NoSum answers in the affirmative is also returns the total size of
the neighboring subsets α′ and β′: α′ = sum(X1) ≤ α ≤ β ≤ sum(X2) =
β′. This values can also be used to tighten the bounds of Li:

• If NoSum(Ci, Lmin
i − sum(Ri), Lmin

i − sum(Ri)) then

Lmin
i ← max{Lmin

i , sum(Ri) + β′}.

• If NoSum(Ci, Lmax
i − sum(Ri), Lmax

i − sum(Ri)) then

Lmax
i ← min{Lmax

i , sum(Ri) + α′}.

The complexity of filtering one bin can be up to O(|Ci|2) and O(m·|Ci|2)
for all the bins but it is much more efficient in practice [52].

In Ilog Solver, the Pack constraint is called IloPack and in Comet
it is called multiknapsack. Unfortunately, Paul Shaw does not explain
for which load values it becomes more advantageous to use the filtering
based on NoSum rather than the stronger filtering based on dynamic
programming. Hence is is very difficult to predict the filtering that will
be achieved with IloPack.

4.1 Bin-Packing Constraint 91

Inconsistency detection with Bin-Packing Lower Bound

The inconsistency detection of the Pack constraint can be reduced to
classical bin-packing1 problem with a fixed capacity. Hence bin-packing
lower bounds can be very useful to detect quickly inconsistencies by
comparing the lower bound to the number of available bins m. If the
lower bound is larger than m in the reduced problem, then the constraint
fails. The reduction to a bin packing problem proposed by Shaw is the
following:

• Take the maximum load as bin capacity c = maxi∈[1..m] L
max
i .

• The set of items to be packed is U ∪ {a1, . . . , am} where

– U is the set of unassigned items.

– ai is a pseudo item created to take into account the already
packed items into bin i and the fact that the maximum load of
Lmax
i might be smaller than c. The size of item ai is sum(Ri)+

(c− Lmax
j).

Shaw then uses the Martello and Toth lower bound denoted L2 [28]
to compute a lower bound on the number of bins required. Pack fails
if this number is larger than m. The bound L2 can be computed in
linear time when the items a sorted decreasingly. Items in U can be
assumed to be sorted decreasingly without loss of generality but the
items {a1, . . . , am} need to be sorted and then merged with items from U .
Hence the complexity of the inconsistency detection is O(m·log(m)+n).

4.1.3 Additional Filtering for the Bin Packing Global Con-
straint

We try to improve the filtering of the bin-packing constraint in the
following way:

• We show that it is in some cases possible to filter additionally the
domains or detect earlier failure situations with another relaxation
which is the preemption of the items. The difference with Shaw
relaxation is that items can be split into several bins but all the
bins are considered at once and not separately. This filtering is not

1given a bin capacity and sized items, what is the minimum number of bins
necessary to pack all the items.

92 Bin-Packing Constraints

better but complementary and is shown to be useful on practical
problems in our experiments.

• We improve the failure detection test based on fast bin-packing
lower bound algorithm by proposing a different reduction and us-
ing a stronger bin-packing lower bound that the one used in [52].

• We also introduce a global cardinality redundant constraint for the
bin-packing constraint with propagator filtering dynamically the
cardinality variables.

Inconsistency detection based on the Preemption Relaxation

Previous section recalls the filtering introduced by Shaw for the Pack
constraint [52]. The relaxation of Shaw is to work on each bin sepa-
rately with knapsack reasoning to filter. We suggest another relaxation
complementary which is the preemption of items to detect inconsisten-
cies not detected by Shaw’s propagators.

The preemption relaxation is that items can be split among several
bins.

Given a partial2 solution for Pack([B1, ..., Bn], [s1, ..., sn], [L1, ..., Lm])
the consistency test succeeds if it is possible to find a preemptive sched-
ule of the unassigned items such that:

• each (part of) item j ∈ U is scheduled in a bin allowed by its
domain (∈ Dom(Bj)) and

• the bin capacities are not exceeded.

Example 18. Consider the following bins and items:

• 5 bins with capacity 5: ∀i ∈ [1..5], Dom(Li) = [1..5].

• 11 items with sizes ∀i ∈ [1..10], si = 1 and s11 = 2.

• Dom(B1) = [1..5] and ∀i ∈ [2..11], Dom(Bi) = {4, 5}.

We immediately see that the total size of the items placed in the last
two bins is 11 (9 items of size 1 and one item of size 2). But the total
space available in the last two bins is only 10 (two times the capacity
5). Hence it is impossible to place preemptively the last 10th items into
the last two bins. The constraint Pack should fail in such a case but
unfortunately it does not detect the failure.

2some items may already be assigned

4.1 Bin-Packing Constraint 93

The preemption based inconsistency test can be achieved in poly-
nomial time by solving a maximum flow problem in a bipartite graph
similarly to the domain consistency filtering of the Global Cardinality
Constraint [34]. For the sake of completeness we recall some important
preliminaries about network flows inspired from [6] and [34].

A flow network G = (V,A) is a directed graph in which each arc
(u, v) ∈ A has non negative integer capacity c(u, v) ≥ 0. If (u, v) /∈ A,
we assume that c(u, v) = 0. Two vertices has a special status in a
network flow: the source s and the sink t. A path in a graph from v1 to
vk is a sequence of vertices [v1, v2, . . . , vk] such that (vi, vi+1) is an arc
for i ∈ [1, . . . , k − 1]. We assume the network with no symmetric pairs
of arcs and connected such that for every vertex v ∈ V there is a path
s v t. A flow in G is real-valued function f : V × V → < that
satisfies the following three properties:

• Capacity constraint: ∀u, v ∈ V : f(u, v) ≤ c(u, v).

• Skew symmetry: ∀u, v ∈ V : f(u, v) = −f(v, u).

• Flow conservation: ∀u ∈ V \ {s, t} :
∑

v∈V f(u, v) = 0

The quantity f(u, v), which can be positive, zero, or negative is called
the flow from vertex u to vertex v. The value of a flow f is defined
as |f | =

∑
v∈V f(s, v). We are interested in the maximum-flow problem

that is finding a flow of maximum value in a flow network. An important
property is that there exists an maximum flow from s to t which is
integral on every arc in G.

The variable-value graph [26] of the variables [X1, . . . , Xn] is a di-
rected bipartite graph from the variables to the values such that there
is an arc from a variable vertex X to a value vertex v if v ∈ Dom(X).

For a Pack([B1, ..., Bn], [s1, ..., sn], [L1, ..., Lm]) constraint we build a
flow network that we denote N(Pack). The consistency of Pack with
the preemption relaxation is tested by solving a maximum flow problem
in N(Pack).

Definition 13 (N(Pack)). The flow network N(Pack) is composed of

• The variable-value graph of the variables [B1, . . . , Bn] with an in-
finite capacity for these arcs.

• A source vertex s is linked to every item vertex j with a capacity
equal to the size of the item sj .

94 Bin-Packing Constraints

Figure 4.1: Flow network N(Pack) of Example 18.

• Every bin vertex i is linked to a sink vertex t with a capacity equal
to the capacity of the bin Lmax

i .

Example 19. Figure 4.1 gives the flow network N(Pack) of Example 18

Note that to every maximum flow inN(Pack) with value (
∑

i∈[1..n] si)
corresponds a preemptive schedule of the items satisfying the bin capac-
ity and such that (part of) items are only placed into bins allowed by
their domains. The amount of an item placed into a bin is given by
the flow value of the arc from the item vertex to the bin vertex. The
contrary is also true, given a preemptive schedule of the items satisfying
the bin capacity and such that (part of) items are only placed into bins
allowed by their domains, it is immediate to build maximum flow in
N(Pack). Because the preemption hypothesis is a relaxation of the real
problem, the following lemma gives an easy way to detect inconsistent
partial solutions to the Pack constraint.

Lemma 7. If the maximum flow in N(Pack) from the source s to the
sink t is less than (

∑
i∈[1..n] si) then Pack is inconsistent.

In a flow network G = (V,A) the Edmonds-Karp algorithm finds a
maximum flow in O(|V | · |A|2). For the network of interest N(Pack),
|V | = n + m + 2 ∼ O(n) since we suppose there are less bins than
items. The number of arcs is dominated by the number of arcs in the
variable-value graph that is O(n · m) if every item can be placed in
every bin. Hence the complexity of finding a maximum flow in N(Pack)

4.1 Bin-Packing Constraint 95

is O(n · (n · m)2) = O(n3m2). In practice, this complexity is much
more efficient since it is maintained incrementally during the search as
explained in the implementation section.

Implementation details

To implement the network flow N(Pack), we use an implicit represen-
tation of the graph. The flow is stored in an m× n integer matrix such
that the flow of an arc can be updated in constant time. Additionally,
an array of size n stores the flow values of the arcs from the source to
the item vertices and one array of size m stores the flow from the bin
vertices to the sink. The maximum flow is maintained incrementally:

• When a bin is removed from the domain of an item and that the
corresponding arc has a positive flow value in the current network
flow, the flow is not maximum anymore. Indeed the flow is updated
to reflect the fact that this arc does not exists anymore. Then a
maximum flow is retrieved incrementally with the augmenting path
algorithm. A failure occurs if it is not possible to place completely
every items.

• Whenever the upper bound Lmax
j of a load variable is decreased.

If the flow in the arc from Lj to the sink t is larger than Lmax
j , the

flow is decreased to satisfy this new capacity that is Lmax
j . Then

a new maximum flow is computed from the current one. A failure
occurs if it is not possible to place completely every items.

Note that the current flow is valid on backtracking since arcs are only
added. This prevent us to deal specifically the backtracking and to store
and restore state of the network flow.

Experiments

Table 4.1 illustrates the results on Assembly Line Balancing instances
with the failure detection based on the preemption relaxation. We can
see that this filtering is interesting only for one instance: GUNTHER
8. For the other instances it introduces an overhead in time that is not
compensated by the stronger pruning. We think that this idea is not
promising for the bin-packing problems because the relaxation is very
weak or it should be used in a quick shaving procedure.

96 Bin-Packing Constraints

inst. caract. pack pack+flow
name stations solved fails time max solved fails time max

BUXEY 6 1 9 33 55 1 9 183 55
BUXEY 8 1 0 12 41 1 0 61 41
BUXEY 10 1 11 69 34 1 11 347 34
GUNTHER 6 1 6 25 84 1 6 163 84
GUNTHER 8 1 146873 32672 63 1 15977 47366 63
GUNTHER 10 1 49430 16503 50 1 38567 136826 50
HAHN 6 1 133 259 240 1 64 640 240
HAHN 8 1 281 675 190 1 103 1766 190
HAHN 10 1 0 33 177 1 0 258 177
LUTZ1 6 1 78 109 2396 1 41 259 2396
LUTZ1 8 1 2016 778 1860 1 1264 2747 1860
LUTZ1 10 1 7713 3965 1526 1 1558 6005 1526
LUTZ2 6 1 7821 3088 81 1 4714 16963 81
LUTZ2 8 1 2 78 61 1 2 599 61
LUTZ2 10 0 256803 200002 50 0 33602 200034 50
LUTZ3 6 1 1502 1393 275 1 1490 12652 275
LUTZ3 8 1 29756 22153 207 0 22725 200013 208
LUTZ3 10 1 250192 137974 165 0 24969 200005 169
MITCHELL 6 1 0 6 18 1 0 37 18
MITCHELL 8 1 0 7 14 1 0 50 14
MITCHELL 10 1 0 8 13 1 0 81 13
ROSZIEG 6 1 1 7 21 1 1 41 21
ROSZIEG 8 1 19 23 16 1 19 142 16
ROSZIEG 10 1 3 15 14 1 3 150 14
SAWYER 6 1 6 27 55 1 6 131 55
SAWYER 8 1 9 19 41 1 9 93 41
SAWYER 10 1 13490 6865 34 1 7651 42422 34
TONGE 6 0 559218 200001 586 0 47858 200007 586
TONGE 8 0 418464 200000 442 0 89374 200001 442
TONGE 10 0 392998 200000 352 0 22911 200010 352
WARNECKE 6 1 2129 1940 258 1 741 3800 258
WARNECKE 8 1 64261 31150 194 0 50648 200013 195
WARNECKE 10 0 197549 200001 157 0 30678 200008 157
WEE-MAG 6 1 1 41 250 1 1 314 250
WEE-MAG 8 1 9 59 188 1 9 505 188
WEE-MAG 10 0 531952 200001 152 0 36520 200000 152

Table 4.1: Results of the failure detections with flow on
Assembly Line Balancing Instances

4.1 Bin-Packing Constraint 97

Filtering based on the Preemption Relaxation

If a (part) of an item j does not occur in bin i in any preemptive solution
of the constraint, bin i can be removed from the domain of variable
Bj . The network flow N(Pack) can be used to detect zero flow arcs by
computing the strongly connected components (scc’s) on the residual
graph similarly to the Global Cardinality Constraint [34]. The idea is to
detect in N(Pack) the arcs from items to bins that don’t participate in
any maximum flow. These arcs are identified by computing the scc’s on
the residual graph of a maximum flow in N(Pack). If an arc (Item,Bin)
has a flow value of zero in the maximum flow and if its extremities belong
to two different scc’s of the residual graph, it can be safely removed (the
Bin is removed from the domain of Item) since it is a zero flow arc.
The complexity of this filtering is dominated by the computation of
the scc’s that is O(n · m) (linear in the number of arcs and vertices).
Although the theoretical complexity is smaller than the one necessary to
maintain the maximum flow, in practice this filtering is not incremental
and slows down significantly the propagator. We made some preliminary
experiments showing that the cost of this filtering is never compensated
by the reduced search space.

Inconsistency detection based on Fast Bin Packing Lower Bounds

We have seen in Section 4.1.2 the inconsistency detection proposed by
Shaw based on a reduction to a standard bin-packing problem. We
suggest a different reduction which is in some case stronger in the sense
that for a same lower bound algorithm, our reduction allows to detect
inconsistencies that are not detected with Shaw’s reduction.

Improvement of the inconsistency detection

• Take the maximum free space as bin capacity

c = max
i∈[1..m]

(Lmax
i − sum(Ri)).

• The set of items to be packed is U ∪ {a1, . . . , am} where

– U is the set of not yet assigned items.

– ai is a pseudo item created to take into account the fact that
the free space of bin i might be smaller than c. The size of
item ai is (c− (Lmax

i − sum(Ri))).

98 Bin-Packing Constraints

The following example shows that the reduction proposed above finds
an inconsistency that is not detected with Shaw’s reduction.

Example 20. Consider a Pack constraint with two bins. The domains of
the load variables are Dom(L1) = Dom(L2) = [4..8]. One item of size 4
is packed in each bin: Dom(B1) = {1}, Dom(B2) = {2}, s1 = 4, s2 = 4.
Three other items are unpacked Dom(B3) = Dom(B4) = Dom(B5) =
{1, 2} with respective sizes s3 = 3, s4 = 3, s5 = 2. This partial solution
is represented on the left of Figure 4.2. The constraint is inconsistent
since the two unpacked items of size 3 must be in two different bins and
the remaining space in each bin is consequently not sufficient to accept
the last item of size 2. The consistency test with the reduction of Paul
Shaw will not detect this inconsistency while our reduction will detect
it:

• Shaw reduction: The capacity of the bin is 8 (maximum upper
bounds of load variable). Two pseudo items are created with size
4. Hence the sizes of the items to pack are 4, 4, 3, 3, 2. As shown
on the middle of Figure 4.2 this can be done with two bins hence
the constraint is considered as consistent with this test.

• Our reduction: The capacity of the bin is 4 (maximum free space
available). No pseudo items are created since the free space is the
same in both bins. The sizes of the items to pack are 3, 3, 2. As
shown on the right of Figure 4.2 this can be done with at least
three bins hence the inconsistency is detected since only two bins
are available.

We don’t know if the contrary is also true that is if Shaw’s reduction
allows to detect inconsistencies that we cannot detect (we couldn’t find
a counter example nor prove that it is impossible). Nevertheless, even
if this is the case, a lower bound algorithm is used after that on these
reduced problem to detect the inconsistency. Since lower bound algo-
rithms that we use don’t have a property of monotonicity and that both
reductions are linear, we think that they should both be used inside a
propagator to benefit from the advantages of the two.

The inconsistency test proposed by Paul Shaw can also be improved
by using a different lower bound for the reduced bin-packing problem.
Paul Shaw propose to use the bound L2 of Martello and Toth [28].
Recently the lower bound L3 of Labbé [25] has been proved to be always

4.1 Bin-Packing Constraint 99

Partial Sol. Pseudo Items Unpacked Items

c

Solution with 2 bins
with Shaw reduction

No Pseudo
Items

c

At least 3 bins required
with our reduction

Pack Constraint Shaw reduction New reduction

c

Figure 4.2: Illustration of the inconsistency test based on
bin-packing reductions

larger or equal and to benefit from a better worst case performance ratio
for a same linear computation time.

Let us denote by N = {1, . . . , n′} the set of items to be packed in the
reduced bin packing problem (unpacked items and pseudo items) and
their weights w1, . . . , wn′ . We now formulate the lower bounds L2 and
L3 following the notations from [3] with W (a, b) = {i ∈ N |a < wi ≤ b}
and W (a, b) = {i ∈ N |a ≤ wi ≤ b}:

L2 = max
0≤ν≤c/2

{L2(ν)}

L2(ν) = |W (c/2, c)|+ l(ν)

l(ν) = max

(
0,

⌈∑
i∈W (ν,c−ν)wi − |W (c/2, c− ν)| · c

c

⌉)
L3 = max

0≤v≤c/3
{L3(ν)}

L3(ν) = |W (c/2, c)|+ dH/2e+ p(ν)

p(ν) = max

(
0,

⌈∑
i∈W (ν,c−ν)wi − (|W (c/2, c− ν)|+ dH/2e) · c

c

⌉)

Where H denote the set of items having their weight in]c/3, c/2]
that cannot be matched with items having their weight in]c/2, 2c/3].

We give some intuitions on each terms of these bounds:

• |W (c/2, c)|: For both bounds each items from W (c/2, c) must be
placed in a different bin since two items from this set cannot fit

100 Bin-Packing Constraints

together in a bin. This is why there is the term |W (c/2, c)| in both
bound expressions.

• l(ν): All the items with size larger or equal to ν cannot be placed
with any items from W (c − ν, c) (items smaller that ν are not
considered). With |W (c/2, c)|, we already packed each items of
W (c/2, c−ν) in separate bins. The idea is to fill preemptively and
completely these bins with the items of W (ν, c− ν). The eventual
left over that is (

∑
i∈W (ν,c−ν)wi− |W (c/2, c− ν)| · c) is used to fill

(preemptively) new bin(s). Since different values for ν can lead
to different l(ν), the maximum over ν is taken as the contributing
term in the bound.

• dH/2e: For the bound L3, we now explain the addition of the
term dH/2e. A bin cannot contain more than two items from
the set W (c/3, c/2) and of course no more than two items from
the set W (c/3, c). We try to pair as much items as possible from
the set W (c/3, c/2) with the items from W (c/2, c) already placed
in separate bins. The items from W (c/3, c/2) that could not be
matched are paired together in different bins. This is the origin of
the term dH/2e in the bound L3.

• p(ν): the explanation of this term is similar to the one of l(ν).

These bounds can be computed in linear time when the size of the
items are sorted. Here follow some details about the computation of
these bounds:

• These bounds seem to require a pseudo-polynomial computation
time because of the maximization over ν in the last term. Actually,
only the values for ν corresponding to a size of the item set need
to be tested.

• The set H can be computed efficiently with an adapted first fit
procedure: by assigning the smallest remaining size to the remain-
ing bin having the smallest residual capacity. H is simply the
set of items from W (c/3, c/2) that could not be assigned through
this process to one of the |W (c/2, c)| bins (each of these bins has
already one item from W (c/2, c)).

• An algorithm to compute L2 is described in [28]. We implemented
a linear linear time algorithm to compute L3.

4.1 Bin-Packing Constraint 101

It has been shown in [3] that L3 ≥ L2. Next example illustrates on a
small instance that L3 might be larger than L2.

Example 21. Let c = 10 and the weight vector be [4, 4, 4, 4, 4]. For both
bounds W (c/2, c) = φ. For the L2 bound : L2(0) = L2(4) = d(20 −
0)/10e = 2. Hence L2 = 0 + 2 = 2. For bound L3, H = {4, 4, 4, 4, 4}.
Hence the only contributing term in L3 is dH/2e = 3.

It as recently been shown in [3] that the asymptotic performance of
L3 are better than for L2. We first recall the definition of the worst-case
asymptotic performance ratio R∞(L) for a bound L then we give the
performance of both bounds.

Definition 14. The worst-case asymptotic performance ratio R∞(L)
for a lower bound L is defined as

R∞(L) = lim
s→∞

sup
{
L(I)

OPT (I)
| ∀I : OPT (I) ≥ s

}
where I is a bin-packing instance and OPT (I) is the optimal number of
bins for the instance.

Theorem 10. R∞(L2) = 2/3 [28] and R∞(L3) = 3/4 [3].

Experiments on bin-packing problems

We show how to model a bin-packing problem in Comet using the
search procedure described in [52]: We use a standard search procedure,
complete decreasing best fit (CDBF), which packs items in order of non-
increasing size, packing each item in the first bin with least free space
that will accommodate it. On backtracking, the search states that the
chosen item cannot be placed in the selected bin. A symmetry breaking
rule is also used which states that on backtracking, all ”equivalent” bins
are also eliminated as candidates for the current item and indeed all
other unpacked items of the same size. An equivalent bin is one which
carries the same load as the one being eliminated from consideration. In
addition, no choice point is created if all available bins for a particular
item are equivalent: the item is packed into the first of them. Finally,
we added the additional dominance rule which states that if an item can
fill a partially filled bin to capacity, then it is immediately packed in this
bin [52].

We improve this search procedure with the addition of another im-
portant dominance rule from [23] which state that: if for a bin, at most

102 Bin-Packing Constraints

one item can be added to it without violating its capacity, then add im-
mediately the largest item fitting into it. The optimal solution is found
by solving a succession of satisfaction problems. Initially, the number of
available bins is set with the lower bound L1 and each time it is proved
that no solution exists, the number of bins is incremented until a solu-
tion is met. The complete implementation is given on Listing 4.1. There
are only two sets of variables:

• x[i] indicates the bin where item i is placed, and

• l[j] is the total size packed into bin j.

The integer nbBins is the number of available bins initially computed
with the L1 lower bound. These two sets of variables are linked with
the multiknapsack constraint and we additionally add our new failure
detection propagator called binpackingLB.

We start by explaining the search and the dynamic symmetry break-
ing strategy then we explain the dominance rules in Listing 4.2. The
items are assumed to be sorted in decreasing weights. The search starts
by setting to 0 the capacity of the bins with an index larger than nbBins
to ensure that at most nbBins are available. Then the heaviest available
item is selected (line 23) and placed in the first available bin (line 25).
The array currfill which is the current packed load of each bin (sum of
the weight of items placed into each bin) is used in the subsequent lines
for the symmetry breaking. Note that at line 25, at most one empty
bin is tried since all these empty bins are equivalent. When backtrack-
ing, the onFailure block is executed (meaning that the placement of
item i did not succeed into bin b) and all the equivalent items are pre-
vented to be placed into an equivalent bin in the alternatives. The call
cp.restartOnCompletion() at line 10 causes the block onRestart to
be executed if the satisfaction problem has no solution before restarting
the search again. We simply increment the number of available bins by
1 in this onRestart block.

The Listing 4.2 that must be plugged into line 21 of Listing 4.1
implements the two dominance rules. The dominance rules detection
is executed at each node of the tree. The two rules are placed inside
a loop (while (dominance)) until no more dominance is detected and
the branching can continue. The first simpler rule is implemented at
lines 4–5 and tries to detect if a bin can be completed up to capacity
with one item. The second rule lines 10–28 checks if it is impossible to

4.1 Bin-Packing Constraint 103

Listing 4.1: Bin-Packing Comet Model

1 range Items; range Bins;
2 int weights [Items]; int capa;
3 float totWeight = sum(i in Items) weights[i];
4 Integer nbBins((int)ceil(totWeight/capa));
5
6 Solver<CP> cp();
7 var<CP>{int} x[Items](cp,Bins);
8 var<CP>{int} l[Bins](cp,0..capa);
9

10 cp.restartOnCompletion();
11 solve<cp> {
12 cp.post(multiknapsack(x,weights,l));
13 cp.post(binpackingLB(x,weights,l));
14 } using {
15 forall(b in Bins: b>nbBins)
16 cp.label(l[b],0);
17 while(!bound(x)){
18 int currfill[b in Bins] =
19 sum(i in Items: x[i].bound() && x[i].getValue()==b) weights[i];
20
21 // dominance rules from Listing 4.2
22
23 selectMin(i in Items:!x[i].bound()) (i){
24 int ms = max(0,maxBound(x));
25 tryall<cp>(b in 1..ms+1)
26 cp.label(x[i],b);
27 onFailure{
28 forall(j in Items: !x[j].bound() && weights[j]==weights[i])
29 forall(b in 1..ms+1: currfill[b]==currfill[b]){
30 cp.diff(x[j],b);
31 }
32 }
33 }
34 }
35 }
36 onRestart {
37 nbBins := nbBins+1;
38 }

104 Bin-Packing Constraints

pack two items into a bin. If this is impossible, lines 22–27 are executed
and the largest item that can be placed is packed into the bin.

The objective of this experiment is to discover if our improved failure
detection makes a difference in practice on pure bin-packing problems.
We experiment the Comet model of Listing 4.2 on classical bin-packing
instances introduced in [47] with the failure detection of [52] and with
our new failure detection. Contrarily to [52] that experimented on the
instances with 50 items, we work on larger instances with 100 items3.
The data set if composed of 180 instances and we report only in Table
4.2 the results on the instances for which there is a difference in the
search tree. The timeout was set to 300 seconds. A total of 10 instances
could not be solved with our new failure detection test and 14 instances
could not be solved with Shaw’s test. These 4 instances that we can
solve with our new test are the most impressive differences. The results
on instances N2C1W1B and N2C2W1A are particularly appealing since
we obtain a small number of failures and we reach the timeout with
Shaw’s test. The other results are less significant since we are only able
to reduce the number of failures from a few percents up to 50 percents
on some instances.

A Dynamic Redundant Global Cardinality Constraint

The conjunction of a multiknapsack constraint and a global cardinality
constraint (gcc) [34] occurs in the cardinality constrained bin packing
problem [20, 24]. We show in this section that a bin-packing reasoning
allows to filter the cardinalities and consequently the places where the
items can be placed.

The idea is to reason on the maximum number of items that can be
placed into a bin as illustrated in the following example.

Example 22. Consider a pack constraint with 5 bins of capacity 3 and
five items of size 2 Pack([B1, ..., B5], [2, 2, 2, 2, 2], [L1, ..., L5]), ∀i ∈ [1..5],
Dom(Li) = [0..3], Dom(B1) = Dom(B2) = {1, 2}, Dom(B3) =Dom(B4)
= {3, 4}, Dom(B5) = {1, . . . , 5}. Clearly because of the capacity of the
bins (3) and the size of the items (2), each bin can accept at most one
item. Since the four first bins are occupied by the four first items, the
fifth item can only be placed in in the last bin: Dom(B5) = {6 1, 6 2, 6 3, 6

3these instances are very difficult to solve without the additional dominance rule
that we use.

4.1 Bin-Packing Constraint 105

Listing 4.2: Dominance rules for Bin-Packing

1 bool dominance=true;
2 while(dominance){
3 dominance=false;
4 select(i in Items, b in Bins: !x[i].bound() &&
5 currfill[b]+weights[i]==capa && b<=nbBins){
6 cp.label(x[i],b);
7 currfill[b] += weights[i];
8 dominance=true;
9 }

10 forall(b in Bins: b<=nbBins){
11 set{int} candidates = filter(i in Items)(!x[i].bound() &&
12 currfill[b]+weights[i]<=capa);
13 bool possible = false;
14 selectMin(i in candidates)(weights[i]){
15 selectMin(j in candidates:j!=i)(weights[j]){
16 if(currfill[b]+weights[i]+weights[j]<=capa){
17 possible=true;
18 }
19 }
20 }
21 if(! possible){
22 selectMax(i in candidates)(weights[i]){
23 cp.label(x[i],b);
24 currfill[b] += weights[i];
25 dominance=true;
26 }
27 }
28 }
29 }

106 Bin-Packing Constraints

Table 4.2: Comparison of the improved failure detection
on bin-packing instances

New failure detection Shaw Failure Detection
Instance Bins Fails Time(s) Bins Fails Time(s)

N2C1W1A 48 174208 200 −1 243317 300
N2C1W1B 49 1640 26 −1 901785 300
N2C1W1D 50 7684 70 50 15329 75
N2C1W1E 58 1551 50 58 2763 58
N2C1W1F 50 26359 92 50 47481 117
N2C1W1H 52 3318 76 52 3601 77
N2C1W1O 48 2512 82 48 3358 83
N2C1W4A 73 2511 63 73 4523 78
N2C1W4E 73 4902 78 73 4971 78
N2C1W4M 72 2440 59 72 4726 73
N2C2W1A 42 1420 28 −1 700851 300
N2C2W1H 46 346579 142 −1 678265 300
N2C2W2B 56 1485 52 56 2863 67
N2C2W2E 54 1378 51 54 3306 65
N2C2W2F 48 10763 77 48 15173 79
N2C2W2I 49 8997 78 49 15736 80
N2C2W2K 50 3104 57 50 3445 56
N2C2W2M 54 1378 44 54 2506 51
N2C2W4T 57 1540 50 57 2815 74
N2C3W2D 41 114645 134 41 118918 127
N2C3W2S 43 21153 42 43 21606 42

4.1 Bin-Packing Constraint 107

4, 5}. This filtering is not achieved by the IloPak constraint and would
not be possible neither with the preemption filtering based on flows.

The reasoning used to filter the domain of the Bi’s is achieved in two
steps:

1. For each bin, an upper bound on the maximum number of items
that can be placed into that bin is computed given the capacity of
the bin.

2. A global cardinality constraint (gcc [34]) can be used to filter the
domain of the B′is given the cardinalities computed in previous
step.

A gcc([D1, . . . , Dm], [X1, . . . , Xn]) constraints holds if and only if
∀i ∈ [1..m] : Di = |{Xj |Xj = i ∧ j ∈ [1..n]}|. We can post a cardinality
constraint gcc([D1, . . . , Dm], [B1, . . . , Bn]) redundant to
Pack([B1, ..., Bn], [s1, ..., sn], [L1, ..., Lm]) with a propagator responsible
to filter the upper bound of the cardinality variable Di by computing an
upper bound on the number of items that can be placed inside the bin
i. The filtering applied by the propagator on the cardinality variable Di

of the bin i is

Dmax
i ← min(Dmax

i , max
T⊆Ci

{|T | | sum(Ri ∪ T) ≤ Lmax
i })

where Ci is the candidate set of bin i (unpacked items that have bin i
inside their domain). This propagation rule is computed in linear time
if the items are sorted in increasing size.

The constraint gcc([D1, . . . , Dm], [B1, . . . , Bn]) is thus a redundant
constraint where the domain of the variables D1, . . . , Dm are tightened
during the search by an external propagator. This redundant constraint
is particularly useful when the sizes of the items are nearly equal because
in this case the upper bounds computed on the cardinality variables are
quite precise. This is the case for example in the triplet data set for the
bin-packing problem [9]. Note that to gain efficiency, the gcc should not
propagate the cardinality variables because it is time consuming and not
useful in this case 4.

4Unfortunately it is often not possible to deactivate this propagation

108 Bin-Packing Constraints

4.2 Bin-Packing with Precedence Constraints

We are interested here in bin packing problems with precedence con-
straints between items (BPPC). A precedence constraint between items
a1 and a2 is satisfied if item a1 is placed in a bin B1, and item a2 in a
bin B2, with B1 ≤ B2.

BPPC are ubiquitous in assembly line balancing problems in the in-
dustry5. We are given a set of tasks of various lengths, subject to prece-
dence constraints, and a time constant called cycle time. The problem is
to distribute the tasks over workstations along a production (assembly)
line, so that no workstation takes longer than the cycle time to complete
all the tasks assigned to it (station time), and the precedence constraints
are satisfied. The decision problem of optimally partitioning (balancing)
the tasks among the stations with respect to some objective is called the
assembly line balancing problem (ALBP) [4, 49].

In particular, when the number of stations is fixed, the problem is to
distribute the tasks to stations such that the station time is balanced,
that is to minimize the cycle time. This type of problems is usually
called Simple ALBP-2 (SALBP-2) [4]. It is clear that SALBP-2 and
BPPC are equivalent.

BPPC and SALBP-2 can be solved by exact or heuristic methods.
We are interested here in exact methods using constraint programming.
Existing exact methods are usually dedicated branch and bound algo-
rithms such as Salome 2 [22]. These algorithms are very efficient and
have been improved since about 50 years. Unfortunately these algo-
rithms are not flexible to new constraints that might appear in real appli-
cations such as minimal distance between two tasks or restriction on the
cumulated value of a particular task attribute (see the problem classifier
available on www.assembly-line-balancing.de for more details). When
such constraints are added, we obtain so-called Generalized Assembly
Line Balancing Problems (GALBP) [1]. The existing exact methods are
not flexible enough to handle GALBP efficiently. The Constraint Pro-
gramming (CP) paradigm is a good candidate to tackle such problems
since constraints can be added very easily to the model.

The Balanced Academic Curriculum Problem (BACP) is equivalent
to BPPC. The objective is to schedule courses into a given number of
periods such that the prerequisites relations between the courses are sat-

5See for example the two commercial softwares Proplannerr www.proplanner.com
and OptiLiner www.optimaldesign.com

4.2 Bin-Packing with Precedence Constraints 109

isfied and such that the workloads among the periods are well balanced.
Basic CP models have been proposed in [5, 18].

We propose a CP model for BPPC and SALBP-2, allowing a flexible
expression of new constraints, such as in GALBP. More specifically, our
contributions are:

• An efficient CP model for the bin packing with precedence con-
straints (BPPC) with redundant constraints.

• A new global constraint for BPPC and its filtering algorithm ex-
ploiting the transitive closure of the precedence graph.

• An experimental validation on standard SALBP-2 benchmarks,
showing the feasibility, the efficiency, and the flexibility of this
approach.

4.2.1 A CP Model for the Bin Packing with Precedence
Constraints

The bin packing with precedence constraint (BPPC) is the conjunction
of one

• Pack([B1, ..., Bn], [s1, ..., sn], [L1, ..., Lm]) constraint, and

• a set of precedence constraints Bi ≤ Bj for each edge (i, j) ∈ E of
a precedence (directed and acyclic) graph G({1, .., n}, E).

The filtering obtained by posting the Pack constraint and the prece-
dences constraints separately can be improved with redundant con-
straints. We introduce one set variable Pi representing the predecessors
of item i. An item j is predecessor of an item i if and only if item j is
placed in a bin preceding or equal to the bin of item i:

j ∈ Pi ↔ Bj ≤ Bi.

The lower bound of P i can be initialized to i plus the set of items having
an arc pointing to i in the transitive closure of the precedence graph.
The transitive closure is computed with the O(n3) Floyd Warshall’s
algorithm (see [6]). The preprocessing time to compute the transitive
closure for the instantiation of the lower bounds P i is negligible for the
instances considered in the experimental section (less than 150 tasks).
The upper bound P i is initially all the tasks, that is {1, ..., n}. A similar

110 Bin-Packing Constraints

reasoning holds for the successor set variable Si of item i. The set of
predecessors of item i can be used to filter the lower bound of Bi since
we know that items in Pi must be placed before item i. For a set U
with elements taken from {1, ..., n}, we denote by sum(U) the total size
of items in U , that is sum(U) =

∑
j∈U sj .

Theorem 11. A redundant constraint for the BPPC is:

sum(Pi) =
∑
k≤Bi

Lk. (4.1)

Proof. The left and right members are simply two different ways of
counting the cumulated size of the Bi first bins. The right member
is the natural way and the left member counts it by summing the sizes
of the items lying in a bin smaller or equal to Bi.

Computation of sum(Pi): Set variables are not yet implemented in
Comet. Therefore, we represent the set of predecessors of item i with
a vector of binary variables Pi,j with Pi,j = 1 ↔ Bj ≤ Bi. The com-
putation of sum(Pi) is then a binary knapsack constraint: sum(Pi) =∑

j∈[1..n] Pi,j · sj . The binary knapsack constraint can be expressed as
such with a sum constraint however the filtering is very weak. A pseudo
polynomial time algorithm was introduced in [55] to achieve arc con-
sistency on a binary knapsack constraints6. However in line balancing
instances, the size of the items can be arbitrarily large hence we pre-
fer a weaker but strongly polynomial filtering algorithm. We use the
lightBinaryKnapsack constraint of Comet which uses the filtering of
the multiknapsack constraint for a single bin.

In Ilog Solver, Pi is represented with subset bound set variables and
S(Pi) =

∑
j∈Pj

sj is expressed as such in Ilog Solver using a global
constraint called IloEqSum making a summation over a set variable. A
function must be defined to make the mapping between the indices of
items and the size of the items: f : {1, ..., n} 7→ {s1, ..., sn} : f(j) = sj .
The global constraint takes three arguments: a set variable, a variable
and a function:

IloEqSum(Pi, sum(Pi), f) ≡
∑
j∈Pi

f(j) = sum(Pi).

Unfortunately, we have no idea about the filtering achieved by IloEqSum.
6This algorithm is implemented as binaryknapsack in Comet

4.2 Bin-Packing with Precedence Constraints 111

Computation of
∑

k≤Bi
Lk: The formulation of

∑
k≤Bi

Lk could be
achieved with m binary variables for each item i. A better formulation
is possible introducing an array of m variables CL = [CL1, ..., CLm]:
CLi =

∑i
k=1 Lk for i ∈ [1, ...,m] (CL for Cumulated Load). With this

array,
∑

k≤Bi
Lk can be written with an element constraint [56] as CLBi .

We have implemented a dedicated bound-consistent element constraint
(sortedElement) faster than the general implementation of the element
constraint by taking into account that the variables [CL1, ..., CLm] are
increasing.

The Comet model of the redundant constraints (4.1) for the prede-
cessors of item i is:

lightBinaryKnapsack([Pi,1, . . . , Pi,n], [s1, . . . , sn], sum(Pi)) ∧ (4.2)
sortedElement([CL1, ..., CLm], Bi, sum(Pi)).

The Ilog model of the redundant constraints (4.1) for the predeces-
sors of item i is:

IloEqSum(Pi, sum(Pi), f) ∧ sum(Pi) = CLBi . (4.3)

Constraint (4.3) filters the domains of Pi, Bi and the Li’s. We define
similar constraints for the successor variables Si.

4.2.2 A Global Constraint for the BPPC

We give an O(n2) algorithm to filter further the domains of [B1, ..., Bn]
and [L1, ..., Lm]. This filtering does not subsume the filtering obtained
with the redundant constraints. Hence it must be added to the filtering
obtained with the redundant constraints.

By adding the redundant constraints (4.3) from previous section, we
mainly prune the lower bound of the variable Bi. Considering the array
of the upper bounds of the bin loads [Lmax

1 , ..., Lmax
m], the redundant

constraint enforces that

Bmin
i ← min{j :

j∑
k=1

Lmax
k ≥

∑
j∈Pi

sj} (4.4)

The filtering rule (4.4) is one of the pruning achieved by (4.3).
Example 23. An item has a size of 4 and has three predecessors of size
4,3,5. The maximum height of all the bins is 5. The item can certainly
not be placed before the bin 4 because for the bin 4 we have

∑4
k=1 L

max
k =

20 ≥ 16 while for the bin 3 we have
∑3

k=1 L
max
k = 15 < 16.

112 Bin-Packing Constraints

Rule (4.4) is a relaxation of the largest lower bound that could be
found for Bi:

• it assumes a preemption of the items over the bins, and

• it assumes that all the predecessors can potentially start from the
first bin.

We propose an algorithm to compute a better lower bound by conserving
the preemption relaxation but disallowing a predecessor j to start before
its earliest possible bin Bmin

j .
Our algorithm requires the predecessors j to be sorted increasingly

with respect to their earliest possible bin Bmin
j . This is achieved in

Θ(|P i|+m) with a counting sort algorithm [6] since the domains of the
Bj ’s range over [1, ...,m]. This complexity can be simplified to O(n)
since |P i| < n and typically m ∼ O(n) (less bins than items).

Algorithm 10 computes the minimum possible bin for item i by con-
sidering that :

• each predecessor j cannot start before its earliest possible bin Bmin
j

but can end in every other larger bin and

• an item can be split among several bins (the preemption relax-
ation).

Algorithm 10 first places the predecessors of i that is elements of P i.
This is done in the forall external loop. Then the item i is placed in the
earliest possible bin without preemption for it. We assume that there are
m + 1 bins of capacity [Lmax

1 , ..., Lmax
m ,

∑n
i=1 si]. The additional fictive

(m+ 1)th bin has a capacity large enough such that every items can be
put inside it. This guarantees the termination of the while loops. The
complexity of the algorithm is O(|P i| + m) where m is the number of
bins. For n items, the complexity becomes O(n2).

Algorithm 10 returns two values bin and idle. The value bin is used
to prune the lower bound of Bi:

Bmin
i ← max(Bmin

i , bin).

The value idle is used to prune Lmin
bin . Indeed if Bi is assigned then

bin = Bi. It means that Lmin
bin must be at least larger that Lmax

bin − idle:

Lmin
bin ← max(Lmin

bin , L
max
bin − idle).

Of course, we use a similar filtering using the set variable Si to filter
the upper bound of Bi.

4.2 Bin-Packing with Precedence Constraints 113

4.2.3 Experimental results

We experimented three different models for the BPPC on SALBP2 in-
stances:

A is a simple model obtained with the Pack constraint and the prece-
dence constraints.

B is the model A + the redundant constraints.

C is the model B + the global constraint.

The results are given on Table 4.3.

Analysis of results: The model B and C clearly dominate the model
A. See for example the instance LUTZ2 (10 ws) which cannot be solved
with model A but can easily be solved for model B and C. The global
constraint introduced in model C improves a bit the filtering but it
does not compensate the overhead in time introduced by the algorithm.
See for example the instance GUNTHER (8 ws) where the number of
backtrack with B is 3314 and 1635 for C but the time was increased from
4 seconds to 8 seconds. This overhead could be reduced by implementing
it in C++ rather than in the Comet language but even so, it does not
seem very interesting since the number of backtracks is never reduced
by a huge factor.

Discussion and Comparison with state of the art dedicated
algorithm: The state of the art algorithm for this problem is Salome 2
[22, 49]. A binary file of the implementation of the algorithm is available
on www.assembly-line-balancing.de. Salome 2 finds the optimal solutions
of almost all the instances within less than one second. As with our
solution, it is not able to find and prove the optimum for the instances
Wee-mag 10. Salome 2 uses a lot of dominance and reduction rules
specific to this problem and objective function. In real life assembly
line problems, additional requirements are possible and the dominance
rules used in Salome 2 are not valid anymore. Some possible additional
constraints are [1]:

• some tasks must be assigned in the same station,

• some tasks can not be assigned in the same station,

114 Bin-Packing Constraints

• there is a restriction on the cumulated value of particular task
attributes,

• some tasks need to be assigned to particular stations,

• some tasks can not be assigned to particular stations,

• some tasks need a special station,

• some tasks need a minimum distance to other tasks,

• some tasks need a maximum distance to other tasks.

All these additional constraints can be very easily added our CP model
without changing anything else while dedicated algorithms such as Sa-
lome 2 cannot.

Another advantage of the constraint programming approach is the
modularity offered.

The propagator for BPPC can be reused in a problem with another
objective function. For example, it is often desirable to smooth the
workload among a given number of stations [1, 49, 38]. This problem
is called Vertical Line Balancing. We have seen in Chapter 3 that it
can be efficiently achieved in CP with the global constraints spread and
deviation for the variance [31, 43] and the mean absolute deviation
[44].

Another classical problem in line balancing is the U-line Assembly
Line Balancing Problem (UALBP). It considers the case of U-shaped
(single product) assembly lines, where stations are arranged within a
narrow U. In this problem, workers are allowed to work on both side
of the U, i.e. on early and late tasks in the production process simul-
taneously. Figure 4.3 illustrate a problem with 4 work-stations (work-
ers). The circuit followed by the product is given by the direction of
arrows. The colors of the tasks is to distinguish in the solution the ones
achieved in the left-to-right or in the right-to-left direction of the prod-
uct. UALBP can be easily modeled in constraint programming and the
BPPC can also be reused in this problem. The modelization trick is to
divide each station into two stations, one for the left-to-right tasks of
the station and one for the right-to-left tasks of the station. Hence if
m work-stations are available, the load variables of the workstations are
L1, . . . , Lm before the division and it becomes L→1 , . . . , L

→
m , L

←
m , . . . , L

←
1

with the load sorted in the direction of the product along the line. The

4.2 Bin-Packing with Precedence Constraints 115

Figure 4.3: Example of the U-line Assembly Line Balanc-
ing Problem

precedence constraints of the BPPC are posted on these last load vari-
ables L→1 , . . . , L

→
m , L

←
m , . . . , L

←
1 and the link to the real work-stations is

simply that Lj = L→j + L←j .

116 Bin-Packing Constraints

Algorithm 10: Considering bins of maximum loads
[Lmax

1 , ..., Lmax
m ,

∑n
i=1 si], bin is the smallest bin index such

that every item from the set P i have been placed in a preemptive
way in a bin smaller or equal to bin without starting before their
earliest possible bin. The value idle is the remaining space in this
bin.
bin← 01

idle← Lmax
bin2

forall j ∈ P i \ {i} do3

/* invariant: bin is the smallest bin index such that items
{1, ..., j − 1} \ {i} have all been placed in a preemptive way in a
bin smaller or equal to bin without starting before their earliest
possible bin and idle is the remaining place in this bin. */

if Bmin
j > bin then4

bin← Bmin
j5

idle← Lmax
bin6

s← sj7

while s > 0 do8

if idle > s then9

idle← idle− s10

s← 011

else12

s← s− idle13

bin← bin+ 114

idle← Lmax
bin15

/* place item i without preemption */
if Bmin

i > bin then16

bin← Bmin
i17

idle← Lmax
bin18

while idle < si do19

bin← bin+ 120

idle← Lmax
bin21

idle← idle− si22

return bin, idle23

4.2 Bin-Packing with Precedence Constraints 117

Table 4.3: Comparison of the BPPC with redundant con-
straints and global constraints

A B C
Instance WS Sol Fails t(s) Max Sol Fails t(s) Max Sol Fails Time(s) Max

BUXEY 6 1 9 0 55 1 1 0 55 1 1 1 55
BUXEY 8 1 0 0 41 1 0 0 41 1 0 0 41
BUXEY 10 1 11 0 34 1 0 0 34 1 0 1 34
GUNTHER 6 1 6 0 84 1 0 0 84 1 0 1 84
GUNTHER 8 1 156175 30 63 1 3314 4 63 1 1635 8 63
GUNTHER 10 1 50206 18 50 1 6821 11 50 1 5422 21 50
HAHN 6 1 133 0 240 1 3 1 240 1 2 4 240
HAHN 8 1 281 1 190 1 14 1 190 1 10 4 190
HAHN 10 1 0 0 177 1 0 1 177 1 0 3 177
LUTZ1 6 1 78 0 2396 1 7 0 2396 1 6 1 2396
LUTZ1 8 1 1988 1 1860 1 355 1 1860 1 276 2 1860
LUTZ1 10 1 8533 4 1526 1 756 1 1526 1 422 2 1526
LUTZ2 6 1 7821 4 81 1 1 7 81 1 1 22 81
LUTZ2 8 1 2 0 61 1 1 7 61 1 1 21 61
LUTZ2 10 0 300599 200 50 1 81 8 49 1 39 24 49
LUTZ3 6 1 1588 1 275 1 6 9 275 1 4 24 275
LUTZ3 8 1 29966 25 207 1 7 9 207 1 3 24 207
LUTZ3 10 1 253053 139 165 1 264 11 165 1 91 27 165
MITCHELL 6 1 0 0 18 1 0 0 18 1 0 0 18
MITCHELL 8 1 0 0 14 1 0 0 14 1 0 0 14
MITCHELL 10 1 0 0 13 1 0 0 13 1 0 0 13
ROSZIEG 6 1 1 0 21 1 1 0 21 1 1 0 21
ROSZIEG 8 1 19 0 16 1 4 0 16 1 3 0 16
ROSZIEG 10 1 3 0 14 1 0 0 14 1 0 0 14
SAWYER30 6 1 6 0 55 1 0 0 55 1 0 1 55
SAWYER30 8 1 9 0 41 1 4 0 41 1 4 1 41
SAWYER30 10 1 14399 8 34 1 203 1 34 1 157 1 34
TONGE70 6 0 589183 200 586 0 57131 200 586 0 27784 200 586
TONGE70 8 0 448178 200 442 0 77357 200 442 0 31018 200 442
TONGE70 10 0 408923 200 352 1 10463 73 352 1 8542 124 352
WARNECKE 6 1 2227 2 258 1 99 2 258 1 99 6 258
WARNECKE 8 1 67519 36 194 1 23541 73 194 1 20751 139 194
WARNECKE 10 0 182235 200 157 0 59789 200 157 0 24856 200 157
WEE-MAG 6 1 1 0 250 1 1 4 250 1 1 11 250
WEE-MAG 8 1 9 0 188 1 6 4 188 1 6 11 188
WEE-MAG 10 0 517989 200 152 0 55917 200 152 0 26159 200 152

118 Bin-Packing Constraints

5
Conclusion

In the first part of this thesis we have introduced the bound consistent fil-
tering algorithms of two balancing constraints: spread and deviation:

• spread constraints the variance of a set of variables with a fixed
mean, and

• deviation constraints the mean absolute deviation of a set of
variables with a fixed mean.

The classical bound-consistency definition has been refined into the Q-
Bound-Consistency and Z-Bound-Consistency definitions following that
the relaxation is on in rational or integer interval domains. The propaga-
tors for spread and deviation have been developed for both definitions.

These constraints have been used to solve exactly instances of two
combinatorial problems:

• the vertical assembly line balancing problem, and

• the work load balancing of nurses in a hospital.

We have also shown that balancing constraints are useful to soften in a
new way a particular case of the global cardinality constraint in which
the ideal value distribution is given.

In the second part of this work we have improved the filtering the
bin-packing constraint by introducing a flow-based filtering. The results
of this approach are not really encouraging. We also improve a failure
detection algorithm for the bin-packing constraint using a new reduction
to a fast bin-packing lower-bound algorithm.

120 Conclusion

Finally we have shown that when bin-packing comes with prece-
dences between items, more of the structure can be captured by ex-
pressing redundant constraints based on the transitive closure of the
precedence graph. We also introduced a filtering algorithm for a bin-
packing constraint with precedences between items. Experiments show
that the new filtering helps a lot to solve assembly line balancing in-
stances.

Perspective and Future works

Balancing Constraints: Next table summarizes what has been done
for balancing constraints with a fixed mean:

spread deviation
Q-BC Z-BC Q-BC Z-BC

∆
√

[31]
√ √ √

X
√ √ √ √

The original specification of spread in [31] considered a variable
mean. The algorithms become more complicated with a variable mean
and some of them still need to be discovered as shown on the next table.

spread deviation
Q-BC Z-BC Q-BC 1 Z-BC

∆
√

[31]
√ 2 √

X
√

S
√

[31, 43]
√

As pointed out by Yves Crama, resource allocation problems have
strong similarities with spread and deviation. The next step is prob-
ably to implement a more general resource allocation global constraint
of the form

resource-allocation([X1, . . . , Xn], s, [f1, . . . , fn],∆)

1Described in a report but never published
2Informally described by Jean-Charles and I but never published

Conclusion 121

constraining that:

n∑
i=1

fi(Xi) ≤ ∆

such that :
n∑
i=1

Xi = s

where the fi are convex functions. Finding a Q-bound-consistent and
Z-bound-consistent lower bound for ∆ can be done respectively with
algorithm BRELAX2 and CONTINUOUS2 described p29 and p76 of [19].
But we think that pruning the bounds of variables Xi is a more difficult
exercise since those algorithms must still be discovered.

As pointed out by Jean-Charles Régin, it would be interesting to be
able to optimize the balance with respect to several balancing objec-
tive. For instance we could imagine minimizing the max, spread and
deviation criteria altogether. Be able to be Pareto optimal with re-
spect to several objective functions in CP is also an interesting topic for
future work.

Bin-Packing Constraints: We think that the flow based filtering is
a preliminary work but it might be worth to investigate it further. It
presents the advantage to consider globally all the bins and items at
once. We also think that it could be worth to try scaling algorithms for
bin-packing as it was the achieved for knapsack filtering. Finally, the
bin-packing constraint with precedences can also be improved. As future
work, we want to integrate the fast bin-packing lower bound algorithms
in this constraint. For instance, a bin-packing lower bound can be used
on the predecessors of an item to compute its earliest possible bin.

122 Conclusion

6
Annexes

Available Propagators

The most successful filtering algorithms introduced in this thesis are
available in Comet allowing to someone else from the scientific com-
munity to reproduce the results. We review the API of the exposed
propagators in Comet.

Balancing Constraints

The Z-bound-consistent propagators for spread and deviation with a
fixed sum/mean are implemented and available in the Comet API. The
Q-bound-consistent propagators were also implemented internally but
there are not publicly exposed since our experiences have shown that
they were less efficient in terms of filtering for a same time complexity.
The signature of the function that returns a spread constraint is the
following:

spread(var<CP>{int}[] x,int s,var<CP>{int} nd)

The arguments correspond exactly to the ones of spread(X, s,∆) used
along this text. The signature of the function that returns a deviation
constraint is:

deviation(var<CP>{int}[] x,int s,var<CP>{int} nd)

where the arguments also correspond to the ones of deviation(X, s,∆)
used along this text.

124 Annexes

Bin-Packing Constraints

Two bin-packing propagators using bin-packing products of this thesis
are available in Comet.

The first is the bin-packing lower bound algorithm with the signa-
ture:

binpackingLB(var<CP>{int}[] x,int[] size,var<CP>{int}[] load)

The arguments are the same as for the multiknapsack constraint that
is:

• x is the vector representing the bin where each item is placed,

• size is the vector representing the size of each item, and

• load is the vector representing the load variable of each bin (i.e.
the sum of the sizes of items placed into that bin).

The bin-packing reductions used are the new one introduced in this
thesis as well as the one of Paul Shaw and the bin-packing lower bound
algorithm implemented is the one of Labbé.

The second bin-packing constraint available is the bin-packing with
precedence constraints. This is a function that doesn’t return a Comet
constraint (void) like previous functions but it posts all the redundant
constraints when you call it.

multiknapsackWithPrecedences(var<CP>{int}[] x,int[] size,
var<CP>{int}[] load,PrecedenceGraph predGraph)

There is only one extra argument that is the precedence graph that must
be build before calling the function with the following API:

PrecedenceGraph::PrecedenceGraph(range nodes)
void addPrecedence(int i1,int i2)
set{pred} getAddedPrecedences()
range getItems()
int getNbPredecessors(int)
int getNbSuccessors(int i)
set{int} getPredecessors(int i)
set{int} getSuccessors(int i)

Annexes 125

The constructor only asks for a range that represents the nodes of the
graph. Then a precedence can be added between two nodes i1 and i2
with the method addPrecedence. There is no need to express explicitly
the transitive closure of the graph since this one is computed behind the
scene and the predecessors/successors of a node i in the transitive clo-
sure can be retrieved with getPredecessors/getSuccessors. The im-
plementation of this constraint relies only on the redundant constraints
introduced in Section 4.2 together with a post of the multiknapsack
constraint available in Comet implementing the filtering of Shaw. The
global constraint introduced in 4.2.2 was not exposed since the stronger
filtering did not pay off for most of the instances when added to the
redundant constraints.

Problem definitions

BACP (Balanced Academic Curriculum Problem) The goal is
to assign a period to courses in a way that the prerequisite relationships
are satisfied and the academic load of each period is balanced. Each
course is weighted by its number of credits. A prerequisite relation is a
strict precedence (<).

ALBP (Assembly Line Balancing Problem A given number of
workstations are placed along a conveyor belt. The workpieces are con-
secutively launched down the line from station to station until the end
of the line. Some operations are performed on any workpieces in each
station. The problem is to assign all the operations to the workstations
such that precedences between the operations are satisfied and some
objective is optimized.

SALBP2 (Simple ALBP of type 2) A particular version of the
general ALBP where the number of stations is fixed and the problem
is to distribute the tasks to stations such that cycle time is minimized.
This problem is similar to the BACP except that the precedences are
not strict (≤).

VSALBP2 (Vertical Simple ALBP of type 2) Same problem as
the SALBP2 except that the objective is to balance workload of the
stations rather that minimizing the cycle time.

126 Annexes

(BPP) Bin-Packing problem Given a bin capacity and sized items,
the objective is to minimize the number of bins necessary to place every
items (items cannot be split among several bins).

(BPPC) Bin-Packing problems with Precedence Constraints
We use this term to denote any problems where sized items must be
placed into bins with (≤) precedence constraints between items.

(FANP) Fair Assignment of Nurses to Patients in a hospital
This problem is to assign infants to nurses while optimizing the balance
of the nurse work loads which is essential for optimal quality of care.
Each infant is characterized by the amount of work he requires and the
zone where he is located. A nurse can work in only one zone. A nurse
cannot be responsible of more than a given upper bound of number of
children. The total amount of acuity of a nurse cannot exceed a given
value.

Bibliography

[1] Christian Becker and Armin Scholl. A survey on problems and
methods in generalized assembly line balancing. European Journal
of Operational Research, 168(3):694–715, 2006.

[2] Christian Bessiere, Emmanuel Hebrard, Brahim Hnich, and Toby
Walsh. Disjoint, partition and intersection constraints for set and
multiset variables. In Principles and Practice of Constraint Pro-
gramming CP 2004, pages 138–152, 2004.

[3] J.-M. Bourjolly and V. Rebetez. An analysis of lower bound pro-
cedures for the bin packing problem. Computer & Operations Re-
search, 32:395–405, 2005.

[4] Nils Boysen, Malte Fliedner, and Armin Scholl. A classification of
assembly line balancing problems. European Journal of Operational
Research, pages 674–693, 2007.

[5] C. Castro and S. Manzano. Variable and value ordering when solv-
ing balanced academic curriculum problem. Proc. of the ERCIM
WG on constraints, June 2001.

[6] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and
Charles E. Leiserson. Introduction to Algorithms. McGraw-Hill
Higher Education, 2001.

[7] Edward G. Coman, Jr. János Csirik, David S. Johnson, and Ger-
hard J. Woeginger. An introduction to bin packing. Compiles bib-
liograhy for a forthcoming book, 2004.

[8] Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck.
Solving the car-sequencing problem in constraint logic program-
ming. In ECAI, pages 290–295, 1988.

127

128 Bibliography

[9] Emanuel Falkenauer. A hybrid grouping genetic algorithm for bin
packing. Journal of Heuristics, 2:5–30, 1996.

[10] M. R. Garey and David S. Johnson. Computer and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[11] C. Gervet. New structures of symbolic constraint objects: sets and
graphs, 1993.

[12] Carmen Gervet. Constraints over structured domains. In F. Rossi,
P. van Beek, and T. Walsh, editors, Handbook of Constraint Pro-
gramming, chapter 17. Elsevier, 2006.

[13] Carmen Gervet and Pascal Van Hentenryck. Length-lex ordering
for set csps. In AAAI. AAAI Press, 2006.

[14] C. Gomes, M. Sellmann, C. van Es, and H. van Es. The challenge
of generating spatially balanced scientific experiment designs. Proc.
of CP-AI-OR, 2004.

[15] Stephen Gorard. Revisiting a 90-year-old debate: The advantages
of the mean deviation. British Journal of Educational Studies, pages
417–439, 2005.

[16] P. Van Hentenryck and L. Michel. The steel mill slab design problem
revisited. CP’AI’OR-08, Paris, France, 5015:377–381, May 2008.

[17] Pascal Van Hentenryck, Justin Yip, Carmen Gervet, and Grégoire
Dooms. Bound consistency for binary length-lex set constraints.
In Dieter Fox and Carla P. Gomes, editors, AAAI, pages 375–380.
AAAI Press, 2008.

[18] Brahim Hnich, Zeynep Kiziltan, and Toby Walsh. Modelling a
balanced academic curriculum problem. Proceedings of CP-AI-OR-
2002, 2002.

[19] T. Ibaraki and N. Katoh. Resource Allocation Problems. MIT Press,
1988.

[20] H. Kellerer and U. Pferschy. Cardinality constrained bin-packing
problems. Annals of Operations Research, 92:335348, 1999.

[21] Moutaz Khouja and Conrad Robert. Balancing the assignment of
customer groups among employees. International Journal of Oper-
ations and Production Management, pages 76–85, 1995.

Bibliography 129

[22] Robert Klein and Armin Scholl. Maximizing the production rate
in simple assembly line balancing – a branch and bound proce-
dure. European Journal of Operational Research, 91(2):367–385,
June 1996.

[23] R. Korf. An improved algorithm for optimal bin packing. In Pro-
ceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI-03), pages 1252–1258, 2003.

[24] M. Labbé, G. Laporte, , and S. Martello. Upper bounds and algo-
rithms for the maximum cardinality bin packing problem. European
Journal of Operational Research, 149:490–498, 2003.

[25] Martine Labbé, Gilbert Laporte, and Hélène Mercure. Capacitated
vehicle routing on trees. Operations Research, 39:616–622, August
1991.

[26] JL Lauriere. A language and a program for stating and solving
combinatorial problems. Artificial Intelligence, 1978.

[27] S. B. Liu, H. L. Ong, and H.C. Huang. Two bi-directional heuristics
for the assembly line type 2 problem. The International Journal of
Advanced Manufacturing Technology, 22:656–661, 2003.

[28] Silvano Martello and Paolo Toth. Knapsack Problems (chapter 8).
John Wiley & Sons Inc, 1990.

[29] Alan G. Merten and Mervin E. Muller. Variance minimization
in single machine sequencing problems. Management Science,
18(9):518–528, 1972.

[30] C Mullinax and M Lawley. Assigning patients to nurses in neonatal
intensive care. Journal of the Operational Research Society, 53:25–
35, 2002.

[31] G. Pesant and J.C. Régin. Spread: A balancing constraint based on
statistics. Lecture Notes in Computer Science, 3709:460–474, 2005.

[32] Thierry Petit, Jean-Charles Regin, and Christian Bessiere. Meta-
constraints on violations for over constrained problems. IEEE In-
ternational Conference on Tools with Artificial Intelligence, pages
358–365, 2000.

130 Bibliography

[33] Rachamadugu R and Talbot B. Improving the equality of workload
assignments in assembly lines. International Journal of Production
Research, 29:619–633, 1991.

[34] J-C. Régin. Generalized arc consistency for global cardinality con-
straint. AAAI-96, pages 209–215, 1996.

[35] J.C. Régin. Habilitation à diriger des recherches (hdr) : modeliza-
tion and global constraints in constraint programming. Université
Nice, 2004.

[36] J.C. Régin, T. Petit, C. Bessière, and J.-F. Puget. An original con-
straint based approach for solving over constrained problems. Sixth
International Conference on Principles and Practice of Constraint
Programming (CP 2000), 1894, 2000.

[37] Jean-Charles Régin. A filtering algorithm for constraints of differ-
ence in csps. In AAAI, pages 362–367, 1994.

[38] B. Rekiek, P. De Lit, F. Pellichero, E. Falkenauer, and A. Delcham-
bre. Applying the equal piles problem to balance assembly lines.
Proceedings of the 1999 IEEE International Symposium on Assem-
bly and Task Planning, pages 399–404, 1999.

[39] P. Schaus and Y. Deville. A global constraint for bin-packing with
precedences: Application to the assembly line balancing problem.
In Proceedings of the Twenty-Third AAAI Conference on Artifi-
cial Intelligence, pages 369–374, Chicago, Illinois, USA, July 2008.
AAAI Press.

[40] P. Schaus, Y. Deville, and P. Dupont. Bound-consistent devia-
tion constraint. In 13th International Conference on Principles and
Practice of Constraint Programming (CP), volume 4741 of Lecture
Notes in Computer Science, pages 620–634, Providence, RI, USA,
September 2007. Springer.

[41] P. Schaus, Y. Deville, P. Dupont, and J-C. Régin. Simplification
and extension of the spread constraint. In Future and Trends of
Constraint Programming, pages 95–99. ISTE, 2007.

[42] P. Schaus, Y. Deville, P. Dupont, and J.C. Régin. Simplification
and extension of spread. 3th Workshop on Constraint Propagation
And Implementation, 2006.

Bibliography 131

[43] P. Schaus, Y. Deville, P. Dupont, and J.C. Régin. Simplification and
extension of the spread constraint. Third International Workshop
on Constraint Propagation And Implementation, 2006.

[44] P. Schaus, Y. Deville, P. Dupont, and J.C. Régin. The devi-
ation constraint. In 4th International Conference Integration of
AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems (CPAIOR), volume 4510 of Lec-
ture Notes in Computer Science, pages 269–284, Brussels, Belgium,
2007. Springer.

[45] P. Schaus, P. Van Hentenryck, and J.C. Régin. Scalable load
balancing in nurse to patient assignment problems. In 6th In-
ternational Conference Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems
(CPAIOR), Lecture Notes in Computer Science, Pittsburgh, Penn-
sylvania, USA, 2009. Springer.

[46] Pierre Schaus, Pascal Van Hentenryck, and Alessandro Zanarini.
Corrected algorithm for the soft global cardinality constraint. In
TO APPEAR, 2010.

[47] A. Scholl, R. Klein, and C. Jurgens. Bison: A fast hybrid proce-
dure for exactly solving the one-dimensional bin packing problem.
Computers and Operations Research, 24:627645, 1997.

[48] Armin Scholl. Data of assembly line balancing problems. Technische
Universitat Darmstadt, 93.

[49] Armin Scholl and Christian Becker. State-of-the-art exact and
heuristic solution procedures for simple assembly line balancing.
European Journal of Operational Research, 168(3):666–693, 2006.

[50] Armin Scholl and Stefan Voß. Simple assembly line balancing:
Heuristic approaches. Journal of Heuristics, 2(3):217–444, 1997.

[51] M. Sellmann. Approximated consistency for knapsack constraints.
9th International Conference on Principles and Practice of Con-
straint Programming (CP 2003), page 679693, 2003.

[52] Paul Shaw. A constraint for bin packing. In Principles and Practice
of Constraint Programming CP 2004, pages 648–662, 2004.

132 Bibliography

[53] Helmut Simonis. Models for global constraint applications. Con-
straints, 12:63–92, March 2007.

[54] Barbara M. Smith. Modelling. In F. Rossi, P. van Beek, and
T. Walsh, editors, Handbook of Constraint Programming, chap-
ter 11. Elsevier, 2006.

[55] M. Trick. A dynamic programming approach for consistency and
propagation for knapsack constraints, 2001.

[56] Carillon J.-P. Van Hentenryck P. Generality versus specificity: an
experience with ai and or techniques. In Proceedings of AAAI-88,
pages 660–664, August 1988.

[57] Willem Jan van Hoeve, Gilles Pesant, and Louis-Martin Rousseau.
On global warming: Flow-based soft global constraints. J. Heuris-
tics, 12(4-5):347–373, 2006.

[58] Alessandro Zanarini, Michela Milano, and Gilles Pesant. Improved
algorithm for the soft global cardinality constraint. In CPAIOR,
pages 288–299, 2006.

