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ABSTRACT

Constrained Optimum Tree (COT) and Constrained Optimum Path (COP) are two
classes of problems which arise in many real-life applications and are ubiquitous in
communication networks, transportations, very large scale integration (VLSI) and dis-
tributed systems. Most of these problems are computationally very hard to solve. They
have been traditionally approached by dedicated algorithms including heuristics and
exact algorithms, which are often hard to extend with side constraints and to apply
widely because they depend strongly on the problem structures. Moreover, it is re-
quired huge research and programming efforts for solving new problems.

In this thesis, we construct a constraint-based local search (CBLS) framework,
called LS(Graph), for solving COT/COP applications, bringing the compositionality,
reuse, and extensibility at the core of CBLS and CP systems. The modeling contribu-
tion is the ability to express compositional models for various COT/COP applications
at a high level of abstraction, while cleanly separating the model and the search proce-
dure. The LS(Graph) framework will strengthen the modeling benefits of CBLS. By
using LS(Graph), users can quickly develop a local search algorithm for a new prob-
lem which gives, in most of cases, an acceptable solution while waiting for experts
who do research with huge efforts for dedicated algorithms. Moreover, this solution
can be used as the initial solution in more complex and hybrid algorithms.

The main technical contribution is a connected neighborhood based on rooted
spanning trees. The idea behind is to use rooted spanning tree for representing so-
lutions which are paths and their neighborhoods.This approach enables the genericity
of the framework from both modeling and computation standpoints.

The constructed framework is applied to some three COT (i.e., the edge-weighted
k-cardinality tree problem, the quorumcast routing problem, the problem of mini-
mizing congestions on ethernet networks) and four COP problems (i.e., the resource
constrained shortest path problem, the edge-disjoint paths problem, the routing and
wavelength assignment with delay side constraint problem, and the routing for net-
work covering problem). Experimental results show the potential benefits of the ap-
proach. On the one hand, we show the facility and the genericity of the resolution
of the COT/COP applications which can be extended with side constraints. On the
other hand, for the quorumcast routing and the edge-disjoint paths problems, we show
competitive results in comparing with existing techniques.
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1
INTRODUCTION

The goal of this dissertation is to provide a generic and efficient framework for solving
constrained optimum paths (COP) and trees (COT) problems on graphs by constraint-
based local search.

1.1 Context
In telecommunication networks, a routing problem supporting multiple services in-
volves the computation of paths minimizing transmission costs while satisfying band-
width and delay constraints. Also, we consider the problem of establishing routes
for connection requests between network terminals and it is typically required that
no two routes interfere with each other due to quality-of-service and survivability re-
quirements. In the telecommunication network design, we need to interconnect some
network terminals in order to transmit information satisfying some criteria, for in-
stance, the traffic congestion or connection cost is minimized. These problems can be
modeled by constrained optimum paths (COP) and trees (COT) problems on graphs
which consist of finding one or several paths, trees of a given graph optimizing an ob-
jective function while satisfying some given constraints. Such problems have been
extensively studied and solved in the literature, for instance, Degree Constrained
Minimum Spanning Tree (DCMST) [KES01, ALM06], Bounded Diameter Minimum
Spanning Tree (BDMST) [GvHR06], Capacitated Minimum Spanning Tree (CMST)
[RL04, AOS03], Minimum Diameter Spanning Tree (MDST) [NP01], Edge-Weighted
k-Cardinality Tree (KCT), [BB05, CKIL09], Steiner Minimal Tree (SMT) [Zac99,
dAUW01], Optimum Communication Spanning Tree Problems (OCST) [Fis07], Re-
source Constrained Shortest Path [BC89, DB03], Edge- and Vertex-Disjoint Paths
[BB07, Kle96, KS04, KS01a, CK03], Minimum Edge-disjoint paths with different
path costs [GCJ09, LMSL92], Multiple Choice Constrained Shortest Path [Smi06],
Path cover problems [NH79], Shortest path with mandatory nodes [DDD05], Routing
and Wavelength Assignment problems on optical networks [CB96, JMT07, ZJM00],
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Figure 1.1: A WDM optical network

Chinese Postman Problem [CMS02, YC02], Arc Routing Problem [GW81, MTY09,
KY10, HM01], etc.

Example In order to bring an intuition of applications to be tackled by this thesis, we
give an example of the routing and wavelength assignment problem on wavelength-
division-multiplexed (WDM) optical networks [CB96, JMT07, ZJM00]. The network
consists of a set of wavelength routers interconnected by point-to-point optical links
(see Figure 1.1).

We are given a set of connection requests represented by a set of pairs of vertices
on the given graph. For each pair (a, b), we need to find a path from a to b and assign
a wavelength to this path satisfying the condition that two paths sharing a link must
be assigned with different wavelengths. The objective is to use the minimal number
of wavelengths.

Suppose the connection requests have 10 pairs of vertices R = {〈15, 16〉, 〈9, 10〉,
〈4, 16〉, 〈7, 10〉, 〈7, 10〉, 〈6, 14〉, 〈4, 11〉, 〈3, 12〉, 〈13, 15〉, 〈2, 8〉}, the best solution
for this problem is illustrated in Figure 1.2 with two wavelengths used: dashed lines
are paths with wavelength number 1 and continuous lines are paths with wavelength
number 2.

• route 1: 15 -> 16 with wavelength = 1

• route 2: 9 -> 10 with wavelength = 2

• route 3: 4 -> 8 -> 12 -> 16 with wavelength = 1
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Figure 1.2: A solution to the routing and wavelength assignment problem

• route 4: 7 -> 10 with wavelength = 1

• route 5: 7 -> 10 with wavelength = 2

• route 6: 6 -> 10 -> 13 -> 14 with wavelength = 2

• route 7: 4 -> 8 -> 7 -> 11 with wavelength = 2

• route 8: 3 -> 7 -> 12 with wavelength = 1

• route 9: 13 -> 10 -> 15 with wavelength = 1

• route 10: 2 -> 3 -> 8 with wavelength = 1

1.2 Challenges
Most of these COT/COP problems are NP-hard. This means that exact methods for
solving them induce an exponential computation time in the worst case. They are often
approached by dedicated algorithms including exact methods, such as the Lagrangian-
based heuristic [ALM06], the ILP-based algorithm using directed cuts [CKIL09], the
Lagrangian-based branch and bound in [BC89] and the vertex labeling algorithm from
[DB03] and meta-heuristic algorithms like hybrid evolutionary algorithm [Blu06],
ant colony optimization [BS04], local search [BB05] and approximation algorithms
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[Kle96, KS04]. These techniques exploit the structure of constraints and objective
functions but are often difficult to extend and reuse. On the one hand, it is required
huge programming effort when new problems need to be solved. On the other hand,
it is too complicated to extend existing algorithms when new constraints need to be
added.

1.3 Objective
The objective of this thesis is to design and implement a generic and efficient frame-
work, called LS(Graph), which allows to model in a flexible way and solve some
COT/COP problems on graphs by constraint-based local search. The LS(Graph) frame-
work allows users to solve different COT/COP problems declaratively (black box).
On the one hand, users model problem by declaring variables, stating constraints and
objective functions in high-level way and use built-in search components to find high-
quality solutions. On the other hand, users can also easily perform different (meta-
)heuristic search strategies. The LS(Graph) framework is open (white box) that al-
lows users to design and implement their own abstractions and integrate them to the
framework. The proposed framework features the modeling benefits of CBLS [VM05]
(i.e., compositionality, modularity and reuse) and strengthens the modeling capacity
of COMET programming language for applications on graphs. It will also be evaluated
on various COT/COP applications and compared with state-of-the-art techniques.

1.4 Contributions
The contributions of this thesis are the following:

1. We design and implement a constraint-based local search (CBLS) [VM05] frame-
work, called LS(Graph), for some COT/COP applications to support the com-
positionality, reuse, and extensibility at the core of CBLS and CP systems (the
current version of LS(Graph) is about 25,000 lines of COMET code). The pro-
posed framework can be used as both black box and white box. The black box
is exploited in the sense that users only need to state the model in a declarative
way with variables, constraints and objective function to be optimized. Built-in
search components (e.g., tabu search) are then performed automatically. The
white box allows users to extend the framework by design and implementation
of their own components (e.g., invariants, constraints and objective functions)
and integrate them to the system.

2. The LS(Graph) combines graph variables (i.e., VarTree, VarPath for model-
ing trees, paths in a high-level way) with standard var{int} of COMET which
enable the modeling of various COT/COP applications on graphs in which both
topology and scalar values must be determined.

3. There exist few local search approaches for COP applications on general graphs.
On complete graphs, some local search algorithms have been applied for solv-



1.5. Outline 5

ing the traveling salesman problem or the vehicle routing problem. In these ap-
proaches, a path is represented by a sequence of vertices and the neighborhood
consists of paths generated by changing some vertices of this sequence (e.g., by
removing, inserting, exchanging or changing position of vertices). These neigh-
borhood structures cannot be applied for general graphs because a sequence of
vertices can not be sured to always form a path on the given graph. A key
technical contribution of this thesis is a novel connected neighborhood for COP
problems based on rooted spanning trees. More precisely, the COP framework
incrementally maintains, for each desired elementary path, a rooted spanning
tree that specifies the current path and provides an efficient data structure to
obtain its neighboring paths and their evaluations. The proposed neighborhood
can be applied widely on COP problems in general graphs.

4. We propose incremental algorithms for implementing some fundamental ab-
stractions of the framework. We show that the incrementality does not improve
the theoretical complexity but is efficient in practice.

5. We apply the constructed framework to two COT problems: the edge-weighted
k-cardinalty tree problem, the quorumcast routing problem and four COP prob-
lems: the resource constrained shortest path problem, the edge-disjoint paths
problem, the routing and wavelength assignment problem on optical networks
and the routing for network covering problem. Experimental results show the
facility and flexibility for modeling and solving these problems. The proposed
models provide good results in comparison with state-of-the-art techniques. In
particular, for the edge-disjoint paths problem, we show the proposed model
finds better results than the state-of-the-art ACO algorithm. Moreover, for the
quorumcast routing problem, we proposed a tabu search model which gives bet-
ter results than the IMP heuristic algorithm which is, in our best knowledge, the
best existing heuristic for this problem.

1.5 Outline
Chapter 2 presents the background related to the work of this thesis. We first present
an overview of graph theory and give some definitions and notations which will be
used throughout the thesis. In Section 2.2, we present the definition of constraint sat-
isfaction problem. Constraint-based local search technique and the COMET program-
ming language will be presented in Section 2.3. In Section 2.4, we give an overview
of related works. Finally, we present the problem examples which will be solved by
LS(Graph).

Chapter 3 introduces the LS(Graph) framework in which the architecture will be
presented in Section 3.1. Sections 3.2 and 3.3 present the framework for COT and
COP applications in which we present the concept of path and tree variables, as well
as different neighborhood structures for these applications. For COT applications,
we apply traditional modification actions (e.g., edges insertions, removals, replace-
ments over dynamic trees) for defining neighborhoods. For COP applications, we
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propose a novel connected neighborhood (called COP neighborhood) which is based
on rooted spanning tree. An overview of abstractions including common interfaces,
graph invariants, graph functions, graph constraints and generic search components
will be introduced in Section 3.5. Section 3.6 gives a description of data structures
and algorithms and their complexities for implementing fundamental abstractions of
the framework. The subsection 3.6.1 present the data structure for representing dy-
namic trees and an incremental algorithm for maintaining nearest common ancestors
of all pairs of two vertices on dynamic trees. An incremental algorithm for maintain-
ing a set of edges which are used for COP neighborhood is given in the subsection
3.6.2. Finally, the subsection 3.6.3 presents an incremental algorithm for maintaining
distances between vertices of a dynamic tree.

Chapter 4 describes the implementation in COMET for some fundamental abstrac-
tions of the LS(Graph) framework. Only main methods and data structures for each
class are depicted. The aim is to give an implementation principle. Based on this, users
can extend the LS(Graph) by designing and implementing their own components and
integrate them to the system.

Chapter 5 presents the applications of the constructed framework to the modeling
of some COT/COP problems including the edge-weighted k-cardinality tree prob-
lem, the quorumcast routing problem, the resource constrained shortest path problem,
the edge-disjoint paths problem, the routing and wavelength assignment in optical
networks and the problem of routing for network covering. For each of these prob-
lems, we propose a local search algorithm and implement it in LS(Graph) using the
constructed framework. These algorithms will be experimented and compared with
existing algorithms.

Chapter 6 concludes the thesis and gives various research directions.

1.6 Publications

Here are our major publications during my doctoral research.

• Q. D. Pham, Y. Deville, P. Van Hentenryck. LS(Graph): A Local Search Frame-
work for Constraint Optimization on Graphs and Trees. Proceedings of the 2009
ACM Symposium on Applied Computing (SAC’09), March 8-12, pages 1402-
1407, 2009.

• Q. D. Pham, Y. Deville, P. Van Hentenryck. Constraint-Based Local Search for
Constrained Optimum Paths Problems, 7th International Conference on Inte-
gration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR 2010), Lecture Notes in Computer Science,
Springer, pages 267-281, 2010.

• Q. D. Pham, P. T. Do, Y. Deville, T. V. Ho. Constraint-based local search for
solving non-simple paths problems on graphs: Application to the Routing for
Network Covering Problem. In Proceedings of Symposium on Information and
Communication Technology, SoICT2010, Hanoi, Vietnam, 2010.
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2
BACKGROUND

This chapter aims at presenting the background of this thesis. We first present the
graph theory which is based on [GY03] and give some basic definitions and notations.
Then, we give the definition of Constraint Satisfaction Problems (CSP), Constraint
Satisfaction Optimization Problems (CSOP) and present two alternative approaches
for solving CSPs/CSOPs: Local Search and Constraint Programming. Constraint-
Based Local Search (CBLS) and COMET [VM05], a new concept and system for
solving CSPs are then presented. We conclude the chapter with a summary of existing
systems for solving CSPs/CSOPs.

2.1 Graph theory
This section gives graph theory notions necessary to present the rest of this thesis.

Graphs Graph is a mathematical object involving points and binary connections be-
tween them. Most of theoretical graph theory considers simple graphs (i.e., graphs in
which there are at most one connection between two points and there is no connec-
tion from one point to itself) and most of practical problems regarding general graphs
can be reduced to problems on simple graphs. In this thesis, we consider only simple
graphs and use the word “graph” instead of simple graph.

A graph G = (V,E) is formed by a set of vertices (or nodes) V and a set E of
connections (called edges) between vertices: E ⊆ {(u, v) | u 6= v ∈ V }. Given
a graph G, we denote V (G) and E(G) respectively the set of vertices and edges of
G when G is not the only graph under consideration. A graph can be directed or
undirected. In directed graphs, each edge e = (u, v) (also called arc) is oriented from
u to v: u, v are respectively the head and the tail of e. In undirected graphs, we
do not consider the orientation on edges: (u, v) ≡ (v, u). In other words, for each
undirected graph G = (V,E), there does not exist two vertices u, v ∈ V such that
(u, v) ∈ E ∧ (v, u) ∈ E.
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Given two graphs G1 and G2, we denote G1 +G2 the graph G in which V (G) =
V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2).

Subgraphs A graph G1 is called subgraph of a graph G2 if V (G1) ⊆ V (G2) ∧
E(G1) ⊆ E(G2). A subgraph G1 is called spanning subgraph of G2 if it is subgraph
of G2 and V (G1) = V (G2).

Degree For each edge e = (u, v) of a graph G, u and v are called endpoints of e; e
is called incident on u, v; u is called adjacent to v (and vice versa).

The degree of a vertex v on an undirected graph G, denoted by degG(v), is the
number of incident edges on v: degG(v) = ]{u | (u, v) ∈ E(G)}.

The in degree of a vertex v on a directed graph G, denoted by deg−G(v), is the
number of arcs of G entering v: deg−G(v) = ]{u | (u, v) ∈ E(G)}

The out degree of a vertex v on a directed graph G, denoted by deg+
G(v), is the

number of arcs of G leaving v: deg+
G(v) = ]{u | (v, u) ∈ E(G)}

Walks, Paths A walk w in a graph G is a sequence of vertices 〈s = v1, v2, ..., vk =
t〉 such that (vi, vi+1) ∈ E(G),∀i = 1, ..., k − 1. We denote w(i) the ith vertex1 of
the sequence (i.e., the vertex vi) and len(w) the length of w (i.e., the number of edges
of the sequence).

A path in a graphG is a walk inGwhich contains no repeated vertices except start-
ing and terminating vertices. A cycle is a path such that the starting and terminating
vertices are the same.

Given two walks w1 = 〈x1, x2, ..., xk〉 in G1 and w2 = 〈y1, y2, ..., yq〉 in G2, we
denotew1+w2 the walkw inG1+G2 in whichw = 〈x1, x2, ..., xk = y1, y2, ..., yq〉 if
xk = y1 and w = 〈x1, x2, ..., xk, y1, y2, ..., yq〉 if xk 6= y1 ∧ (xk, y1) ∈ E(G1 +G2).

Given a path p, we denote:

• V (p) andE(p) respectively the set of vertices and the set of edges of p. Suppose
that p = 〈v1, v2, ..., vk〉, then V (p) = {v1, v2, ..., vk} and E(p) = {(v1, v2),-
(v2, v3), ..., (vk−1, vk)}. For short, given two paths p1, p2, we denote p1 ∪ p2

(p1 ∩ p2) the set V (p1) ∪ V (p2) (V (p1) ∩ V (p2)) and if x is a vertex of a path
p, we denote x ∈ p. We also denote G(p) the graph in which V (p) and E(p)
are respectively the set of vertices and the set of edges.

• s(p), t(p) respectively the starting and terminating vertices of p.

• p(u, v) the subpath of w starting from u and terminating at v (u, v ∈ p and u is
not located after v on p).

• spp(x), tpp(x) the subpath of p from s(p) to x and from x to t(p).

• repl(p, q) = spp(s(q)) + q + tpp(t(q)) where q is a path and s(q), t(q) ∈ p.
Intuitively, repl(p, q) is the path obtained by replacing the subpath of p from
s(q) to t(q) by q.

1Vertices are indexed from 1, 2, ... in the sequence.
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If p is a walk (path) on a graph g, we denote p ∈ g. Given a graph g and an integral
value k, we denote Paths(g,k) the set of paths on g having k edges.

Connectedness A graph is called connected if between every pair of vertices, there
exists a walk.

Trees A tree is an undirected connected graph containing no cycles. A spanning tree
tr of an undirected connected graph g is a tree spanning all the nodes of g: V (tr) =
V (g) and E(tr) ⊆ E(g). A tree tr is called a rooted tree at r if the node r has been
designated the root. Each edge of tr is implicitly oriented towards the root. If the
edge (u, v) is oriented from u to v, we call v the father of u in tr, which is denoted by
fatr(u). Given a rooted tree tr and a node s ∈ V (tr), we use the following notations:

• root(tr) for the root of tr,

• pathtr(v) for the path from v to root(tr) on tr. For each node u of pathtr(v),
we say that u dominates v in tr (u is a dominator of v, v is a descendant of u)
which we denote by u Domtr v. If u does not dominates v on tr, we denote u
Domtr v.

• pathtr(u, v) for the path from u to v in tr (u, v ∈ V (tr)). This path does not
take into account the orientation on edges.

• ncatr(u, v) for the nearest common ancestor of two nodes u and v on tr. In
other words, ncatr(u, v) is the common dominator of u and v such that there is
no other common dominator of u and v that is a descendant of ncatr(u, v).

• Given a node v ∈ V (tr), we denote Ttr(v) the subtree of tr rooted at v. If v 6=
root(tr), we denote Ttr(v) the subtree of tr generated by removing Ttr(v) and
edge (v, fatr(v)) from tr: V (Ttr(v)) = V (tr) \ V (Ttr(v)) and E(Ttr(v)) =
E(tr) \ (E(Ttr(v)) ∪ {(v, fatr(v))}).

Property 1 Given a rooted tree tr.

1. Given a node x ∈ V (tr). We have x Domtr y,∀y ∈ V (Ttr(x)). In other
words, a vertex x of a rooted tree tr dominates all vertices of the subtree of tr
rooted at x.

2. Given two nodes x, y ∈ V (tr) such that x = fatr(y) and two nodes z, v such
that z ∈ V (Ttr(y)), v ∈ V (Ttr(y)). We have ncatr(v, z) = ncatr(v, x). This
property is illustrated in Figure 2.1: ncatr(v, z) = ncatr(v, x) = 12.
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Figure 2.1: Illustrating property 1

2.2 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is a triple 〈X,D,C〉 in whichX = {x1, x2,-
..., xn} is a set of variables, D is a set of domains of variables (Di is the domain of
the variable xi) and C is a set of constraints (i.e., relations imposed over variables)
defined over variables: C = {C1(S1), C2(S2), ..., .Ck(Sk)} in which each Si is a set
of variables. A constraint Ci(Si) is a combination of valid values for the variables Si.

A solution to a CSP is an assignment of all variables such that all constraints are
satisfied. Deciding the satisfiability of a CSP (i.e., the existence of a solution) is a
NP-complete problem in the general case.

A Constraint Satisfaction Optimization Problem (CSOP) 〈X,D,C, f〉 is a CSP
〈X,D,C〉 with an objective function f : X → R to be optimized. The objective is to
find a solution to the 〈X,D,C〉 that optimizes (minimizes or maximizes) f .

In some cases, constraints in CSPs/CSOPs can be divided into hard constraints
and soft constraints. Hard constraints must be satisfied by the solution while soft
constraints are allowed to have a number of violations.

Example Given a CSP=〈X,D,C〉 where:

• X = {x1, x2, x3},

• D1 = {1, 2}, D2 = {1, 2, 3}, D3 = {2, 3},

• C = {C1, C2, C3} with:

– C1 (hard constraint): x1 ≤ x2,

– C2 (hard constraint): x1 + x2 = x3,

– C3 (soft constraint): (x1 + x3) mod x2 = 1.
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Clearly, the assignment x1 = 1, x2 = 2, x3 = 3 is a solution to this CSP because the
hard constraints C1 and C2 are satisfied.

2.2.1 Constraint Programming
Constraint Programming is a technique for solving CSPs by combining constraint
propagation with search. The set of constraints is used to filter the domains of the
variables (i.e., prune values of variables from their domains that do not belong to any
solution). This filtering is called propagation. In general, the propagation is not suffi-
cient to deduce a solution. Instead, the current CSP is simplified by splitting a domain
of a variable which creates two or more CSPs. This splitting is called branching. The
propagation can then remove further values from the domains of the variables. The
interleaving of branching and propagation is called search. This search can be viewed
as a tree (also called search tree). The branching specifies the forms of the search
tree while exploring it is the way the tree is traversed. Constraint Programming is a
complete technique in the sense that it ensures to find a solution to a CSP if any or
prove that the given CSP does not have solutions. Its time complexity is exponential
in general. Interested readers can consult the handbook of Constraint Programming
[RvBW06] for a detailed description.

2.2.2 Local Search
Local search [MAK07] is an alternative technique that aims at finding a high-quality
solution to a CSP or CSOP in polynomial time. Local search algorithms start with an
initial solution that is constructed by some heuristic algorithm and searches through
the solution space by continually moving from a candidate solution2 to one of its
neighbors until some criteria are reached. The key problem of a local search algorithm
is the definition of a neighborhood and its exploration for selecting the next candidate
solution. The action of moving from a current candidate solution to another candidate
solution is called local move. For a short, we use the word “solution” instead of
“candidate solution” if there is no ambiguity. A solution satisfies all the constraints is
called feasible solution.

We describe in this section the basic local search template and sample some funda-
mental heuristics, metaheuristics which will be applied in later sections of the thesis.
Interested readers can consults the books [MAK07, VM05] for other metaheuristics
like simulated annealing, iterated local search, etc. The presentation is mostly based
on [VM05].

Basic local search template

Algorithm 1 depicts a basic local search template which is parameterized by the func-
tion f : X → R to be minimized, the neighborhood function N , the neighborhood
restriction function L and the selection operator S. The function f measures the qual-
ity of solutions to the problem under consideration. In the CSPs, it represents the

2A candidate solution is an assignment of values to the variables satisfying all hard constraints.
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distance between the current solution and a feasible solution. In a pure optimization
problem (without constraints to be satisfied), it expresses the objective of the problem
or a function of finer granularity that differentiates between solutions having the same
objective value. In problems having both constraints to be satisfied and an objective
function to be optimized, the function f may combine the feasibility and the optimal-
ity measures appropriate for the problem at hand. This section simply assumes the
availability of a function f to be minimized. If we denote S the set of all possible
solutions and 2S the set of all possible subsets of S, then the functions N , L, and S
are defined to be:

• N : S → 2S ,

• L : 2S × S → 2S ,

• S : 2S × S → 2S .

The local search starts from an initial solution s (line 1) and iteratively moves
from the current solution to one of its neighbors (lines 3 and 6) based on N , L, and
S . Among solutions of the given neighborhood, only legal solutions (identified by
the function L) are considered3. The operation S selects one of these legal solutions.
Lines 4-5 simply keep the best solution s∗ encountered so far.

Algorithm 1: LocalSearch(f,N,L, S)
Input: Problem instance 〈X,D,C〉, functions f,N,L, S with

• f : X → R

• N : S → 2S ,

• L : 2S × S → 2S ,

• S : 2S × S → 2S .

Output: A solution
s← GenerateInitialSolution();1

s∗ ← s;2

forall k ∈ 1..MaxTrials do3

if satisfiable(s) ∧ f(s) < f(s∗) then4

s∗ ← s;5

s← S(L(N(s), s), s);6

return s∗;7

Heurisitics

Typically, heuristics select the next solution based on local information (e.g., the cur-
rent solution and its neighborhood) and they drive the search toward local optima.

3The definition of legality depends on the given problem and local search algorithm.
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Heuristics are typically specified by instantiation of the selection operator S and
the restriction function L. For instance, improvement heuristic can be formulated by
instantiating the L function with L-Improvement described in Algorithm 2.

Algorithm 2: L-Improvement(N, s)
Input: A set of solutions N and the current solution s
Output: A subset of solutions of N which are better than s
return {x ∈ N | f(x) < f(s)};1

Best Neighbor The selection function S can be instantiated by S-Best or S-First.
The S-Best aims at selecting the best neighboring solution (see Algorithm 3). A best-
improvement heuristic can thus be specified by the instantiation of S and L with S-
Best and L-Improvement (see Algorithm 4)

Algorithm 3: S-Best(N, s)
Input: A set of solutions N and the current solution s
Output: A solution of N with smallest value of f
N∗ ← {x ∈ N | f(x) = minz∈Nf(z)};1

return x ∈ N∗ with probability 1
]N∗ ;2

Algorithm 4: BestImprovement

return LocalSearch(f ,N ,L-Improvement,S-Best);1

First Neighbor The best-improvement heuristic scans completely the neighborhood
which may be too costly when the neighborhood is large. The first-improvement sim-
ply chooses the first neighbor that improves the current solution (see Algorithm 6
where the selection function is instantiated by S-First). The selection function S-First
is depicted in Algorithm 5 which selects the first improving neighboring solution when
scanning the neighborhood. In this algorithm, we assume, without loss of generality, a
function lex(n) that specifies the lexicographic order of a neighbor n when scanning
the neighborhood.

Metaheuristics

Contrary to heuristics, metaheuristics choose the next solution based on global infor-
mation (e.g., the execution sequence) and aim at escaping from local optima. We now
describe the generic tabu search algorithm which is one of the most popular meta-
heuristics for local search and which will be applied in later sections of the thesis. We
generalize slightly the generic local search presented earlier (described in Algorithm
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Algorithm 5: S-First(N, s)
Input: A set of solutions N and the current solution s
Output: The first solution of N
return n ∈ N minimizing lex(n);1

Algorithm 6: FirstImprovement

return LocalSearch(f,N ,L-Improvement,S-First);1

1). The new generic local search algorithm depicted in Algorithm 7 maintains a se-
quence of solutions explored so far τ = 〈s0, s1, ..., sk〉. τ is initialized by the initial
solution s0 (line 2) and extended after each local move (line 7).

Algorithm 7: LocalSearch(f,N,L, S, s)
Input: Problem instance 〈X,D,C〉, an initial solution s, and functions

f,N,L, S with

• f : X → R

• N : S → 2S ,

• L : 2S × S → 2S ,

• S : 2S × S → 2S .

Output: A solution
s0 ← s;1

τ ← 〈s0〉;2

forall k ∈ 0..MaxTrials do3

if satisfiable(sk) ∧ f(sk) < f(s∗) then4

s∗ ← sk;5

sk+1 ← S(L(N(sk), τ, sk), τ);6

τ ← τ :: sk+1;7

return s∗;8

The tabu search is now specified by instantiating the restriction function L with
L-NotTabu (see Algorithm 8) and the selection S with S-Best (see Algorithm 9).

There are two interesting features of the tabu search described here. First, the
local search is allowed to choose moves that degrade the quality of the current solution
because the definition of the legality function L does not impose any constraints on
the objective value of the solutions. This helps to escape local optima. Second, the
application of S-Best ensures that the objective function does not reduce too much at
any step, since the best neighbor is always selected.
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Algorithm 8: L-NotTabu(N, τ, s)

return {x ∈ N | x /∈ τ};1

Algorithm 9: TabuSearch(f,N, s)
Input: Problem instance 〈X,D,C〉, an initial solution s, and functions f,N

with

• f : X → R

• N : S → 2S ,

Output: A solution
return LocalSearch(f,N ,L-NotTabu,S-Best,s);1

Short-Term Memory The two main difficulties of the tabu search algorithm de-
scribed above is the need of keeping track of all visited solutions and checking effi-
ciently whether or not a solution is revisited. To overcome this, the tabu search can
maintain a list of most recently move abstractions performed (called tabu list and de-
noted by τ̃ ), for example, each move abstraction can be represented by a pair 〈x, v〉
when the move is the assignment of the variable x by a new value v. The number
of most recently move abstractions maintained is called tabu length. This strategy is
called short-term memory. As a consequence, the set of legal moves can be specified
in Algorithm 10 where, informally speaking, tabu(x, τ̃ , s) hold if the solution x is

Algorithm 10: L-NotTabu(N, τ̃ , s)

return {x ∈ N | ¬tabu(x, τ̃ , s)};1

generated from the current solution s by performing a move whose abstraction is in τ̃ .
Obviously, such short-term memory may not prevent the local search from revisiting
solution entirely and it may forbid moves which should be allowed.

Aspiration Since the tabu search maintain a list of move abstractions, not a list of
solutions, it may forbid solutions which have not been visited before. Some of these
solutions may be very desirable, (i.e., better than the best solution found so far). To
remedy this limitation, tabu search algorithms often features an aspiration criterion:
we accept the move whose abstraction is tabu but the new solution is better than the
best solution found so far (see Algorithm 11 which instantiates the legality function
L)

Long-Term Memory The short-term memory strategy cannot capture long-term in-
formation. Hence, it cannot prevent the search from spending too much time in the
same region of the solutions space and bring low-quality solutions. Many tabu search
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Algorithm 11: L-NotTabu-Asp(N, τ, s)

return {x ∈ N | ¬tabu(x, τ̃ , s) ∨ f(x) < f(s∗)};1

algorithms are thus enhanced with additional long-term memory structures to inten-
sify and diversify the search. The intensification stores high-quality solutions during
the search and returns to these solutions periodically. It allows the search to explore
the region of the solutions space where the best solutions so far have been discovered
(see Algorithm 12). The diversification directs the search toward other regions of the
solutions space. This can be achieve by iterative local search to perturb or to restart
the local search.

Algorithm 12: IntensifiedLocalSearch(f,N,L, S)
Input: Problem instance 〈X,D,C〉, and functions f,N,L, S with

• f : X → R

• N : S → 2S ,

• L : 2S × S → 2S ,

• S : 2S × S → 2S .

Output: A solution
s← GenerateInitialSolution();1

s∗ ← s;2

forall k ∈ 1..MaxSearches do3

s←LocalSearch(f,N,L, S, s);4

if f(s) < f(s∗) then5

s∗ ← s;6

s← s∗;7

return s∗;8

2.2.3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic method for solving combinatorial
optimization problems which was initially proposed by Marco Dorigo in his PhD the-
sis in 1992. The idea is inspired from natural behavior of ants when seeking a path
between their colony and a source of food. Ants initially wander in a random way
to find food and return to their colony. During its itinerary, an ant lays a pheromone
trail. These pheromone trails are then followed by other ants which reinforce the trails
when come back to the colony with food. As time goes by, the source food becomes
exhausted, the pheromone trails start to evaporate.
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The basic idea when applying ACO for solving combinatorial optimization prob-
lems is to iteratively build solutions in a greedy random way (see Algorithm 13). More
precisely, at each cycle, each artificial ant builds a solution from an empty solution by
iteratively adding solution components until the solution is completed. At each step
of this construction, the next solution component to be added is selected with respect
to a probability which depends on two factors:

• The pheromone factor which reflects the experience of ants regarding the selec-
tion of this component.

• The heuristic factor which measures how good this component is with respect
to the objective function. This factor is problem-dependent.

Let C be the set of candidates for solution components and S be the partial solution
under construction. Each solution component is associated with a pheromone trail
τS(ck) which depends on the partial solution S and which is updated over time. The
probability for choosing a solution component ck is:

p(ck) =
τS(ck)α.ηS(ck)β∑
ci∈C τS(ci)α.ηS(ci)β

where τS(ck)α is the pheromone factor (weighted by a parameter α) and ηS(ck) is the
heuristic factor (weighted by a parameterβ).

Algorithm 13: GenericACO

initialize pheromone trails;1

while termination criteria not reach do2

each ant builds a solution;3

update pheromone trails;4

Once each ant has constructed a solution, pheromone trails are updated. First, all
pheromone trails are decreased (or evaporated) by multiplying them by a factor (1-ρ)
where ρ ∈ [0; 1] is called evaporation rate. This evaporation process allows ants to
progressively forget older constructions and to focus on more recent constructions.
In a second step, some solutions are rewarded by laying pheromone trails on their
solution components. This allows to increase the probability of selecting the solution
components of these solutions during the following constructions. We may reward all
the solutions that have been constructed during the last cycle, or we may select the
best solution of the last cycle for rewarding. These different strategies have a strong
influence on the intensification and the diversification of the search.

Recently, ACO has been widely applied for solving subset selection, sequencing
and paths finding problems. For more detail about Ant Colomy Optimization, inter-
ested readers are referred to [DS04] and ACO website (http://iridia.ulb.ac.be/ mdorigo/A-
CO/ACO.html).
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2.3 Constraint-Based Local Search and the COMET pro-
gramming language

In constraint-based local search (CBLS) [VM05], constraints are used to describe and
control local search. This enables compositionality, modularity, reuse, and separa-
tion of concerns. Invariants and differentiable objects are two main concepts of the
constraint-based local search architecture.

2.3.1 Invariant
Invariant is a concept describing objects that maintain a number of properties of the
application structure. For example, the snippet:

1 Solver<LS> m();
2 var{int} x[1..5](m,1..5);
3 var{int} s(m) <- sum(i in 1..5)x[i];

initializes in line 3 an invariant s which maintains the sum of all decision variables
x[i]. The value of s change under the modification of decision variables x[1..5].

2.3.2 Differentiable objects
Differentiable objects not only maintain a number of properties of the applications
structure but also allow to query the impact of various local moves over these prop-
erties. For instance, constraints are differentiable objects that maintain a number of
violations of the constraint and allow to query the variation of this property under
different local moves. The snippet:

1 int delta = S.getSwapDelta(x[i],x[j]);

computes the variation of the number of violations of the constraint S when the two
decision variables x[i] and x[j] are exchanged.

The availability of invariants and differentiable objects enables the facility of pro-
gramming. On the one hand, this allows users to state in a flexible way various con-
straints and objective functions. On the other hand, it reduces the programming effort.
Users do not have to maintain sophisticated data structures. Rather, they can focus on
the modeling and the exploration of different (meta)-heuristic search strategies.

2.3.3 COMET programming language
COMET [VM05] is a high-level modeling language with a number of innovative con-
trol abstractions for local search. The COMET project was started in 2001 and it
now becomes a hybrid platform supporting both constraint programming, local search
(with CBLS architecture) and mathematical programming. Figure 2.2 illustrates the
high-level modeling and local search on the n-queens problem which entails placing
n queens on a chessboard of size n × n so that no two queens lie on the same row,
column, or diagonal. We can see in this example, the COMET program is compact



2.4. Related work 21

and high-level which consists of two main parts: the model (lines 1-17) and the search
(lines 19-25). Line 3 creates a local solver m which is a container that stores incremen-
tal variable, invariants, constraints and objective function and maintains a precedency
graph relating these objects. Line 7 declares decision variables queen[1..n] asso-
ciated with the local solver m and are initialized randomly by a uniform distribution
distr (line 6) in which queen[i] represents the row of the queen at column i.
Line 9 initializes a constraint system S and lines 11-12 state and post all constraints
of the problem to S. Line 15 initializes an invariant mostViolatedQueens which
maintains the set of indices of most violating variables (varVlts[i] in line 14 rep-
resents the number of violations of the constraint system S of the decision variable
queen[i]). The model is closed in line 17. This instruction builds a dependency
graph used to update the constraint S based on changes to the incremental variables.
The search is depicted in lines 19-25. At each step, we choose randomly a most violat-
ing variable queen[i] (line 21), and then we select a value v such that the number of
violations of the constraint reduces much (line 22). S is differentiable object support-
ing the method getAssignDelta(queen[i],v) which computes and returns
the variation of the number of violations of the constraint S when the value v is as-
signed to the variable queen[i]. Line 23 performs the local move which assigns the
chosen value v to the chosen variable queen[i]. This assignment induces a prop-
agation that updates all the invariants, constraints of the model (i.e., S) thanks to the
dependency graph. This update is generally very efficiently computed by incremental
algorithms. It is clear that the program features separation of concerns: the model
and the search are independent. We can easily state and post new constraints to the
constraint system without changing the search. Moreover, we can perform different
heuristic and meta-heuristic strategies without having to modify the model. We can
also see the genericity and reuse feature of the program. The search is essentially
generic which relies only on decision variables and the constraint system. It could
thus be reused without changes in other contexts.

This thesis extends the COMET system by designing and implementing abstrac-
tions for modeling and solving COT/COP problems on graphs. The constructed frame-
work features modeling benefits of CBLS enabling compositionality, modularity and
reuse.

2.4 Related work

A number of generic systems have been developed for modeling and solving CSPs
by Constraint Programming including COMET (http://dynadec.com/), ILOG solver,
Mozart Programming System (http://www.mozart-oz.org/), Gecode (http://www.gecode.org),
etc. More specifically, Grégoire Dooms [DDD05] introduces a CP(Graph) computa-
tion domain in Constraint Programming. Graph variables have been introduced over
which constraints are defined including kernel constraints like Arcs constraint, Nodes
constraint, ArcNode constraint and global constraints like SubGraph constraint, Con-
nected constraint, etc. Some pruning techniques have been proposed for achieving
bound consistency. The framework implemented in C++ and integrated in the Gecode
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1 import cotls;

3 Solver<LS> m();
4 int n = 8;
5 range Size = 1..n;
6 UniformDistribution distr(Size);
7 var{int} queen[Size](m,Size) := distr.get();

9 ConstraintSystem<LS> S(m);
10 S.post(alldifferent(queen));
11 S.post(alldifferent(all(i in Size) queen[i] + i));
12 S.post(alldifferent(all(i in Size) queen[i] - i));

14 var{int} varVlts[i in Size] = S.violations(queen[i]);
15 var{set{int}} mostViolatedQueens(m) <- argMax(i in Size)(varVlts[i]);

17 m.close();

19 int it = 0;
20 while (S.violations() > 0 && it < 100000){
21 select(i in mostViolatedQueens)
22 selectMin(v in Size)(S.getAssignDelta(queen[i],v))
23 queen[i] := v;
24 it++;
25 }

Figure 2.2: CBLS model for n-queens problem



2.5. Problem examples 23

framework which is dedicated for modeling and solving constraint satisfaction prob-
lems on graphs. The CP(Graph) framework has also been applied to the resolution of
a constrained path finding application in the biochemical analyses.

Related work on the use of trees and paths in local search will be presented in
the LS(Graph) framework chapter (Sections 3.2 and 3.3). Related works on specific
applications will be presented in Section 2.5.

When implementing the LS(Graph) framework, we exploit sophisticated data struc-
ture and incremental algorithms, for instance, data structure for maintaing nearest
common ancestor of all pairs of two vertices on dynamic trees. Related work will be
presented in the LS(Graph) framework chapter (Section 3.6).

2.5 Problem examples

In this thesis, we apply the LS(Graph) framework to the resolution of two COT prob-
lems and four COP problems. This section describes these problems and presents
related works. Most of them are studied and solved in the literature except the last
one, the routing for network covering (RNC) problem, which is inspired from the
AROUND project [MSI06]. We introduce in Section 2.5.6 this new problem which is
closely related to some other classical problems and also discuss its challenge.

LS(Graph) has also been successfully applied on a Traffic Engineering in Switched
Ethernet Networks problem which consists of finding a spanning tree on a given net-
work minimizing the traffic congestion which is reported in [HFD+10].

2.5.1 The edge-weighted k-cardinality tree (KCT) problem

Given an undirected weighted graph G = (V,E) and an integral value k, the KCT4

problem consists of finding a connected and acyclic subgraph (i.e., a tree) ofG having
exactly k edges such that the sum of weights of edges is minimal. A tree having k
edges is called k-cardinality tree. This problem appears in various applications such
as oil-field leasing, facility layout, open pit mining, matrix decomposition, quorum-
cast routing and telecommunications (see [BB05] and references therein).

The KCT problem has been solved by both metaheuristic and exact methods. Dif-
ferent metaheuristic algorithms including tabu search [BB05], ant colony optimization
algorithms [BS04, BB05] and evolutionary computation algorithms [BB05, Blu06]
have been proposed and experimented on benchmark on [BB]. Among these, no al-
gorithm gives the best results on all instances but the hybrid evolutionary algorithm
[Blu06] find the best results on most instances. Most recently in 2009, Chimani has
proposed an exact ILP-based algorithm using directed cuts [CKIL09] which outper-
forms the metaheuristic approaches. Garg in [GH97] considered the problem on eu-
clidean graph and proposed an approximation algorithm for solving it. Additional
references for this problem can be found in [EFHM97, MJ96, BMX01, BBXG00,
MU01, Blu02, BE03].

4Also referred to as the k-minimum spanning tree (k-MST) problem, or just the k-tree problem.
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The tabu search algorithm in [BB05] considers the neighborhood which consists
of all k-cardinality trees generated by removing a leaf edge e (i.e., the edge which
has one endpoint of degree 1), which results in a (k − 1)-cardinality tree Tk−1, and
adding an edge from the set IE(Tk−1) \ {e}, where IE(Tk−1) is the set of edges that
do not belong to Tk−1 and that have exactly one endpoint in Tk−1. The tabu search
algorithm maintains two tabu lists which store the edges that participate in the moves:
one list stores the added edge and the other stores the removed edge. The length of
each tabu list tbl varies from tbMin and tbMax with an increment value tinc. At the
beginning of each restart phase, tbl is set to tbMin. If the restart-best solution is not
improved for a maximum number of specified iterations, the tabu length is increased
by tinc. Whenever the restart-best solution is improved, the tabu length tbl is set back
to tbMin. When tbl is greater than tbMax, the restart is performed.

We implement in Section 5.2 a tabu search (denoted by KCT_MTABU) using the
LS(Graph) framework and applying the same local search schema of [BB05] but also
exploiting an additional neighborhood based on so-called cyclic moves. A cyclic move
adds an edge having two endpoints in the current k-cardinality tree which produces a
cycle and removes another edge from this cycle, which results in a new k-cardinality
tree. This additional neighborhood has been considered in [BBXG00]. We experi-
mentally show how easily, shortly and flexibly to implement a local search algorithm
for solving the KCT problem which gives good results.

2.5.2 The quorumcast routing (QR) problem
The quorumcast routing (QR) problem arises in distributed applications [CA94, DGTW96,
WH04, Low98]. Given a weighted undirected graph G = (V,E), each edge e ∈ E
associates with a cost c(e). Given a source node s ∈ V , an integral value q and a
set S ⊆ V , the quorumcast routing problem consists in finding a minimum cost tree
T = (V ′, E′) of G spanning s and q nodes S. T = (V ′, E′) is a graph satisfying the
following properties:

1. V ′ ⊆ V ∧ E′ ⊆ E

2. T is connected

3. ∃Q ⊆ S such that |Q| = q ∧Q ∪ {s} ⊆ V ′

4. The cost of T =
∑
e∈E′ c(e) is minimum over all subgraphs of G with proper-

ties 1, 2, and 3

An exact [Low98] algorithm has been proposed for solving the QR problem but ex-
periments were performed on small graphs (e.g., graphs with 30 nodes). Three heuris-
tics have been proposed in [CA94] including Minimal Cost Path Heuristic (MPH),
Improved Minimum Path Heuristic (IMP) and Modified Average Distance Heuristic
(MAD). The idea of the MPH heuristic is to construct the solution in a greedy way.
It starts from a partial solution (a tree under construction) containing only the source
node s. At each step (called selection step), it selects the closest node v of S that
does not belong to the partial solution and inserts to the current partial solution all the
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nodes of the corresponding shortest path from v to the partial solution until the partial
solution contains q nodes of S. The main idea of the IMP algorithm is to repeat the
MPH several times but at each selection step, it does not consider the nodes of S that
have been selected in any in previous MPH calls. Experimental results in this paper
show that, among three heuristics, the IMP heuristic produces the best solutions. In
[DGTW96], a multispace search heuristic has been proposed for solving this problem
which gives better results than the IMP and the MAD heuristics on 12-node networks
and 100-node networks. This multispace search algorithm consider the QR problem
where S ≡ V .

In [WH04], the authors considered the QR problem with additional constraint on
the total cumulative delay along the path from s to any destination node of Q and
proposed a distributed heuristic algorithm for solving it. Experiments have been con-
ducted over graphs up to 200 nodes.

We implement in Section 5.3 a tabu search algorithm using the LS(Graph) frame-
work and compare it with the IMP heuristic algorithm of [CA94]. This example illus-
trates the expressive power of LS(Graph) where a simple but efficient model can be
designed in a few lines. Experimental results show that our LS(Graph) model gives
better results than the standard IMP heuristic.

2.5.3 The Edge-Disjoint Paths (EDP) problem
We are given an undirected graph G = (V,E) and a set T = {〈si, ti〉 | i =
1, 2, ..., |T |; si 6= ti ∈ V } representing a list of commodities. A subset T ′ ⊆ T ,
T ′ = {〈si1 , ti1〉, ..., 〈sik , tik〉} is called edp-feasible if there exists multually edge-
disjoint paths from sij to tij on G,∀j = 1, 2, .., k. The EDP problem consists in
finding a maximal cardinality edp-feasible subset of T . In other words, the formula-
tion of the EDP problem is given by:

min ]T ′ (1)
s.t. T ′ ⊆ T (2)

T ′ is edp-feasible (3)
This problem appears in many applications such as real-time communication,

VLSI-design, routing and admission control in modern networks [AGLR94, CB96].
Existing techniques for solving this problem includes approximation algorithms [KS04,
BS00, Kle96, CK03], greedy approaches [Kle96, KS01a] and Ant Colony Optimiza-
tion (ACO) metaheuristic [BB07]. It has been shown in [BB07] that the ACO is the
state-of-the-art algorithm for this problem. In that paper, the ACO algorithm has been
compared with a Simple Greedy Algorithm (SGA) in [Kle96](the multi-start version).

The main idea of SGA is described as follows. It starts with an empty solution S
and it proceeds through the commodities in the order that is given as input. At each
step i (∀i = 1, 2, ..., |T |), it considers the commodity Ti = 〈si, ti〉 on the graph Gi
which is generated from G by removing all the edges that are already in the paths of
the solution S under construction. If si can be connected with ti in the graph, then
we connect si to ti by the shortest path Pi and add Pi to the solution S. The multi-
start version of SGA (called MSGA) performs several calls to SGA but with different
orders of the commodities to be processed.
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The main idea of the ACO algorithm is summarized as follows. The construc-
tion of a solution consists of each ant i building a path Pi between the two endpoints
of its commodity Ti. The solution constructed by this procedure is called ant solu-
tion which is a set of not necessarily edge-disjoint paths. From each ant solution,
a edp-feasible solution can be extracted by iteratively removing the path which has
most edges in common with other paths, until the remaining paths are mutually edge-
disjoint. In this ACO algorithm, each pheromone model τ i is used for building each
path Pi, and each pheromone model τ i consists of a pheromone value τ ie for each
edge e ∈ E. In the path construction, each ant i iteratively extends the partial path
P ji = 〈si = v1, v2, ..., vk〉 by selecting and adding an edge e = (vk, vk+1) based
on a probability expression (see Section 2.2.3). The heuristic factor of this probabil-
ity expression consists of two terms: p(De) and p(Ue) in which p(De) specifies the
influence of the distance from vk via vk+1 to the goal ti and p(Ue) determines the
influence of the overall usage of the edge e (it provides the information whether e is
already used in the path of another ant for the same solution).

In Section 5.5, we propose two models in LS(Graph). We experimentally show
competitive results compared with the ACO algorithm in [BB07]. This example illus-
trates how LS(Graph) can be used to implement more complex heuristics.

2.5.4 The resource constrained shortest path (RCSP) problem
The resource constrained shortest path problem (RCSP) [BC89] is the problem of
finding the shortest path between two vertices on a network satisfying the constraints
over resources consumed along the path. There are some variations of this problem,
but we first consider a simplified version introduced and evaluated in [BC89] over
instances from the OR-Library [Bea]. Given a directed graph G = (V,E), each arc
e is associated with a length c(e) ≥ 0 and a vector r(e) ≥ 0 of resources consumed
in traversing the arc e. Given a source node s, a destination node t and two vectors
L, U of resources corresponding to the minimum and maximum amount that can be
used on the chosen path (i.e., a lower and an upper limit on the resources consumed
on the path). The length of a path P is defined as f(P) =

∑
e∈P c(e). The resources

consumed in traversing P is defined as r(P) =
∑
e∈P r(e) The formulation of RCSP

is then given by:
min f(P) (1)
s.t. L ≤ r(P) (2)

r(P) ≤ U (3)
P is a path from s to t on G (4)

In the paper [BC89], Beasley and Christofides describe a model for solving the
RCSP problem considering constraint over both minimum (2) and maximum (3) re-
sources consumed, but only (3) is considered in the experimentation (the vertor L is
set to 0). The constraint (2) appears when each edge associates with a benefit which
represents the gain obtained when traversing this edge.

The RCSP problem with only constraints on the maximum resources consumed
is also considered in [LHH07, KK01b, KK01a, KKT02, JSMR01, MK04, KKKM04,
CRW08, DB03] among which, [DB03] and [CRW08] are most recent techniques. Du-
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mitrescu and Boland [DB03] describe a label-setting algorithm combined with sev-
eral preprocessing techniques in [DB03] while Carlyle et al. [CRW08] propose a
Lagrangian relaxation with near-shortest-paths enumeration (LRE) techniques which
gives better results on extensive data set including instances from OR-library [Bea],
road networks of Maryland, Virginia, Washington D.C., grid graphs up to 135002
vertices and 404850 edges. The algorithm of [CRW08] lagrangianizes the side con-
straints, optimizes the lagrangian function by bisection search which provides dual
lower bound of the objective function, identifies a feasible solution (often while op-
timizing the lagrangian function) which gives primal upper bound of the objective
function, and closes optimality gap by enumerating near-shortest paths [CW03]. No-
tice that we cannot extend these techniques when the constraint (2) need to be added
or it is required substantial programming effort.

In this thesis, we apply the LS(Graph) to the resolution of the RCSP problem with
both constraint over lower bound and upper bound of resource consumed which will
be presented in Section 5.4. This shows that by using the LS(Graph), we can easily
model and solve COP problems with arbitrary weights (negative or positive) on edges
(vertices) while the non-negative weights on edges (vertices) condition is required for
many dedicated algorithms.

2.5.5 The Routing and Wavelength Assignment with delay side
constraint (RWA-D) problem

The WDM (Wavelength Division Multiplexing) optical networks [Muk06] provide the
high bandwidth of communications. The routing and wavelength assignment (RWA)
problem appears as essential problem on the WDM optical networks. The RWA prob-
lem can be described as follows. Given a set of requests for all-optical connections,
the RWA problem consists of finding routes from source nodes to their respective des-
tination nodes and assigning wavelengths to these routes. A condition that must be
satisfied is that two non edge-disjoint routes must be assigned different wavelengths.
Normally, the number of available wavelength is limited and the number of requests is
high. Two variants of the problem have been considered and studied extensively in the
literature: the minRWA problem aims at minimizing the number of wavelength used
for satisfying all requests and the maxRWA aims at maximizing the number of requests
with a given number of wavelengths. Both of two variants are NP-Hard [CGK92].

Scientific papers proposed different techniques for solving these problems e.g., ex-
act method based on ILP formulation [CB96, KS01b, TMP02, OB03, RS95, LKLP02,
JMT07, YLR10], heuristic algorithms [DR00, ZJM00, BM00, BYC97], metaheuris-
tics including tabu search [JMY06, NR06] and Genetic [ARD99, BMP04, Hyy04].
These techniques have been experimented on realistic networks of small size (net-
works up to 27 nodes and 70 edges) but considered high number of connection re-
quests. RWA with additional constraint has also been considered, for instance, [YCCL,
ARD00].

In order to show the interest of the modeling framework, we consider the minRWA
problem with side constraint (e.g., delay constraint) specifying that the cost of each
route must be less than or equal to a given value. The objective here is not to show a
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competitive model in comparison with state-of-the-art techniques for classical RWA
problems. Rather, we show the flexibility of the modeling framework enabling the
combination between VarGraph with var{int} of COMET.

The formal definition of the problem (called RWA-D) is the following. Given an
undirected weighted graph G = (V,E), each edge e of G has cost c : E → R, c(e)
represents the delay in traversing e. Given a set of connection requests R ⊆ V × V ,
R = {〈s1, t1〉, 〈s2, t2〉, ..., 〈sk, tk〉} and a value D. The RWA-D problem consists in
finding routes pi from si to ti and its wavelength for all i = 1, 2, ..., k such that:

1. the wavelengths of pi and pj are different if they have common edges, ∀i 6= j ∈
{1, 2, ..., k} (wavelength constraint),

2.
∑
e∈pi

c(e) ≤ D,∀i = 1, 2, ..., k (delay constraint)

3. the number of different wavelength is minimized (objective function).

2.5.6 The Routing for Network Covering (RNC) problem
Above sections consider constrained path finding problems where vertices and edges
cannot be repeated on a path. This section introduces a constrained walk (path where
vertices and edges can be repeated) finding problem: the Routing for Network Cover-
ing (RNC) problem.

Context

The AROUND project [MSI06] being carried out at the MSI/IFI laboratory aims at
designing and implementing a real-time decision support system for the rescue after
natural disasters in urban areas. A team of autonomous robots that are capable of
auto-organization explores the urban area in order to capture informations from the
disaster. Rescue teams such as ambulances or firefighters are distributed to take care
of victims, to extinguish fires, etc.

Historically, we have seen huge efforts for solving routing problems on networks
in which the vehicle routing problem (VRP) [DR59] and capacitated arc routing prob-
lem (CARP) [GW81, hlk08] appears as a central problem in the fields of transporta-
tion, distribution and logistics. In the VRP problem, we have to route a fleet of iden-
tical vehicles from one or several depots in order to deliver goods for a set of n cus-
tomers. Each customer has a demand qi of goods (i = 1, 2, ..., n). Each vehicle has a
capacity to deliver at most Q quantity of goods for each tour, so it has to periodically
return to the depot for reloading. The objective of the VRP problem is to determine a
set of tours of minimum total travel time where each tour starts from and terminates
at the depot, each customer must be visited exactly once, and the quantity of goods
delivered on each tour must not exceed the vehicle capacity Q. In the CARP problem,
a fleet of identical vehicles must be routed to serve a set of edges of a given urban
network. More precisely, we are given a graph G = (V,E), a node v0 ∈ V represents
the depot, each edge e of G has a demand d(e), a cost of serving sc(e) and a cost of
traversing without serving dc(e). We are given a set of vehicle with a limited capacity
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Q, CARP is the problem of finding a set of walks (each walk for one vehicle) starting
and terminating at the depot of minimal total cost such that each edge is served by ex-
actly one vehicle and the total demands of edges served by each vehicle do not exceed
its capacity.

In this section, we inspire from the AROUND project and propose a problem
relating to the VRP and the CARP problems, called routing for network covering
(RNC) problem, which consists of routing a fleet of identical vehicles with limited
capacity (e.g. the capacity of energy) from one or several depots on a transportation
network in order to visit a set of specified edges of the network.

Three important constraints are taken into account:

1. Each vehicle travels a walk (or itinerary) which starts from and terminates at the
depot,

2. Each vehicle cannot travel a walk whose cost is greater than a given value (its
capacity),

3. A given set of streets of the urban area must be visited.

Both VRP and RNC problems have a common mission that is to route a fleet of
vehicles with limited capacity on a transportation network to carry out some works.
But the main differences between these problems are:

• In the RNC problem, vertices and edges can be repeated on each path while this
is not allowed in the VRP problem.

• In the VRP problem, constraints are defined over vertices of the graphs while in
the RNC problem, constraints are specified over edges of the graphs.

Both CARP and RNC problems seek a set of closed walks with capacity con-
straints but in the RNC problem, the total demand for each walk is accumulated on all
edges of the walk while in the CARP, the total demand for each walk is accumulated
only on edges which are served by the walk.

The RNC problem is also related to the chinese postman problem [GJ79] where
we have to find a cycle in a mixed graph (i.e., a graph that includes both directed and
undirected edges) whose length does not exceed a given value and which visits each
edge of the given graph at least once.

Several objective functions can be considered. In case where each vehicle has
a given cost, we prefer to minimize the number of walks in order to minimize the
total budget used. On the other hand, in urgent situations, the process of collecting
information need to be performed as fast as possible. In such case, all paths of vehicles
are carried out in parallel and we need to minimize the length of the longest walk.

There may exist different side constraints in the real-world situation but we con-
sider in this section the most basic version of RNC problems. To our best knowledge,
the RNC problem has not been considered before and there are thus no previous works
for solving this problem.
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a. hamilton graph b. 1-RNC graph

Figure 2.3: Example of reducing from a hamilton graph to a 1-RNC graph

Problem definition

Given an undirected weighted graph G = (V,E) representing a transportation net-
work and a vertex d ∈ V representing the depot. A length function c : E → R is
defined on edges of G, c(e) is the length of e.

The length of an itinerary I (denoted by c(I)) is defined to be the sum of lengths
of all edges of I:

c(I) =
∑

e∈E(I)

c(e)

Given a vertex d ∈ V representing the depot, a set S of edges of G (S ⊆ E) and a
value L, a feasible itinerary is defined to be an itinerary starting from and terminating
at d whose length is less than or equal to L. A feasible solution to the RNC problem
is a set of feasible itineraries that visit all edges of S. A feasible solution that has k
feasible itineraries is called k−feasible solution. RNC is the problem of determining a
feasible solution having the smallest cardinality. An RNC problem instance is denoted
by 〈G, c, d, L, S〉. The problem of determining whether or not there exists a k-feasible
solution is called k−RNC problem.

Complexity

Theorem 1 1-RNC problem is NP-complete.

Proof We show that the hamilton cycle problem [GJ79] which is NP-complete can
be reduced to this problem. Given an instance of hamilton problem which is an undi-
rected unweighted graph G = (V,E) (V = {v1, v2, ..., vn}), we transform G to an
instance G′ = (V ′, E′) of 1-RCN problem as follows:

1. We choose a node v1 ∈ V , for each node u ∈ V \ {v1}, we create two nodes
a(u), b(u). The set V ′ is specified as follows: V ′ = {a(u), b(u) | u ∈ V \
{v1}} ∪ {v1}. The set V ′ is partitioned into n partitions: P (v1) = {v1},
P (vi) = {a(vi), b(vi)},∀i = 2, 3, ..., n.
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2. The set E′ is specified as follows: E′ = A ∪ B where A = {(x, y) | ∃(u, v) ∈
E ∧ x ∈ P (u)∧ y ∈ P (v)}, B = {(x, y) | ∃u ∈ V \ {v1} ∧ x, y ∈ P (u)}. We
set c(e) = 0,∀e ∈ B and c(e) = 1,∀e ∈ A. Value L is set to be n and the set S
is set to be B. Each edge that belongs to B is called 0-edge and each edge that
belongs to A is called 1-edge.

This transformation can obviously be done in polynomial time. Figure 2.3 gives
an example of the problem reduction. Figure 2.3a is the hamilton cycle instance and
Figure 2.3b is the 1-RCN instance where L = 4 and S = {(a(2), b(2)), (a(3), b(3)),
(a(4), b(4))}.

Suppose that there exists a hamilton cycle 〈v1, v2, ..., vn, v1〉 in G, we show there
exists a cycle starting from and terminating at v1 whose length is less than or equals
to n which passes all edges of B. The desired cycle on G′ is 〈v1, a(v2), b(v2),
a(v3), b(v3), ..., a(vn), b(vn), v1〉.

On the other hand, suppose that there exists a cycle C starting from and terminating
at v1 on G′ such that:

1. c(C) ≤ n (1),

2. C passes all edges (a(v2), b(v2)), a(v(3), b(v3)),..., a(vn), b(vn))

we show there exists a hamilton cycle onG. Without generality, suppose that the cycle
C is constituted by the concatenation:

1. itinerary I1 from v1 to a(v2)

2. edge (a(v2), b(v2))

3. itinerary I2 from b(v2) to a(v3)

4. edge (a(v3), b(v3))

5. ...

6. edge (a(vn), b(vn))

7. itinerary In from b(vn) to v1

It is clear that c(Ii) ≥ 1,∀i = 1, 2, ..., n because it starts from a partition and termi-
nates at different partitions. Hence c(C) =

∑n
i=1 c(Ii)+

∑n
i=2 c(a(vi), b(vi)) ≥ n. In

combining with the condition (1), we have Ii = 1,∀i = 1, 2, ..., n. There is thus only
one 1-edge on Ii which is from a node of P (vi) to a node of P (vi+1), that means there
exists an edge from vi to vi+1. Hence, we have a hamilton cycle 〈v1, v2, v3, ..., vn, v1〉
on G.

Corollary 2 Given an undirected weighted graphG = (V,E), two vertices u, v ∈ V ,
a value L and a set of edges S ⊆ E, the problem of determining whether or not there
exists an itinerary from u to v whose cost is less than or equal to L which passes all
edges of S is NP-complete.
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Problems Existing approaches

KCT

Tabu Search
Evolutionary Computation
ACO
Variable Neighborhood Search
ILP

QR Heuristics (MPH, IMP, MAD)
Exhaustive Search

EDP Greedy
ACO

RCSP
Lagrangian relaxation with subgradient optimization
Label-setting
Lagrangian relaxation with near-shortest-path enumeration

RWA

ILP
Tabu search
Genetic algorithms

RNC (new problem, no existing works)

Table 2.1: Problem examples and existing approaches for solving them

Theorem 1 shows that the RNC problem is NP-hard in general. In Section 5.7, we
propose a simple model in LS(Graph) for solving the RNC problem. No existing work
for solving this problem is available, no comparison can thus be made. This simple
model can find optimal solutions in small problem instances. Experimental results on
large instances show the feasibility of our approach.

2.5.7 Summary
Table 2.1 summarizes the problems considered in this thesis and existing techniques
for solving them. The RWA problem has attracted huge research efforts with dedicated
techniques for solving it. We do not consider the pure RWA problem5. Rather, we
consider the RWA problem with delay side constraints as described above in order
to show the modeling facility and flexibility and feasibility of LS(Graph) on small
instances.

5Solving the pure RWA problem with LS(Graph) seems not to be efficient, especially, on large in-
stances (large number of connection requests as considered in the literature) due to the complexity of the
model.



3
THE LS(GRAPH) FRAMEWORK

In this chapter, we describe the framework containing abstractions that allow to model
and solve COT/COP problems by local search. The framework architecture is based
on that of CBLS. At the core, graph variables are specified. Over these variables,
graph invariants, graph functions and graph constraints are defined. These objects are
sufficient to model problems, specifying their properties. Different search components
are then performed on the model. The LS(Graph) framework is implemented on top
of the COMET programming language, enabling the combination with built-in vari-
ables (i.e., var{int}, var{float}), invariants, functions and constraints of COMET.
Sections 3.2, 3.3 focus on introducing two specific variables: tree variables and path
variables. These sections also define COT and COP neighborhoods for COT/COP ap-
plications. To conclude the chapter, we give an overview of the modeling abstractions
of the framework.

This chapter is based on our publications [PDV09, PDH10, PDDH10].

3.1 Architecture
As other structures of programs for solving combinatorial applications, the structure
of a local search program in LS(Graph) consists of declaring graph variables, stating
and posting graph invariants, graph functions and graph constraints and performing a
search procedure.

Graph variables Graph variables have been introduced in the CP(Graph) compu-
tation domain [DDD05]. In this framework, the domain of a graph variable is a set
of graphs modeled by a graph interval. Pruning techniques are applied to narrow this
interval. Branching will split the interval, and the system explores each of resulting
restricted intervals until an interval becomes singleton. In the LS(Graph) framework,
a graph variable represents what we call dynamic graphs, trees, paths which can be
modified over time (e.g., by edges insertion, removal, replacement actions). These
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variables are the core of the problem modeling. At each step of computation, the
value of a graph variable is a graph, a tree, or a path which is a candidate solution (or
a component of a candidate solution in cases that a solution to the given problem is a
set of trees, a set of paths or a set of trees and paths) to the problem.

By convention, we use capital letters A,B, ...,X, Y, Z to denote graph variables
and lowercase a, b, ..g, ..t to denote values of these variables.

Graph invariant Graph invariant is a concept describing objects which maintain
some properties of dynamic graphs, trees, paths, such as the distances between ver-
tices in a dynamic tree or the set of edges that can be inserted to a dynamic tree.
Programming complexity can be reduced substantially by using graph invariants. Lo-
cal search programs become clean, short and is close to high-level description of the
algorithms. It is thus easy to understand. Users do not have to write code for updat-
ing invariants when a local move (i.e., a modification over graph variables) is taken.
Instead, the stated graph invariants will be updated automatically by a built-in propa-
gation engine.

Graph function and graph constraint Like graph invariant, graph function and
graph constraint are concepts describing objects which maintain some properties of
the considered application, such as the length of a path or the total weight of a tree
or the number of violations of a given constraint. They specify the properties of the
applications and are used to control the search components. Contrary to graph in-
variants, graph function and graph constraint are differentiable objects that allow to
query the impact of various local moves over these properties (this feature is called
differentiation [VM05]). Graph functions can be an objective function of the given
application or they are used to state different constraints appearing in the given appli-
cation. Graph functions and graph constraints can be combined flexibly by traditional
arithmetic operators like +,−, ∗ or relation operators like ==, <=, >= for express-
ing more complex ones.

In the LS(Graph) framework, graph functions and graph constraints implement
common interfaces (i.e., the differentiation interface which will be described later)
enabling the genericity of search components. The search components do not need to
know specific properties of the applications. Rather, they use provided interfaces of
graph functions and graph constraints (e.g., differentiation methods) to guide the local
search.

The Search Search is the procedure of continually moving from a candidate solu-
tion to another candidate solution on the neighborhood graph until some criteria are
reached. The search is performed over a model, makes use of graph functions, graph
constraints to direct it. At each step, the local search queries the quality of neigh-
bors by using available interface of graph functions and graph constraints and decide
to choose a desired neighbor and perform the local move (i.e., perform modification
actions over graph variables of the model) to that neighbor.
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b. tr′ = addEdge(tr, (9, 10))

Figure 3.1: Illustrating an edge insertion

In the LS(Graph) framework, the search and the model are independent in the
sense that we can state and post new constraints to the model without changing the
search and we can also apply various (meta)heuristic strategies without modifying the
model.

3.2 Tree variables and COT neighborhoods

3.2.1 Tree variable
Tree variable or VarTree is a concept describing dynamic trees which can be modified
(e.g., by edges insertion, removal, replacement actions conserving the tree structure).
A value of a tree variable is a tree. The domain of a tree variable T is a set of trees
modeled by a graph interval [g1, g2], each value tr of T must satisfy the condition:
g1 ⊆ tr ⊆ g2. VarTrees are used to model COT applications in which their domains
are [⊥, g], g is the given graph under consideration.

3.2.2 Neighborhoods
A neighborhood of a tree is a set of trees generated by applying modification actions
over the current tree.

Related work Some local search techniques for COT problems exploit the prob-
lem structures and propose dedicated neighborhood structures or apply specific moves
without explicitly describing neighborhood structures. For instance, in the Steiner lit-
erature, specific moves have been proposed like steiner-vertex insertion and removal,
key-path exchange and key-vertex elimination. The objective is to generate greedily



36 Chapter 3. The LS(Graph) framework

13

1 2

3

45

6

7

8 9

1011

12

14

a. current tree tr

13

1 2

3

4

6

7

8 9

1011

12

14

b. tr′ = removeEdge(tr, (5, 6))

Figure 3.2: Illustrating an edge removal

a neighboring tree from the current tree without violating the Steiner constraint (i.e.,
the tree must contain all specified vertices). The basic idea of steiner-vertex insertion,
removal and key-vertex elimination is to insert or remove some vertex (steiner vertex1

or key vertex2) to the vertices set of the current tree and find a minimum spanning tree
of the induced subgraph of the given graph associated with the new vertices set. The
basic idea of key-path exchange is to replace a key path3 of the current tree by another
one (for more detail of these specific moves, see [DV97], [dAaRUW01], [BR01],
[RS00], [RUW02] and references therein). In the Capacitated Minimum Spanning
Tree problem, a very large-scale neighborhood structure has been proposed which ap-
plies the on node-based and tree-based multi-exchange. The basic idea is similar to
that of above local search algorithms for Steiner tree problem in graphs which find
for each subtree of the current rooted tree a minimum spanning tree of the induced
subgraph of the given graph associated with the modified vertices set (by vertices
exchange) of this subtree (for more detail, see [AOS03] and references therein). Ob-
viously, these neighborhood structures are problem-dependent and cannot be applied
when additional constraints need to be satisfied.

In other COT applications like edge-weighted k-cardinality tree (KCT) problem,
degree-constrained minimum spanning tree (DCMST) problem, the proposed local
search algorithms apply basic and generic moves. The neighborhood of a tree tr for
KCT problem proposed in [BB05] is the set of trees generated by removing a leaf edge
e, which results in a tree tr1, and adding an edge of E(g) \ {e} that has exactly one
end-point in tr1 where E(g) is the set of edges of the given graph g. For the DCMST
problem, local search algorithms consider neighborhood generated by removing an

1steiner vertex is a vertex of the current tree that does not belong to the given terminals set.
2A key vertex is a nonterminal vertex of the current tree with degree at least 3.
3A key path of the current tree is the path that connects two crucial vertices (i.e., key vertex or terminal

vertex) and has no internal crucial vertex.
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b. tr′ = replaceEdge(tr, (9, 10), (8, 9))

Figure 3.3: Illustrating an edge replacement

edge of the current tree, which results in two disconnected subtrees, and inserting
another edge that reconnects these two disconnected components [RS02], [ALM06].
These neighborhood structures seem to be widely applicable and they can be explored
in a generic way.

COT neighborhoods We now define some of neighborhood structures for COT ap-
plications considered in the framework. Given an undirected graph g and a dynamic
tree tr of g (tr ⊆ g), we specify a set of basic modifications conserving the tree
property. We consider in this framework the following basic modifications:

1. add edge action An edge e = (u, v) ∈ E(g) \ E(tr) can be added to tr if
tr is empty, or if there is exactly one node u or v in the tree tr: u ∈ V (tr)
XOR v ∈ V (tr). This edge is called insertable edge. The insertion of this
edge implicitly adds its endpoints to tr if they do not exist in tr. The set of
insertable edges of tr is denoted by Inst(tr) and this insertion action is denoted
by addEdge(tr, e). We also use addEdge(tr, e) to denote the resulting tree. The
first basic neighborhood is the following:

NT1(tr) = {addEdge(tr, e) | e ∈ Inst(tr)}

Figure 3.1 illustrates the edge insertion. Figure 3.1a is the current tree tr and
Figure 3.1b is the neighboring tree tr′ generated by inserting the edge (9, 10) to
tr.

2. remove edge action An edge e = (u, v) ∈ E(tr) can be removed from tr
if one node u or v is a leaf of tr: degtr(u) = 1 ∨ degtr(v) = 1. This edge is
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called removable edge. The removal of this edge thus also removes its endpoints
if they are the leaves of tr. The set of removable edges of tr is denoted by
Remv(tr) and this removal action is denoted by removeEdge(tr, e). We also use
removeEdge(tr, e) to denote the resulting tree. The second basic neighborhood
is defined as follows:

NT2(tr) = {removeEdge(tr, e) | e ∈ Remv(tr)}

Figure 3.2 illustrates the edge removal. Figure 3.2a is the current tree tr and
Figure 3.2b is the neighboring tree tr′ generated by removing the edge (5, 6)
from tr.

3. replace cycle edge action [AMO93] An edge e′ of tr can be replaced by an-
other edge e = (u, v) ∈ E(g) \ E(tr) with u, v ∈ V (tr) conserving the tree
property in the following case: the insertion of e creates a fundamental cy-
cle containing e′ and the removal of e′ removes the cycle and restores the tree
property. The set of nodes of tr is unchanged by this replacement. We denote
Repl(tr) the set of replacing edges of tr and Repl(tr, e) the set of replacable
edges of the replacing edge e. We use replaceEdge(tr, e′, e) to denote both
the replacement action and the resulting tree. The third basic neighborhood is
defined as follows:

NT3(tr) = {replaceEdge(tr, e′, e) | e ∈ Repl(tr) ∧ e′ ∈ Repl(tr, e)}

Figure 3.3 illustrates the edge replacement. Figure 3.3a is the current tree tr and
Figure 3.3b is the neighboring tree tr′ generated by replacing the edge (9, 10)
of tr by the edge (8, 9).

In practice, we can combine above basic moves to perform more complex moves.
For instance, we take addEdge(tr, e1) and removeEdge(tr, e2) at hand where e1 ∈
Remov(tr) and e2 ∈ Inst(tr) and e1 and e2 do not have common endpoint that is
the leaf tr 4. The set of such pairs of 〈e1, e2〉 is denote by RemvInst(tr). This kind
of neighborhood has been considered in the tabu search algorithm of [BB05]. The
formal definition of this neighborhood is the following:

NT1+2(tr) = {addEdge(removeEdge(tr, e2), e1) | 〈e1, e2〉 ∈ RemvInst(tr)}

In the following section, we introduce a novel neighborhood for COP applications.

3.3 Path variables and COP neighborhoods

3.3.1 Path variable
Path variable or VarPath is a concept describing dynamic paths which can be modified
on a given graph. The domain of a path variable P is a set of paths modeled by a

4This condition ensures tree property under the modification action.
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graph interval [g1, g2], each value p of P must satisfy the condition: g1 ⊆ G(p) ⊆ g2.
VarPaths are used to model COP applications in which their domain are [⊥, g], g is
the given graph under consideration.

3.3.2 Neighborhoods
For COP problems, a neighborhood of a path defines a set of paths that can be reached
from the current path. The most general neighborhood of a path p on a given graph g
is defined as the set of paths generated by replacing a subpath of the current path by
another path on the given graph conserving path property: N (p) = {repl(p, q) | q ∈
R(p)} in which R(p) is the set of paths q satisfying followings conditions:

- q ∈ g (1)
- s(q), t(q) ∈ p (2)
- spp(s(q)) ∩ q = {s(q)} (3)
- tpp(t(q)) ∩ q = {t(q)} (4)

The conditions (3) and (4) ensure the path property of all elements of N (p) (no
repeated vertices are allowed in a path except starting and terminating vertices)5.

Unfortunately, such neighborhood is too large and does not allow to explore it in
a generic way. To overcome this difficulty, in this section, we propose a restricted
neighborhood based on rooted spanning trees which can be widely applied and which
allows users to perform efficient neighborhood explorations.

Related work

To our best knowledge, there exist few local search approaches for COP applications
on general graphs. Moreover, these local search algorithms do not describe explicitly
neighborhood structures. Rather, the authors talk about the moves which are very
specific and sophisticated. Such moves do not enable the compositionality, modularity
and reuse of local search programs.

On complete graphs, some local search algorithms have been applied for solv-
ing the traveling salesman problem [KP80], the vehicle routing problem [FGI05],
[BGG+97]. In these approaches, a path is represented by a sequence of vertices
and the neighborhood consists of paths generated by changing some vertices of this
sequence (e.g., by removing, inserting, exchange or changing position of vertices).
These neighborhood structures cannot be applied for general graphs because a se-
quence of vertices can not be sured to always form a path on the given graph.

To obtain a reasonable efficiency, a local-search algorithm must maintain incre-
mental data structures that allow a fast exploration of this neighborhood and a fast
evaluation of the impact of the moves (differentiation). The key novel contribution of
our COP framework is to use a rooted spanning tree to represent the current solution
and its neighborhood. It is based on the observation that, given a spanning tree tr
whose root is t, the path from a given node s to t in tr is unique. Moreover, the span-
ning tree implicitly specifies a set of paths that can be reached from the induced path

5In some references, walks with no repeated vertices are referred to elementary paths.
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and provides the data structure to evaluate their desirability. The rest of this section
describes the neighborhood in detail. Our COP framework considers both directed
and undirected graphs but, for simplifying the presentation, only undirected graphs
are considered.

Rooted Spanning Trees

Given an undirected graph g and a target node t ∈ V (g), our COP neighborhood
maintains a spanning tree of g rooted at t. Moreover, since we are interested in ele-
mentary paths between a source s and a target t, the data structure also maintains the
source node s and is called a rooted spanning tree (RST) over (g, s, t). An RST tr over
(g, s, t) specifies a unique path from s to t in g: pathtr(s) = 〈v1, v2, ..., vk〉 in which
s = v1, t = vk and vi+1 = fatr(vi), ∀i = 1, . . . , k − 1. By maintaining RSTs for
COP problems, our framework avoids an explicit representation of paths and enables
the definition of a connected neighborhood that can be explored efficiently. Indeed,
the tree structure directly captures the path structure from a node s to the root and
simple updates to the RST (e.g., an edge replacement) will induce a new path from
s to the root. In the framework, we consider COP applications in which the sources
and the destinations of paths are not fixed. Hence, the source s and the destination (or
root) of RST(g, s, t) can also be changed.

Given an RST tr over (g, s, t), for a short, we denote path(tr) the path pathtr(s)
which is the path induced by tr from s to the root t of tr. Given an undirected graph
g and a path p on g, we denote RSTInduce(g,p) the set of RSTs of g, rooted at t(p)
which induce p.

We define in the following section different neighborhood structures. In COP ap-
plications, generally, a candidate solution is a set of paths. Each path has its own
neighborhood. A neighborhood of a candidate solution is the set of candidate solu-
tions generated by changing some paths of the current candidate solution with their
neighbors. Hence, we present only neighborhoods of one path.

The EdgeReplacement-based Neighborhood

We first show in this section how to update an RST tr over (g, s, t) based on edge
replacements to generate a new rooted spanning tree tr′ over (g, s, t) which induces a
new path from s to t in g: pathtr′(s) 6= pathtr(s).

Let tr be an RST over (g, s, t), we consider the third basic neighborhood of tr
(see Section 3.2):

NT3(tr) = {replaceEdge(tr, e′, e) | e ∈ Repl(tr) ∧ e′ ∈ Repl(tr, e)}

which is the set of RST of (g, s, t). It is easy to observe that two RSTs tr1 and tr2
over (g, s, t) may induce the same path from s to t. For this reason, we now show how
to compute a subset ERNP1(tr) ⊆ NT3(tr) such that pathtr′(s) 6= pathtr(s),∀tr′ ∈
ERNP1(tr).

We first give some notations to be used in the following presentation. Given an
RST tr over (g, s, t) and a replacing edge e = (u, v), the nearest common ances-



3.3. Path variables and COP neighborhoods 41

s

1 2

3

45

6

7

8

1011

12

t

a. The undirected graph g

s

1 2

3

45

6

7

8 lowtr((8, 10), s)

10 uptr((8, 10), s)11

12upncatr((8, 10), s)

lowncatr((8, 10), s)

t

b. A spanning tree tr rooted at t of g

Figure 3.4: An Example of Rooted Spanning Tree

tors of s and the two endpoints u, v of e are both located on the path from s to
t. We denote by lowncatr(e, s) and upncatr(e, s) the nearest common ancestors of
s on the one hand and one of the two endpoints of e on the other hand, with the
condition that upncatr(e, s) dominates lowncatr(e, s). We denote by lowtr(e, s),
uptr(e, s) the endpoints of e such that ncatr(s, lowtr(e, s)) = lowncatr(e, s) and
ncatr(s, uptr(e, s)) = upncatr(e, s). Figure 3.4 illustrates these concepts. The
left part of the figure depicts the graph g and the right side depicts an RST tr over
(g, s, r). Edge (8,10) is a replacing edge of tr; ncatr(s, 10) = 12 since 12 is the
common ancestor of s and 10. ncatr(s, 8) = 7 since 7 is the common ancestor of s
and 8. lowncatr((8, 10), s) = 7 and upncatr((8, 10), s) = 12 because 12 Domtr 7;
lowtr((8, 10), s) = 8; uptr((8, 10), s) = 10.

We now specify the replacements that induce new path from s to t.

Proposition 1 Let tr be an RST over (g, s, t), e = (u, v) be a replacing edge of tr, let
e′ be a replacable edge of e, and let tr1 = rep(tr, e′, e). Let su = upncatr(e, s) and
sv = lowncatr(e, s). We have that pathtr1(s) 6= pathtr(s) if and only if (1) su 6= sv
and (2) e′ ∈ pathtr(sv, su).

Proof • We show that if the conditions 1 and 2 are satisfied, then pathtr1(s) 6=
pathtr(s).

It is easy to see that e′ belongs to pathtr(s) and this edge is removed from that
path after taking rep(tr, e′, e). That means e′ does not belong to pathtr1(s).
Hence, pathtr1(s) 6= pathtr(s).

• We now show that if pathtr1(s) 6= pathtr(s), then the conditions 1 and 2 are
satisfied.
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We prove this by refutation. Suppose that su = sv. We denote r = su = sv
and r1 = ncatr(u, v). We have r Domtr r1 (because r Domtr u, v, so r
Domtr ncatr(u, v) = r1). We now show that pathtr(u, v) does not contain
any edges that belong to pathtr(s). If pathtr(u, r1) contains an edge (x, y)
(where y = fatr(x)) of pathtr(s), then we have x Domtr u and x Domtr s.
Hence, x Domtr ncatr(s, u) = r (1). Otherwise, (x, y) ∈ pathtr(u, r1), so r1
Domtr y, and we have r Domtr y (because r Domtr r1) that means r Domtr

fatr(x) (2). We see that (1) conflicts with (2). From that, we have the fact that
pathtr(u, r1) does not contain any edges of pathtr(s). In the same way we can
show that pathtr(v, r1) does not contain any edges of pathtr(s). From that,
we have pathtr(u, v) which is actually the concatenation of pathtr(u, r1) and
pathtr(v, r1) does not contain any edges of pathtr(s).

e′ is a replacable edge that belongs to pathtr(u, v). So after the replacement
is taken, no edge of pathtr(s) is removed. Hence, the path from s to the root
of the tree does not change, that means pathtr1(s) = pathtr(s) (this conflicts
with the hypothesis that pathtr1(s) 6= pathtr(s)). So we have su 6= sv.

We now suppose that e′ (the edge to be removed) does not belong to pathtr(su, sv).
We can see easily that the path from u to v on tr (pathtr(u, v)) is composed
by the path from u to su, the path from su to sv and the path from sv to v
on tr. So after the replacement is taken, no edge of pathtr(s) is removed.
Hence, pathtr1(s) = pathtr(s) (this conflicts with the hypothesis). So we have
e′ ∈ pathtr(su, sv).

A replacing edge e of tr satisfying the property 1 is called a preferred replacing
edge and a replacable edge e′ of e in tr satisfying condition 2 is called preferred
replacable edge of e. We denote by prefRepl(tr) the set of preferred replacing edges
of tr and by prefRepl(tr, e) the set of preferred replacable edges of the preferred
replacing edge e on tr. We also denote rep(tr, e′, e) the action and the resulting RST
of replacing a preferred replacable edge e′ by a preferred replacing edge e on the RST
tr. The EdgeReplacement-based neighborhood (called ER-neighborhood) of an RST
tr is defined as:

ERNP1(tr) = {tr′ = rep(tr, e′, e) | e ∈ prefRepl(tr), e′ ∈ prefRepl(tr, e)}.

The action rep(tr, e′, e) is called a ER-move and is illustrated in Figure 3.5. In
the current tree tr (see Figure 3.5a), the edge (8,10) is a preferred replacing edge,
ncatr(s, 8) = 7, ncatr(s, 10) = 12, lowncatr((8, 10), s) = 7, upncatr((8, 10), s) =
12, lowtr((8, 10), s) = 8 and uptr((8, 10), s) = 10. The edges (7,11) and (11,12)
are preferred replacable edges of (8,10) because these edges belong to pathtr(7, 12).
The path induced by tr is: 〈s, 3, 4, 6, 7, 11, 12, t〉. The path induced by tr′ is: 〈s, 3,
4, 6, 7, 8, 10, 12, t〉 (see Figure 3.5b).

ER-moves ensure that the neighborhood is connected which is detailed in Propo-
sition 2.
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Figure 3.5: Illustrating a Basic Move

Proposition 2 Let tr0 be an RST over (g, s, t) and P be a path from s to t. An RST
inducing P can be reached from tr0 in k ≤ l basic moves, where l is the length of P .

Proof The proposition is proved by showing how to generate that instance trk. This
can be done by Algorithm 14. The idea is to travel the sequence of nodes of P on the
current tree tr. Whenever we get stuck (we cannot go from the current node x to the
next node y of P by an edge (x, y) on tr because (x, y) is not in tr), we change tr by
replacing (x, y) by a replacable edge of (x, y) that is not traversed. The edge (x, y)
in line 7 is a replacing edge of tr because this edge is not in tr but it is an edge of g.
Line 8 chooses a replacable edge eo of ei that is not in S. This choice is always done
because the set of replacable edges of ei that are not in S is not null (at least an edge
(y, fatr(y)) belongs to this set). Line 9 performs the move that replaces the edge eo by
the edge ei on tr. So Algorithm 14 always terminates and returns a rooted spanning
tree tr inducing P . Variable S (line 1) stores the set of traversed edges.

Neighborhood of Independent ER-moves

It is possible to consider more complex moves by applying a set of independent ER-
moves. Two ER-moves are independent if the execution of the first one does not affect
the second one and vice versa. The sequence of ER-moves rep(tr, e′1, e1), . . . , rep(tr,-
e′k, ek), denoted by rep(tr, e′1, e1, e

′
2, e2, ..., e

′
k, ek), is defined as the application of the

actions rep(trj , e′j , ej) j = 1, 2, ..., k, where tr1 = tr and trj+1 = rep(trj , e′j , ej),
∀j = 1, . . . , k − 1. It is feasible if the ER-moves are feasible, i.e., ej ∈ prefRpl(trj)
and e′j ∈ prefRpl(trj , ej).



44 Chapter 3. The LS(Graph) framework

Algorithm 14: Moves(tr0)
Input: An instance tr0 of RST(g,s,t) and a path P on g, s = firstNode(P), t =

lastNode(P)
Output: A tree inducing P computed by performing k ≤ l basic moves (l is

the length of P)
S ← �;1

tr ← tr0;2

x← firstNode(P);3

while x 6= lastNode(P) do4

y ← nextNode(x,P);5

if y 6= fatr(x) then6

ei← (x, y);7

eo← replacable edge of ei that is not in S;8

tr ← rep(tr, eo, ei);9

S ← S ∪ {(x, y)};10

x← y ;11

return tr;12

Proposition 3 Consider k ER-moves rep(tr, e′1, e1), . . . , rep(tr, e
′
k, ek). If all possi-

ble execution sequences of these basic moves are feasible and the edges e′1, e1, e
′
2, e2,-

..., e′k, ek are all different, then these k ER-moves are independent.

Proof All sequences of these basic moves are executable and the final results have
the same set of edges E(tr) \ {eo1, eo2, ..., eok} ∪ {ei1, ei2, ..., eik}. Thus the result
trees of all execution sequences are the same.

We denote by ERNPk(tr) the set of neighbors of tr obtained by applying k indepen-
dent ER-moves. The action of taking a neighbor in ERNPk(tr) is called ER-k-move.

It remains to find some criterion to determine whether two ER-moves are inde-
pendent. Given an RST tr over (g, s, t) and two preferred replacing edges e1, e2, we
say that e1 dominates e2 in tr, denoted by e1 Domtr e2, if lowncatr(e1, s) dominates
upncatr(e2, s). Then, two preferred replacing edges e1 and e2 are independent w.r.t.
tr if e1 dominates e2 in tr or e2 dominates e1 in tr.

Proposition 4 Let tr be an RST over (g, s, t), e1 and e2 be two preferred replacing
edges such that e2 Domtr e1, e′1 ∈ prefRpl(tr, e1), and e′2 ∈ prefRpl(tr, e2).
Then, rep(tr, e′1, e1) and rep(tr, e′2, e2) are independent and the path induced by
rep(tr,e′1,e1,e′2,e2) is pathtr(s, v1) + pathtr(u1, v2) + pathtr(u2, t), where + denotes
path concatenation and v1 = lowtr(e1, s), u1 = uptr(e1, s), v2 = lowtr(e2, s), and
u2 = uptr(e2, s).

Proof Let x = ncatr(u1, v2), sv1 = ncatr(s, v1), su1 = ncatr(s, u1), sv2 =
ncatr(s, v2), su2 = ncatr(s, u2). Because su1 Domtr sv1, sv2 Domtr su1, su2
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Figure 3.6: Illustrating a Complex Move

Domtr sv2, e′1 belongs to pathtr(sv1, su1) and e′2 belongs to pathtr(sv2, su2), we
have e′1 6= e′2. Otherwise, e2 Dom(tr) e1 and these two edges are not in tr, whereas
e′1 and e′2 are in tr. So e1, e′1, e2, e

′
2 are all different.We will show that the sequence

rep(tr, e′1, e1), rep(tr, e
′
2, e2) is feasible as follows:

Suppose that v′1, u
′
1 are endpoints of e′1 such that u′1 = fatr(v

′
1) and let tr1 =

rep(tr, e′1, e1). It is straightfoward to find that Ttr(v′1) does not after taking rep(tr, e′1, e1).
We can also find that u1, v2, u2 must belong to Ttr(v′1) (if not, u1, v2, u2 must be-
long to Ttr(v′1), thus ncatr(s, u1), ncatr(s, v2), ncatr(s, u2) are dominated by v′1,
hence they cannot be su1, sv2, su2). Thus ncatr1(s, u2) = ncatr(s, u2) = su2
and ncatr1(u1, v2) = ncatr(u1, v2) = x. Moreover, from the property 1, we have
ncatr1(s, v2) = ncatr1(u1, v2) = x. Due to the fact that sv2 Domtr1 su1 and
su1 Domtr1 u1, we have sv2 Domtr1 u1. From the fact that sv2 Domtr1 v2 and
sv2 Domtr1 u1, we have sv2 Domtr1 ncatr1(u1, v2) = x. Because e′2 belongs to
pathtr(sv2, su2), we have e′2 belongs to pathtr1(x, su2). That means e′2 is still a
preffered replacable edge of e2 on tr1. So the sequence rep(tr, e′1, e1), rep(tr, e

′
2, e2)

is feasible.
In similar way, we can prove that the sequence rep(tr, e′2, e2), rep(tr, e

′
1, e1) is

also feasible. Hence, two basic moves rep(tr, e′1, e1), rep(tr, e
′
2, e2) are independent.

Figure 3.6 illustrates a complex move. In tr, two preferred replacing edges e1 = (1, 5)
and e2 = (8, 10) are independent because lowncatr((8, 10), s) = 7 which dominates
upncatr((1, 5), s) = 6 in tr. The new path induced by tr′ is: 〈s, 3 ,1, 5, 6, 7, 8, 10,
12, t〉 which is actually the path: pathtr(s, 1) + pathtr(5, 8) + pathtr(10, t).

We specify now two other neighborhoods based on changes over sources and des-
tinations of the paths. These neighborhoods will be applied when using sequences of
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RSTs for modeling general walks (vertices and edges can be repeated) as described
later.

The ChangeSource-based Basic Neighborhood

Given an instance tr of RST(g, s, t) and a vertex s′ ∈ V (g), we define the action
cs(tr, s′) which change the source s of tr with the new one s′ which results a new
RST tr′ inducing path from s′ to t and we denote tr′ = cs(tr, s′). This action is call
ChangeSource move or CS-move. Figure 3.7 illustrates a CS-move. Figure 3.7a is
the current RST which induces the path 〈s, 3, 4, 6, 7, 11, 12, t〉 and Figure 3.7b is the
resulting RST tr′ by changing the source of tr with the new source (vertex 9). tr′

induces the new path 〈9, 10, 12, t〉.
We define now the neighborhood which is based on the change over the source.

Given a RST tr over (g, s, t), the ChangeSource-based neighborhhood (or CS-neighborhood)
of tr is defined as

CSNP(tr) = {tr′ | tr′ = cs(tr, s′), s′ ∈ V (g) \ {s}}

The ChangeDestination-based Neighborhood

Given an instance tr of RST(g, s, t) and a vertex t′ ∈ V (g), we define the action
cr(tr, s′) which change the root t of tr with the new one t′ which results a new RST
tr′ inducing path from s to t′ and we denote tr′ = cr(tr, t′). This action is called
ChangeDestination6 move or CD-move. Figure 3.8 illustrates a CD-move. Figure
3.8a is the current RST which induces the path 〈s, 3, 4, 6, 7, 11, 12, t〉 and Figure3.8b
is the resulting RST tr′ by changing the root of tr with the new root (vertex 5). tr′

induces the new path 〈s, 3, 4, 6, 5〉.
6We also call ChangeRoot move because the root of the RST is the destination of the induced path.
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We define now the neighborhood which is based on the change over the root.
Given a RST tr over (g, s, t), the ChangeDestination-based neighborhhood (or CD-
neighborhood) of tr is defined as

CDNP(tr) = {tr′ | tr′ = cr(tr, t′), t′ ∈ V (g) \ {t}}

ER-moves, CS-moves and CD-moves are called basic moves. ER-moves, CS-
moves and CD-moves ensure that the neighborhood is connected which is detailed in
Proposition 5.

Proposition 5 Let tr0 be an RST over (g, s, t) and P be a path from s′ to t′. An RST
inducing P can be reached from tr0 in k ≤ l+ 2 basic moves, where l is the length of
P .

Proof The proposition is proved by showing how to generate that instance trk. This
can be done by first applying two moves: cs(tr0, s′) which results in an RST tr′ and
cr(tr′, t′) which results in an RST tr′′ inducing path from s′ to t′ and then applying
the method Moves(tr′′) in Algorithm 14 from the starting point tr′′ instead of tr0.

General neighborhood

We introduce in this section a general neighborhood analyze its complexity and show
how it can be exploited efficiently.

Given a RST tr over (g, s, t), the most general neighborhood of tr is defined as:

Nk(tr) = {tr′ ∈ RSTInduce(g, repl(p, path(tr)) | p ∈ Paths(g,k)∧s(p), t(p) ∈ path(tr)}

Intuitively, Nk(tr) is the set of RSTs which induce the path q where q is a path
constituted by replacing a subpath of the path induced by tr (path(tr)) by a new path
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of length k (having k edges). Generally, the size of Nk(tr) is too large because the
number of paths having k edges may be O(nk) where n size of the given graph g.
Moreover, given a path p in the above formula, the neighboring path x is specified
but there are many RSTs which induce x. In order to avoid overhead, in practice, we
can apply this neighborhood with k = 2, 3 and we take randomly an RST among the
set of RSTs inducing the same path. Normally, the neighboring solutions on above
COP ERNPk are diverse and too different from the current solution. By exploring
N2(tr) andN3(tr), we can avoid missing local minimum (if they exist) which are not
too different from the current solution. Notice that the neighboring paths in N1(tr)
are covered by ERNP1. Experiments have shown the benefit of using these neighbor-
hoods, for instance, in Section 5.4.

3.3.3 Discussion

Diversification of the COP neighborhood

We discuss in this section how fundamental and robust the diversification of the pro-
posed COP neighborhood based on rooted spanning tree is. Clearly, the above neigh-
borhood based on rooted spanning tree features diversification in the sense that a
neighboring path is usually very different from the current path.

Traditionally, a solution to a given standard CSP can be modeled by an array of
variables and a neighbor of the current solution is generated by changing one vari-
able or swapping two variables. Such a neighbor is close to the current solution: the
difference between the current solution and its neighbor appears in only one or two po-
sitions. For COP problem on general graphs where a solution to the given problem is a
path between two specified vertices, a neighboring path of the current path which dif-
fers from the current path of one or two edges may not exist or very few of such neigh-
bors exists. It depends strongly on the topology of the given graphs. Figure 3.9 shows
an illustrating example. The current path from 1 to 8 which is 〈1, 2, 3, 4, 5, 6, 7, 8〉 has
only two neighbors:〈1, 2, 3, 13, 12, 11, 10, 9, 7, 8〉 and 〈1, 2, 18, 17, 16, 15, 14, 6, 7, 8〉
which are very different from it.

Moreover, for constraints like PathContains(vp, S) specifying that a given set S of
vertices, edges must belong to the desired path vp, the diversification of COP neigh-
borhood allows to explore neighboring paths which visit vertices, edges which are
located far from the current path on the graph and which are not visited by the cur-
rent path. In this case, such diverse neighboring paths reduce the violations of the
PathContains(vp, S) constraints while neighboring paths which are close to the cur-
rent path (i.e., neighboring paths generated by replacing a subpath of the current path
by a new path with a small length) might not reduce the violations of that constraint
as illustrated in Figure 3.10. In this example, the current path is 〈1, 2, 3, 4, 5, 6, 7, 8〉
and we want to find path which visit the vertices 10 and 14. Clearly, the vertices 10
and 14 are located far from the current path and they cannot be visited by non-diverse
paths which are induced by RSTs in the neighborhood N2.
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Figure 3.9: Illustrating the diversification of COP neighborhood

Limitations

Even though the proposed COP neighborhood can be applied on general graphs, we
can see its limitations in some cases. First, if we consider a COP problem on a very
large graph, for example, a graph with 10000 vertices, and we have to find a path
of very small length, for example, a path of 2 or 3 edges, then maintaining a rooted
spanning tree of this in this case is heavy while the COP neighborhood contains many
non-promising solutions due to the fact that the length of neighboring paths are too
divers. In this case, it is necessary to combine with some preprocessing techniques
based on the structure of the considered problem for reducing the size of the graph.
Second, if we consider a COP problem on a complete graph, and we need to find a
path of fixed length (i.e., the number of edges of the path is fixed by k), then using
the proposed COP neighborhood seems not to be efficient. In this case, using an array
of variables x[1..k + 1] for modeling the path (x[i] represents the ith vertex of the
path) is simple and more efficient, for instance in the TSP problem [KP80], because
any change over one or some variables induces a neighboring path and evaluating the
quality of a neighbor as well as performing a move are more efficient.

3.4 Modeling constrained walk finding problems with
a sequence of path variables

In many real-life routing applications, the desired routes have not necessary to be
elementary (walk). For example, a vehicle can depart from a depot, traverse some
roads and return to the depot and is allowed to pass visited roads. So it is required
to model a route where vertices, edges can be repeated. Henceforth, we use the word
“itinerary” to express routes where vertices, edges can be repeated which differs from
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Figure 3.10: Illustrating the robustness of the diversification of COP neighborhood

“path” where vertices and edges can not be repeated. In this framework, we propose to
model constrained itinerary finding problems by using a sequence of RSTs restricted
by the continuity condition: the destination (or root) of a RST must be the source of
the next RST in the sequence.

3.4.1 Sequence of rooted spanning trees
The basic idea here is to use a sequence of spanning trees: 〈RST(g, s = x0, x1),
RST(g, x1, x2), ..., RST(g, xk−1, xk = t)〉 to model a dynamic itinerary VarItinerary(-
g, s, t) from s to t on the graph g. Each instance it of VarItinerary(g, s, t) is a sequence
〈tr0, tr2, ..., trk−1〉 where tri is an instance of RST(g, xi, xi+1),∀i = 0, 2, ..., k − 1.
A constraint over the sequence which must implicitly hold at any moment is that the
destination of tri and the source of tri+1 is the same ∀i = 0, 1, ..., k − 2.

Figure 3.11 shows an example where VarItinerary(g, s, t)= 〈RST(g, s, 5), RST(g,-
5, t)〉. Figure 3.11a is an instance tr1 of RST(g, s, 5) which induces the path p1 =
〈s, 3, 4, 8, 7, 6, 5〉 and Figure 3.11b is an instance tr2 of RST(g, 5, t) which induces
the path p2 = 〈5, 4, 8, 10, 12, t〉. Hence, the itinerary induced by VarItinerary(g, s, t)
is p1 + p2 = 〈s, 3, 4, 8, 7, 6, 5, 4, 8, 10, 12, t〉.

Property 2 Each instance of it = 〈tr0, tr1, ..., trk−1〉 of VarItinerary(g, s, t) is an
itinerary where vertices and edges are repeated at most k times.

3.4.2 Neighborhood
Given an instance it = 〈tr0, tr1, ..., trk−1〉 of VarItinerary(g, s, t) = 〈RST(g, s =
x0, x1), RST(g, x1, x2),..., RST(g, xk−1, xk = t)〉where tri is an instance of RST(g,-
xi, xi+1), ∀i = 0, 1, ..., k − 1, the neighborhood of it is the set of itineraries gener-
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Figure 3.11: Example of itinerary

ated by taking a modification (local move) over it. In Section 3.3, each instance of
RST(g, s, t) has different neighborhoods.

We thus consider the first basic neighborhood of it based on edges replacements
(called EdgeReplacement-based neighborhood):

ERNI1(it = 〈tr0, tr1, ...tri, ..., trk−1〉) =

{〈tr0, tr1, .., tr′i, .., trk−1〉 | tr′i ∈ ERNP1(tri), 0 ≤ i ≤ k − 1}
In the first neighborhood, we do not change the root (the destination) of each

spanning tree when taking local moves. This leads to the fact that some vertices (roots
of spanning trees) will always be in the itinerary and these vertices might not be in the
desired solution. The search space is thus limited.

We define a second basic neighborhood of it based on the changes over sources
and destinations (called SourseDestinationChange-based neighborhood or SDC-neigh-
borhood):

SDCNI1(it = 〈tr0, ..., tri, tri+1, ..., trk−1〉) =

{〈tr0, ..., tr′i, tr′i+1, ..., trk−1〉 | tr′i = cr(tri, y), tr′i+1 = cs(tri+1, y), 0 ≤ i ≤ k −
2, y ∈ V (g)}. The action of taking a neighbor in SDC-neighborhood is called SDC-
move.

Intuitively, a neighbor is generated by taking two successive spanning tree tri and
tri+1 and changing the root (the destination) of tri and the source of tri+1 by a new
vertex y. Figure 3.12 illustrates a SDC-move. Figures 3.12a and 3.12b is the current
solution with the sequence 〈tr1, tr2〉which induces the itinerary 〈s, 3, 4, 8, 7, 6, 5, 5, 8,-
10, 12, t〉 and Figures 3.12c and 3.12d is a neighbor of the current solution generated
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Figure 3.12: Illustrating a SDC-move
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by changing the root of tr1 with the new root 11 and changing the destination of
tr2 with the new destination 11. This neighboring solution is the sequence 〈tr′1, tr′2〉
which induces the itinerary 〈s, 3, 4, 8, 7, 11, 8, 10, 12, t〉.

Even though the proposed modeling approach seems to be complex, in practice,
we can exploit partially the neighborhood with dedicated heuristics. For instance, the
first-improvement heuristic7 allows to avoid the computation overhead.

3.5 Modeling abstractions

This section introduces abstractions available in the LS(Graph) framework for mod-
eling COT/COP problems including common interfaces, classes representing graph
variables, graph invariants, graph constraints, graph functions and search components.
The core of the framework are graph variables (e.g., VarTree, VarPath objects rep-
resenting dynamic trees, paths which can be changed) over which, graph invariants,
graph constraints and graph functions are defined.

Graph invariants maintain properties of dynamic trees, paths. Graph constraints
and graph functions are differentiable objects which not only maintain properties of
dynamic trees, paths (for instance, the number of violations of a constraint or the
value of an objective function) but also allow to determine the impact of local moves
on these properties, a feature known as differentiation.

3.5.1 The Solver<LSGraph>
The Solver<LSGraph> is an abstraction representing objects which manage all vari-
ables (including COMET variables like var{int}, var{float} and graph variables like
VarTree, VarPath), graph invariants, graph constraints and graph functions of the
model and maintain a data structure representing the relations between these ele-
ments. The role of the Solver<LSGraph> is to perform a propagation method for up-
dating invariants, functions and constraints whenever the variables over which these
objects are defined are updated. The implementation of Solver<LSGraph> extends
the Solver<LS> of COMET enabling the combination of COMET variables and graph
variables.

3.5.2 Graph invariants
Invariant [VM05] is a concept describing objects maintaining some properties of the
problem. In the LS(Graph) framework, we extend the invariant concept by introducing
the graph invariant concept. Graph invariants are objects maintaining some properties
of dynamic graphs, trees and paths, for example, the set of replacing edges of a dy-
namic tree, nearest common ancestors of all pairs of two vertices on a dynamic tree,
etc. Users specify invariants in the model statement and these invariants are used for
stating functions and constraints of the problem and for the search procedures. An

7The neighborhood is explored until a solution that is better than the current solution is found.
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1.interface Invariant<LSGraph> extends Invariant<LS>{
2. Solver<LSGraph> getLSGraphSolver();
3. VarGraph[] getVarGraphs();
4. void initPropagation();
5. void propagateAddEdge(VarTree vt, Edge e);
6. void propagateRemoveEdge(VarTree vt, Edge e);
7. void propagateReplaceEdge(VarTree vt, Edge e1, Edge e2);
8. void propagateReplaceEdge(VarPath vp, Edge e1, Edge e2);
9.}

Figure 3.13: interface of graph invariants (partial description)

1.interface Differentiation<LSGraph>{
2. float getAddEdgeDelta(VarTree vt, Edge e);
3. float getRemoveEdgeDelta(VarTree vt, Edge e);
4. float getReplaceEdgeDelta(VarTree vt, Edge e1, Edge e2);
5. float getReplaceEdgeDelta(VarPath vp, Edge e1, Edge e2);
6. float getDeltaWhenUseReplacingEdge(VarPath vp, Edge[] e);
7. float getReplaceSubPath(VarPath vp, LSGraphPath p);
8.}

Figure 3.14: differentiation interface (partial description)

update over variables8 i.e., a move is performed induces a propagation method that
updates all graph invariants associated with these variables thanks to the precedence
graph maintained in the Solver(LSGraph). Users do not have to call the procedures
for updating these graph invariants.

All graph invariants must implement the Invariant<LSGraph> interface which
is partially depicted in Figure 3.13. The interface features all the presented moves
on COT and COP neighborhoods. Line 2 returns a Solver(LSGraph) object which
manages all graph variables, graph invariants of the model. Line 3 returns the list of
graph variables9 over which the graph invariant is defined. Method in line 4 is called
when the model is closed. Lines 5-8 are some propagation methods corresponding to
different local moves.

3.5.3 Graph functions and graph constraints
Graph constraints and graph functions are differentiable objects which not only main-
tain properties of dynamic trees, paths (for instance, the number of violations of a
constraint or the value of an objective function) but also allow to determine the impact
of local moves on these properties, a feature known as differentiation. Graph func-
tions and graph constraints are used for stating constraints and objective function of
the given problem which are then used for controlling the local search procedure. The
differentiation is used for evaluating the quality of a neighbor e.g., by querying the

8Variables here include var{int}, var{float}, VarTree, VarPath.
9VarGraph is an abstract class from which VarTree, VarPath are derived.
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1.interface Constraint<LSGraph> extends Invariant<LSGraph>,
Differentiation<LSGraph>{

2. var{float} violations();
3. var{float} violations(VarGraph vg);
4.}

Figure 3.15: interface of graph constraints (partial description)

variation of the cost of the current path when an edge replacement is taken, we know
how good a neighboring path is before making a choice.

The differentiation interface is depicted in Figure 3.14. The differentiation meth-
ods evaluate the impact of various local moves, for instance, getAddEdgeDelta(VarTree
vt, Edge e) computes the variation of the value of the function when the edge e is
added to the tree vt; the method in line 6 returns the variation of the value of the func-
tion when the replacing edge e is applied10. Method in line 7 evaluates the impact of
moves where the subpath of vp between two endpoints of p is replaced by p (see the
definition of most general COP neighborhoodN at the beginning of Section 3.3.2). It
enables exploration of other neighborhoods than the NP1.

Figure 3.15 depicts the interface of graph constraints in which the method in line
1 returns the violations of the constraint. Line 2 returns the violations of the constraint
attributed to VarGraph vg. If the graph variable does not appear directly in the defini-
tion of the constraint, it does not contribute to any violations. This information may
be useful when applying multistage heuristics.

Users can also extend the LS(Graph) system by constructing their own invariants,
graph functions, and graph constraints. These new classes must implement above
interfaces.

3.5.4 Search components
After stating the problem model, one can perform a local search procedure for finding
high-quality solutions. By using graph invariants and differentiable objects (graph
functions and graph constraints) one can apply various (meta)-heuristic strategies for
the local search.

In order to illustrate the modeling and the search component, we give an example
in Figure 3.16 in which we solve the problem of finding a spanning tree of a given
undirected graph g such that the degree of each node does not exceed maxDe and the
diameter of the spanning tree does not exceed maxDia. The model is given in lines
1-14 in which line 1 creates a Solver<LSGraph> ls and lines 2-3 initialize randomly
a tree variable vt with k edges of a given undirected graph g associated with ls. rpl
(line 4) is a graph invariant representing the set of replacing edges of vt. Lines 6-12
state and post constraints on degree and diameter of the tree vt to a graph constraint
system gcs which is declared in line 9. Whenever the model is closed (line 14), the

10When a local move replaceEdge(tr, e′, e) is applied with the neighborhood NP1, the resulting path
depends only on the replacing edge e used, not on the replacable edge e′.
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1 Solver<LSGraph> ls();
2 int k = g.numberOfVertices()-1;
3 VarTree vt(ls,g,k);
4 ReplacingEdgesVarTree rpl(ls,vt);

6 DegreeAtMost degreeC(vt,maxDe);
7 DiameterAtMost diameterC(vt,0,maxDia);

9 ConstraintSystem<LSGraph> gcs(ls);
10 gcs.post(diameterC);
11 gcs.post(degreeC);
12 gcs.close();

14 ls.close();

16 int it = 1;
17 while(it < 1000 && gcs.violations() > 0){
18 selectMin(ei in rpl.getSet(),
19 eo in getReplacableEdges(vt,ei))
20 (gcs.getReplaceEdgeDelta(vt,eo,ei)){
21 vt.replaceEdge(eo,ei);
22 }
23 it++;
24 }

Figure 3.16: Model for bounded diameter and degree constrained spanning tree

initPropagation methods of all graph invariants are called to initialize the values
and internal data structures of these objects. The search is given in lines 16-24 which
is a simple greedy search. At each iteration, we explore the NT3 neighborhood and
choose the best one w.r.t. the graph constraint system gcs: we choose a replacing edge
ei and a replacable edge eo of ei such that the number of violations of gcs reduces
most when eo is relaced by ei (see method getReplaceEdgeDelta(vt,eo,ei)). Line
21 is the local move which induces automatically a propagation to update all graph
invariants, constraints defined over it (e.g., rpl, degreeC, diameterC) thanks to a
precedence graph maintained in ls.

We can see in this example that the model and the search are independent. On
the one hand, we can state and post other constraints to the graph constraint system
gcs without having to change the search. On the other hand, we can apply different
heuristics local search in the search component without changing the model.

In the framework, we provide a set of built-in generic neighborhood exploration
procedures (see Appendix C) and search components (e.g., adaptive tabu search de-
scribed in Appendix B). This enables users to use the framework as a black box and
solve the problem in a declarative way. For illustrating these generic neighborhood
exploration procedures, we describe one of them, i.e., the exploration of the ERNP1

neighborhood in a tabu search with aspiration criterion (see Appendix for other generic
neighborhood exploration procedures). The procedure (see Figure 3.17) consists of
exploring neighborhood, choosing a best move or a first improvement (depends on
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the input parameter firstImprovement) in term of a graph constraint c (see parame-
ters in line 2). tbIn, tbOut are array tabu, each pair tbIn[i], tbOut[i] represent
tabu list for preferred replacing edge and preferred replacable edge for the VarPath

_vps[i] of the consider array of VarPath _vps of the given model. it is the current
iteration of the local search and fgb is the best violations of the constraint c found so
far. Neighborhood N is a COMET abstraction which stores different moves (as clo-
sure) and their evaluations. We describe now the content of this generic neighborhood
exploration procedure. The array _vps of VarPaths of the model are scanned (line
8). For each VarPath vp, we explore its ERNP1 neighborhood. repl in line 10 is
a graph invariant representing the set of preferred replacing edges of vp. For each
edge e1 of repl, the variation d of the number of violations of the constraint c when
the preferred replacing edge e1 is applied (for the edge replacement) is computed
(lines 11-12). If acceptance criterion is satisfied: the edge e1 is not tabu at the current
iteration it or the consider neighbor improves the best violations found so far fgb

(line 14), we update the quality of this neighbor (lines 15-19). The chosen move is
submitted to the Neighborhood N in lines 28-43: we choose randomly a preferred re-
placable edge sel_eo1 of the selected preferred replacing edge sel_ei1 (lines 32-34)
and then submit the move and its evaluation eval in lines 37-42. Lines 38-41 perform
the move (whenever it is called): making tabu two selected edges sel_eo1, sel_ei1

(lines 38-39) and replacing se_eo1 by sel_ei1 on the selected VarPath sel_vp.
Table 3.1 gives a part of abstractions of the LS(Graph) framework including graph

variables, fundamental graph invariants, graph functions, graph constraints, and some
built-in generic tabu search components (see Appendix A for the manual of these
classes). The LS(Graph) framework is open that allows users to design and implement
their own graph invariants, graph functions, graph constraints respecting the specified
interfaces as well as different local search components in order to integrate them to
the system.
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1 void exploreTabuMinReplace1Move1VarPath(Neighborhood N,
Constraint<LSGraph> c,

2 GTabuEdge[] tbIn, GTabuEdge[] tbOut, int it, float fgb, bool
firstImprovement){

4 Edge sel_ei1 = null;
5 int ind = -1;
6 float eval = System.getMAXINT();

8 forall(j in _vps.rng()){
9 VarPath vp = _vps[j];

10 ReplacingEdgesMaintainPath repl = _mapReVarPath{vp};
11 forall(e1 in repl.getSet()){
12 float d = c.getDeltaWhenUseReplacingEdge(vp,e1);

14 if(!tbIn[j].isTabu(e1,it) || d + c.violations() < fgb){
15 if(d < eval){
16 eval = d;
17 ind = j;
18 sel_ei1 = e1;
19 }
20 if(firstImprovement && eval < 0)
21 break;
22 }
23 }
24 if(firstImprovement && eval < 0)
25 break;
26 }

28 if(ind > -1){
29 VarPath vp = _vps[ind];
30 Edge sel_eo1 = null;

32 select(eo1 in getPreferredReplacableEdges(vp,sel_ei1)){
33 sel_eo1 = eo1;
34 }

36 if(sel_eo1 != null)
37 neighbor(eval,N){
38 tbIn[ind].makeTabu(sel_eo1,it);
39 tbOut[ind].makeTabu(sel_ei1,it);

41 vp.replaceEdge(sel_eo1,sel_ei1);
42 }
43 }
44 }

Figure 3.17: Exploring the ERNP1 neighborhood
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3.6 Complexity
In this section, we describe briefly the implementation of some fundamental and non-
trivial abstractions and analyze their complexities.

3.6.1 VarTree and Nearest Common Ancestors
For facilitating the manipulation of dynamic trees, the trees are implicitly stored as
rooted trees. Several well-known data structures have been proposed for representing
dynamic trees , for instance, ST-trees [ST83, ST85], topology trees [Fre97], ET-trees
[HK99], top trees [AHLT05, TW05], RC-trees [ABH+04] (and references therein).
These data structures maintain a forest of dynamic rooted trees, supporting update
actions (e.g., link and cut) and some queries (e.g., minimum (maximum) cost edge,
node on a path, nearest common ancestors of two nodes, medians, centers of a tree) in
O(log n) time per operation. These data structures have been experimentally studied
in [TW09]. These data structures are dedicated to solving specific network algorithms,
for instance maximum flow problem.

In the LS(Graph) framework, it is required to maintain a dynamic rooted tree sup-
porting update actions (i.e., add, remove, replace edges) and different basic queries as
nearest common ancestors of two nodes, the father of a node, the set of nodes, edges,
the set of adjacent edges of a given nodes. At each step of the local search process,
the system explores a neighborhood, queries the quality of all neighbors and decides
to choose one neighbor to move. Usually, the neighborhood is large and the neighbor-
hood exploration should be as fast as possible. This exploration requires to frequently
perform the above queries over dynamic rooted trees. The queries over dynamic trees
like the nearest common ancestors of all pairs of two nodes, the father of a node, the
set of nodes, edges should thus be as fast as possible. For this purpose, we use direct
data structure for tree by maintaining the father of each node, sets for storing nodes,
edges and adjacent edges of each node of the tree. So the time complexity for each
update action is O(n) and the above queries except nearest common ancestors take
O(1) instead of O(log n).

Concerning the nearest common ancestors problem, Bender et al. [BFCP+05] pre-
sented a simple optimal algorithm for trees which is a sequentialized version of the
more complicated PRAM algorithm of Berkman and Vishkin [BV93]. An intermedi-
ate data structure is precomputed in O(n); each query nca(u, v) is then computed in
O(1) time. The data structure is based on Euler Tour and the data structure for the
Range Minimum Query (RMQ) problem. We apply the data structure of [BFCP+05]
by an incremental implementation. That means, we update partially the data structure
whenever the tree is modified (i.e., by add, remove, replace edges) instead of recom-
puting it from scratch. The incremental implementation does not improve the time
complexity in the worst case (O(n) for each update action) but it is more efficient in
practice. We have tested this implementation on dynamic trees of size 98, 198, 498,
998 of complete graphs of size 100, 200, 500, 1000. For each graph, we generate ran-
domly 20 sequences of 10000 update actions (add, remove, replace edges) conserving
the size of the tree. Experimental results showed that the incremental implementation
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is about 1.6 times faster than recomputing from scratch.

3.6.2 VarPath
The implementation of VarPath is based on the data structure for VarTree. It main-
tains incrementally a set of preferred replacing edges under edge replacement actions.
Consider a rep(tr, (u2, v2), (u1, v1)) action over an RST tr over (g, s, t) (we denote
tr′ = rep(tr, (u2, v2), (u1, v1))). We show how to update incrementally prefRepl(tr).
We denote r = ncatr(s, u2) and y = ncatr(s, v2). Without loss of generality, sup-
pose that r Domtr y and u1 Domtr v1. We denote r1, r2 respectively the children of
r that dominate u1 and u2 (see an example in Figure 3.18). The set of vertices of tr is
partitioned into following subsets:

• S1 = {x ∈ V (tr) | r Domtr x}

• S2 = {x ∈ V (tr) | r2 Domtr x}

• S3 = {x ∈ V (tr) | r Domtr x ∧ r1 Domtr x ∧ r2 Domtr x}

• S4 = {x ∈ V (tr) | r1 Domtr x ∧ v1 Domtr x}

• S5 = {x ∈ V (tr) | v1 Domtr x ∧ y Domtr x}

• S6 = {x ∈ V (tr) | y Domtr x ∧ z Domtr x}

• S7 = {x ∈ V (tr) | z Domtr x}

As pointed out in Section 3.3.2, an edge e = (u, v) is a preferred replacing edge of
an RST tr iff ncatr(s, u) 6= ncatr(s, v). So for updating the set of preferred replacing
edges of an RST tr over (g, s, t), we first characterize the change over nearest common
ancestor of s and each node x from tr to tr′ in the following properties.

Property 3 With above notations, we have:

• ncatr(s, x) = ncatr′(s, x),∀x ∈ S1 ∪ S3 ∪ S6

• ncatr(s, x) 6= ncatr′(s, x),∀x ∈ S2 ∪ S4 ∪ S5 ∪ S7

• ncatr′(s, x) = ncatr(u1, x),∀x ∈ S2

• ncatr′(s, x) = r, ∀x ∈ S4

• ncatr′(s, x) = y,∀x ∈ S5

• ncatr′(s, x) = ncatr(v1, x),∀x ∈ S7

Property 4 Let e = (u, v) ∈ Repl(tr). We distinct the following cases:

• u ∈ S1 ∧ v ∈ S1: we have ncatr(s, u) = ncatr′(s, u) and ncatr(s, v) =
ncatr′(s, v). This means that e is preferred replacing edge of tr if and only if it
is preferred replacing edge of tr′.
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Figure 3.18: Ilustrating the update of preferred replacing edges under the
replaceEdge(tr, (u1, v1), (u2, , v2)) action

• u ∈ S1∧v ∈ S2∪S3∪S4∪S5∪S6∪S7: we have ncatr(s, u) 6= ncatr(s, v)∧
ncatr′(s, u) 6= ncatr′(s, v). This means e is preferred replacing edge of both
tr and tr′.

• u ∈ S2 ∧ v ∈ S2: we have ncatr(s, u) = ncatr(s, v). That means e is not pre-
ferred replacing edge of tr. We can also see that ncatr′(s, x) = ncatr(u2, x),∀x ∈
S2. So if ncatr(u2, u) 6= ncatr(u2, v) then the edge ewill be added to prefRepl(tr)
in the update phase.

• u ∈ S2 ∧ v ∈ S3: we have ncatr(s, u) = ncatr(s, v) ∧ ncatr′(s, u) 6=
ncatr′(s, v). That means e is not a preferred replacing edge of tr but of tr′.
The edge e will thus be added to the prefRepl(tr) in the update phase.

• u ∈ S2 ∧ v ∈ S4 ∪ S5 ∪ S6 ∪ S7: we have ncatr(s, u) 6= ncatr(s, v) ∧
ncatr′(s, u) 6= ncatr′(s, v). That means e is preferred replacing edge of both
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tr and tr′.

• u ∈ S3 ∧ v ∈ S3: we have ncatr(s, u) = ncatr(s, v) ∧ ncatr′(s, u) =
ncatr′(s, v). That means e is neither preferred replacing edge of tr nor of
tr′.

• u ∈ S3 ∧ v ∈ S4: we have ncatr(s, u) 6= ncatr(s, v) ∧ ncatr′(s, u) =
ncatr′(s, v). That means e is preferred replacing edge of tr but tr′. The edge e
will thus be removed from prefRepl(tr) in the update phase.

• u ∈ S3∧v ∈ S5∪S6∪S7: we have ncatr(s, u) 6= ncatr(s, v)∧ncatr′(s, u) 6=
ncatr′(s, v). That means e is preferred replacing edge of both tr and tr′.

• u ∈ S4 ∧ v ∈ S4: we have ncatr′(s, u) = ncatr′(s, v). That means e is not
preferred replacing edge of tr′. So if e is in prefRepl(tr), then it will be removed
from prefRepl(tr) in the update phase.

• u ∈ S4, v ∈ S5 ∪S6 ∪S7: we have ncatr(s, u) 6= ncatr(s, v)∧ncatr′(s, u) 6=
ncatr′(s, v). That means e is preferred replacing edge of both tr and tr′.

• u ∈ S5 ∧ v ∈ S5: we have ncatr′(s, u) = ncatr′(s, v). That means e is not
preferred replacing edge of tr′. So if e is in prefRepl(tr), then it will be removed
from prefRepl(tr) in the update phase.

• u ∈ S5 ∧ v ∈ S6: we have ncatr(s, u) 6= ncatr(s, v) and ncatr′(s, u) = y.
So if ncatr(s, v) = y then e is preferred replacing edge of tr but not of tr’. In
this case, the edge e will be removed from prefRepl(tr) in the update phase. If
ncatr(s, v) 6= y then e is preferred replacing edge of both tr and tr′.

• u ∈ S5 ∧ v ∈ S7: we have ncatr(s, u) 6= ncatr(s, v) and ncatr′(s, u) 6=
ncatr′(s, v). That means e is preferred replacing edge of both tr and tr′.

• u ∈ S6 ∧ v ∈ S6: we have ncatr(s, u) = ncatr′(s, u) and ncatr(s, v) =
ncatr′(s, v). This means that e is preferred replacing edge of tr if and only if it
is preferred replacing edge of tr′.

• u ∈ S6 ∧ v ∈ S7: we have ncatr′(s, u) 6= ncatr′(s, v) and ncatr(s, v) = y ∧
ncatr(s, u) = ncatr′(s, u). So if ncatr(s, u) = y then e is preferred replacing
edge of tr′ but not of tr. In this case, the edge e will be added to prefRepl(tr) in
the update phase. If ncatr(s, u) 6= y then e is preferred replacing edge of both
tr and tr′.

• u ∈ S7 ∧ v ∈ S7: we have ncatr(s, u) = ncatr(s, v). That means e is not pre-
ferred replacing edge of tr. We can also see that ncatr′(s, x) = ncatr(v2, x),
∀x ∈ S7. So, if ncatr(v2, u) 6= ncatr(v2, v) then the edge e will be added to
prefRepl(tr) in the update phase.

From above properties, we update prefRepl(tr) in order to compute prefRepl(tr′)
as follows:
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• Remove all edges e = (u, v) such that u ∈ S3 and v ∈ S4 (or vice versa).

• Remove all edges e = (u, v) such that u, v ∈ S4 or u, v ∈ S5 (or vice versa).

• Remove all edges e = (u, v) such that u ∈ S5 ∧ v ∈ S6 ∧ ncatr(s, v) = y (or
vice versa).

• Add all edges e = (u, v) such that u ∈ S6 ∧ v ∈ S7 ∧ ncatr(s, u) = y (or vice
versa).

• Add all edges e = (u, v) such that u ∈ S2 and v ∈ S3 (or vice versa).

• Add all edges e = (u, v) such that u, v ∈ S2 ∧ ncatr(u2, u) 6= ncatr(u2, v) ∨
u, v ∈ S7 ∧ ncatr(v2, u) 6= ncatr(v2, v).

The implementation of ReplacingEdgesMaintainPath(VarPath vp) makes use
of the set{...} data structure of COMET for storing the set of preferred replacing
edges of vp. The worst case time complexity for maintaining this set isO(n2 log n) in
which log n is the time complexity of each set operation. We evaluate the efficiency
of the incremental implementation in comparison with recomputation from scratch in
practice. The recomputation from scratch enumerates all edges e = (u, v) ∈ E(g) \
E(tr) (g is the given graph and tr is the current RST over (g, s, t)) and check if the
nearest common ancestors of s and two node u and v are different. If it is the case, the
edge e will be inserted to the preferred replacing edges set.

Experiments setting: We take 10 graphs of 100 nodes and different number of
edges: 200, 728, 1256, 1784, 2312, 2839, 3367, 3895, 4423, 4950 (complete graph).
We define a VarPath for each of these graphs. For each graph, we generate randomly
20 runs of 10000 moves. Figure 3.19 show that average execution time of 20 runs
of the incremental version and the recomputation version on given graphs. Figure
3.20 shows the speedup measured by t

t∗ where t and t∗ are respectively the average
of execution time of 20 runs of recomputation version and incremental version. The
results show that the speedup increases when the density of graphs increases. It also
shows the efficiency of incremental implementation in practice.

3.6.3 Maintaining distances between all pairs of two vertices on
dynamic trees

NodeDistances(VarTree vt, int[] ind) is a graph invariant which maintains the
distances w.r.t. weights indexed ind on edges between all pairs of two nodes on vt.
This invariant allows to query the cost of path between any pair of two nodes inO(1),
thus allowing to query the differentiation in O(1) in some cases, for instance, query
the change of the cost of a path under edge replacement actions. For implementing
this graph invariant, we use a direct data structure dis(u, v) representing the cost of
the path from u to v on the current RST tr. The size of this data structure is O(n2)
but at any time of computation, it is maintained and partially updated: only dis(u, v)
such that v dominates u on the current tree tr is considered.
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Figure 3.19: execution time of incremental version and recomputation from scratch
for 10000 moves on graphs of 100 nodes and 200, 728, 1256, 1784, 2312, 2839, 3367,
3895, 4423, 4950 edges.

Algorithm 15: distance(x,y)
Input:
Output:
r ← ncatr(x, y);1

return dis(x, r) + dis(r, y);2
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Figure 3.20: speedup of incremental version in comparison with recomputation from
scratch for 10000 moves on graphs of 100 nodes and 200, 728, 1256, 1784, 2312,
2839, 3367, 3895, 4423, 4950
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The cost of any two nodes x and y on tr can be queried by Algorithm 15 in O(1)
where line 1 can be queried in O(1).

We now show how to update the dis(u, v) data structure under a local move on
tr: rep(tr, (u1, v1), (u2, v2)). Without loss of generality, suppose that v1 Domtr v2
and u1 Domtr v1 (see an example in Figure 3.21). We denote S = {x ∈ V (tr) |
v1 Domtr x}. The following elements of the data structure should be updated:
dis(x, y),∀x ∈ S, y ∈ pathtr(v2, ncatr(x, v2)) ∪ pathtr(u2). The update schema
is given in Algorithm 16 in which c(u2, v2) is the weighted distance between u2 and
v2 in the given graph (see line 6).

Algorithm 16: updateDistances
Input:
Output:
foreach x ∈ S do1

rx← ncatr(v2, x);2

foreach y ∈ pathtr(v2, rx) do3

dis(x, y)← dis(x, rx) + dis(y, rx);4

foreach y ∈ pathtr(u2) do5

dis(x, y)← dis(x, rx) + dis(v2, rx) + c(u2, v2) + dis(u2, y);6

The worst case time complexity is O(n2) but it performs more efficient in prac-
tice. We now experimentally analyze the efficiency of incrementality in comparison
with recomputation from scratch. To do so, we analyze the ratio ri = si−1

Si
of data

structures to be updated (i.e., dis(u, v)) where Si is the number of elements of dis to
be maintained at each step i of the computation:

Si =
∑

v ∈ V (tri)ctri(v)

where tri is the tree at step i and ctri(v) is the number of nodes on the path from v to
the root of tri; si is the number of elements to be changed at step i by the incremental
version. We the dynamic trees of size 98, 198, 498, 998 on complete graphs of size
100, 200, 500, 1000. For each graph, we generate randomly 20 sequences of 10000
moves. Experimental results show that the average value of ri is about 1

10 . Figures
3.22, 3.23 show the number of elements to be updated and the number of total elements
to be maintained in the last 20 iterations: each iteration is a replace edge action or a
sequence of 2 actions (add and remove edge). It is clear that in the remove edge action,
we do not need to update the data structures, so the number of elements to be updated
in this action is zero.
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Figure 3.21: Ilustrating the update of dis(u, v) under the
replaceEdge(tr, (u1, v1), (u2, v2)) action
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Figure 3.22: 20 last iterations for a complete graph of size 100

Figure 3.23: 20 last iterations for a complete graph of size 1000



4
IMPLEMENTATION

This chapter describes the implementation of some essential and non-trivial classes in-
cluding the Solver<LSGraph>, ConstraintSystem<LSGraph>, PathCostOnEdges, Ind-
exedPathsVisitEdges, AllDistinctLightPaths. For elegance, these implementa-
tion descriptions will be depicted partially including main data structures and methods.
All the consistent check statements will not be presented. The LS(Graph) framework
is implemented on top of the COMET programming language enabling the combina-
tion of graph variables and var{int} and var{float} of COMET. The current version
of LS(Graph) is about 25,000 lines of COMET code.

4.1 Class Solver<LSGraph>

The role of the Solver<LSGraph> is to manage all graph variables, graph invariants,
to relate these objects and do propagation in order to update graph invariants un-
der change of variables. The Solver<LSGraph> extends the Solver<LS> of COMET
enabling the combination between graph variables and var{int}, var{float} of
COMET.

The class is listed partially as follows:

1 class Solver<LSGraph> extends Solver<LS>{
2 VarGraph[] _vg;
3 Invariant<LSGraph>[] _gi;
4 bool[,] _depends;
5 bool _closed;

7 void post(Invariant<LSGraph> gi){
8 super.post(gi);

10 addGraphInvariant(gi);

12 VarGraph[] vgs = gi.getVarGraphs();
13 if(vgs != null){
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14 forall(i in vgs.rng()){
15 int j = getId(vgs[i]);
16 int k = getId(gi);
17 _depends[k,j] = true;
18 }
19 }
20 }

22 void close(){
23 initPropagation();
24 super.close();
25 _closed = true;
26 }

28 void initPropagation(){
29 forall(i in _gi.rng())
30 _gi[i].initPropagation();
31 }

33 void replaceEdge(VarTree vt, Edge eo, Edge ei){
34 if(_closed){
35 int id = getId(vt);
36 forall(i in _gi.rng(): _depends[i,id])
37 _gi[i].propagateReplaceEdge(vt, eo,ei);
38 }
39 vt.replaceEdge(eo,ei);
40 }
41 }

The data structure is simple. The array _vg (line 2) maintains the list of graph vari-
ables posted and the array _gi (line 3) stores the list of graph invariants posted in the
model. Each graph variable, graph invariant has an identification value which is its in-
dex in the corresponding array. The 2-dimension array _depends (line 4) maintains the
dependence of graph invariants on graph variables: _depends[i,j]=true means that
the graph invariant indexed i depends on the graph variable indexed j. The _closed

variable (line 5) specifies whether or not the solver is closed.
The post(Invariant<LSGraph> gi) method (lines 7-20) post the graph invari-

ant gi which consists of adding it to the _gi array, setting its identification (method
addGraphInvariant in line 10) and creating the dependence relation between gi and
graph variables posted (lines 12-19): line 12 returns the list of graph variables over
which gi is defined, methods getId(...) (lines 15-16) return the identification of
graph variable vgs[i] and gi.

The method close (lines 22-26) closes the solver which mainly initializes all graph
invariants (the initPropagation method in line 23 which is detailed in lines 28-31).

The initPropagation method iteratively performs the initPropagation method
of all graph invariants posted to the solver (lines 29-31).

One of the main role of the Solver<LSGraph> is to do a propagation in order to
update invariants under moves (the change of variables). There are several moves de-
fined in Sections 3.2, 3.3, 3.4, each move corresponds to a propagation method speci-
fied in the Invariant<LSGraph> interface of the framework. We describe here one
of its move method: the replaceEdge(VarTree vt, Edge eo, Edge ei) method.
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Other move methods are essentially similar. The replaceEdge(VarTree vt, Edge

eo, Edge ei) method (lines 33-40) updates graph invariants when the edge eo is re-
placed by the edge ei on the VarTree vt. More precisely, lines 36 scans all graph
invariants _gi[i] which depends on vt (line 35 gets the identification of vt). For each
of these _gi[i], we call its corresponding propagation method (line 37). Finally, line
39 replaces the edge eo by ei.

4.2 Class ConstraintSystem<LSGraph>

The class ConstraintSystem<LSGraph> combines all constraints stated in the model
and can be used to control the search procedure.

The class is depicted partially as follows:

1 class ConstraintSystem<LSGraph> extends GraphConstraint
2 implements Constraint<LSGraph>{

4 Constraint<LSGraph>[] _gc;
5 float[] _w;
6 ConstraintSystem<LS> _CS;
7 bool _initConstraintSystem;
8 bool _closed;

10 void post(Constraint<LS> c){
11 if(!_initConstraintSystem){
12 _CS = new ConstraintSystem<LS>(_ls);
13 _initConstraintSystem = true;
14 }

16 _CS.post(c);
17 }

19 void post(Constraint<LSGraph> gc, int w){
20 addGraphConstraint(gc,w);
21 }

23 void close(){
24 range R = _gc.rng();

26 var{float} f[i in R] = _gc[i].violations();

28 if(_initConstraintSystem){
29 var{int} vcs = _CS.violations();
30 _violations = new var{float}(_ls) <- sum(i in R)(f[i] * _w[i])

+ vcs;
31 }else{
32 _violations = new var{float}(_ls) <- sum(i in R)(f[i] * _w[i]);
33 }

35 _closed = true;

37 }

39 float getReplaceEdgeDelta(VarTree vt, Edge eo, Edge ei){
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40 return sum(i in _gc.rng())(_w[i] *
_gc[i].getReplaceEdgeDelta(vt,eo,ei));

41 }

43 float getAssignDelta(var{int} x, int v){
44 float delta = sum(i in _gc.rng())(_w[i] *

_gc[i].getAssignDelta(x,v));

46 if(hasConstraintSystem())
47 delta += _CS.getAssignDelta(x,v);

49 return delta;
50 }

52 var{float} violations(){
53 return _violations;
54 }
55 }

The data structure consists of an array _gc (line 4) storing all graph constraints
posted and its weights _w (line 5). The data structure also maintains a ConstraintSyst-
em<LS> _CS (line 6) allowing users to post standard Constraint<LS> of COMET. The
variable _closed (line 8) specifies wether or not the ConstraintSystem<LSGraph> is
closed.

The method post(Constraint<LS> c) (lines 10-17) posts a standard Constraint-

<LS> c of COMET. This constraint is posted to _CS (line 16) which is initialized in
lines 11-14.

The method post(Constraint<LSGraph> gc, int w) (lines 19-21) posts a graph
constraint gc and its weight w. It is done by simply adding gc and w to the correspond-
ing array _gc and _w (see method addGraphConstraint in line 20).

Whenever the ConstraintSystem<LSGraph> is closed (method close in lines 23-
37), the number of violations ConstraintSystem<LSGraph> is set by the weighted
sum of number of violations of all graph constraints (see invariant in line 32 where
f[i] represents the number of violations of the graph constraint _gc[i] which is set
in line 26) plus the number of violations of the ConstraintSystem<LS> _CS if some
Constraint<LS> have been posted (see invariant in line 30).

One of the main features of ConstraintSystem<LSGraph> is the differentiation
which provides a number of methods allowing to query the variation of the number of
violations of the constraints under various local moves. The implementation of these
methods are essentially similar. We demonstrate two of them: getReplaceEdgeDelta(-
VarTree vt, Edge eo, Edge ei) (lines 39-41) and getAssignDelta(var{int} x,

int v) (lines 43-50).

• The getReplaceEdgeDelta(VarTree vt, Edge eo, Edge ei) method computes
the variation of the number of violations of the ConstraintSystem<LSGraph>

when the edge eo is replaced by the edge ei on the tree vt. This value is simply
the weighted sum of the variation of the number of violations of all the graph
constraints _gc[i] when this modification action is taken (line 40). In this case,
all the Constraint<LS> posted are not taken into account because the modifica-
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tion action does not affect these constraints.

• The getAssignDelta(var{int} x, int v) computes the variation of the num-
ber of violations of the ConstraintSystem<LSGraph> when the variable x is
reassigned by the value v. In this case, all the Constraint<LS> posted must
be taken into account because the modification action affects these constraints.
The variation value delta (which is initially set in line 44) is thus added with
the variation value of _CS (see lines 46-47).

4.3 Class PathCostOnEdges
The PathCostOnEdges(VarPath vp, int indWeight) is a Function<LSGraph> rep-
resenting the cost of the path vp with respect to the weights indexed indWeight.

The implementation is listed partially as follows:

1 class PathCostOnEdges extends GraphFunction implements
Function<LSGraph>{

2 NodeDistancesInvr _dis;
3 int _indWeight;
4 VarPath _vp;

6 PathCostOnEdges(VarPath vp, int
indWeight):GraphFunction(vp.getLSGraphSolver(),vp){

7 _indWeight = indWeight;
8 _vp = vp;

10 VarRootedSpanningTree tr = _vp.getVarRootedSpanningTree();
11 _dis = new NodeDistancesInvr(tr,indWeight);

13 _value = new var{float}(_ls);

15 post();
16 }

18 void post(){
19 _ls.post((Invariant<LSGraph>)this);
20 }

22 var{float} getValue(){
23 return _value;
24 }

26 void initPropagation(){
27 _value :=

_dis.getDistance(_vp.getSource(),_vp.getDestination(),
_indWeight);

28 }

31 float getDeltaWhenUseReplacingEdge(VarPath vp, Edge ei){
32 if(_vp != vp)
33 return 0;
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35 Vertex u = up(ei,vp);
36 Vertex v = low(ei,vp);
37 Vertex su = upnca(ei,vp);
38 Vertex sv = lownca(ei,vp);

40 float du = _dis.getDistance(u,vp.getDestination(),_indWeight);
41 float dv = _dis.getDistance(vp.getSource(),v,_indWeight);
42 newd = du + dv + ei.weight(_indWeight);

44 return newd - _value;
45 }

48 bool propagateReplaceEdge(VarPath vp, Edge eo, Edge ei){
49 _value := _dis.getDistance(vp.getSource(),vp.getDestination(),

_indWeight);
50 return true;
51 }
52 }

The data structure mainly consists of a graph invariant _dis (line 2) which main-
tains the weighted distances between all pairs of two vertices on a dynamic RST nested
under the consider path variable _vp (line 4). Variable _indWeight (line 3) stores the
considered weight index.

In the constructor (lines 6-16), the considered VarPath and weight index are re-
tained (lines 7-8). Line 10 gets the RST nested under the considered VarPath and line
11 initializes the graph invariant _dis.

The initPropagation (lines 26-28) simply initializes the variable _value which
retains the value of the Function<LSGraph> (the cost of the VarPath in this case). This
statement is consistent because the graph invariant _dis is posted to the Solver<LSGraph>
before the current instance of the PathCostOnEdges class. The initPropagation

of the graph invariant _dis is thus launched and completed before the call to the
initPropagation method of the PathCostOnEdges class. Notice that the complex-
ity of the method in line 27 is O(1).

We describe now one of the differentiation methods: the getDeltaWhenUseReplac-
ingEdge(VarPath vp, Edge ei) method which computes the variation of the cost
when the replacing edge ei is applied1. Lines 35-38 get the endpoints u, v of the edge
ei and the nearest common ancestors of the source of vp and these endpoints such that
su dominates sv on the RST nested under vp (recall the notations in Section 3.3). The
cost of the new path is computed in lines 40-42 with time complexity O(1) and the
variation of the cost is returned in line 42. Figure 4.1 illustrates the query. The replac-
ing edge is ei = (30, 31), the values of u, v, su, sv (lines 35-38) are respectively
31, 30, 7, 17. The value du (line 40) is the cost of path from the vertex 31 to the vertex
t and the value dv (line 41) is the cost of the path from the vertex s to the vertex 30 on
the tree in Figure 4.1.

The propagateReplaceEdge(VarPath vp, Edge eo, Edge ei) method updates
the cost _value of the path _vp when the edge eo is replaced by the edge ei. This is

1In the edge replacement for VarPath, the new path depends only on the replacing edge, not on the
replacable edge.
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Figure 4.1: Ilustrating the variation of the cost of the path from s to t when the replac-
ing edge ei is applied

done by simply taking the distance value from the graph invariant _dis and assigning
it to _value (line 49) because the update of _dis is completed before the call to this
method.

4.4 Class IndexedPathVisitEdges
We describe now the implementation of a graph invariant combining graph variables
and var{int} of COMETwhich will then be used for the implementation of a Constra-
int<LSGraph> appearing in the routing and wavelength assignment problem. The
graph invariant IndexedPathVisitEdges(VarPath[] vps, varint[] xw, varint[,]

v) admits an array vps of VarPath and an array xw of var{int} as sources (each path
vps[i] has a value stored by xw[i]) and maintains as target the 2-dimensions array v:
v[i,j] is the number of times the paths having value i visit the edge of identification
j.

The implementation is partially listed as follows:
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1 class IndexedPathVisitEdges extends GraphInvariant implements
Invariant<LSGraph>{

2 var{int}[,] _v;
3 VarPath[] _vps;
4 var{int}[] _xw;
5 range _Paths;
6 dict{var{int}->int} _map;
7 dict{VarPath->int} _mapVP;

9 int[] _oldxw;

11 IndexedPathVisitEdges(VarPath[] vps, var{int}[] xw, var{int}[,]
v):GraphInvariant(vps[vps.rng().getLow()].getLSGraphSolver(),
all(i in vps.rng())(VarGraph)vps[i]){

13 _vps = vps;
14 _xw = xw;
15 _v = v;
16 _Paths = _vps.rng();

18 _map = new dict{var{int}->int}();
19 _mapVP = new dict{VarPath->int}();

21 forall(i in _Paths){
22 _map{_xw[i]} = i;
23 _mapVP{_vps[i]} = i;
24 }

26 _oldxw = new int[i in _Paths] = _xw[i];
27 }

29 void post(InvariantPlanner<LS> ip){
30 forall(i in _Paths)
31 ip.addSource(_xw[i]);
32 forall(i in _v.rng(0), j in _v.rng(1))
33 ip.addTarget(_v[i,j]);
34 }

36 void initPropagation(){
37 forall(i in _v.rng(0), j in _v.rng(1))
38 _v[i,j] := 0;

40 forall(i in _Paths){
41 int w = _xw[i];
42 VarPath vp = _vps[i];
43 forall(e in vp.getEdges()){
44 _v[w,e.id()]++;
45 }

47 _oldxw[i] = _xw[i];
48 }
49 }

51 void propagateInt(boolean b, var{int} x){
52 int ind = _map{x};
53 int v = x;
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54 int ov = _oldxw[ind];
55 if(v == ov){
56 return;
57 }
58 VarPath vp = _vps[ind];

60 forall(e in vp.getEdges()){
61 _v[ov,e.id()]--;
62 }

64 forall(e in vp.getEdges()){
65 _v[v,e.id()]++;
66 }

68 _oldxw[ind] = v;
69 }

72 bool propagateReplaceEdge(VarPath vp, Edge eo, Edge ei){
73 int ind = _mapVP{vp};
74 int w = _xw[ind];

76 VarRootedSpanningTree tr = vp.getVarRootedSpanningTree();
77 Vertex u = up(ei,vp);
78 Vertex v = low(ei,vp);
79 Vertex su = upnca(ei,vp);
80 Vertex sv = lownca(ei,vp);

82 Vertex x = sv;
83 while(x != su){
84 Edge e = tr.getFatherEdge(x);
85 _v[w,e.id()]--;
86 x = tr.getFatherVertex(x);
87 }

89 x = u;
90 while(x != su){
91 Edge e = tr.getFatherEdge(x);
92 _v[w,e.id()]++;
93 x = tr.getFatherVertex(x);
94 }
95 x = v;
96 while(x != sv){
97 Edge e = tr.getFatherEdge(x);
98 _v[w,e.id()]++;
99 x = tr.getFatherVertex(x);

100 }

102 _v[w,ei.id()]++;

104 return true;
105 }

107 dict{var{int}->int} getMap(){ return _map;}
108 dict{VarPath->int} getMapVarPath(){ return _mapVP;}
109 }
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The data structure (lines 2-9) contains _vps, _xw, _v which retain the source and
target arguments of the graph invariant, _oldxw which retains the value of _xw2. The
data structure is initialized in the constructor (lines 11-27).

The method post(InvariantPlanner<LS> ip) specifies the sources _xw (lines
30-31) and the targets _v (lines 32-33) of the graph invariant. Other sources _vps

are implicitly specified in the constructor.
The initPropagation method (lines 36-49) computes initial value of _v. The

method propagateInt(boolean b, var{int} x) update _v after the variable x is up-
dated. Lines 52 and 58 retain the VarPath vp corresponding with the variable x to
be changed. Obviously, for each edge e on vp, the value _v[ov,e.id()] is reduced
and the value _v[v,e.id()] is increased where v is the current value of x and ov is its
previous value.

The method propagateInt(boolean b, var{int} x) (lines 51-69) performs the
update over _v under the change of x. Line 52 gets the index of x in the array _xw.
Lines 53 and 54 get the current v and the previous values ov of x. Line 58 gets the
corresponding VarPath vp of x. When the value of vp changes from ov to v, it means
clearly that the number of paths of value ov reduces by 1 and the number of paths of
value v increases by 1. The value of _v[ov,e.id()] is thus decreased by 1 for all
edges e of vp (lines 60-62). The value of _v[v,e.id()] is increased by 1 for all edges
e of vp (lines 64-66).

The method propagateReplaceEdge(VarPath vp, Edge eo, Edge ei) (lines 72-
104) performs the update over _v when a move is taken: the edge eo is replaced by the
edge ei on vp. Line 73 gets the index of vp in the retaining array _vps and line 74 gets
its value. Line 76 gets the rooted spanning tree tr nested under vp. Lines 77-80 get
endpoints u, v of ei and the nearest common ancestors su, sv of u, v and the source of
vp such that su dominates sv on tr (recall the notation in Section 3.3). The value of
_v[w,e.id()] reduces for all edges e that belong to the path from sv to su on the cur-
rent path3 (see lines 82-87 where the method tr.getFatherEdge(x) returns the edge
(x,y) of tr such that y is the father of x and the method tr.getFatherVertex(x) re-
turns the father vertex of x on tr). The value of _v[w,e.id()] increases for all edges
e that belong to the path from u to su and the path from v to sv4 (lines 89-100). The
value of _v[w,e.id()] is also increased (line 102) because this edge will be added to
the current path under the move.

4.5 Class AllDistinctLightPaths

AllDistinctLightPaths(VarPath[] vps, var{int}[] xw) is a Constraint<LSGraph>
defined over an array vps of VarPath and an array xw of var{int} which states that if
vps[i] and vps[j] shares a link then the value of xw[i] and xw[j] must be different.

2At the moment that the propagateInt(boolean b, var{int} x) (line 51) is launched, the
variable of x stores the new value, maintaining its previous value is thus necessary for performing the
update.

3This path will be removed from the current path under the move.
4These paths will be added to the current path under the move.
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The implementation is partially listed as follows:

1 class AllDistinctLightPaths extends GraphConstraint implements
Constraint<LSGraph>{

2 VarPath[] _vps;
3 var{int}[] _xw;
4 var{int}[,] _v;
5 range _Paths;
6 range _Waves;
7 range _Edges;

9 dict{var{int}->int} _map;
10 dict{VarPath->int} _mapVP;

13 AllDistinctLightPaths(VarPath[] vps, var{int}[]
xw):GraphConstraint(vps[vps.rng().getLow()].getLSGraphSolver()){

14 _vps = vps;
15 _xw = xw;
16 _Paths = _vps.rng();

18 int minW = min(i in xw.rng())(min(v in xw[i].getDomain())(v));
19 int maxW = max(i in xw.rng())(max(v in xw[i].getDomain())(v));
20 _Waves = minW..maxW;

22 UndirectedGraph g = _vps[_Paths.getLow()].getLUB();

24 _Edges = g.getEdgesRange();
25 _v = new var{int}[_Waves, _Edges](_ls);

27 IndexedPathVisitEdges ipve(_vps,_xw,_v);

29 _map = ipve.getMap();
30 _mapVP = ipve.getMapVarPath();

32 _violations = new var{float}(_ls) <- sum(i in _Waves, j in
_Edges)(max(0,_v[i,j]-1));

34 _ls.post((Invariant<LSGraph>)this);
35 }

38 float getAssignDelta(var{int} x, int v){
39 if(x == v)
40 return 0;

42 int ind = _map{x};
43 int oldw = _xw[ind];
44 VarPath vp = _vps[ind];

46 int delta = 0;
47 forall(e in vp.getEdges()){
48 if(_v[oldw,e.id()] > 1)
49 delta--;
50 }

52 forall(e in vp.getEdges()){
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53 if(_v[v,e.id()] >=1)
54 delta++;
55 }

57 return delta;
58 }

60 float getDeltaWhenUseReplacingEdge(VarPath vp, Edge e){
61 int ind = _mapVP{vp};
62 float delta = 0;
63 int w = _xw[ind];

65 VarRootedSpanningTree tr = vp.getVarRootedSpanningTree();
66 Vertex u = up(e,vp);
67 Vertex v = low(e,vp);
68 Vertex su = upnca(e,vp);
69 Vertex sv = lownca(e,vp);

71 // process edges to be removed
72 Vertex x = sv;
73 while(x != su){
74 Edge ei = tr.getFatherEdge(x);
75 if(_v[w,ei.id()] > 1)
76 delta -= 1;
77 x = tr.getFatherVertex(x);
78 }

80 //process edges to be added from v to sv on the current tree
81 x = v;
82 while(x != sv){
83 Edge ei = tr.getFatherEdge(x);
84 if(_v[w,ei.id()] >= 1)
85 delta += 1;
86 x = tr.getFatherVertex(x);
87 }

89 //process edges to be added from u to su on the current tree
90 x = u;
91 while(x != su){
92 Edge ei = tr.getFatherEdge(x);
93 if(_v[w,ei.id()] >= 1)
94 delta += 1;
95 x = tr.getFatherVertex(x);
96 }

98 //process the edge e which is also the edge to be added
99 if(_v[w,e.id()] >= 1)

100 delta += 1;

102 return delta;
103 }
104 }

The data structure consists of _vps (line 2) and _xw (line 3) which are used to refer
the variables of the constraint. We maintain a 2-dimension array _v (line 4): _v[i,j]
is the number of times the paths having value i visit the edge of identification j by
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making use of the graph invariant IndexedPathVisitEdges described above (see the
initialization of this invariant in line 27).

In the constructor (lines 13-35), the number of violations of the constraint is stated
as invariant defined over _v (line 32) where _Waves is the range of values of all _xw[i]
which is computed in lines 18-20 and _Edges is the range of identifications of all edges
of the graph over which all VarPath _vps[i] are specified (line 22).

The getAssignDelta(var{int} x, int v) (lines 38-58) computes the variation
of the number of violations of the constraint when the variable x is assigned by the
value v. Line 42 gets the index of x from the retaining array _xw and line 44 gets
the corresponding VarPath vp. The variation is computed in lines 46-55. Obviously,
the number of violations of the constraint over all edges of vp corresponding with its
current value oldw (line 43) reduces (see lines 47-50) and the number of violations of
the constraint over all edges of vp corresponding with its new value v increases (see
lines 52-55).

The getDeltaWhenUseReplacingEdge(VarPath vp, Edge e) method (lines 60-
103) computes the variation of the number of violations of the constraint when the
replacing edge e is applied in the edge replacement over vp. Line 61 gets the index of
vp in the retaining array _vps and line 63 gets the value of vp. Line 65 gets the rooted
spanning tree tr nested under vp. Lines 66-69 get endpoints u, v of ei and the nearest
common ancestors su, sv of u, v and the source of vp such that su dominates sv on
tr. The number of violations of the constraint reduces along the subpath of vp to be
removed under the move (lines 72-78) and the number of violations of the constraint
increases along subpaths to be added under the move (lines 81-100).





5
APPLICATIONS

This chapter presents the applications of the LS(Graph) framework to the resolution
of some COT/COP problems including the edge-weighted k-cardinality tree (KCT)
problem, the quorumcast routing (QR) problem, the resource constrained shortest path
(RCSP) problem, the edge-disjoint paths (EDP) problem, the routing and wavelength
assignment (RWA) problem, the routing for network covering (RNC) problem. All
these problems have been specified in Section 2 together with related works.

LS(Graph) has also been successfully applied on a Traffic Engineering in Switched
Ethernet Networks problem which consists of finding a spanning tree on a given net-
work minimizing the traffic congestion which is reported in [HFD+10]. This appli-
cation has been specified and solved by HO in his doctoral research and we do not
describe this application in this thesis.

Experiments were performed on XEN virtual machines with 1 core of a CPU Intel
Core2 Quad Q6600 @2.40GHz and 1GB of RAM.

5.1 Specifying tabu search parameters
Most of the applications in this chapter apply the tabu search algorithm. There are
many parameters for the tabu search algorithm. Trying all possible values of the pa-
rameters for selecting the best ones is not realizable. In this thesis, we sample some
values of the parameters, analyze their influence on the solutions, and select the most
promising ones for the QR and the RWA-D problems.

In order to compare two results produced by two algorithms, we apply the tech-
nique based on the concept of confidence interval for comparing two alternatives of
[Jai91] (the paired observations case described in the page 209) which is described as
follows. We denote A(P1) and A(P2) respectively the tabu search algorithm A in-
stantiated by the two parameters P1 and P2 each of which consists of a set of elements
(e.g., {tbMin, tbMax, tinc,maxStable}, see Appendix B for more description de-
tail about the tabu search schema and its parameters). Given a set of problem instances
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{1, 2, ..., n}, we denote R1 = {x1
1, x

1
2, ..., x

1
n} and R2 = {x2

1, x
2
2, ..., x

2
n} the results

produced by A(P1) and A(P2) in which xij is the average objective value found1 of
the problem instance j,∀i = 1..2, j = 1..n. We denote zi = x1

i − x2
i ,∀i = 1, 2, ..., n.

• The sample mean

z =
1
n

n∑
i=1

zi

• The sample standard deviation

s =
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n− 1

n∑
i=1

(zi − z)2

• The 90% confidence interval for mean [l, u] = [z − t s√
n

, z + t s√
n

], with t is
the 0.95-quantile of a t-variate with n− 1 degrees of freedom (see Table A.4 of
Appendix of [Jai91] for the value of t which depends on n).

Without loss of generality, we consider the minimization problem. If [l, u] includes
zero, then the two results are not different. If u < 0, then the result R1 is better than
R2 (and vice versa).

5.2 The edge-weighted k-cardinality tree (KCT) prob-
lem

5.2.1 Problem formulation
Given an undirected weighted graph G = (V,E) and an integral value k, the KCT
problem consists of finding a connected and acyclic subgraph (i.e., a tree) ofG having
exactly k edges such that the sum of weights of edges is minimal.

5.2.2 The model
We implement a tabu search (denoted by KCT_MTABU) applying the same local
search schema as [BB05] but also exploiting the NT3 neighborhood. The model is
given in Figure 5.1 in which line 1 declares a Solver<LSGraph> ls. Line 2 creates a
VarTree tr associated with ls of the given graph g which is initialized randomly with
k edges. The size of the tree tr is maintained by the initialization and by the consid-
ered neighborhoods). A Model<LSGraph> mod (line 4) is an object which encapsulates
all variables, constraints, and objective function to be optimized. In this model, we
have only one variable tr and an objective function to be minimized weight. The con-
straint specifying that the number of edges of tr must be equal to k is always satisfied

1For each problem instance, each algorithm executes 20 times and gives 20 objective values which are
normally different.



5.2. The edge-weighted k-cardinality tree (KCT) problem 87

1 Solver<LSGraph> ls();
2 VarTree tr(ls,g,k);
3 Weight<Tree> weight(tr);
4 Model<LSGraph> mod(tr,weight,NonSpanningTree,MINIMIZATION);

6 KCTSearch se(mod);
7 se.setCard(k);
8 se.setMaxIter(100000);
9 se.setMaxTime(1800);

11 se.search();

Figure 5.1: Model in LS(Graph) for the KCT problem

1 class KCTSearch extends TabuSearch<LSGraph>{
2 int _card;

4 KCTSearch(Model<LSGraph> mod):TabuSearch<LSGraph>(mod){
5 }
6 void setCard(int ca){
7 _card = ca;
8 }
9 void restartSolution(){

10 initSolution();
11 }
12 void initSolution(){
13 VarTree tr = getFirstVarTree();
14 InsertableEdgesVarTree inst = getInsertableEdges(tr);

16 tr.clear();
17 select(e in inst.getSet()){
18 tr.addEdge(e);
19 }

21 forall(i in 1.._card-1)
22 selectMin(e in inst.getSet())(e.weight()){
23 tr.addEdge(e);
24 }
25 }
26 void exploreNeighborhood(Neighborhood N){
27 exploreTabuMinAddRemove1VarTree(N,true);
28 exploreTabuMinReplace1VarTree(N,true);
29 }
30 }

Figure 5.2: Search component for the KCT problem
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in the initial solution and during the search procedure. Line 6 creates a search com-
ponent KCTSearch (depicted in Figure 5.2). Lines 7-9 set its parameters including the
cardinality k, the maximum number of iterations and the time limit. Line 11 performs
the search procedure. The search component is given in Figure 5.2 that extends the
generic tabu search TabuSearch<LSGraph>2 of the framework by re-implementing the
exploreNeighborhood method (lines 26-29): we consider only NT1+2 and the NT3

neighborhood which conserves the number of edges of the tree during the search. The
initSolution is overridden in lines 12-25 which constructs the tree in a greedy ran-
dom way. Line 13 gets the only variable tr of the model and line 14 gets the graph
invariant representing the set of insertable edges of tr. Line 16 clears the tree. Lines
17-25 is the tree construction by selecting randomly the first edge (lines 17-19) and
iteratively selecting an edge of minimal weight for adding to the tree until the number
of edges of the constructed tree tr is equal to _card (lines 21-25). Notice that if we
remove line 28 in Figure 5.2, we obtain the tabu search algorithm of [BB05]3. This
shows the compositionality of our framework.

5.2.3 Experiments
The model has been experimented in two benchmarks. The first benchmark consists
of 35 4-regular graphs of different size (from 25 to 1000) and the value of cardinality
k is set by 20. The second benchmark is a diverse set of problem instances including
grid graphs, graphs from the steiner tree benchmark and one graph from the graphs
coloring benchmark. These two benchmarks are available on the KCT library [BB].

The KCT_MTABU is executed 20 times for each instance with 30 minutes of time
limit. The tabu search parameters are set as follows: tbMin = 5, tbMax = 33, tinc = 8,
maxStable = 200 (see Appendix B for more description detail about the tabu search
schema and its parameters).

The first benchmark (denoted by blxh instances) is easy (from literature study) and
does not allow to differentiate algorithms. Experimental results of our KCT_MTABU
are shown in Table 5.1. The Table shows that the KCT_MTABU finds optimal solu-
tions (presented in column 2 of Table 5.1), but is slightly slower than dedicated C++
implementation of the tabu search algorithm (TS) and two other meta-heuristic algo-
rithms (genetic and ACO) of [BB05]. The last three columns present the speedup
of the three meta-heuristic methods of [BB05] measured by t0

t
where t0 is the aver-

age time of finding best solutions of the meta-heuristic of [BB05] runned on AMD
Athlon 1100 MHz CPU and t is the average time of finding best solution of our
KCT_MTABU runned on XEN virtual machines with 1 core of a CPU Intel Core2
Quad Q6600 @2.40GHz and 1GB of RAM. The reason why our KCT_MTABU finds
optimal solutions slower than TS is that the KCT_MTABU explores the NT3 neigh-
borhood which is too large. Moreover, for the neighborhood NT1+2, the dedicated
algorithm (implemented in C++) maintained two ordered list of insertable and remov-

2Note that the tabu search schema of TabuSearch<LSGraph> is the same as that of [BB05].
3However, the neighborhood exploration is different: the algorithm of [BB05] maintained two sorted

list of insertable edges and removable edges and scan them in a systematical way while our tabu search
scan them in a generic way.
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1 Solver<LSGraph> ls();
2 VarTree tr(ls,g,k);
3 Weight<Tree> weight(tr);
4 Model<LSGraph>

mod(tr,DegreeAtMost(tr,D),weight,NonSpanningTree,MINIMIZATION);

6 KCTSearch se(mod);
7 se.setCard(k);
8 se.setMaxIter(100000);
9 se.setMaxTime(1800);

11 se.search();

Figure 5.3: Model in LS(Graph) for the KCT with the degree side constraint problem

able edges and explores it systematically. In our model, these two list are stored by
general set{...} data structure of COMET and are explored in a generic way.

The second benchmark is much more difficult and consists of 230 instances. The
start-of-the-art algorithm for the KCT problem is the exact ILP-based algorithm us-
ing directed cuts [CKIL09]. The optimal solutions are reported on [CKIL]. Our
KCT_MTABU model finds optimal solutions in 80 out of 230 instances (generally,
it finds optimal solution for all graphs with cardinality k = 2 and n− 2) with average
gap for all instances4 is about 0.045 while the tabu search of [BB05] finds optimal
solutions in 72 out of 230 instances. Especially, the KCT_MTABU implemented in
high-level programming language COMET reaches optimal solutions (with cardinal-
ity k = 2 and n − 2 where n is the number of vertices of the input graphs) very
fast as shown in Table 5.2. Notice however that the ILP-based algorithm is an exact
method that thus proves the optimality while our KCT_MTABU is not able to prove
optimality.

5.2.4 The KCT problem with the degree side constraint
In order to show the compositionality and facility of the modeling, we consider the
KCT problem with the degree side constraint (denoted by KCT-D) which specifies
that the degree of each vertex of the tree cannot exceed a given value D. For solving
this problem, we simply add the degree side constraint into the model as shown in
Figure 5.3 (see line 4). Note that we do not have to change the search component: it
is depicted in Figure 5.2.

Experimental results for the KCT-D problem with blxh instances is presented in
Table 5.3 (the maximum value D imposed on the degree of vertices of the tree is set
to 3). Columns 2, 3, 4, 5 respectively present the average, the minimal, the maximal
and the standard deviation of the objective values found of 20 executions. Column
6 presents the optimal objective value for the KCT problem (without the degree side

4The average gap for each instance i is measured by fi−opti
opti

where f i is the average objective value
obtained in 20 executions for instance i and opti is the optimal objective value of that instance.
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instances f∗ min max f σ t
speedup speedup speedup

ACO EC TS
g25-4-01 219 219 219 219 0 0.03 0.15 3.13 0.15
g25-4-02 607 607 607 607 0 0.01 0.45 5.76 1.21
g25-4-03 464 464 464 464 0 0.01 0.6 8.6 0.8
g25-4-04 620 620 620 620 0 0.01 0.7 5.14 1.69
g25-4-05 573 573 573 573 0 0.01 1.37 7.02 3.95
g50-4-01 460 460 460 460 0 0.3 1.3 2.56 1.82
g50-4-02 421 421 421 421 0 0.06 0.44 2.06 0.44
g50-4-03 565 565 565 565 0 0.21 0.75 2.32 1.26
g50-4-04 434 434 434 434 0 0.03 0.48 3.53 0.06
g50-4-05 387 387 387 387 0 0.37 0.16 0.58 0.16
g75-4-01 366 366 366 366 0 0.13 1.23 1.43 0.16
g75-4-02 295 295 295 295 0 0.11 3.72 1.98 0.15
g75-4-03 412 412 412 412 0 0.26 2.48 6.81 0.05
g75-4-04 430 430 430 430 0 0.31 1.83 4.48 0.46
g75-4-05 284 284 284 284 0 0.09 0.17 1.36 0.11
g100-4-01 363 363 363 363 0 0.12 8.75 2.22 1.12
g100-4-02 335 335 335 335 0 0.35 3.11 3.13 0.37
g100-4-03 412 412 412 412 0 0.19 0.07 0.74 0.1
g100-4-04 442 442 442 442 0 0.57 0.03 0.3 0.11
g100-4-05 388 388 388 388 0 1.03 0.21 1.45 0.16
g200-4-01 308 308 308 308 0 0.45 0.16 0.81 0.13
g200-4-02 299 299 299 299 0 0.24 0.28 1.73 0.64
g200-4-03 300 300 300 300 0 0.23 0.17 1.08 0.13
g200-4-04 304 304 304 304 0 2.16 0.33 0.49 0.14
g200-4-05 357 357 357 357 0 0.32 0.15 0.82 0.08
g400-4-01 253 253 253 253 0 0.32 0.23 0.83 0.06
g400-4-02 328 328 328 328 0 1.1 3.63 2.27 0.17
g400-4-03 302 302 302 302 0 0.79 2.11 5.48 0.29
g400-4-04 306 306 306 306 0 0.87 0.72 1.21 0.1
g400-4-05 320 320 320 320 0 0.96 1.92 2.48 0.32

g1000-4-01 263 263 263 263 0 11.57 0.55 0.46 0.73
g1000-4-02 281 281 281 281 0 3.31 0.86 2.03 0.31
g1000-4-03 289 289 289 289 0 2.41 0.6 2.64 0.36
g1000-4-04 298 298 306 298.8 2.4 28.08 0.12 0.12 0.22
g1000-4-05 268 268 268 268 0 0.74 0.53 1.74 0.1

Table 5.1: Experimental results of the KCT_MTABU on the first benchmark
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] vertices < 1000 1000-1089 2500
KCT_MTABU 0.67 23.41 155.27
ILP-based 11.7 124.8 3704.1

Table 5.2: Average times (in seconds) for reaching optimal solutions of KCT_MTABU
with k = 2, n − 2 and of the algorithm of [CKIL09] with all values of cardinality k
on grid graphs 15x15, 45x5, 33x33, 100x10 and 50x50.

constraint). Column 7 presents the average times (in seconds) for finding the best
solutions of 20 executions. The results show that the model finds quickly optimal
solutions for all instances except the instances g1000-4-03.dat and g1000-4-04.dat.

We conclude that by using the LS(Graph), a local search model can be imple-
mented easily, shortly and flexibly which gives good results.

5.3 The quorumcast routing (QR) problem

5.3.1 Problem formulation
Given a weighted undirected graph G = (V,E), a source node s ∈ V , an integral
value q and a set S ⊆ V , the quorumcast routing problem consists of finding a mini-
mum tree of G spanning s and q nodes of S.

5.3.2 The model
We propose a tabu search model in LS(Graph) exploring different neighborhoods for
solving this problem. The model is given in Figure 5.4 in which line 1 creates a
Solver<LSGraph> ls and line 2 declares a VarTree tr associated with ls. Lines 4-7
state constraints of the problem where NBVisitedVertices(tr,S) is a Function<LSGraph>
representing the number of vertices of S which are in the tree tr. The constraint
posted in line 5 says that the tree tr must contain at least q vertices of S and the
constraint posted in line 6 says that tr must contain the vertex s. Line 9 creates
a Model<LSGraph> mod with only one variable tr, the constraint gcs, the objective
function to be minimized is the total weight of tr. Line 11 initializes a search compo-
nent which extends the TabuSearch<LSGraph> which is depicted in Figure 5.5. Lines
12-14 set parameters for the search and line 16 call the search procedure.

We now describe the search component in Figure 5.5. Variables _card and _root

represent the number of edges of the initial tree and its root computed in the initSolution
method. The overriding initSolution method (lines 15-29) constructs the tree in a
greedy random way. It clears the tree tr (line 20) and selects randomly a first edge
containing _root (lines 21-23). It then iteratively selects with minimal weight for
adding to the constructed tree tr (lines 25-28). The exploreNeighborhood of the
TabuSearch<LSGraph> is also overriden (lines 32-37) with different neighborhoods:
NT1 (line 35), NT2 (line 34), NT1+2 (line 35) and NT3 (line 36).
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Instances f f_min f_max σ f∗ t
g25-4-01.dat 219 219 219 0 219 0.07
g25-4-02.dat 607 607 607 0 607 0.04
g25-4-03.dat 464 464 464 0 464 0.04
g25-4-04.dat 620 620 620 0 620 0.04
g25-4-05.dat 573 573 573 0 573 0.04
g50-4-01.dat 460 460 460 0 460 0.78
g50-4-02.dat 421 421 421 0 421 0.26
g50-4-03.dat 565 565 565 0 565 0.5
g50-4-04.dat 434 434 434 0 434 0.18
g50-4-05.dat 387 387 387 0 387 1.45
g75-4-01.dat 366 366 366 0 366 0.4
g75-4-02.dat 295 295 295 0 295 0.42
g75-4-03.dat 412 412 412 0 412 0.93
g75-4-04.dat 430 430 430 0 430 1.55
g75-4-05.dat 284 284 284 0 284 0.38

g100-4-01.dat 363 363 363 0 363 0.53
g100-4-02.dat 335 335 335 0 335 1.64
g100-4-03.dat 412.05 412 413 0.22 412 2.88
g100-4-04.dat 442 442 442 0 442 0.92
g100-4-05.dat 388 388 388 0 388 3.81
g200-4-01.dat 308 308 308 0 308 2.17
g200-4-02.dat 299 299 299 0 299 1.01
g200-4-03.dat 300 300 300 0 300 0.8
g200-4-04.dat 304 304 304 0 304 7.16
g200-4-05.dat 357 357 357 0 357 1.49
g400-4-01.dat 253 253 253 0 253 0.93
g400-4-02.dat 328 328 328 0 328 5.3
g400-4-03.dat 302 302 302 0 302 2.01
g400-4-04.dat 306 306 306 0 306 2.6
g400-4-05.dat 320 320 320 0 320 2.96

g1000-4-01.dat 263.25 263 268 1.09 263 52.95
g1000-4-02.dat 281 281 281 0 281 15.64
g1000-4-03.dat 294 294 294 0 289 6.37
g1000-4-04.dat 302.9 302 306 1.61 298 47.09
g1000-4-05.dat 268 268 268 0 268 2.08

Table 5.3: Experimental results of the KCT_MTABU on the blxh benchmark with the
degree side constraint
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1 Solver<LSGraph> ls();
2 VarTree tr(ls,g);

4 ConstraintSystem<LSGraph> gcs(ls);
5 gcs.post(q <= NBVisitedVerticesTree(tr,S));
6 gcs.post(NBVisitedVerticesTree(tr,s) == 1);
7 gcs.close();

9 Model<LSGraph>
mod(tr,gcs,Weight<Tree>(tr,1),NonSpanningTree,MINIMIZATION);

11 QRSearch se(mod);
12 se.setMaxIter(100000);
13 se.setMaxTime(1800);
14 se.setCard(q);
15 se.setRoot(s);

17 se.search();

Figure 5.4: A model in LS(Graph) for the QR problem

5.3.3 Experiments
We compare the model in LS(Graph) with the IMP heuristic which is the best heuris-
tic among three heuristic algorithms in [CA94]. The IMP algorithm has been re-
implemented in COMET.

We have conducted a preliminary experiments and decided to choose the tabu
search parameters as follows: tbMin = n/p_tbMin, tbMax = n/p_tbMax, tinc =
(tbMax-tbMin)/p_tinc+1, and maxStable = p_maxStable in which n is the number
of vertices of the given graph with (see also Table 5.4):

• p_tbMin ∈ {3, 5},

• p_tbMax ∈ {2},

• p_tinc ∈ {1, 2, 4},

• p_maxStable ∈ {50, 200}.

The preliminary results show that on small instances (i.e., graphs up to 100 ver-
tices), the parameters do not influence on the quality of the solutions. Figures 5.6, 5.7,
5.8 depict the influence of parameters on the quality of the solutions on some large
instances. The X-axis presents the indices of the parameters (see Table 5.4) and the
Y-axis presents the average objective values of 20 executions for each instance. We
can see that the parameters indexed by 12 of Table 5.4 are most promising. Finally,
we select p_tbMin = 5, p_tbMax = 2, p_tinc = 4, p_maxStable = 200.

Problem instances We take 35 graphs from the benchmark of the KCT problem
[BB05] which are 4-regular graphs of size from 25 to 1000 nodes. For each graph of
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1 class QRSearch extends TabuSearch<LSGraph>{
2 Vertex root;
3 int _card;
4 QRSearch(Model<LSGraph> mod): TabuSearch<LSGraph>(mod){
5 }
6 void setCard(int ca){
7 _card = ca;
8 }
9 void setRoot(Vertex r){

10 root = r;
11 }
12 void restartSolution(){
13 initSolution();
14 }
15 void initSolution(){
16 Solver<LSGraph> ls = getLSGraphSolver();
17 VarTree tr = getFirstVarTree();
18 InsertableEdgesVarTree inst = getInsertableEdges(tr);

20 tr.clear();
21 select(e in inst.getSet():e.contains(root)){
22 tr.addEdge(e);
23 }

25 forall(i in 1.._card-1)
26 selectMin(e in inst.getSet())(e.weight()){
27 tr.addEdge(e);
28 }
29 }

32 void exploreNeighborhood(Neighborhood N){
33 exploreTabuMinAdd1VarTree(N,true);
34 exploreTabuMinRemove1VarTree(N,true);
35 exploreTabuMinAddRemove1VarTree(N,true);
36 exploreTabuMinReplace1VarTree(N,true);
37 }
38 }

Figure 5.5: The search component for the QR problem
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index p_tbMin p_tbMax p_tinc p_maxStable
1 3 2 1 50
2 3 2 1 200
3 3 2 2 50
4 3 2 2 200
5 3 2 4 50
6 3 2 4 200
7 5 2 1 50
8 5 2 1 200
9 5 2 2 50
10 5 2 2 200
11 5 2 4 50
12 5 2 4 200

Table 5.4: Parameters tried for the QR problem

Figure 5.6: Influence of parameters on solutions (instances of 200 vertices)
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Figure 5.7: Influence of parameters on solutions (instances of 400 vertices)

Figure 5.8: Influence of parameters on solutions (instances of 1000 vertices)
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size n, we generate randomly n/2 nodes for the set S, the value for q is set to n/4 and
the root is set to the node 1.

Results The IMP algorithm and our model in LS(Graph) are executed 20 times for
each problem instance. The time limit for our model is 30 minutes. Experimen-
tal results are shown in Table 5.5. Columns 2-5 present the average, the minimal,
the maximal, the standard deviation of the best objective value found in 20 execu-
tions. The same information for our tabu search model is presented in columns 7-10.
Column 6 is the average of execution time (in seconds) of the IMP algorithm while
column 11 presents the average of time (in seconds) for finding the best solutions in
20 executions. Figure 5.9 presents the comparison between the average objective val-
ues (among 20 executions) of best solutions found by the IMP heuristic and our tabu
search model. Figure 5.10 presents the comparison between the objective value of
the best solution (among 20 executions) found by the IMP heuristic and the objective
value of the worst solution (among 20 executions) found by the tabu search model.
We can see that our tabu search model finds better solutions than the IMP in aver-
age. Moreover, the worst solutions found by our model are even better than the best
solution found by the IMP (among 20 executions) in most cases.

The results also show that for small instances (from 25 nodes to 100 nodes), the
results among 20 runs are stable while for larger instances (from 200 nodes to 1000
nodes), the standard deviation slightly increases. Once again, we find that the local
search model is easily and shortly implemented using the LS(Graph) framework.
Experimental results on large instances show the benefit of the framework from both
modeling and computational standpoints.

5.4 The resource constrained shortest path (RCSP) prob-
lem

5.4.1 Problem formulation

Given a directed graph G = (V,E), each arc e is associated with a length c(e) ≥ 0
and a vector r(e) ≥ 0 of resources consumed in traversing the arc e. Given a source
node s, a destination node t and two vectors L, U of resources corresponding to the
minimum and maximum amount that can be used on the chosen path (i.e., a lower
and an upper limit on the resources consumed on the path). The length of a path P is
defined as f(P) =

∑
e∈P c(e). The resources consumed in traversing P is defined as

r(P) =
∑
e∈P r(e) The formulation of RCSP is then given by:

min f(P) (1)
s.t. L ≤ r(P) (2)

r(P) ≤ U (3)
P is a path from s to t on G (4)
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Instances IMP LS(Graph)
avg min max std_dev avg_t avg min max std_dev avg_t

g25-4-01.dat 110 110 110 0 1 110 110 110 0 0.14
g25-4-02.dat 245 245 245 0 1 231 231 231 0 0.17
g25-4-03.dat 149 149 149 0 1 149 149 149 0 0.02
g25-4-04.dat 210 210 210 0 0.99 204 204 204 0 0.01
g25-4-05.dat 217 217 217 0 0.99 217 217 217 0 0.45
g50-4-01.dat 325 325 325 0 1.12 325 325 325 0 0.1
g50-4-02.dat 471 471 471 0 1.09 455 455 455 0 0.77
g50-4-03.dat 473 473 473 0 1.08 464 464 464 0 0.57
g50-4-04.dat 480 480 480 0 1.1 441 441 441 0 2.56
g50-4-05.dat 368 368 368 0 1.1 334 334 334 0 0.13
g75-4-01.dat 546 546 546 0 1.32 480 480 480 0 2.15
g75-4-02.dat 501.6 498 506 3.98 1.31 465 465 465 0 11.89
g75-4-03.dat 545 545 545 0 1.33 526 526 526 0 3.49
g75-4-04.dat 750 750 750 0 1.33 665 665 665 0 13.58
g75-4-05.dat 431 431 431 0 1.33 427 427 427 0 0.51
g100-4-01.dat 774 774 774 0 1.82 756 756 756 0 20.85
g100-4-02.dat 765 765 765 0 1.84 701 701 701 0 19.12
g100-4-03.dat 952.5 947 957 4.97 1.84 859 859 859 0 59.81
g100-4-04.dat 872 872 872 0 1.81 835 835 835 0 124.9
g100-4-05.dat 681 681 681 0 1.83 641 641 641 0 43.68
g200-4-01.dat 1362 1362 1362 0 7.52 1219.4 1217 1225 2.6 532.68
g200-4-02.dat 1469.7 1437 1480 14.62 7.6 1339 1334 1344 3.08 405.93
g200-4-03.dat 1445 1445 1445 0 7.63 1305.25 1297 1318 6.67 531.59
g200-4-04.dat 1665.65 1646 1677 9.71 7.52 1530.85 1527 1537 2.67 731.35
g200-4-05.dat 1523 1523 1523 0 7.49 1428.65 1425 1439 4.35 689.38
g400-4-01.dat 3003.95 3000 3017 6.51 51.2 2932.3 2910 2951 10.19 728.36
g400-4-02.dat 3245.1 3168 3291 33.95 51.38 2884.8 2862 2915 13.58 763.07
g400-4-03.dat 3112.3 3094 3134 12.21 51.23 2869.7 2853 2889 8.3 772.34
g400-4-04.dat 3137.5 3115 3187 17.18 51.13 2923.6 2880 2954 22.71 820.53
g400-4-05.dat 3152.4 3140 3160 7.14 51.09 2853.1 2831 2879 14.19 787
g1000-4-01.dat 7103.4 7066 7173 30.56 788.11 6963.1 6790 7290 124.45 1430.34
g1000-4-02.dat 7606.35 7509 7702 55.62 786.58 7293.3 7118 7483 89.48 1461.48
g1000-4-03.dat 7785.1 7745 7853 31.56 788.36 7435.4 7263 7567 78.15 1332.6
g1000-4-04.dat 8030.2 7996 8069 24.24 787.59 7764.6 7651 7933 70.39 1234.6
g1000-4-05.dat 7642.05 7559 7730 59.71 787.05 7363.55 7220 7590 99.09 1335.74

Table 5.5: Comparison between the IMP heuristic [CA94] and a local search algorithm
implemented in LS(Graph)
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Figure 5.9: Comparison between average objective value found by the IMP heuristic
(avg_imp) and those found by the tabu search algorithm in LS(Graph) (avg_tabu)
among 20 executions for each instance
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Figure 5.10: Comparison between min objective values found by the IMP heuristic
(min_imp) and max objective values found by the tabu search algorithm in LS(Graph)
(max_tabu) among 20 executions for each instance
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5.4.2 The Model
The model is given in Figure 5.11. Line 1 creates a Solver<LSGraph> ls and line 3
initializes a VarPath vp. Lines 5-7 initialize graph functions r[i] representing the ith

resource consumed along vp where PathCostOnEdgePrune extends PathCostOnEdges
adding pruning methods. For example, when the cost of a given path is required to be
less than or equal to a given value, we can apply a simple pruning method [BC89] for
removing vertices, edges from the given graph and this pruning allows to reduce the
size of the problem. Line 9 create the objective function len to be minimized5. Line
11 initializes a ConstraintSystem<LSGraph> gcs and lines 12-16 state and post all
constraints over resource consumed along the path vp. Line 18 encapsulates variable
vp, constraint to be satisfied gcs and objective function to be minimized len into a
Model<LSGraph> object mod. Line 20 creates a search component se which extends
the built-in TabuSearch<LSGraph> (see Figure 5.12). Line 23 creates a LSGraphPrune

object prune which apply pruning methods of all constraints posted (line 24). When-
ever the search se finds a new best solution (line 26), the length of optimal solu-
tion should be less than or equal to the length of this new best solution (see method
se.getBestObjValue(), we can thus prune the solution space (remove vertices, edges
that do not belong to any optimal solutions) by applying the pruneLessThan method
in line 27. After the pruning (some edges, vertices may be removed from the given
graph), the VarPath vp is reinitialized randomly and line 28 updates the best solu-
tion if the new initial solution is better than the best solution found so far. After the
pruning, the given graph may be null (all edges, vertices are removed). In this case,
we stop the search and we obtain optimal solution (line 30-31). Line 34 performs the
search.

The search is depicted in Figure 5.12 which extends the built-in TabuSearch<LSGraph>.
The solution is initialized randomly (lines 10-16) and the restartSolution simply
calls the initSolution. The exploreNeighborhood is overridden (lines 18-21) which
explores the neighborhood ERNP1 and N2(tr) (see Appendix for the detail about
these neighborhood explorations). We choose the tabu search parameters as follows:
tbMin = 5, tbMax = 33, tinc = 8, maxStable = 200 (see Appendix B for more descrip-
tion detail about the tabu search schema and its parameters).

5.4.3 Experiments

Problem instances

We experiment the model over two kinds of benchmark. For the first benchmark, we
take the 24 graphs experimented in the paper [BC89] from OR-library (called OR
graphs) and for the second benchmark, we use the generator in [CRW08] for gener-
ating graphs of structures A-H described in that paper for the aircraft routing (called
aircraft graphs). For each of these graphs, we generate randomly the lower bound
and upper bound of the resources consumed as follows. We first generate randomly

5Each edge e has a vector of properties w[0..nbrRCs] where w[0] represents the length of the edge
and w[1..nbrRCs] is the vector of resources consumed in traversing e.
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1 Solver<LSGraph> ls();

3 VarPath vp(ls,g,s,t);

5 GraphFunctionPrune<LSGraph> r[resources];
6 forall(i in resources)
7 r[i] = new PathCostOnEdgesPrune(vp,i);

9 PathCostOnEdgesPrune len(vp,0);

11 ConstraintSystem<LSGraph> gcs(ls);
12 forall(i in resources){
13 gcs.post(L[i] <= r[i]);
14 gcs.post(r[i] <= U[i]);
15 }
16 gcs.close();

18 Model<LSGraph> mod(vp,gcs,len,MINIMIZATION);

20 RCSPSearch se(mod);
21 se.setMaxIter(10000);

23 LSGraphPrune prune(ls);
24 prune.post(gcs);

26 whenever se@evtNewBest(){
27 prune.pruneLessThan(len,se.getBestObjValue());
28 se.update();

30 if(vp.isNull())
31 se.stopSearch();
32 }

34 se.search();

Figure 5.11: Model for the RCSP problem
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1 class RCSPSearch extends TabuSearch<LSGraph>{
2 RCSPSearch(Model<LSGraph> mod): TabuSearch<LSGraph>(mod){

4 }

6 void restartSolution(){
7 initSolution();
8 }

10 void initSolution(){
11 VarPath[] vps = getVarPaths();
12 forall(i in vps.rng()){
13 vps[i].init();
14 }
15 return;
16 }

18 void exploreNeighborhood(Neighborhood N){
19 exploreTabuMinReplace1Move1VarPath(N,true);
20 exploreTabuMin1ReplaceXVY1VarPath(N,true);
21 }
22 }

Figure 5.12: Search component for the RCSP problem

1000 paths from the source to the destination (i.e., by running 1000 random moves
over a VarPath). We then choose randomly 5 paths, each path i has a resource con-
sumed Ri = (ri1, r

i
2, ..., r

i
k). The lower bound and upper bound of resource consumed

is L = (l1, l2, ..., lk) and U = (u1, u2, ..., uk) where lj = min{r1j , r2j , r3j , r4j , r5j}
and uj = max{r1j , r2j , r3j , r4j , r5j}. This ensures that feasible solutions to the RCSP
problem always exist.

Each problem instance consists of a graph and a pair of lower bound and upper
bound vector of resources consumed. For each of the OR graphs, we generate only
one pair of lower bound and upper bound of vector resources consumed and for each
of the aircraft graphs, we generate three such pairs. Note that the number of resources
consumed in the aircraft graphs is one and in the OR graphs is one or ten. For each
problem instance, we execute the model 20 times with the time limit of 30 minutes.

Results

Table 5.6 presents the experimental result of our tabu search model in LS(Graph)

on benchmark from OR-Library where the constraint over lower bound of resource
consumed is not considered (to do it, we simply remove the line 13 in Figure 5.11).
Column 6 presents the execution time (sec.) of the LRE algorithm of [CRW08] imple-
mented in C++ and is executed on 3.8 GHz Intel Pentium IV processor, 3 giga- bytes
of RAM, and the Microsoft Windows XP Professional operating system. Columns
7-10 present the average, the minimal, the maximal and the standard deviation of time
(in sec.) for finding optimal solutions in 20 executions of our tabu search model. The
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Instances |V | |E| R opt
LRE LS(Graph)
t∗ t t_min t_max σ

rcsp1.txt 100 955 1 131 0.00 2.07 1.5 2.89 0.37
rcsp2.txt 100 955 1 131 0.00 2.02 1.42 2.57 0.29
rcsp3.txt 100 959 1 2 0.00 2.56 1.81 3.82 0.55
rcsp4.txt 100 959 1 2 0.00 2.88 1.75 3.57 0.47
rcsp5.txt 100 990 10 100 0.02 2.51 1.6 3.36 0.68
rcsp6.txt 100 990 10 100 0.02 2.66 1.5 4.18 0.76
rcsp7.txt 100 999 10 6 0.02 5.65 2.37 12.17 2.73
rcsp8.txt 100 999 10 14 0.02 8.26 2.7 21.38 4.57
rcsp9.txt 200 2040 1 420 0.00 6.46 2.49 11.77 2.93
rcsp10.txt 200 2040 1 420 0.00 7.53 1.94 16.75 4.62
rcsp11.txt 200 1971 1 6 0.00 5.08 2.68 8.47 1.33
rcsp12.txt 200 1971 1 6 0.00 5.03 2.73 8.45 1.42
rcsp13.txt 200 2080 10 448 0.05 15.49 3.82 46.98 9.8
rcsp15.txt 200 1960 10 9 0.05 14.78 2.99 25.31 5.61
rcsp16.txt 200 1960 10 17 0.05 11.28 2.98 26.45 6.56
rcsp17.txt 500 4858 1 652 0.00 63.47 9.26 130.3 30.54
rcsp18.txt 500 4858 1 652 0.00 47.26 5.67 130.15 34.5
rcsp19.txt 500 4978 1 6 0.00 16.23 4.06 32.21 6.85
rcsp20.txt 500 4978 1 6 0.02 20.02 8.89 31.31 6.04
rcsp21.txt 500 4847 10 858 0.09 52.45 15.28 82.99 22.07
rcsp22.txt 500 4847 10 858 0.09 60.66 20.85 148 32.38
rcsp23.txt 500 4868 10 4 0.08 43.83 7.54 95.88 22.92
rcsp24.txt 500 4868 10 5 0.08 64.17 14.52 152.28 44.89

Table 5.6: Experimental results of our local search model implemented in LS(Graph)

on OR benchmark

table shows that the tabu search can find optimal solutions for all instances in all exe-
cutions but slower than the exact LRE algorithm of [CRW08] implemented in C++.

Experimental results for the RCSP problem considering both constraints on lower
bound (2) and upper bound (3) of resource consumed are presented in Tables 5.7 and
5.8. For this problem, no comparison is made. We report the average, the minimal and
the maximal value of the best objective value found, the average of time (in sec.) for
finding these values and the standard deviation of the best objective value found in 20
executions (see columns 5-9 in Table 5.7 and columns 6-10 in Table 5.8). Experimen-
tal results show that for the first benchmark with smaller graphs, the best objective
values are convergent, the standard deviation is 0 for all instances. For the second
benchmark with larger graphs, the best objective values found in 20 executions are
quite divers and the average time for reaching these value is higher than in the first
benchmark.
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Instances |V | |E| R f f_min f_max t(sec.) σ
rcsp1.txt.ext 100 955 1 80 80 80 1.48 0
rcsp2.txt.ext 100 955 1 80 80 80 1.55 0
rcsp3.txt.ext 100 959 1 2 2 2 2.88 0
rcsp4.txt.ext 100 959 1 1 1 1 2.6 0
rcsp5.txt.ext 100 990 10 89 89 89 1.88 0
rcsp6.txt.ext 100 990 10 89 89 89 4.93 0
rcsp7.txt.ext 100 999 10 4 4 4 17.24 0
rcsp8.txt.ext 100 999 10 5 5 5 29.83 0
rcsp9.txt.ext 200 2040 1 248 248 248 6.73 0
rcsp10.txt.ext 200 2040 1 248 248 248 5.63 0
rcsp11.txt.ext 200 1971 1 6 6 6 12.34 0
rcsp12.txt.ext 200 1971 1 6 6 6 15.58 0
rcsp13.txt.ext 200 2080 10 260 260 260 10.52 0
rcsp14.txt.ext 200 2080 10 289 289 289 26.24 0
rcsp15.txt.ext 200 1960 10 8 8 8 241.17 0
rcsp16.txt.ext 200 1960 10 8 8 8 546.97 0
rcsp17.txt.ext 500 4858 1 690 690 690 37.1 0
rcsp18.txt.ext 500 4858 1 455 455 455 51.77 0
rcsp19.txt.ext 500 4978 1 6 6 6 48.66 0
rcsp20.txt.ext 500 4978 1 6 6 6 117.24 0
rcsp21.txt.ext 500 4847 10 735 735 735 89.32 0
rcsp22.txt.ext 500 4847 10 611 611 611 74.99 0
rcsp23.txt.ext 500 4868 10 4 4 4 181.55 0
rcsp24.txt.ext 500 4868 10 5 5 5 900.5 0

Table 5.7: Experimental results of our local search model implemented in LS(Graph)

on OR benchmark. Both constraints over lower bound and upper bound of resource
consumed are considered.
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Instances |V | |E| r_min r_max f f_min f_max t(sec.) σ

aircraftA.txt 988 4712
540.22 576.1 0.5 0.16 1.1 1521.27 0.26
487.53 569.47 0.39 0.17 0.65 1192.73 0.18
519.53 606.16 0.36 0.08 0.86 1530.81 0.24

aircraftB.txt 988 11048
452.88 632.78 0.17 0.07 0.51 1397.21 0.13
529.12 571.11 0.23 0.07 0.53 1635.04 0.15
449.12 630.84 0.14 0.07 0.52 1410.64 0.13

aircraftC.txt 988 22222
475.91 598.8 0.23 0.07 0.49 1609.81 0.16
472.55 604.05 0.24 0.07 0.6 1324.19 0.19
489.28 578.9 0.2 0.07 0.52 1743.36 0.12

aircraftD.txt 988 123166
422.68 692.99 0.19 0.07 0.58 1619.51 0.16
459.27 712.5 0.61 0.07 3.07 1290.25 0.89
416.07 656.61 0.17 0.07 0.68 1478.74 0.18

aircraftE.txt 988 228042
435.81 684.11 0.34 0.11 1.5 1480.43 0.42
432.07 571.01 0.54 0.1 1.64 1414.83 0.59
352.71 641.83 0.1 0.07 0.17 1374.37 0.04

aircraftF.txt 988 223330
383.19 660.94 0.65 0.09 2.62 1380.09 0.75
403.08 903.99 0.22 0.07 0.75 1527.77 0.19

431.5 602.64 0.52 0.07 1.33 1416.74 0.49

aircraftG.txt 988 195110
456.02 633.4 0.43 0.11 1.19 1556.23 0.36

422.6 838.68 0.36 0.08 1.19 1334.84 0.42
311.83 811.45 0.2 0.08 1.04 1259.76 0.29

aircraftH.txt 988 118454
458.18 829.56 0.16 0.07 0.27 1584.35 0.07
421.12 704.79 0.73 0.07 5.56 1478.78 1.62
355.02 550.19 0.37 0.07 1.98 1448.65 0.56

Table 5.8: Experimental results of our local search model implemented in LS(Graph)

on aircraft benchmark. Both constraints over lower bound and upper bound of re-
source consumed are considered.
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5.5 The Edge-Disjoint Paths problem

5.5.1 Problem formulation
We are given an undirected graph G = (V,E) and a set T = {〈si, ti〉 | i =
1, 2, ..., |T |; si 6= ti ∈ V } representing a list of commodities. A subset T ′ ⊆ T ,
T ′ = {〈si1 , ti1〉, ..., 〈sik , tik〉} is called edp-feasible if there exists multually edge-
disjoint paths from sij to tij on G,∀j = 1, 2, .., k. The EDP problem consists in
finding a maximal cardinality edp-feasible subset of T . In other words, the formula-
tion of the EDP problem is given by:

min ]T ′ (1)
s.t. T ′ ⊆ T (2)

T ′ is edp-feasible (3)

The Simple Greedy Algorithm

We first describe the simple greedy algorithm SGA [Kle96] because our proposed
algorithm (detailed later) will apply this as sub-procedure (see Algorithm 17). The
algorithm starts with an empty solution S (line 1). At each iteration j (line 3), it tries
to find a shortest path Pj from sj to tj of the commodity j in the graph G1 = (V,E1)
where the set of edges E1 is initialized by E (line 2). If such path exits, it is inserted
to S and the set E1 is updated by removing all edges of the path Pj for the next step.

Obviously, the SGA algorithm depends strongly on the order of commodity Tj
considered. The multi-start version of SGA (call MSGA) performs iteratively SGA
with different order of Tj to be scanned in T .

Algorithm 17: SGA(G,T)
Input: Problem instance 〈G = (V,E), T 〉 consist of a graph G and a

commodity list T
Output: Set of edge-disjoint paths on G connecting endpoints in T
S ← �;1

E1 ← E;2

foreach Tj = 〈sj , tj〉 ∈ T do3

if sj and tj can be connected by a path in G1 = (V,E1) then4

Pj ← shortest path from sj to tj in G1 = (V,E1);5

S ← S ∪ {Pj};6

E1 ← E1 \ {e | e ∈ Pj};7

return S;8

In the ACO algorithm of [BB07], the following criterion is introduced which quan-
tifies the degree of non-disjointness of a solution S = {P1, P2, ...Pk} (Pj is a path
from sj to tj):

C(S) =
∑
e∈E

(max{0,
∑
Pj∈S

ρj(S, e)− 1})
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where ρj(S, e) = 1, if e ∈ Pj and ρj(S, e) = 0 otherwise. From a solution con-
structed by ANTs, a solution to the EDP problem is extracted by iteratively removing
the path which has most edges in common with other paths, until all remaining paths
are mutually edge-disjoint (see Algorithm 18).

Algorithm 18: Extract(S)
Input: set S of paths
Output: subset of edges-disjoint paths of S
S0 ← S;1

while C(S0) > 0 do2

foreach p ∈ S0 do3

c(p)← number of edges of the path p in common with other paths of4

S0;
p∗ ← argMaxp∈S0c(p);5

S0 ← S0 \ {p∗};6

return S0;7

In this section, we propose two heuristic algorithms based on local search for solv-
ing this problem: the LS-SGA and LS-R algorithms. These heuristic algorithms are
sophisticated and cannot be viewed as standard CBLS programs with two indepen-
dent components: the model and the search. Rather, they perform a local search ap-
plying the LS(Graph) framework combining with additional processing: the extraction
method (Algorithm 18) and the Simple Greedy Algorithm. These algorithms make use
the PathsEdgeDisjoint(P1, P2, ..., Pk) constraint of the LS(Graph) framework say-
ing that the set of paths {P1, P2, ..., Pk} must be edge-disjoint. The number of viola-
tions of the PathsEdgeDisjoint(P1, P2, ..., Pk) constraint is defined to be C({P1,-
P2, ..., Pk}) and the proposed local search algorithm tries to minimize this criterion.

The LS-SGA algorithm

The LS-SGA algorithm is first proposed in our paper [PDH10]. The main idea of the
LS-SGA algorithm (detailed in Algorithm 19) is to perform a local search algorithm
aiming at minimizing the number of the violation of thePathsEdgeDisjoint(P1, P2,-
..., Pk) constraint. Variable S (line 2) stores a set of paths {P1, P2, ..., Pk} connecting
all commodities. It is initialized randomly (lines 3-5). At each step, we perform a lo-
cal move. The LocalMove method (line 7) returns true if it finds a move that decreases
the number of violations of the PathsEdgeDisjoint(P1, P2, ..., Pk) constraint. If no
such move exists, we take some random moves (line 22). From a candidate solution
S found by the local search, a solution S1 to the EDP problem will be extracted by
applying the Extract algorithm (line 9) combining with a SGA algorithm (line 15) on
the remaining graph G′′ (the graph G′′ is obtained by removing all edges E′ (line 12)
of the paths extracted by the Extract algorithm) and the remaining commodities T ′′

(lines 10-11). The best solution is updated in line 17 and lines 18-20 update some
paths of S by new found paths of S2.
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Algorithm 19: LS-SGA(G,T)
Input: Problem instance 〈G = (V,E), T 〉 consist of a graph G and a

commodity list T
Output: Set of edge-disjoint paths on G connecting endpoints in T
Sbest ← �;1

S ← �;2

foreach 〈si, ti〉 ∈ T do3

pi ← random path from si to ti on G;4

S ← S ∪ {pi};5

while termination criterion is not reached do6

hasMove← LocalMove(S);7

if hasMove then8

S1 ← Extract(S);9

T ′ ← set of commodities that are connected by paths in S1;10

T ′′ ← T \ T ′;11

E′ ← set of edges of paths of S1;12

E′′ ← E \ E′;13

G′′ ← (V,E′′);14

S2 ← SGA(G′′, T ′′);15

if ]S1 + ]S2 > ]Sbest then16

Sbest ← S1 ∪ S2;17

foreach pi ∈ S2 do18

p is a path of S \ S1 such that starting point of p ≡ starting19

point of pi and terminating point of p ≡ terminating point of pi;
p← pi;20

else21

RandomMoves(S);22

return Sbest;23
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The LS-R algorithm

The idea is to connect recursively as much as possible commodities of T (see Algo-
rithm 20). The core is the recursive method LS-Recursive in Algorithm 21 receives
a graph G and a list of commodities T as input and computes a set of edge-disjoint
paths connecting commodities of T . This paths set is then accumulated in the solution
Sol (Sol is a global variable) and all of edges visited by these paths are removed from
G for the next recursive call. Line 1 computes a set of edge-disjoint paths by a lo-
cal search method GreedyLocalSearch. Lines 2-3 update the solution by adding new
edge-disjoint paths of Si found. Lines 3-4 computes the set of connected components
of the graph generated from the current graph by removing all edges E′ of paths of
Si. For each graph Gi of these connected components and a set of commodities Ti
that belong to Gi, we perform recursively the LS-Recursive method (see lines 6-8).

Algorithm 20: LS-R(G,T )
Input: Problem instance 〈G = (V,E), T 〉 consist of a graph G and a

commodity list T
Output: Set of edge-disjoint paths on G connecting endpoints in T
Sbest ← �;1

while termination criterion is not reached do2

Sol← �;3

LS-Recursive(G,T );4

if ]Sol > ]Sbest then5

Sbest ← Sol;6

Algorithm 21: LS-Recursive(G,T )
Input: Problem instance 〈G = (V,E), T 〉 consist of a graph G and a

commodity list T ; Sol is a global variable that stores a set of
edges-disjoint paths under construction

Output: Update Sol
Si ← GreedyLocalSearch(G,T );1

foreach p ∈ Si do2

Sol← Sol ∪ {p};3

E′ ← set of edges of paths of Si;4

CC ← set of connected components of the graph (V,E \ E′);5

foreach Gi ∈ CC do6

Ti ← set of commodities that are not connected by any path of Si such that7

their endpoints belong to Gi;
LS-Recursive(Gi, Ti);8
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1 class EDP_LS_SGA{
2 UndirectedGraph g;
3 int K;
4 Vertex[] si;
5 Vertex[] ti;

7 PathsEdgeDisjoint disjoint;
8 NeighborhoodExplorer<LSGraph> ne;
9 Model<LSGraph> mod;

10 set{LSGraphPath} b_sol;
11 int maxCard;
12 float t_best;
13 ...
14 }

Figure 5.13: The data structure of the LS-SGA algorithm

5.5.2 The Model
We describe now the implementation of the two above algorithms in LS(Graph) frame-
work.

The LS-SGA Model

The global data structure is given in Figure 5.13. Lines 2-5 represent the input data
including the graph g and a list of commodities 〈si[i],ti[i]〉,∀ i=1..K. Line 7
declares a Constraint<LSGraph> disjoint which specifies the edge-disjointness of
the set of paths. A NeighborhoodExplorer<LSGraph> ne (line 8) will be used for
exploring the neighborhood. Lines 10-11 store the best solution found.

The main method is the ls_sga method given in Figure 5.14. Line 2 creates a
Solver<LSGraph> ls, and lines 4-6 initialize randomly a set of paths vps connecting
commodities. The Constraint<LSgraph> disjoint is imposed on the set of paths
vps (line 8). Line 10 creates a model mod including variables vps and the constraint
disjoint. At each step of the loop, we perform a local move (line 17) exploring
different neighborhoods (see Figure 5.17) and perform a move which decrease the
number of violations of the disjoint constraint. If no such move is found, a random
move is taken (lines 18-19). Line 21 processes the current paths set vps (method
extract_and_improve) which extracts (see line 2 in Figure 5.15)a set of edge-disjoint
paths (based on Algorithm 18 and the implementation is given the extract method
in Figure 5.16) and applies a simple greedy algorithm SGA (see Algorithm 17) in
hope of improving the solution found by the extract method (see line 4 in Figure
5.15). Method updateBest which is detailed in Figure 5.18 checks and updates the
best solution by the set of edge-disjoint paths found sol.

The localmove method (see Figure 5.17) explores different neighborhoods (lines
4, 8, 12, 16) in order to find a move that decreases the number of violations of the
disjoint constraint. If such a move is found, we take it and return true. Otherwise,
the method returns false.
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1 void ls_sga(float maxT){
2 Solver<LSGraph> ls();

4 set{VarPath} vps();
5 forall(i in 1..K)
6 vps.insert(new VarPath(ls,g,si[i],ti[i]));

8 disjoint = new PathsEdgeDisjoint(ls,vps);

10 mod = new Model<LSGraph>(vps,disjoint);
11 ne = new NeighborhoodExplorer<LSGraph>(mod);

13 maxCard = 0;
14 b_sol = new set{LSGraphPath}();

16 while(System.getCPUTime()*0.001 < maxT && maxCard < K){
17 if(!localmove()){
18 forall(i in 1..5)
19 randomMove(vps);
20 }
21 extract_and_improve(vps);
22 }
23 }

Figure 5.14: The main method of the LS-SGA algorithm

The LS-R Model

The main method is the ls_r method given in Figure 5.20. Lines 2-5 initialize the set
of paths vps connecting given commodities. Current solution sol and best solution
b_sol are initialized in lines 7-8. The main method iteratively calls the core method
ls_recursive (detailed in Figure 5.21) method in line 21 after the initialization of
the global variables: graph g, current solution sol, and the set of commodities coms

(lines 11-19). These global variables are updated during the call to recursive method
ls_recursive. Lines 25-29 initialize randomly paths of the set vps that do not belong
to the current solution sol.

The ls_recursive is given in Figure 5.21. Line 2 computes a set of edge-disjoint
paths S by a greedy local search combined with an extraction method (see detail in
Figure 5.22). These paths are then added to the current solution sol in lines 5-6. All
edges of these paths are removed from the graph g (lines 8-12) and all commodities
connected by these paths are also removed from the set coms in lines 13-14. A set
of connected components cc of the remaining graph is computed in lines 17-18. For
each of these connected component gi (line 20), we call recursively the ls_recursive
method (line 26) where tvps is the set of paths connecting commodities on the graph
gi which are initialized randomly (see lines 21-23).

The greed_ls_search is given in Figure 5.22 which finds as much as possible
edge-disjoint paths of vps on the graph g. It applies a greedy local search aiming
at minimizing the number of violations of the constraint disjoint over the vps and
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1 void extract_and_improve(set{VarPath} vps){
2 set{VarPath} S = extract(vps,g);

4 set{VarPath} Si = tryImprove(S,vps);
5 set{VarPath} sol();
6 forall(vp in S){
7 sol.insert(vp);
8 }

10 if(Si != null){
11 forall(vp in Si){
12 sol.insert(vp);
13 }
14 }

16 updateBest(sol);
17 }

19 set{VarPath} tryImprove(set{VarPath} S,set{VarPath} vps){
20 set{LSGraphPath} Si = sga(S,vps);
21 set{VarPath} retS();

23 if(S.getSize() + Si.getSize() > maxCard){
24 forall(pi in Si){
25 forall(vp in vps: !member(vp,S) && vp.getSource() ==

pi.getSource() && vp.getDestination() ==
pi.getDestination()){

26 vp.assign(pi);
27 retS.insert(vp);
28 }
29 }
30 return retS;
31 }
32 return null;
33 }

Figure 5.15: The process method in the LS-SGA algorithm
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1 set{VarPath} extract(set{VarPath} vps, UndirectedGraph g){
2 int cc[g.getEdgesRange()] = 0;

4 set{VarPath} S();
5 forall(vp in vps)
6 S.insert(vp);

8 forall(vp in S){
9 Edge e = vp.getFirstEdge();

10 while(e != null){
11 cc[e.id()]++;
12 e = vp.getNextEdge();
13 }
14 }

16 bool finished = false;
17 while(!finished){
18 int maxVio = 0;
19 VarPath maxVioPath = null;
20 forall(pp in S){
21 int co = 0;
22 Edge e = pp.getFirstEdge();
23 while(e != null){
24 if(cc[e.id()] > 1)
25 co++;
26 e = pp.getNextEdge();
27 }

29 if(co > maxVio){
30 maxVio = co;
31 maxVioPath = pp;
32 }
33 }
34 if(maxVio == 0){
35 finished = true;
36 }else{
37 S.delete(maxVioPath);

39 Edge e = maxVioPath.getFirstEdge();
40 while(e != null){
41 cc[e.id()]--;
42 e = maxVioPath.getNextEdge();
43 }
44 }
45 }
46 return S;
47 }

Figure 5.16: The extract method of the LS-SGA algorithm
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1 bool localmove(){
2 MinNeighborSelector N();

4 VarPath[] vps = mod.getVarPaths();

6 ne.exploreDegradeMultiStageReplace1Move1VarPath(N,vps,disjoint,true);
7 if(N.hasMove()){
8 call(N.getMove());
9 }else{

10 ne.exploreDegradeMultiStageReplace2Moves1VarPath(N,vps,disjoint,true);
11 if(N.hasMove()){
12 call(N.getMove());
13 }else{
14 ne.exploreDegradeMultiStageReplace1Move2VarPaths(N,vps,disjoint,false);
15 if(N.hasMove()){
16 call(N.getMove());
17 }else{
18 ne.exploreDegradeReplace2Moves1VarPath(N,vps,disjoint,true);
19 if(N.hasMove()){
20 call(N.getMove());
21 }else{
22 return false;
23 }
24 }
25 }
26 }
27 return true;
28 }

30 void randomMove(set{VarPath} vps){
31 select(vp in vps){
32 ReplacingEdgesMaintainPath rpl = ne.getReplacingEdges(vp);
33 select(ei in rpl.getSet()){
34 select(eo in getPreferredReplacableEdges(vp,ei)){
35 vp.replaceEdge(eo,ei);
36 }
37 }
38 }
39 }

Figure 5.17: The localmove and randomMove methods of the LS-SGA algorithm
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1 bool updateBest(set{VarPath} sol){
2 if(maxCard < sol.getSize()){
3 maxCard = sol.getSize();
4 t_best = System.getCPUTime()*0.001;
5 cout << "UPDATE BEST = " << maxCard << " time = " << t_best <<

endl;

7 b_sol.reset();
8 forall(vp in sol){
9 LSGraphPath p = vp.getLSGraphPath();

10 b_sol.insert(p);
11 }
12 return true;
13 }

15 return false;
16 }

Figure 5.18: The updateBest method of the LS-SGA algorithm

1 class EDP_LS_R{
2 UndirectedGraph g0;
3 UndirectedGraph g;

5 int K;
6 Vertex[] si;
7 Vertex[] ti;
8 set{SourceSink} coms;

10 set{VarPath} sol;
11 set{LSGraphPath} b_sol;
12 ...
13 }

Figure 5.19: The data structure of the LS-R algorithm

extract (line 15) the set of edge-disjoint paths follow the Algorithm 18. In this method,
the search component se in line 11 extends the built-in GreedyLocalSearch<LSGraph>

overriding the localmove method (see Figure 5.23). The localmove method explores
two different neighborhoods (line 12 and 17) for finding a move which decreases the
number of violations of the disjoint constraint. It takes that move if it is found and
returns true. If no such move is discovered, the localmove method returns false.

5.5.3 Experiments

Problem instances

We experiment the two proposed algorithms on three kinds of benchmark. The first
benchmark is instance on 4 graphs provided by Blesa [BB07]. The second benchmark



5.5. The Edge-Disjoint Paths problem 117

1 void ls_r(float maxT){
2 set{VarPath} vps();
3 forall(ss in coms){
4 vps.insert(new VarPath(g0,ss.getSource(),ss.getSink()));
5 }

7 sol = new set{VarPath}();
8 b_sol = new set{LSGraphPath}();

10 while(System.getCPUTime()*0.001 < maxT && b_sol.getSize() < K){
11 sol.reset();

13 coms.reset();
14 forall(i in 1..K){
15 SourceSink ss(si[i],ti[i]);
16 coms.insert(ss);
17 }

19 g = g0.copy();

21 ls_recursive(g,vps);
22 updateBest();

24 // generate initial paths for next iteration
25 if(System.getCPUTime()*0.001 < maxT && b_sol.getSize() < K){
26 forall(vp in vps: !member(vp,sol)){
27 vp = new VarPath(g0,vp.getSource(),vp.getDestination());
28 }
29 }
30 }
31 }

Figure 5.20: The main method of the LS-R algorithm
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1 void ls_recursive(UndirectedGraph g, set{VarPath} vps){
2 set{VarPath} S = greedy_ls_search(g,vps);

4 // remove edges covered by S from g and all SourceSinks of S
from coms

5 forall(vp in S){
6 sol.insert(vp);

8 set{Edge} S1 = vp.getEdges();
9 forall(e in S1)

10 if(g.contains(e)){
11 g.removeEdge(e);
12 }
13 select(ss in coms: vp.getSource() == ss.getSource() &&

vp.getDestination() == ss.getSink())
14 coms.delete(ss);
15 }

17 BasicGraphAlgorithm algo();
18 set{UndirectedGraph} cc = algo.computeConnectedComponents(g);

20 forall(gi in cc){
21 set{VarPath} tvps();
22 forall(ss in coms: gi.contains(ss.getSource()) &&

gi.contains(ss.getSink()))
23 tvps.insert( new

VarPath(gi,ss.getSource(),ss.getSink()));

25 if(tvps.getSize() > 0)
26 ls_recursive(gi,tvps);
27 }
28 }

Figure 5.21: The ls_recursive method of the LS-R algorithm
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1 set{VarPath} greedy_ls_search(UndirectedGraph g, set{VarPath}
vps){

2 Solver<LSGraph> ls();
3 forall(vp in vps){
4 ls.post(vp);
5 }

7 PathsEdgeDisjoint disjoint(ls,vps);

9 Model<LSGraph> mod(vps,disjoint);

11 EDPSearch se(mod);

13 se.search();

15 set{VarPath} S = extract(vps,g);

17 return S;
18 }

Figure 5.22: The greedy_ls_search method of the LS-R algorithm

1 class EDPSearch extends GreedyLocalSearch<LSGraph>{
2 EDPSearch(Model<LSGraph> mod): GreedyLocalSearch<LSGraph>(mod){
3 }

6 void initSolution(){
7 // do nothing, just to use random initiation
8 }

10 bool localmove(){
11 MinNeighborSelector N();

13 exploreDegradeMultiStageReplace1Move1VarPath(N,true);
14 if(N.hasMove()){
15 call(N.getMove());
16 return true;
17 }
18 exploreDegradeMultiStageReplace2Moves1VarPath(N,true);
19 if(N.hasMove()){
20 call(N.getMove());
21 return true;
22 }

24 return false;
25 }
26 }

Figure 5.23: The search component of the LS-R algorithm
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Name |V | |E| Degree avg.
bl-wr2-wht2.10-50.rand 500 1020 4.08
bl-wr2-wht2.10-50.sdeg 500 1020 4.08
mesh15x15 225 420 3.73
mesh25x25 625 1200 3.84
steinb4.txt 50 100 4.00
steinb10.txt 75 150 4.00
steinb16.txt 100 200 4.00
steinc6.txt 500 1000 4.00
steinc11.txt 500 2500 10.00
steinc16.txt 500 12500 50.00
planar-n50 50 135 5.4
planar-n100 100 285 5.7
planar-n200 200 583 5.83
planar-n500 500 1477 5.91

Table 5.9: Description of graphs of the benchmarks

is instances on some graphs of the Steiner benchmark from Or-Library [Bea]. The
third benchmark consists of instances on random planar graphs. Table 5.9 gives a
description of these graphs.

An instance of the EDP problem consists of a graph and a set of commodities.
The instances in the original paper [BB07] are not available. As a result, we use
the instance generator described in [BB07] and generate new instances as follows.
For each graph of the first set, we generate randomly different sets of commodities
with different sizes depending on the size of the graph: for each graph of size n, we
generate randomly 2 instances6 with 0.10*n, 0.25*n and 0.40*n commodities. We do
the same for each graph of the second set but we generate only 1 instance for each rate
of commodities instead of 2.

For comparison, we have reimplemented the ACO algorithm described in [BB07]
in the COMET programming language. For each problem instance, we execute the
three algorithms 20 times. Due to the high complexity of the problem, we set the time
limit to 30 minutes for each execution. In total, we have 54 problem instances with
1080 executions.

Results

Experimental results are shown in Tables 5.10 and 5.11. The structure of these tables
are the same and are described as follows. First column presents the instance name.
Columns 2-5 present the result of the ACO [BB07] algorithm including the average,
the minimal and the maximal of the best objective values found in 20 executions, and
the average of time for finding these best objective values. The same information of

6This is different from what we did in [PDH10] where we generate randomly 20 instances with each
rate of commodities and for each instance, the algorithm is executed only once.
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Figure 5.24: Comparison between the ACO, LS-SGA and LS-R algorithms on mess
instances

the LS-SGA and LS-R are presented in columns 7-10 and columns 12-15. Column 6
compares the ACO and LS-SGA algorithms under format a/b where a is the number
of times the ACO algorithm find better solution than the LS-SGA algorithm and b is
the number of time the LS-SGA finds better solution than the ACO algorithm in 20
executions. Column 16 presents the same information as the column 6 but for the
comparison between the ACO and the LS-R algorithms. Figures 5.24, 5.25, and 5.26
provide more information about the comparison between the three algorithms in term
of average objective values found among 20 executions for each instance.

Experiments results show that in average the LS-R is better than two other al-
gorithms: ACO and LS-SGA algorithms and the LS-SGA is better than the ACO
algorithm. The LS-SGA finds better solutions than the ACO algorithm in 534 out
of 1080 executions while the ACO algorithm finds better solutions in 96 out of 1080
executions. The LS-R finds better solution than the ACO in 614 out of 1080 execu-
tions while the ACO algorithm finds better solution than the LS-R in 7 out of 1080
executions.

5.6 The Routing and Wavelength Assignment problem

5.6.1 Problem formulation

The formal definition of the problem (called RWA-D) is the following. Given an
undirected weighted graph G = (V,E), each edge e of G has cost c : E → R, c(e)
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Figure 5.25: Comparison between the ACO, LS-SGA and LS-R algorithms on steiner
instances

Figure 5.26: Comparison between the ACO, LS-SGA and LS-R algorithms on planar
instances
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represents the delay in traversing e. Given a set of connection requests R ⊆ V × V ,
R = {〈s1, t1〉, 〈s2, t2〉, ..., 〈sk, tk〉} and a value D. The RWA-D problem consists in
finding routes pi from si to ti and its wavelength for all i = 1, 2, ..., k such that:

1. the wavelengths of pi and pj are different if they have common edges, ∀i 6= j ∈
{1, 2, ..., k} (wavelength constraint),

2.
∑
e∈pi

c(e) ≤ D,∀i = 1, 2, ..., k (delay constraint)

3. the number of different wavelength is minimized (objective function).

5.6.2 The Model

The idea of the proposed algorithm is simple. We iteratively perform a local search
algorithm for finding a feasible solution to the RWA-D problem with W wavelengths
(W = 1, 2, 3, ...) until the first feasible solution is discovered.

The model is given in Figure 5.27. Lines 4-10 initialize all VarPath vps[i] from
s[i] to t[i] with the shortest version. Line 11 initializes an array vw where vw[i]

stores the wavelength value for the path vps[i]. The search starts with one wavelength
(see line 14). At each step, we try to find a feasible solution to the RWA-D problem
by a localsearch procedure (line 16). The search terminates (line 17) if a feasible
solution to the RWA-D problem is discovered, otherwise, we increase W by one (line
19).

The localsearch procedure described in Figure 5.28 receives an array of VarPath
vps, a value W of the number of wavelengths, and local search parameters maxIt, maxT
as input. Line 2 creates a Solver<LSGraph> ls and lines 4-6 post all VarPath to
it. Line 8 initializes an array var{int} xw where xw[i] represents the wavelength as-
signed to the path vps[i] and is initialized with the value vw[i]. The domain of xw[i]
is 1..W. Line 10 initializes a ConstraintSystem<LSGraph> CS. The first constraint of
the RWA-D problem is stated and posted in line 12. Lines 14-15 state and post all
side constraints (the delay constraint) to CS and line 17 closes the constraint system
CS. Line 19 groups all variables vps, xw and the constraint CS into a model mod and
line 20 creates a search component which is detailed in Figure 5.29. Lines 22-24 set
parameters for the search and line 26 performs the search. The value of xw is stored in
vw for the next iteration (see lines 28-29): all paths vps[i] and its wavelength xw[i]

are conserved for the next localsearch . The localsearch returns true if a feasible
solution to the RWA-D problem is discovered (lines 31-33).

The search component is given in Figure 5.29 which extends the TabuSearch<LSGraph>
and receives Lmax (line 3) as parameters for the solution initialization when restarting
the tabu search. The restartSolution is overriden (lines 13-24) in which we initial-
ize the value for the VarPath vps[i] with the shortest version if its cost is greater than
Lmax. This aims at quickly satisfying the delay constraint. The initSolution is also
overriden which do nothing in order not to change the value of variables initialized in
the previous step of the search. The search explores two neighborhoods (lines 7-10)
(see appendix for the detail about these neighborhood explorations).
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1 void minRWA(int maxIt, float maxT){
2 range Size = 1..ca;

4 vps = new VarPath[Size];
5 // init VarPaths with the shortest version
6 LSGraphPath p(g);
7 forall(i in Size){
8 p.dijkstra(g,s[i],t[i]);
9 vps[i] = new VarPath(g,p);

10 }
11 vw = new int[Size] = 1;

13 bool finished = false;
14 int W = 1;
15 while(!finished){
16 if(localsearch(vps,W,maxIt,maxT)){
17 finished = true;
18 }else{
19 W++;
20 }
21 }
22 cout << "best objective value = " << W << endl;
23 }

Figure 5.27: Model for the RWA-D problem

5.6.3 Experiments
The model has been experimented on different instances (graphs from 16 nodes - 33
edges to 100 nodes - 261 edges and 10, 20, 50 connections requests for each graph)
with different number of iterations (20, 50, 100, 200, 500) for the tabu search (the
value of maxIt in line 16 of Figure 5.27). For each problem instance and a given
number of iterations, the model is executed 20 times. We have conducted a prelim-
inary experiments in order to choose the tabu search parameters. For each specified
number of iterations, we try the parameters as follows: tbMin = n/p_tbMin, tbMax
= n/p_tbMax, tinc = (tbMax-tbMin)/p_tinc+1, and maxStable = p_maxStable in
which n is the number of vertices of the given graph with (see also Table 5.13):

• p_tbMin ∈ {3, 5},

• p_tbMax ∈ {2},

• p_tinc ∈ {1, 2, 4},

• p_maxStable ∈ {50, 200}.

The preliminary results show that the influence of the parameters on solutions
is quite divers (for some instances, the parameters do not influence on the solutions
found) and no parameters are good for all instances. Figures 5.30 and 5.31 depict
the influence of the parameters on the solutions for some instances in case of 200
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1 bool localsearch(VarPath[] vps, int W, int maxIt, float maxT){
2 Solver<LSGraph> ls();

4 forall(i in vps.rng()){
5 ls.post(vps[i]);
6 }

8 xw = new var{int}[i in vps.rng()](ls,1..W) := vw[i];

10 ConstraintSystem<LSGraph> CS(ls);

12 CS.post(AllDistinctLightPaths(vps,xw));

14 forall(i in vps.rng())
15 CS.post(PathCostOnEdges(vps[i]) <= Lmax,1000);

17 CS.close();

19 Model<LSGraph> mod(vps,xw,CS);
20 RWASearch se(mod,Lmax);

22 se.setMaxIter(maxIt);
23 se.setMaxTime(maxT);
24 se.setParameters(tbMin, tbMax, tinc, maxStable);

26 se.search();

28 forall(i in xw.rng())
29 vw[i] = xw[i];

31 if(CS.violations() == 0){
32 return true;
33 }
34 return false;
35 }

Figure 5.28: The local search procedure for the RWA-D problem
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1 class RWASearch extends TabuSearch<LSGraph>{
2 float _Lmax;
3 RWASearch(Model<LSGraph> mod, float Lmax):

TabuSearch<LSGraph>(mod){
4 _Lmax = Lmax;
5 }

7 void exploreNeighborhood(Neighborhood N){
8 exploreTabuMinMultiStageAssign(N,true);
9 exploreTabuMinMultiStageReplace1Move1VarPath(N,true);

10 }

13 void restartSolution(){
14 // init paths with shortest versions for paths whose current

cost greater than Lmax
15 forall(k in _vps.rng()){
16 VarPath vp = _vps[k];
17 float d = sum(e in vp.getEdges())(e.weight());
18 if(d > _Lmax){
19 LSGraphPath pa(vp.getLUB());
20 pa.dijkstra(vp.getSource(),vp.getDestination());
21 vp.assign(pa);
22 }
23 }
24 }
25 void initSolution(){
26 }
27 }

Figure 5.29: The search component

index p_tbMin p_tbMax p_tinc p_maxStable
1 3 2 1 50
2 3 2 1 200
3 3 2 2 50
4 3 2 2 200
5 3 2 4 50
6 3 2 4 200
7 5 2 1 50
8 5 2 1 200
9 5 2 2 50
10 5 2 2 200
11 5 2 4 50
12 5 2 4 200

Table 5.13: Parameters tried for the RWA-D problem
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Figure 5.30: Influence of parameters on solutions

]iterations p_tbMin p_tbMax p_tinc p_maxStable
20 3 2 1 200
50 5 2 1 200
100 3 2 1 50
200 3 2 1 50
500 3 2 2 50

Table 5.14: Tabu search parameters selection

iterations. The X-axis presents the indices of the parameters (see Table 5.13) and the
Y-axis presents the average objective values of 20 executions for each instance.

Selected values for p_tbMin, p_tbMax, p_tinc, p_maxStable depend on the
number of iterations of the local search procedure (see Figure 5.14) and are presented
in Table 5.13.

Table 5.15 show the experimental results. For each number of iterations, the table
shows the average of the best objective value and the execution time (in seconds) of
20 runs. Experimental results show that in general, when the number of iterations
increases, the solutions founds are slightly better except some instances (see lines 2,
4, 10) but the execution times are much higher.

One again, in the above model, we notice that it is easy to state and post various
built-in COMET constraints over var{int} to the graph constraint system CS which
show the flexibility and compositionality of the framework.
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Figure 5.31: Influence of parameters on solutions

5.7 The Routing for Network Covering problem

5.7.1 Problem formulation

Given an undirected weighted graph G = (V,E), a vertex d ∈ V representing the
depot, a set S of edges of G (S ⊆ E) and a value L, the RNC problems consists of
finding a minimal cardinality set of paths starting from and terminating at d whose
cost are less than or equal to L that covers all edges of S.

5.7.2 The Model

To our best knowledge, this problem has not been considered earlier. We propose
in this section a model based on local search for solving the RNC problem. In the
presentation of the model, g is the given graph, S is the set of edges that need to
be covered and L is the maximum value allowed of the cost of each itinerary in the
solution.

The model is a greedy constructive search which is depicted in Figure 5.32. At
each step, we find greedily a feasible itinerary vi that covers as many edges of S (S is
reduced after each iteration (see lines 8-9)) as possible (see method greedy at line 5 of
Figure 5.32) until S is empty. sol (line 2) stores the solution which is updated when a
new itinerary is discovered (line 6).

The method greedy is detailed in Figure 5.33. Line 2 creates a Solver<LSGraph>

ls which manages all graph variables, graph invariants, graph constraints and graph
functions of the model. Line 3 declares an object vi representing VarItinerary which
is composed by a sequence of k VarPaths starting and terminating at depot d, rooted at
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1 void rncModel(set{Edge} S, float L, int nbTrials, float maxT){
2 set{VarItinerary} sol();

4 while(S.getSize() > 0){
5 VarItinerary vi = greedy(S,L,nbTrials,maxT);
6 sol.insert(vi);

8 forall(e in vi.getEdges()){
9 S.delete(e);

10 }
11 }
12 cout << "Best objective value = " << sol.getSize() << endl;
13 cout << "time = " << System.getCPUTime()*0.001 << endl;
14 }

Figure 5.32: Model for the RNC problem

random vertices except the last one. Line 5 initializes a graph function cost represent-
ing the cost of vi and line 7 initializes a graph function visitedEdges representing the
number of edges of S visited by vi. Line 9 creates a model with a decision variable
vi, a constraint cost <= L to be satisfied and an objective function visitedEdges

to be maximized. A search object which applies to the model mod and maximizes
visitedEdges is initialized in line 11 (see Figure 5.34 for detail of the implementa-
tion). Tabu search parameters are set in lines 13-15 where the maximum number of
iterations nbTrials and time window maxT are set in lines 14 and 15. Line 17 performs
the tabu search.

The search (Figure 5.34) extends the built-in TabuSearch<LSGraph> overriding
the initSolution (lines 12-45) and the exploreNeighborhood (lines 47-50) methods.
The initial solution is an itinerary that visits at least a random selected edge e=(u,v)

of the set of edges to be covered _S (lines 16-18) formed by 3 paths in a greedy
way: the first path p1 is the shortest path from the depot _depot to an endpoint u
of e (lines 19-20); the second path contains only the edge e which is the path u->v

(line 22); the third path is the shortest path from another endpoint v of e to the depot
_depot (lines 24-25). low..up (lines 27-28) is the range of VarPath of vi. The first
three VarPaths vp1, vp2, vp3 are respectively assigned to p1, p2 and p3 (lines 30-36).
The remaining VarPaths of vi contains only one vertex _depot (lines 38-43). In the
exploreNeighborhood (line 47-50), we exploit two neighborhoods: ERNP1 (line 48)
and SDCNI1 (line 49).

5.7.3 Experiments

We experimented the above model on some grid graphs of size 4x4, 5x5, 10x10,
15x15, 20x20, 25x25 and 30x30 vertices. For each graph g, the depot is chosen
randomly. The weights of edges are generated randomly with respect to a uniform
distribution between 1 and 10. The set of edges to be covered is generated randomly
and its cardinality is r * ]E(g) where r ∈ {0.5, 1}. The value of L is 1.5*L0 where
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1 VarItinerary greedy(set{Edge} S, float L, int nbTrials, float maxT){
2 Solver<LSGraph> ls();
3 VarItinerary vi(ls,g,d,d,k);

5 Function<LSGraph> cost = new ItineraryCost(ls,vi,g);

7 Function<LSGraph> visitedEdges = new
VisitedEdgesItinerary(ls,vi,S,g);

9 Model<LSGraph> mod(vi,cost <= L, visitedEdges, MAXIMIZATION);

11 RNCSearch se(mod,S,d);

13 se.setParameters(tbMin, tbMax, tinc, maxStable);
14 se.setMaxIter(nbTrials);
15 se.setMaxTime(maxT);

17 se.search();

19 return vi;
20 }

Figure 5.33: the greedy method of the model for the RNC problem

L0 is the cost of the shortest path from the depot that visits the farthest edge and re-
turns the depot. This ensures that feasible solutions to this problem always exist. We
generate 2 instances for each graph and each value of r. In total, there are 28 problem
instances.

An exact branch-and-bound method has been implemented. The objective here
is to test whether or not the local search model can find optimal solutions in small
instances.

Parameters The parameters for the model are {k, alpha, beta, tbMin, tbMax,

tinc, maxStable} where k is the number of RST of each VarItinerary; alpha and
beta are used as coefficients for combining constraints and the objective function in
the model; tbMin, tbMax, tinc, maxStable are parameters for the generic search
procedure (see Figure 5.33). Normally, the parameters depends on the size of the
input. If k is high, the model is heavy which influence the performance. From our
experiments, we choose the values for parameters as follows. The value of k is set to 3.
The value of alpha should be higher than beta in order to prioritize the search towards
feasible solutions. We thus set beta = 1, alpha = 1000. For the remaining parameters,
we set the values of tbMin = n/10, tbMax = n/3, tinc = n/4, maxStable = n/5

where n is the size of the given graph.
Each model is executed 20 times for each instance with a specified number of

iterations nbTrials in line 14 of Figure 5.33). Due to the huge complexity of the
problem, each local search procedure is performed with 20, 50, 100, 200, 500, 1000
iterations in order to analyze the evolution of the best objective value over iterations.
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1 class RNCSearch extends TabuSearch<LSGraph>{
2 set{Edge} _S;
3 Vertex _depot;

5 RNCSearch(Model<LSGraph> mod, set{Edge} S, Vertex
depot):TabuSearch<LSGraph>(mod){

6 _S = S;
7 _depot = depot;
8 }

10 void restartSolution(){
11 }
12 void initSolution(){
13 VarItinerary vi = getFirstItinerary();
14 UndirectedGraph g = vi.getLUB();

16 select(e in _S){
17 Vertex u = e.fromVertex();
18 Vertex v = e.toVertex();
19 LSGraphPath p1(g);
20 p1.dijkstra(_depot,u);

22 LSGraphPath p2(g,e);

24 LSGraphPath p3(g);
25 p3.dijkstra(v,_depot);

27 int low = vi.rng().getLow();
28 int up = vi.rng().getUp();

30 VarPath vp1 = vi.get(low);
31 VarPath vp2 = vi.get(low+1);
32 VarPath vp3 = vi.get(low+2);

34 vp1.assign(p1);
35 vp2.assign(p2);
36 vp3.assign(p3);

38 forall(j in low+3..up){
39 VarPath vp = vi.get(j);
40 LSGraphPath pi(g);
41 pi = pi + _depot;
42 vp.assign(pi);
43 }
44 }
45 }

47 void exploreNeighborhood(Neighborhood N){
48 exploreTabuMinReplace1Move1VarPath(N,true);
49 exploreTabuMinChangeDestinationVarItinerary(N,true);
50 }

Figure 5.34: Search component for the RNC problem
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Figure 5.35: Grid 25x25: average objective value over iterations

Figure 5.36: Grid 15x15: average objective value over iterations
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In total, we have 33600 executions.

Results The results are shown in Table 5.16 with different number of iterations.
Columns 2 and 3 present the depot vertex and the factor r used for instances genera-
tion described above. Columns 4-15 present the min, max, average value of the best
objective value found and the average execution time in the 20 runs of each instance
with 20, 100, 200 iterations. Column 16 presents the optimal objective value found
by the Branch-and-Bound method within 30 minutes for instances on grid_4x4 and
grid_5x5. The Tables show that the diversity of the best objective values found in
the 20 runs for each problem instance increases when the size of the input graph and
the number of edges to be covered increase. The execution time increases when the
number of edges to be covered increases. Figures 5.36, 5.35 show the evolution of the
average best objective value over iterations. They show that the best objective values
found reduce substantially in first 200 iterations and are quite stable from 200 to 1000
iterations.

Due to the huge complexity of the problem, because edges and vertices are allowed
to be repeated on paths, the exact method can not find solution on instances with grids
of size larger than 6x6 within 20 hours. The Table shows that the local search model
can find optimal solutions on some small instances (for the grid_4x4 and grid_5x5).
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6
CONCLUSION

The objective of this thesis comes from the observation that various constrained op-
timum trees and paths applications on graphs have been approached by specific, and
sophisticated techniques which are difficult to extend. Hence, when a new problem
needs to be solved, it requires huge efforts of research and programming. Section 6.1
summarizes the results of this thesis and Section 6.2 gives some directions for future
research.

6.1 Results
In this thesis, we designed and implemented the LS(Graph) framework which al-
lows to model in a high-level language and to solve constrained optimum trees and
paths problems on graphs by local search. As an extension of COMET , LS(Graph)
(the current version is about 25,000 lines of COMET code) strengthens the model-
ing benefits of CBLS: compositionality, modularity, reuse. Users do not have to
pay attention to the manipulation of sophisticated data structures and algorithms on
graphs. Rather, they can concentrate on stating the model and exploring different lo-
cal search strategies. The LS(Graph) framework is open; it allows users to design and
implement their own invariants, constraints and objective functions and integrate them
into the system. The framework supports graphs with several weights on edges, ver-
tices. It does not depend on whether these weights are negative or positive, although
positive weights constraints are required for most of the specific algorithms. The
LS(Graph) library as well as some data sets experimented in this thesis are available
at http://becool.info.ucl.ac.be/lsgraph.

As presented in Section 3.3, one of the main technical contributions of this thesis
is the use of rooted spanning tree for representing an elementary path and its neighbor-
hood in COP applications: a rooted spanning tree tr induces a unique path p from a
specified vertex s (called the source of tr) to its root. An update over this tree (i.e., by
an edge replacement) creates a neighboring rooted spanning tree of tr which induces
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a neighboring path of p. To the best of our knowledge, there exist few applications
of local search approaches for solving constrained paths problems on general graphs
except those on complete graphs (on complete graphs, the path can explicitly be rep-
resented by a sequence of vertices and any change (e.g., remove, insert or replace
vertices) over these vertices induces a new path). In some applications, sophisticated
and specific which are problem-dependent moves are applied. The benefit of this rep-
resentation is twofold. On the one hand, the size of neighborhood is polynomial (e.g.,
in comparison with the most general neighborhood N ), it can thus be explored effi-
ciently. On the other hand, it features diversity (i.e., neighboring paths of a path are
usually very different from the current path) which is fundamental in local search.

As a result, we also proposed a simple way to represent a walk (i.e., paths where
vertices and edges can be repeated) by a sequence of rooted spanning tree: the root
of a tree is the source of the subsequent tree in the sequence. A limitation of this
representation is the need to predefine the number of rooted spanning trees in the se-
quence. This parameter depends on particular applications and can only be evaluated
experimentally.

In term of implementation, dedicated data structures and incremental algorithms
have been exploited. The query of the nearest common ancestor of two vertices on
a tree is fundamental for implementing various abstractions of the framework. State-
of-the-art data structures and algorithms for maintaining nearest common ancestors of
all pairs of two vertices on dynamic tree have been used. In the framework, we have
implemented this data structure and algorithm in an incremental way. By maintaining
the distance between all pairs of two vertices on dynamic trees, the cost of a path
and its variation under different moves can be queried in O(1). As shown in Section
3.6, these algorithms cannot improve the worst case complexity but are efficient in
practice.

Finally, the constructed framework has been applied to three constrained optimum
trees problems (the edge-weighted k-cardinality tree problem, the quorumcast routing
problem and the design of spanning tree protocol problem-application on traffic engi-
neering in switched ethernet networks) and four constrained optimum paths problems
(the resource constrained shortest path problem with both constraints over minimum
and maximum resources consumed along the path, the edge-disjoint paths problem,
the routing and wavelength assignment with delay side constraints and the routing for
network covering problem). The application on the traffic engineering in switched
ethernet networks is tackled in collaboration with Ho in [HFD+10], and is not pre-
sented in this thesis. For many applications, it is difficult to obtain competitive results
in comparison with dedicated algorithms. Rather, we show how to solve them flexibly
and shortly especially when side constraints need to be added. This is one of the main
objective of this thesis. However, for the quorumcast routing problem, our proposed
tabu search gives better results than the IMP heuristic algorithms which is in our best
knowledge, the state-of-the-art heuristic for this problem. For the edge-disjoint paths
problem, we proposed two algorithms based on local search which give competitive
results in comparison with the state-of-the-art ACO algorithm.
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6.2 Future work
Our future work can be specified in four main directions:

1. Improving LS(Graph). Some abstractions still need to be improved. We give
three examples. First, the diameter-bound constraint on tree stating that the
diameter of the tree tr cannot exceed D is now modeled by the constraint:
Diamter(tr) ≤ D or by the global constraint DiameterAtMost(tr,D). In the
first choice, the function Diameter(tr) has been efficiently implemented but
this expression does not allow to differentiate trees because several trees may
have the same value of diameter. In the second choice, we define the number of
violations of the DiameterAtMost(tr,D) constraint by

∑
u,v∈V (tr)max(0, dtr(u,-

v)−D) where dtr(u, v) is the distance between u and v on tr. This definition
is better than the previous one but its complexity makes it difficult to have an
efficient implementation. As a second example, in the current implementation
of the constraint PathContains(vp, S) specifying that the path vp must visit a
set of specified vertices or edges S, the time complexity for querying the varia-
tion of the number of its violations is proportional to the length of the subpath
to be removed and the new path to be added1. By maintaining an auxiliary data
structure, this query could be performed in O(1). Finally, another important
feature of the framework that needs to be developed is the visualization which
animates the local search behavior. This can help to adapt local search strategy
in order to improve it.

2. Applications. In term of applications, many interesting applications can be
tackled by applying the LS(Graph) framework.

• We will first explore other local search models for solving the routing for
network covering problem and experiment over extensive data set includ-
ing real urban networks.

• Second, we are interested in two other constrained walks finding problems
like Capacitated Arc Routing problem. Clearly, these problems can be
modeled and solved with LS(Graph). Existing techniques for these prob-
lems were experimented on graphs up to 255 vertices which are not too
large. We would like to implement local search algorithms in LS(Graph)

for solving them, and compare with existing techniques on standard and
larger benchmarks.

• Third, we are interested in the Finding Two Disjoint Paths in a Network
with Normalized α+-MIN-SUM Objective Function problem [YZL05]
which arises in the reliable telecommunication networks. To our best
knowledge, there are few works for this problem. In [YZL05], the com-
plexity has been analyzed and an approximation algorithm has been pro-
posed for solving this problem but no implementation and experimental
results have been given.

1The move for a VarPath is the replacement of a subpath of the current path by a new path.
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• Finally, we are interested in the edge-disjoint spanning trees problem on
graphs [BJGG07]. This problem can be easily modeled and solved by
using the LS(Graph). In the paper [BJGG07], a local search has been pro-
posed making use of the neighborhood NT3 of LS(Graph). We intend to,
by using the LS(Graph) framework, re-implement this local search algo-
rithm, try a tabu search algorithm and compare them.

3. Hybrid platform. In many cases, solving optimally and efficiently constrained
trees and paths problems on small instances is very important. Dooms in his
doctoral research [DDD05] introduces a CP(Graph) computation domain in
Constraint Programming. We could extend this work by constructing a generic
solver which allows to model and solve these two specific classes of problem
(COT and COP) by Constraint Programming. Global constraints on trees and
paths will be designed and implemented aiming at pruning vertices, edges of
the given graph that do not belong to optimal solutions. Another objective is
an hybrid platform which combines LS(Graph) with this exact solver. We could
concentrate on two hybrid directions. The first one is for constraint optimization
problem which uses local search as main routine. Whenever the local search
finds a new best solution, the constraint stating that the objective function must
be better than the best new objective value will be posted, pruning techniques
will then be applied for reducing problem size. This approach has been applied
in the RCSP application presented in Section 5.4. The second approach is the
Large Neighborhood Search (LNS) [Sha98]. For traditional CSP in which the
problem is modeled by a set of scalar decision variables, the LNS at each step
applies the Constraint Programming technique for reassigning optimally a sub-
set of decision variables. For COT/COP problems, the LNS idea is to use local
search as main routine and apply Constraint Programming technique for finding
appropriate moves: at each step, we remove a subtree or subpath of the current
tree, path and find (by Constraint Programming) another appropriate subtree,
subpath for replacing the removed subtree, subpath.

4. Specific modeling languages. Monette in his doctoral research [MDVH09]
proposes a generic solver that allows to model in a flexible way and solve
scheduling problems with different side constraints. The problem is modeled
from high-level way. A synthesizer will analyze the problem structure and gen-
erate appropriate search algorithms for finding solutions. We have seen two
important problems and their variants with various side constraints in indus-
tries: Steiner tree problem and routing problem. One research direction is in-
spired from the approach of [MDVH09] for constructing a generic solver for
these problems and their variants. The power of such a solver is, on the one
hand, the ability of solving classical well-known problems with state-of-the-art
search algorithms and, on the other hand, the flexibility of modeling and solving
the problem with different side constraints. The challenge from this approach
is how to design a rich modeling language, implement abstractions (constraints,
functions) supporting this language and how to recognize well-known problems
from the modeling.



A
MODELING API OF LS(GRAPH)

This appendix gives main modeling API of the LS(Graph) framework. It presents only
the public methods of each class (methods which are available for users). Sections A.4
and A.5 depict the graph functions and graph constraints of LS(Graph). These classes
implement the common interfaces Function<LSGraph> and Constraint<LSGraph>.
All methods appearing in these interfaces are thus not presented. Instead, we present
only the constructor with different parameters for these classes.

A.1 Solver<LS(Graph)>
• Solver<LSGraph>()

• void post(VarGraph vg)

• void post(Invariant<LSGraph> inv)

• close()

A.2 Variables

A.2.1 VarTree
• VarTree(Solver<LSGraph> ls, UndirectedGraph g)

• VarTree(Solver<LSGraph> ls, UndirectedGraph g, int k): the tree is ran-
domly initialized with k edges

• VarTree(UndirectedGraph g)

• Solver<LSGraph> getLSGraphSolver()
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• bool contains(Vertex v): return true if the tree contains the vertex v

• bool contains(Edge e): return true if the tree contains the edge e

• set{Vertex} getVertices(): return the set of vertices of the tree

• set{Edge} getEdges(): return the set of edges of the tree

• void clear(): clear the tree, all vertices and edges are removed

• void addEdge(Edge e): add the edge e to the tree

• void removeEdge(Edge e): remove the edge e from the tree

• void replaceEdge(Edge eo, Edge ei): replace the replacable edge eo by the
replacing edge ei

• UndirectedGraph getLUB(): return the undirected graph over which the tree is
specified.

A.2.2 VarRootedTree extends VarTree

• VarRootedTree(Solver<LSGraph> ls, UndirectedGraph g, Vertex root)

• VarRootedTree(UndirectedGraph g, Vertex root)

• Vertex root(): return the root of the tree

• nca(Vertex u, Vertex v): return the nearest common ancestor of two vertices
u and v

• getFatherVertex(Vertex v): return the father vertex of v on the tree

• getFatherEdge(Vertex v): return the father edge of v on the tree (the edge
connecting v and its father vertex)

A.2.3 VarRootedSpanningTree extends VarRootedTree

• VarRootedSpanningTree(Solver<LSGraph> ls, UndirectedGraph g, Vertex

root)

• VarRootedSpanningTree(Solver<LSGraph> ls, GenericGraph g, LSGraphPath

p): the rooted spanning tree is randomly generated inducing the path p
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A.2.4 VarPath
• VarPath(Solver<LSGraph> ls, GenericGraph g, Vertex s, Vertex t): ini-

tialize randomly a path from s to t on the graph (directed or undirected) g

• VarPath(Solver<LSGraph> ls, GenericGraph g, LSGraphPath p): initialize
the VarPath with p

• VarPath(GenericGraph g, Vertex s, Vertex t)

• VarPath(GenericGraph g, LSGraphPath p)

• Solver<LSGraph> getLSGraphSolver()

• set{Edge} getEdges(): return the set of edges of the path

• set{Vertex} getVertices(): return the set of vertices of the path

• Vertex getSource()

• Vertex getDestination()

• PATH_TYPE getType(): return the type (DIRECTED or UNDIRECTED) of the
path. This depends on the type of the graph over which the path is specified.

• UndirectedGraph getLUB(): if the graph over which the path is specified is
directed, then the method returns its corresponding undirected graph, otherwise,
the method returns this graph

• DirectedGraph getDLUB(): if the graph over which the path is specified is
directed, then the method returns this graph, otherwise, the method returns null

• bool isNull(): return true if the path has no vertices

• Edge getEdgeFrom(Vertex v): return the edge of the path starting from v

• Vertex getNextVertex(Vertex v): return the next vertex of v on the path

• replaceEdge(Edge eo, Edge ei: replace the preferred replacable edge eo by
the preferred replacing edge ei on the corresponding rooted spanning tree

• changeSource(Vertex newSrc): change the source of the path with new the
source newSrc

• changeDestination(Vertex newDes): change the destination of the the path
with the new destination newDes

• assign(LSGraphPath p): assign the path p to the current VarPath. This is done
by generating randomly a rooted spanning tree inducing p
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A.2.5 VarItinerary
• VarItinerary(Solver<LSGraph> ls, GenericGraph g, Vertex s, Vertex t,

int k): initialize randomly the itinerary from s to t with k rooted spanning
trees

• VarItinerary(GenericGraph g, Vertex s, Vertex t, int k)

• VarItinerary(Solver<LSGraph> ls, GenericGraph g, LSGraphPath p, int

k): initialize the itinerary with the path p having k rooted spanning trees

• VarItinerary(GenericGraph g, LSGraphPath p, int k)

• Solver<LSGraph> getLSGraphSolver()

• set{Edge} getEdges(): return the set of edges

• set{Vertex} getVertices(): return the set of vertices

• Vertex getSource(): return the source

• Vertex getDestination(): return the destination

• PATH_TYPE getType(): return the type of the itinerary

• UndirectedGraph getLUB(): if the graph over which the path is specified is
directed, then the method returns its corresponding undirected graph, otherwise,
the method returns this graph

• DirectedGraph getDLUB(): if the graph over which the path is specified is
directed, then the method returns this graph, otherwise, the method returns null

• bool isNull(): return true if the path has no vertices

• Edge getEdgeFrom(Vertex v): return the edge of the path starting from v

• Vertex getNextVertex(Vertex v): return the next vertex of v on the path

• VarPath[] getVarPaths(): return the array of VarPath constituting the itinerary

• range rng(): return the range of the array of VarPath

• VarPath get(int i): return the VarPath at the i position in the array

• replaceEdge(VarPath vp, Edge eo, Edge ei: replace the preferred replaca-
ble edge eo by the preferred replacing edge ei on the corresponding rooted
spanning tree of vp

• changeSource(Vertex newSrc): change the source of the path with new the
source newSrc

• changeDestination(Vertex newDes): change the destination of the the path
with the new destination newDes
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• changeDestination(VarPath vp, Vertex newDes): change the destination of
VarPath vp of the itinerary and change the source of the successive VarPath of
vp on the itinerary.

• assign(LSGraphPath p): assign the path p to the itinerary.

A.3 Invariants

A.3.1 InsertableEdgesVarTree
• InsertableEdgesVarTree(VarTree vt)

• set{Edge} getSet()

A.3.2 RemovableEdgesVarTree
• RemovableEdgesVarTree(VarTree vt)

• set{Edge} getSet()

A.3.3 ReplacingEdgesVarTree
• ReplacingEdgesVarTree(VarTree vt)

• set{Edge} getSet()

A.3.4 NodeDistancesInvr
• NodeDistancesInvr(VarTree vt, GenericGraph g, int[] inds)

• NodeDistancesInvr(VarTree vt, GenericGraph g)

• NodeDistancesInvr(VarTree vt, GenericGraph g, int ind)

• float getDistance(Vertex u, Vertex v)

• float getDistance(Vertex u, Vertex v, int ind)

A.3.5 ReplacingEdgesMaintainPath
• ReplacingEdgesMaintainPath(VarPath vp)

• set{Edge} getSet()

A.3.6 IndexedPathVisitEdges
• IndexedPathVisitEdges(VarPath[] vps, var{int}[] xw, var{int}[,] v)
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A.4 Functions

A.4.1 WeightTree

• WeightTree(VarTree vt, int ind)

• WeightTree(VarTree vt)

A.4.2 LongestPath

• LongestPath(VarTree vt, int ind)

• LongestPath(VarTree vt)

A.4.3 PathCostOnEdges

• PathCostOnEdges(VarPath vp)

• PathCostOnEdges(VarPath vp, int ind)

A.4.4 NBVisitedEdgesPath

• NBVisitedEdgesPath(VarPath vp, set{Edge} S)

• NBVisitedEdgesPath(VarPath[] vps, set{Edge} S)

A.4.5 NBRVisitsEdgePath

• NBRVisitsEdgePath(VarPath vp, set{Edge} S)

• NBRVisitsEdgePath(VarPath[] vps, set{Edge} S)

A.4.6 NBRVisitsNodePath

• NBRVisitsNodePath(VarPath vp, set{Vertex} S)

• NBRVisitsNodePath(VarPath[] vps, set{Vertex} S)

A.4.7 NBVisitedVerticesTree

• NBVisitedVerticesTree(VarTree vt, set{Vertex} S)

• NBVisitedVerticesTree(VarTree[] vt, set{Vertex} S)
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A.4.8 FunctionCombinator<LSGraph>
• FunctionCombinator<LSGraph>(Solver<LSGraph> ls)

• void add(Function<LSGraph> f)

• void add(Function<LSGraph> f, float w)

• void add(Constraint<LSGraph> c)

• void add(Constraint<LSGraph> c, float w)

• void close()

A.5 Constraints

A.5.1 DiameterAtMost
• DiameterAtMost(VarTree vt, int D)

• DiameterAtMost(VarTree vt)

A.5.2 DegreeAtMost
• DegreeAtMost(VarTree vt, int D)

A.5.3 PathsEdgeDisjoint
• PathsEdgeDisjoint(VarPath[] vps)

A.5.4 PathsContainEdges
• PathsContainEdges(VarPath[] vps, set{Edge} S)

• PathsContainEdges(VarPath vp, set{Edge} S)

A.5.5 PathsContainVertices
• PathsContainVertices(VarPath[] vps, set{Vertex} S)

• PathsContainVertices(VarPath vp, set{Vertex} S)

A.5.6 AllDistinctLightPaths
• AllDistinctLightPaths(VarPath[] vps, var{int}[] xw)
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A.5.7 ConstraintSystem<LSGraph>
• ConstraintSystem<LSGraph>(Solver<LSGraph> ls)

• void post(Constraint<LSGraph> c)

• void post(Constraint<LSGraph> c, float w)

• void close()

A.6 Model<LSGraph>
This is an abstraction representing a model which encapsulates variables, constraints,
functions

• Model<LSGraph>(VarTree vt, TREE_TYPE treetype, Constraint<LSGraph>

c)

• Model<LSGraph>(VarTree vt, TREE_TYPE treetype, Constraint<LSGraph>

c, Function<LSGraph> f, MODEL_TYPE modtype)

• Model<LSGraph>(VarTree vt, TREE_TYPE treetype, Constraint<LSGraph>

c, Function<LSGraph> f, float alpha, float beta, MODEL_TYPE modtype)

• Model<LSGraph>(VarTree vt, TREE_TYPE treetype, Function<LSGraph> f,

MODEL_TYPE modtype)

• Model<LSGraph>(VarTree vt, TREE_TYPE treetype, Function<LSGraph> f,

float alpha, float beta, MODEL_TYPE modtype)

• Model<LSGraph>(VarTree[] vts, TREE_TYPE treetype, Constraint<LSGraph>

c)

• Model<LSGraph>(VarTree[] vts, TREE_TYPE treetype, Constraint<LSGraph>

c, Function<LSGraph> f, MODEL_TYPE modtype)

• Model<LSGraph>(VarTree[] vts, TREE_TYPE treetype, Constraint<LSGraph>

c, Function<LSGraph> f, float alpha, float beta, MODEL_TYPE modtype)

• Model<LSGraph>(VarTree[] vts, TREE_TYPE treetype, Function<LSGraph>

f, MODEL_TYPE modtype)

• Model<LSGraph>(VarTree[] vts, TREE_TYPE treetype, Function<LSGraph>

f, float alpha, float beta, MODEL_TYPE modtype)

• Model<LSGraph>(VarPath vp, Constraint<LSGraph> c)

• Model<LSGraph>(VarPath vp, Constraint<LSGraph> c, Function<LSGraph>

f, MODEL_TYPE modtype)
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• Model<LSGraph>(VarPath vp, Constraint<LSGraph> c, Function<LSGraph>

f, float alpha, float beta, MODEL_TYPE modtype)

• Model<LSGraph>(VarPath vp, Function<LSGraph> f, MODEL_TYPE modtype)

• Model<LSGraph>(VarPath vp, Function<LSGraph> f, float alpha, float

beta, MODEL_TYPE modtype)

• Model<LSGraph>(VarPath[] vps, Constraint<LSGraph> c)

• Model<LSGraph>(VarPath[] vps, Constraint<LSGraph> c, Function<LSGraph>

f, MODEL_TYPE modtype)

• Model<LSGraph>(VarPath[] vps, Constraint<LSGraph> c, Function<LSGraph>

f, float alpha, float beta, MODEL_TYPE modtype)

• Model<LSGraph>(VarPath[] vps, Function<LSGraph> f, MODEL_TYPE modtype)

• Model<LSGraph>(VarPath[] vps, Function<LSGraph> f, float alpha, float

beta, MODEL_TYPE modtype)

• Model<LSGraph>(var{int} x, VarPath vp, Constraint<LSGraph> c)

• Model<LSGraph>(var{int} x, VarPath vp, Constraint<LSGraph> c, Function<LSGraph>

f, MODEL_TYPE modtype)

• Model<LSGraph>(var{int} x, VarPath vp, Constraint<LSGraph> c, Function<LSGraph>

f, float alpha, float beta, MODEL_TYPE modtype)

• Model<LSGraph>(var{int} x, VarPath vp, Function<LSGraph> f, MODEL_TYPE

modtype)

• Model<LSGraph>(var{int} x, VarPath vp, Function<LSGraph> f, float alpha,

float beta, MODEL_TYPE modtype)

• Model<LSGraph>(var{int}[] x, VarPath[] vps, Constraint<LSGraph> c)

• Model<LSGraph>(var{int}[] x, VarPath[] vps, Constraint<LSGraph> c,

Function<LSGraph> f, MODEL_TYPE modtype)

• Model<LSGraph>(var{int}[] x, VarPath[] vps, Constraint<LSGraph> c,

Function<LSGraph> f, float alpha, float beta, MODEL_TYPE modtype)

• Model<LSGraph>(var{int}[] x, VarPath[] vps, Function<LSGraph> f, MODEL_TYPE

modtype)

• Model<LSGraph>(var{int}[] x, VarPath[] vps, Function<LSGraph> f, float

alpha, float beta, MODEL_TYPE modtype)

• Model<LSGraph>(VarItinerary vi, Constraint<LSGraph> c)
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• Model<LSGraph>(VarItinerary vi, Constraint<LSGraph> c, Function<LSGraph>

f, MODEL_TYPE modtype)

• Model<LSGraph>(VarItinerary vi, Constraint<LSGraph> c, Function<LSGraph>

f, float alpha, float beta, MODEL_TYPE modtype)

• Model<LSGraph>(VarItinerary vi, Function<LSGraph> f, MODEL_TYPE modtype)

• Model<LSGraph>(VarItinerary vi, Function<LSGraph> f, float alpha, float

beta, MODEL_TYPE modtype)

• Model<LSGraph>(VarItinerary[] vis, Constraint<LSGraph> c)

• Model<LSGraph>(VarItinerary[] vis, Constraint<LSGraph> c, Function<LSGraph>

f, MODEL_TYPE modtype)

• Model<LSGraph>(VarItinerary[] vis, Constraint<LSGraph> c, Function<LSGraph>

f, float alpha, float beta, MODEL_TYPE modtype)

• Model<LSGraph>(VarItinerary[] vis, Function<LSGraph> f, MODEL_TYPE

modtype)

• Model<LSGraph>(VarItinerary[] vis, Function<LSGraph> f, float alpha,

float beta, MODEL_TYPE modtype)

• var{int}[] getVarInts(): return all var{int} of the model

• VarTree[] getVarTrees(): return all VarTree of the model

• VarPath[] getVarPaths(): return all VarPath of the model

• VarItinerary[] getVarItineraries(): return all VarItinerary of the model

• Constraint<LSGraph> getConstraint(): return the constraint to be satisfied
of the model

• Function<LSGraph> getFunction(): return the function to be optimized of the
model

• Function<LSGraph> getGlobalFunction(): return the function which com-
bines the constraint to be satisfied and the function to be optimized with the
specified parameters alpha, beta

• MODEL_TYPE getType()

• Solver<LSGraph> getLSGraphSolver()
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A.7 NeighborhoodExplorer<LSGraph>
• NeighborhoodExplorer<LSGraph>(Model<LSGraph> mod)

• void exploreTabuMinMultiStageAssign(Neighborhood N, varint[] x, GTabuInt

tbi, Constraint<LSGraph> c, int it, float fgb, bool firstImprovement)

• void exploreTabuMinAdd1VarTree(Neighborhood N, VarTree[] vts, Function<LSGraph>

f, GTabuEdge[] tbIn, GTabuEdge[] tbOut, int it, float fgb, bool firstImprovement)

• void exploreTabuMinRemove1VarTree(Neighborhood N, VarTree[] vts, Function<LSGraph>

f, GTabuEdge[] tbIn, GTabuEdge[] tbOut, int it, float fgb, bool firstImprovement)

• void exploreTabuMinAddRemove1VarTree(Neighborhood N, VarTree[] vts,

Function<LSGraph> f, GTabuEdge[] tbIn, GTabuEdge[] tbOut, int it, float

fgb, bool firstImprovement)

• void exploreTabuMinReplace1VarTree(Neighborhood N, VarTree[] vts, Function<LSGraph>

f, GTabuEdge[] tbIn, GTabuEdge[] tbOut, int it, float fgb, bool firstImprovement)

• void exploreTabuMinMultiStageReplace1Move1VarPath(Neighborhood N, VarPath[]

vps, Constraint<LSGraph> c, GTabuEdge[] tbIn, GTabuEdge[] tbOut, int

it, float fgb, bool firstImprovement)

• void exploreTabuMin1ReplaceXVY1VarPath(Neighborhood N, VarPath[] vps,

Function<LSGraph> f, GTabuVertex[] tbVIn, int it, float fgb, bool firstImprovement)

• void exploreTabuMin1ReplaceXVY1VarPath(Neighborhood N, VarPath[] vps,

Constraint<LSGraph> f, GTabuVertex[] tbVIn, int it, float fgb, bool

firstImprovement)

• void exploreTabuMinReplace2MovesVarPath(Neighborhood N, VarPath[] vps,

Function<LSGraph> f, GTabu[] tbIn, GTabu[] tbOut, int it, float fgb,

bool firstImprovement)

• void exploreTabuMinReplace1Move1VarPath(Neighborhood N, VarPath[] vps,

Function<LSGraph> f, GTabuEdge[] tbIn, GTabuEdge[] tbOut, int it, float

fgb, bool firstImprovement)

• void exploreTabuMinChangeDestinationVarItinerary(Neighborhood N, VarItinerary[]

vis, Function<LSGraph> f, GTabuVertex[] tbVIn, int it, float fgb, bool

firstImprovement)

• void exploreDegradeMultiStageReplace1Move1VarPath(Neighborhood N, VarPath[]

vps, Constraint<LSGraph> c, bool firstImprovement)

• void exploreDegradeMultiStageReplace2Moves1VarPath(Neighborhood N,

VarPath[] vps, Constraint<LSGraph> c, bool firstImprovement)
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• void exploreDegradeMultiStageReplace1Move2VarPaths(Neighborhood N,

VarPath[] vps, Constraint<LSGraph> c, bool firstImprovement)

• void exploreDegradeReplace2Moves1VarPath(Neighborhood N, VarPath[]

vps, Constraint<LSGraph> c, bool firstImprovement)

A.8 TabuSearch<LSGraph>
• TabuSearch<LSGraph>(Model<LSGraph> mod): the tabu search receive a model

(Model<LSGraph>) as parameter.

• void setMaxIter(int maxIter): set the maximum number of iterations for
the search

• void setMaxTime(float maxTime): set the time window for the search

• void setParameters(int tbMin, int tbMax, int tinc, int maxStable): set
the parameters of the tabu search.

• stopSearch(): stop the search

• void search(): perform the search

• int getCurrentIter(): return the current iteration of the search

• float getCurrentTime(): return the current time of the search

• float getFGB(): return the best value found so far of the global function (re-
turned by the method getGlobalFunction of the Model<LSGraph> class)

• float getFCur(): return the current value of the global function (returned by
the method getGlobalFunction of the Model<LSGraph> class)

• Model<LSGraph> getModel(): return the model

• Solver<LSGraph> getLSGraphSolver(): return the solver

• NeighborhoodExplorer<LSGraph> getNeighborhoodExplorer(): return the neigh-
borhood explorer

A.9 Arithmetic Operators
• operator GenericGraph + (GenericGraph g1, GenericGraph g2)

• operator GenericGraph + (GenericGraph g1, Vertex v)

• operator GenericGraph + (GenericGraph g1, Edge e)

• operator LSGraphPath + (LSGraphPath p1, LSGraphPath p2)
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• operator LSGraphPath + (LSGraphPath p1, Vertex v)

• operator LSGraphPath + (LSGraphPath p1, Edge e)

• operator Function<LSGraph> + (Function<LSGraph> obj1, Function<LSGraph>

obj2)

• operator Function<LSGraph> + (Function<LSGraph> obj1, Constraint<LSGraph>

obj2)

• operator Function<LSGraph> + (Constraint<LSGraph> obj1, Function<LSGraph>

obj2)

• operator Function<LSGraph> + (Function<LSGraph> obj1, float c)

• operator Function<LSGraph> + (float c, Function<LSGraph> obj1)

• operator Function<LSGraph> * (Function<LSGraph> obj1, Function<LSGraph>

obj2)

• operator Function<LSGraph> * (Function<LSGraph> obj1, float c)

• operator Function<LSGraph> * (float c, Function<LSGraph> obj1)

• operator Function<LSGraph> - (Function<LSGraph> obj1, Function<LSGraph>

obj2)

• operator Function<LSGraph> - (Function<LSGraph> obj1, float c)

• operator Function<LSGraph> - (float c, Function<LSGraph> obj2)

• operator Function<LSGraph> * (Constraint<LSGraph> f, float c)

• operator Function<LSGraph> * (float c, Constraint<LSGraph> f)

• operator Function<LSGraph> + (Constraint<LSGraph> f, float c)

• operator Function<LSGraph> + (float c, Constraint<LSGraph> f)

• operator Function<LSGraph> - (float c, Constraint<LSGraph> f)

A.10 Logical Operators
• operator Constraint<LSGraph> == (Function<LSGraph> go1, Function<LSGraph>

go2)

• operator Constraint<LSGraph> == (Function<LSGraph> go1, float c)

• operator Constraint<LSGraph> == (float c, Function<LSGraph> go1)

• operator Constraint<LSGraph> <= (Function<LSGraph> go1, Function<LSGraph>

go2)
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• operator Constraint<LSGraph> <= (Function<LSGraph> go1, float c)

• operator Constraint<LSGraph> <= (float c, Function<LSGraph> go1)

• operator GraphConstraintPrune<LSGraph> <= (GraphFunctionPrune<LSGraph>

go1, float c)

• operator GraphConstraintPrune<LSGraph> <= (float c, GraphFunctionPrune<LSGraph>

go1)



B
GENERIC TABU SEARCH

This appendix describes the generic adaptive tabu search with restart schema of the
LS(Graph) framework (see Figure B.3). The length of tabu lists tbl varies from tbMin

and tbMax with an increasing step tinc.
The search preparation consists of the initSearch method (line 2) which set initial

values for variables (e.g., the best objective value), the initSolution method (line 5)
which computes the initial solution to the given problem and the resetTabu which
initializes the tabu lists, set the tbl to tbMin.

Variable nic counts the number of successive local moves which do not find better
solutions than the best-restart solution (i.e., the best solution found from restart). If
the best restart solution cannot be improved in maxStable successive local moves
(condition in line 13) then the tabu length tbl is increased by tinc (lines 18-19) or the
tabu search is restarted (line 15). The core of the procedure is the localmove method
(see line 22 which is detailed in Figure B.1) which explores specified neighborhoods
and perform a local move. If a local move is taken: the localmove method return true
then we check and update the best solution (line 26). Otherwise, the tabu search is
restarted (line 28).

Figure B.2 describes the generic restart procedure of this tabu search which con-
sists of setting tbl to tbMin (line 2), resetting tabu lists (line 3), generating new initial
solutions (line 4). Variables fCur and frb (line 5) represent the current and best-restart
value of the function which controls the search.

In this generic tabu search schema, tbMin, tbMax, maxStable, tinc are search
parameters. Normally, users can override the initSolution and restartSolution

methods depending on the problem under consideration. The built-in restartSolution

does nothing and the initSolution method generates solutions (i.e., trees, paths) ran-
domly.
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1 bool localmove(){
2 MinNeighborSelector N();

4 exploreNeighborhood(N);
5 if(N.hasMove()){
6 call(N.getMove());
7 return true;
8 }

10 return false;
11 }

Figure B.1: Generic local move

1 void performRestart(){
2 tbl = tbMin;
3 resetTabu();
4 restartSolution();
5 frb = fCur;
6 update();
7 nic = 1;
8 }

Figure B.2: Generic restart procedure
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1 void search(){
2 initSearch();
3 update();

5 initSolution();
6 update();

8 resetTabu();

10 it = 1;
11 _finished = false;
12 while(it < maxIt && System.getCPUTime()*0.001 < maxT &&

!_finished && !checkOptimum()){
13 if(nic % maxStable == 0){
14 if(tbl + tinc > tbMax){
15 performRestart();
16 }else{
17 tbl = tbl + tinc;
18 updateTabuLists();
19 }
20 }

22 bool ok = localmove();

24 if(ok){
25 update();
26 }else{
27 performRestart();
28 }

30 notify evtLocalMove();

32 it++;
33 }
34 restoreBest();
35 }

Figure B.3: Generic adaptive tabu search schema
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C
NEIGHBORHOOD EXPLORATION

This Appendix describes major generic neighborhood explorations in LS(Graph) which
are applied to above applications in Chapter 5. Users can implement their own neigh-
borhood exploration methods. Different neighborhoods are constituted by updating
over var{int}, VarPath, VarTree and VarItinerary. A neighbor is considered as an
improvement if it reduces the value of a Function<LSGraph> f or the number of vi-
olations of a Constraint<LSGraph> c. The parameter firstImprovement determines
whether we desire to find the first neighbor who improves the given Function<LSGraph>

or Constraint<LSGraph>. If firstImprovement is true, the exploration stops when
it finds an improving neighbor. Otherwise, the exploration find the best neighbor. The
parameter Neighborhood N is a COMET abstraction which stores different moves (as
closure) and their evaluations. Sections C.1, C.2, C.3, C.4, C.5, C.6, C.8, C.8 , C.10,
C.9, C.11 are neighborhood explorations for a tabu search with aspiration criterion.
Only neighbors which are not tabu or they are better than the best solution found so far
in term of the Function<LSGraph> f or the Constraint<LSGraph> c. In the param-
eters list of each method, apart from variables (var{int}[], VarPath[], VarTree[]
and VarItinerary[]) to be scanned and tabu lists, it is required to provide the current
iteration of local search it and the best value fgb of the Function<LSGraph> f or the
number of violations of the Constraint<LSGraph> c. Sections C.12, C.13, C.14, C.15
explore neighborhoods and accept only improving neighbors. In these procedures the
parameter it and fgb are not required.

C.1 exploreTabuMinMultiStageAssign

The following code is a method that explore neighborhood constituted by reassigning
a var{int} applying multistage heuristic.

1 void exploreTabuMinMultiStageAssign(Neighborhood N, var{int}[] x,
GTabuInt tbi, Constraint<LSGraph> c, int it, float fgb, bool
firstImprovement){
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3 c.computeVariableViolations();

5 float eval = System.getMAXINT();
6 var{int} sel_var = null;
7 int sel_val = -1;

10 selectMax(i in x.rng())(c.violations(x[i])){
11 forall(v in x[i].getDomain()){
12 float d = c.getAssignDelta(x[i],v);
13 if(!tbi.isTabu(x[i],v,it) || d + c.violations() < fgb){
14 if(eval > d){
15 eval = d;
16 sel_var = x[i];
17 sel_val = v;

19 if(firstImprovement) if(eval < 0) break;
20 }
21 }
22 }
23 }

25 if(sel_var != null){
26 neighbor(eval,N){
27 sel_var := sel_val;
28 tbi.makeTabu(sel_var,sel_val,it);
29 }
30 }
31 }

Line 3 computes the number of violations of each variable. Variables eval, sel_var
and sel_val in lines 5, 6, 7 represent the best evaluation, the best variable, value for
the assignment found during the exploration. The neighborhood is explored in lines
10-23. Line 10 select the most violating variable x[i], line 11 scans all its values
v. Line 12 computes the variation d of the number of violations of c when x[i] is
assigned by v. Line 13 checks tabu condition or the aspiration criterion is reached.
Lines 14-20 check and store the best assignment found.

If the desired neighbor is found, it will be submitted to the Neighborhood N (lines
25-30). The move (lines 27-28) consists of assigning sel_val to sel_var and making
the move tabu.

C.2 exploreTabuMinAdd1VarTree

This method explores the neighborhood generated by replacing a tree tr by one of its
neighbors in NT1(tr).

1 void exploreTabuMinAdd1VarTree(Neighborhood N, VarTree[] vts,
Function<LSGraph> f, GTabuEdge[] tbIn, GTabuEdge[] tbOut, int
it, float fgb, bool firstImprovement){

2 float eval = System.getMAXINT();
3 Edge sel_ei = null;



C.3. exploreTabuMinRemove1VarTree 163

4 int ind = -1;

6 forall(j in vts.rng()){
7 VarTree tree = vts[j];
8 InsertableEdgesVarTree inst = _mapI{tree};

10 forall(ei in inst.getSet()){
11 float d = f.getAddEdgeDelta(tree,ei);
12 if(!tbIn[j].isTabu(ei,it) || d + f.getValue() < fgb){
13 if(eval > d){
14 eval = d;
15 sel_ei = ei;
16 ind = j;
17 }
18 if(firstImprovement)if(eval < 0){
19 break;
20 }
21 }
22 }
23 if(firstImprovement)if(eval < 0)
24 break;
25 }

27 if(sel_ei != null){
28 neighbor(eval,N){
29 tbOut[ind].makeTabu(sel_ei,it);
30 vts[ind].addEdge(sel_ei);
31 }
32 }
33 }

Lines 6-7 scan all VarTree tree of the input variables vts. Line 8 retains a graph
invariant inst which represents the set of insertable edges of tree. Line 10 scans
all insertable edges ei and line 11 evaluates the quality of neighboring tree created by
inserting ei in term of the variation of the value of f. Lines 12-21 check tabu condition
and update the best move representing by the index of chose tree ind and the selected
insertable edge sel_ei. The selected move (lines 29-30) which consists of making
sel_ei tabu and performing the edge insertion will be submitted to Neighborhood N

in line 28.

C.3 exploreTabuMinRemove1VarTree
This method explores the neighborhood generated by replacing a tree tr by one of its
neighbors in NT2(tr).

1 void exploreTabuMinRemove1VarTree(Neighborhood N, VarTree[] vts,
Function<LSGraph> f, GTabuEdge[] tbIn, GTabuEdge[] tbOut, int
it, float fgb, bool firstImprovement){

2 float eval = System.getMAXINT();
3 Edge sel_eo = null;
4 int ind = -1;

6 forall(j in vts.rng()){



164 Appendix C. Neighborhood Exploration

7 VarTree tree = vts[j];
8 RemovableEdgesVarTree remv = _mapR{tree};

10 forall(eo in remv.getSet()){
11 float d = f.getRemoveEdgeDelta(tree,eo);
12 if(!tbOut[j].isTabu(eo,it) || d + f.getValue() < fgb){
13 if(eval > d){
14 eval = d;
15 sel_eo = eo;
16 ind = j;
17 }
18 if(firstImprovement)if(eval < 0){
19 break;
20 }
21 }
22 }
23 if(firstImprovement)if(eval < 0)
24 break;
25 }

27 if(sel_eo != null ){
28 neighbor(eval,N){
29 tbIn[ind].makeTabu(sel_eo,it);
30 vts[ind].removeEdge(sel_eo);
31 }
32 }
33 }

The schema is similar to that of exploreTabuMinAdd1VarTree except the fact that
we scan all removable edges instead of insertable edges (line 8) and do the edge
removal (line 30).

C.4 exploreTabuMinAddRemove1VarTree

This method explores the neighborhood generated by replacing a tree tr by one of its
neighbors in NT1+2(tr).

1 void exploreTabuMinAddRemove1VarTree(Neighborhood N, VarTree[]
vts, Function<LSGraph> f, GTabuEdge[] tbIn, GTabuEdge[]
tbOut, int it, float fgb, bool firstImprovement){

2 float eval = System.getMAXINT();
3 Edge sel_eo = null;
4 Edge sel_ei = null;
5 int ind = -1;

7 forall(j in vts.rng()){
8 VarTree tree = vts[j];
9 InsertableEdgesVarTree inst = _mapI{tree};

10 RemovableEdgesVarTree remv = _mapR{tree};

12 forall(eo in remv.getSet()){
13 Vertex u = eo.fromVertex();
14 if(tree.getAdjEdges()[u.id()].getSize() > 1)
15 u = eo.toVertex();
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16 forall(ei in inst.getSet():!ei.contains(u)){
17 float d = f.getAddRemoveEdgesDelta(tree,eo,ei);
18 if(!tbOut[j].isTabu(eo,it) || !tbIn[j].isTabu(ei,it) ||

d + f.getValue() < fgb){
19 if(eval > d){
20 eval = d;
21 sel_eo = eo;
22 sel_ei = ei;
23 ind = j;
24 if(firstImprovement)if(eval < 0) break;
25 }
26 }
27 }
28 if(firstImprovement)if(eval < 0) break;
29 }
30 }

32 if(sel_eo != null && sel_ei != null){
33 neighbor(eval,N){
34 tbIn[ind].makeTabu(sel_eo,it);
35 tbOut[ind].makeTabu(sel_ei,it);

37 vts[ind].removeEdge(sel_eo);
38 vts[ind].addEdge(sel_ei);
39 }
40 }
41 }

The best move selected is represented (lines 2-5) by its evaluation eval, the edge to be
removed eo, the edge to be inserted ei and the index ind of the tree over which we do
the change. Lines 7-8 scan all VarTree tree. Lines 9-10 retains two graph invariants
representing the set of insertable and removable edges of tree. Lines 12-16 scan all
pairs 〈ei,eo〉 of RemvInst(tree) (see Section 3.2 for the formal definition). Line 17
evaluates the quality of the neighboring tree created by removing eo and inserting ei.
Lines 18-26 check the tabu condition and updates the best move (if any). Finally, the
selected move is submitted to the Neighborhood N in line 32-40.

C.5 exploreTabuMinReplace1VarTree
This method explores the neighborhood generated by replacing a tree tr by one of its
neighbors in NT3(tr).

1 void exploreTabuMinReplace1VarTree(Neighborhood N, VarTree[] vts,
Function<LSGraph> f, GTabuEdge[] tbIn, GTabuEdge[] tbOut, int
it, float fgb, bool firstImprovement){

2 Edge sel_eo = null;
3 Edge sel_ei = null;
4 int ind = -1;
5 float eval = System.getMAXINT();
6 forall(j in vts.rng()){
7 VarTree tree = vts[j];
8 ReplacingEdgesVarTree repl = _mapRe{tree};
9 forall(ei in repl.getSet(), eo in getReplacableEdges(tree,ei)){
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10 float d = f.getReplaceEdgeDelta(tree,eo,ei);
11 if(!tbOut[j].isTabu(eo,it) || !tbIn[j].isTabu(ei,it) || d

+ f.getValue() < fgb){
12 if(d < eval){
13 eval = d;
14 ind = j;
15 sel_ei = ei;
16 sel_eo = eo;
17 if(firstImprovement)if(eval < 0) break;
18 }
19 }
20 }
21 if(firstImprovement)if(eval < 0) break;
22 }

24 if(ind > -1){
25 neighbor(eval,N){
26 tbIn[ind].makeTabu(sel_eo,it);
27 tbOut[ind].makeTabu(sel_ei,it);

29 vts[ind].replaceEdge(sel_eo,sel_ei);
30 }
31 }

33 }

Lines 6-7 scan all VarTree tree. Line 8 retains a graph invariant repl represent-
ing the set of replacing edges of tree. Line 9 scans all pair 〈ei,eo〉 of replacing
and replacable edges for the replacement. Line 10 evaluates the quality of the re-
placement. Lines 11-19 check tabu condition and update the best move in which ind

stores the index of the best VarTree for the update and sel_ei and sel_eo store the
best replacing and replacable edges. The selected move (if any) is submitted in lines
25-30.

C.6 exploreTabuMinMultiStageReplace1Move1VarPath

The following method presents the exploration of the neighborhood ERNP1 applying
the multistage strategy.

1 void exploreTabuMinMultiStageReplace1Move1VarPath(Neighborhood N,
VarPath[] vps, Constraint<LSGraph> c, GTabuEdge[] tbIn,
GTabuEdge[] tbOut, int it, float fgb, bool firstImprovement){

2 c.computeVariableViolations();

4 float eval = System.getMAXINT();
5 Edge sel_e = null;
6 int sel_id = -1;

8 selectMax(i in vps.rng())(c.violations(vps[i])){
9 VarPath vp = vps[i];

10 sel_id = i;
11 ReplacingEdgesMaintainPath rpl = _mapReVarPath{vp};
12 forall(e in rpl.getSet()){
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13 float d = c.getDeltaWhenUseReplacingEdge(vp,e);
14 if(!tbIn[i].isTabu(e,it) || d + c.violations() < fgb){
15 if(eval > d){
16 eval = d;
17 sel_e = e;
18 if(firstImprovement)if(eval < 0) break;
19 }
20 }
21 }
22 }

24 if(sel_e != null){
25 neighbor(eval,N){
26 select(eo in

getPreferredReplacableEdges(vps[sel_id],sel_e)){
27 vps[sel_id].replaceEdge(eo,sel_e);

29 tbIn[sel_id].makeTabu(eo,it);
30 tbOut[sel_id].makeTabu(sel_e,it);
31 }
32 }
33 }
34 }

Line 2 computes the number of violations of all graph variables and lines 8-9 select the
most violating VarPath vp of the constraint c. Line 11 retains the graph invariant rpl
representing the set of preferred replacing edges of vp. For each preferred replacing
edge e, line 13 evaluates the quality of move applying this edge. Lines 14-20 check
the tabu condition and update the best move. Lines 25-32 submit the selected move
(if any) which consists of selecting randomly a preferred replacable edge eo of sel_ei,
performing the move (replace eo by sel_ei on the selected VarPath vps[sel_id]

and making two edges eo, sel_ei tabu.

C.7 exploreTabuMin1ReplaceXVY1VarPath
The following method presents the exploration of neighborhood generated by replac-
ing a RST tr by one of its neighbors in N2(tr).

1 void exploreTabuMin1ReplaceXVY1VarPath(Neighborhood N, VarPath[]
vps, Function<LSGraph> f, GTabuVertex[] tbVIn, int it, float
fgb, bool firstImprovement){

2 float eval = System.getMAXINT();
3 VarPath sel_vp = null;
4 Vertex sel_v = null;
5 Vertex sel_x = null;
6 Vertex sel_y = null;
7 int ind = -1;

9 forall(k in vps.rng()){
10 VarPath vp = vps[k];
11 GenericGraph g = null;
12 if(vp.getType() == UNDIRECTED){
13 g = vp.getLUB();
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14 }else{
15 g = vp.getDLUB();
16 }

18 set{Vertex} S = g.getVertices();
19 forall(v in S: !vp.contains(v)){
20 Vertex x = vp.getSource();
21 while(x != vp.getDestination()){
22 Vertex y = vp.getNextVertex(x);
23 while(y != vp.getDestination()){
24 if(g.edge(x,v) != null && g.edge(v,y) != null){
25 float d = f.getDeltaWhenUseReplacingPath(vp,v,x,y);
26 if(!tbVIn[k].isTabu(v,it) || d + f.getValue() < fgb){
27 if(d < eval){
28 eval = d;
29 sel_vp = vp;
30 sel_v = v;
31 sel_x = x;
32 sel_y = y;
33 ind = k;
34 if(eval < 0 && firstImprovement){
35 break;
36 }
37 }
38 }
39 }
40 y = vp.getNextVertex(y);
41 }
42 if(eval < 0 && firstImprovement) break;
43 else
44 x = vp.getNextVertex(x);
45 }
46 if(eval < 0 && firstImprovement) break;
47 }
48 if(eval < 0 && firstImprovement) break;
49 }

51 if(sel_vp != null){
52 neighbor(eval,N){
53 sel_vp.replaceSubPath(sel_v,sel_x,sel_y);

55 tbVIn[ind].makeTabu(sel_v,it);
56 }
57 }
58 }

Lines 9-10 scan all VarPath vp. Lines 19-47 examine all triple 〈x,v,y〉 such that x
is located before y on the current path vp and v is not in vp. The move here is the
replacement of subpath from x to y of vp by the new path x→ v→ y. Line 24 checks
the condition that (x,v) and (v,y) are edges of the given graph g retrieved in lines 11-
16. Line 25 evaluates the quality of this move. Lines 26-38 check the tabu condition
and update the best move. The selected move is submitted in lines 51-57.
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C.8 exploreTabuMin1ReplaceXVY1VarPath

The following method is similar to the above method except that it explores the neigh-
borhood taking into account the graph constraint c instead of the graph function f.

1 void exploreTabuMin1ReplaceXVY1VarPath(Neighborhood N, VarPath[]
vps, Constraint<LSGraph> c, GTabuVertex[] tbVIn, int it, float
fgb, bool firstImprovement){

2 float eval = System.getMAXINT();
3 VarPath sel_vp = null;
4 Vertex sel_v = null;
5 Vertex sel_x = null;
6 Vertex sel_y = null;
7 int ind = -1;

9 forall(k in vps.rng()){
10 VarPath vp = vps[k];
11 GenericGraph g = null;
12 if(vp.getType() == UNDIRECTED){
13 g = vp.getLUB();
14 }else{
15 g = vp.getDLUB();
16 }

18 set{Vertex} S = g.getVertices();
19 forall(v in S: !vp.contains(v)){
20 Vertex x = vp.getSource();
21 while(x != vp.getDestination()){
22 Vertex y = vp.getNextVertex(x);
23 while(y != vp.getDestination()){
24 if(g.edge(x,v) != null && g.edge(v,y) != null){
25 float d = c.getDeltaWhenUseReplacingPath(vp,v,x,y);
26 if(!tbVIn[k].isTabu(v,it) || d + c.violations() <

fgb){
27 if(d < eval){
28 eval = d;
29 sel_vp = vp;
30 sel_v = v;
31 sel_x = x;
32 sel_y = y;
33 ind = k;
34 if(eval < 0 && firstImprovement){
35 break;
36 }
37 }
38 }
39 }
40 y = vp.getNextVertex(y);
41 }
42 if(eval < 0 && firstImprovement) break;
43 else
44 x = vp.getNextVertex(x);
45 }
46 if(eval < 0 && firstImprovement) break;
47 }
48 if(eval < 0 && firstImprovement) break;
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49 }

51 if(sel_vp != null){
52 neighbor(eval,N){
53 sel_vp.replaceSubPath(sel_v,sel_x,sel_y);

55 tbVIn[ind].makeTabu(sel_v,it);
56 }
57 }
58 }

C.9 exploreTabuMinReplace1Move1VarPath

The following method explores the neighborhood generated by replacing a RST tr by
one of its neighbors in ERNP1(tr).

1 void exploreTabuMinReplace1Move1VarPath(Neighborhood N, VarPath[]
vps, Function<LSGraph> f, GTabuEdge[] tbIn, GTabuEdge[]
tbOut, int it, float fgb, bool firstImprovement){

2 Edge sel_ei = null;
3 int ind = -1;
4 float eval = System.getMAXINT();

6 forall(j in vps.rng()){
7 VarPath vp = vps[j];
8 ReplacingEdgesMaintainPath repl = _mapReVarPath{vp};
9 forall(e in repl.getSet()){

10 float d = f.getDeltaWhenUseReplacingEdge(vp,e);
11 if(!tbIn[j].isTabu(e,it) || d + f.getValue() < fgb){
12 if(d < eval){
13 eval = d;
14 ind = j;
15 sel_ei = e;

17 }
18 if(firstImprovement)if(eval < 0)
19 break;
20 }
21 }
22 if(firstImprovement)if(eval < 0)
23 break;

25 }

27 if(ind > -1){
28 Edge sel_eo = null;
29 select(eo in getPreferredReplacableEdges(vps[ind],sel_ei)){
30 sel_eo = eo;
31 }

33 if(sel_eo != null)neighbor(eval,N){
34 tbIn[ind].makeTabu(sel_eo,it);
35 tbOut[ind].makeTabu(sel_ei,it);
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37 vps[ind].replaceEdge(sel_eo,sel_ei);
38 }
39 }

41 }

Lines 6-7 scan all VarPath vp. Line 8 retains the graph invariant repl representing
the set of preferred replacing edges of vp. For each preferred replacing edge e, line
10 evaluates the quality of move applying this edge. Lines 11-20 check the tabu
condition and update the best move. Lines 28-39 submit the selected move (if any)
which consists of selecting randomly a preferred replacable edge sel_eo of sel_ei,
performing the move (replace sel_eo by sel_ei on the selected VarPath vps[ind]

and making two edges sel_eo, sel_ei tabu.

C.10 exploreTabuMinReplace2MovesVarPath

The following method explore the neighborhood generated by replacing a RST tr by
one of its neighbors in ERNP2(tr).

1 void exploreTabuMinReplace2MovesVarPath(Neighborhood N, VarPath[]
vps, Function<LSGraph> f, GTabu[] tbIn, GTabu[] tbOut, int
it, float fgb, bool firstImprovement){

2 Edge sel_ei1 = null;
3 Edge sel_ei2 = null;
4 int ind = -1;
5 float eval = System.getMAXINT();

7 forall(j in vps.rng()){
8 VarPath vp = vps[j];
9 ReplacingEdgesMaintainPath repl = _mapReVarPath{vp};

10 forall(e1 in repl.getSet(), e2 in repl.getSet():
dominate(e2,e1,vp)){

11 float d = f.getDeltaWhenUseReplacingEdge(vp,e1,e2);
12 if(!tbIn[j].isTabu(e1,it) || !tbIn[j].isTabu(e2,it) || d +

f.getValue() < fgb){
13 if(d < eval){
14 eval = d;
15 ind = j;
16 sel_ei1 = e1;
17 sel_ei2 = e2;
18 }
19 if(firstImprovement)if(eval < 0)
20 break;
21 }
22 }
23 if(firstImprovement)if(eval < 0)
24 break;
25 }

27 if(ind > -1){
28 Edge sel_eo1 = null;
29 Edge sel_eo2 = null;
30 select(eo1 in getPreferredReplacableEdges(_vps[ind],sel_ei1),
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31 eo2 in getPreferredReplacableEdges(_vps[ind],sel_ei2):
!tbOut[ind].isTabu(eo1,it) ||
!tbOut[ind].isTabu(eo2,it)){

32 sel_eo1 = eo1;
33 sel_eo2 = eo2;
34 }

36 if(sel_eo1 != null && sel_eo2 != null)neighbor(eval,N){
37 tbIn[ind].makeTabu(sel_eo1,it);
38 tbIn[ind].makeTabu(sel_eo2,it);

40 tbOut[ind].makeTabu(sel_ei1,it);
41 tbOut[ind].makeTabu(sel_ei2,it);

43 vps[ind].replaceEdge(sel_eo1,sel_ei1);
44 vps[ind].replaceEdge(sel_eo2,sel_ei2);

46 }
47 }

49 }

The method is similar to C.9 except that we scan all pairs of two independent preferred
replacing edges e1,e2 (line 10) instead of only one.

C.11 exploreTabuMinChangeDestinationVarItinerary
The following method explores the neighborhood generated by replacing a VarItinerary
vi by one of its neighbors in SDCNI1(vi).
1 void exploreTabuMinChangeDestinationVarItinerary(Neighborhood N,

VarItinerary[] vis, Function<LSGraph> f, GTabuVertex[]
tbVIn, int it, float fgb, bool firstImprovement){

2 float eval = System.getMAXINT();
3 VarPath sel_vp = null;
4 Vertex sel_des = null;
5 VarItinerary sel_vi = null;
6 int ind = -1;
7 forall(i in vis.rng()){
8 VarItinerary vi = vis[i];
9 forall(j in vi.rng(): j < vi.getSize()){

10 VarPath vp = vi.get(j);
11 int k = _mapVP{vp};

13 VarRootedSpanningTree t = vp.getVarRootedSpanningTree();
14 Vertex des = vp.getDestination();
15 forall(newDes in t.getVertices(): newDes != des){

17 float d = f.getChangeDestinationDelta(vi,vp,newDes);
18 if(!tbVIn[k].isTabu(newDes,it) || d + f.getValue() <

fgb){
19 if(d < eval){
20 eval = d;
21 sel_vp = vp;
22 sel_des = newDes;
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23 sel_vi = vi;
24 ind = k;
25 if(eval < 0 && firstImprovement) break;
26 }
27 }
28 }
29 if(eval < 0 && firstImprovement) break;
30 }
31 if(eval < 0 && firstImprovement) break;
32 }

34 if(sel_vi != null){
35 neighbor(eval,N){
36 sel_vi.changeDestination(sel_vp,sel_des);

38 tbVIn[ind].makeTabu(sel_des,it);
39 }
40 }

42 }

Lines 7-8 scan all VarItinerary vi. Lines 9-10 scan all VarPath vp which is not the
last element of vi. Lines 13-15 scan all vertices newDes of the given graph which will
be the new destination for vp. Line 17 evaluates the quality of the move by making
newDes the new root (or destination) of vp and making newDes the new source of the
successive VarPath of vp in vi. Lines 18-26 check the tabu condition and update the
best move. Finally, the selected move (if any) is submitted in lines 35-39.

C.12 exploreDegradeMultiStageReplace1Move1VarPath

The following method explores the neighborhood generated by replacing a VarPath
vp by one of its neighbors in ERNP1(vp), selecting only moves which are better than
the current solution in term of the constraint c, applying the multistage strategy.

1 void exploreDegradeMultiStageReplace1Move1VarPath(Neighborhood N,
VarPath[] vps, Constraint<LSGraph> c, bool firstImprovement){

2 c.computeVariableViolations();

4 Edge sel_ei = null;
5 float eval = System.getMAXINT();
6 VarPath sel_vp = null;
7 selectMax(k in vps.rng())(c.violations(vps[k])){
8 ReplacingEdgesMaintainPath rpl = _mapReVarPath{vps[k]};
9 forall(ei in rpl.getSet()){

10 float d = c.getDeltaWhenUseReplacingEdge(vps[k],ei);
11 if(d < eval){
12 eval = d;
13 sel_vp = vps[k];
14 sel_ei = ei;
15 if(firstImprovement)if(eval < 0)break;
16 }
17 }
18 if(sel_vp != null && eval < 0){
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19 neighbor(eval,N){
20 select(sel_eo in

getPreferredReplacableEdges(sel_vp,sel_ei)){
21 sel_vp.replaceEdge(sel_eo,sel_ei);
22 }
23 }
24 }
25 }
26 }

Line 2 computes the violations of all graph variables of the constraint c. Line 7 selects
the most violating VarPath vps[k]. Line 8 retains the set of preferred replacing edges
of vps[k] and line 9 scans all its elements ei. Line 10 evaluates the quality of move
by taking into account ei. Lines 11-16 update the best move. Line 18 check is the
best neighbor associating with the best move is better than the current solution. If it is
the case, line 19-23 submit the selected move.

C.13 exploreDegradeMultiStageReplace2Moves1VarPath

The objective of the following method is the same with that of C.12 except that it
explores the neighborhood generated by replacing a VarPath vp by one of its neighbors
in ERNP2(vp) instead of ERNP1(vp).

1 void exploreDegradeMultiStageReplace2Moves1VarPath(Neighborhood
N, VarPath[] vps, Constraint<LSGraph> c, bool
firstImprovement){

2 c.computeVariableViolations();

4 Edge sel_ei1 = null;
5 Edge sel_ei2 = null;
6 float eval = System.getMAXINT();
7 VarPath sel_vp = null;
8 selectMax(k in vps.rng())(c.violations(vps[k])){
9 ReplacingEdgesMaintainPath rpl = _mapReVarPath{vps[k]};

11 forall(ei1 in rpl.getSet(), ei2 in rpl.getSet():dominate(ei2,
ei1, vps[k])){

12 float d = c.getDeltaWhenUseReplacingEdge(vps[k],ei1,ei2);
13 if(d < eval){
14 eval = d;
15 sel_vp = _vps[k];
16 sel_ei1 = ei1;
17 sel_ei2 = ei2;
18 if(firstImprovement)if(eval < 0) break;
19 }
20 }
21 if(sel_vp != null && eval < 0){
22 neighbor(eval,N){
23 select(sel_eo1 in getPreferredReplacableEdges(sel_vp,

sel_ei1),
24 sel_eo2 in getPreferredReplacableEdges(sel_vp,

sel_ei2)){
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26 sel_vp.replaceEdge(sel_eo1,sel_ei1);
27 sel_vp.replaceEdge(sel_eo2,sel_ei2);
28 }
29 }
30 }
31 }
32 }

Line 11 scans all pair of independent preferred replacing edges 〈ei1,ei2〉 and line 12
evaluates the move by applying these edges. Lines 13-19 update the best move. If the
best neighbor associating with the best move is better than the current solution (line
21), then the best move is submitted to Neighborhood N in lines 22-29.

C.14 exploreDegradeMultiStageReplace1Move2VarPaths
The objective of the following method is the same with that of C.12 except that it
explores the neighborhood generated by replacing two VarPaths vp1 and vp2 by one
of its neighbors in ERNP1(vp1) and ERNP1(vp2).
1 void exploreDegradeMultiStageReplace1Move2VarPaths(Neighborhood

N, VarPath[] vps, Constraint<LSGraph> c, bool
firstImprovement){

2 if(_vps.rng().getUp() - _vps.rng().getLow() + 1 < 2)
3 return;

5 c.computeVariableViolations();

7 Edge sel_ei1 = null;
8 Edge sel_ei2 = null;
9 int k1;

10 int k2;
11 float eval = System.getMAXINT();
12 VarPath sel_vp1 = null;
13 VarPath sel_vp2 = null;

15 selectMax(k in vps.rng())(c.violations(vps[k]))
16 k1 = k;
17 selectMax(k in vps.rng():k != k1)(c.violations(vps[k]))
18 k2 = k;

20 ReplacingEdgesMaintainPath rpl1 = _mapReVarPath{vps[k1]};
21 ReplacingEdgesMaintainPath rpl2 = _mapReVarPath{vps[k2]};

23 forall(ei1 in rpl1.getSet(), ei2 in rpl2.getSet()){
24 float d =

c.getDeltaWhenUseReplacingEdge(vps[k1],ei1,vps[k2],ei2);
25 if(d < eval){
26 eval = d;
27 sel_vp1 = vps[k1];
28 sel_vp2 = vps[k2];
29 sel_ei1 = ei1;
30 sel_ei2 = ei2;
31 if(firstImprovement)if(eval < 0) break;
32 }
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33 }
34 if(sel_vp1 != null && eval < 0){
35 neighbor(eval,N){
36 select(sel_eo1 in getPreferredReplacableEdges(sel_vp1,

sel_ei1),
37 sel_eo2 in getPreferredReplacableEdges(sel_vp2,

sel_ei2)){

39 sel_vp1.replaceEdge(sel_eo1,sel_ei1);
40 sel_vp2.replaceEdge(sel_eo2,sel_ei2);
41 }
42 }
43 }
44 }

Lines 15-18 select two most violating VarPath vps[k1], vps[k2]. Lines 20-21 re-
tain two graph invariants representing the set of preferred replacing edges of vps[k1]
and vps[k2]. Line 23 scans all ei1,ei2 of these sets. Line 24 evaluates the quality of
move by applying ei1 on vps[k1 and applying ei2 on vps[k2]. Lines 25-32 update
the best move. If the best neighbor associating with the best move is better than the
current solution (line 34), then the best move is submitted in lines 35-42.

C.15 exploreDegradeReplace2Moves1VarPath

The objective of the following method is the same with that of C.13 except that it does
not apply the multistage strategy.

1 void exploreDegradeReplace2Moves1VarPath(Neighborhood N,
VarPath[] vps, Constraint<LSGraph> c, bool firstImprovement){

3 float delta = System.getMAXINT();
4 int sel_k = -1;
5 Edge sel_ei1;
6 Edge sel_ei2;

8 forall(k in vps.rng()){
9 ReplacingEdgesMaintainPath rpl =

_mapReVarPath{vps[k]};
10 forall(e1 in rpl.getSet()){
11 forall(e2 in rpl.getSet(): dominate(e2,e1,vps[k])){
12 float d =

c.getDeltaWhenUseReplacingEdge(vps[k],e1,e2);
13 if(d < delta){
14 sel_k = k;
15 sel_ei1 = e1;
16 sel_ei2 = e2;
17 delta = d;
18 if(firstImprovement)if(delta < 0) break;
19 }
20 }
21 if(firstImprovement) if(delta < 0) break;
22 }
23 if(firstImprovement) if(delta < 0)
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24 break;
25 }

27 if(delta < 0)neighbor(delta,N){
28 select(eo1 in

getPreferredReplacableEdges(vps[sel_k],sel_ei1),
29 eo2 in

getPreferredReplacableEdges(vps[sel_k],sel_ei2)){
30 vps[sel_k].replaceEdge(eo1,sel_ei1);
31 vps[sel_k].replaceEdge(eo2,sel_ei2);
32 }

34 }
35 }

Line 8 scans all VarPath vps[k] instead of considering only the most violating VarPath

in C.13. The remaining code is the same.
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