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1. Introduction

Several new initiatives (e.g. structural genomics) and
improvement of the methods for structure determination will
result in a rapid increase in the number of structures. These
high-throughput structure determination projects will produce
structural data on proteins for which very little is known about
their biology. Thus sophisticated computational methods are
needed to detect, search for and compare remote protein
homology in the hope that knowledge can be transferred to the
new unknown protein (e.g. inference about function). Machine
learning is one such approach that has been widely used in the
development of automatic protein structure classification and
prediction.

One of the aim of structural genomics is to enhance the
understanding of the relationships between amino acid sequence
and its corresponding protein fold. Hence, one of the advantages
of using symbolic machine learning approaches for this purpose is
to generate human understandable classifiers (rules) from some
biological background knowledge that can explain the current
proteins in the Protein Data Bank (PDB).

2. Machine Learning Background

For a supervised classification problem, a set of training data
(positive and negative examples) in the form of {x, y | x O
attributes, y 0 classes} is provided to the learner L. The
learner's task is to induce a set of rules that can discriminate
positive examples (E+) from negative ones (E-), and thus
propose a classification for new instances. The common
approach of treating multi-class learning is to transform the K
classes into a set of two-class problems, which is also known as
one-against-others method. This approach faces one serious
pitfall when learning in multi class problems: when we transform
the K classes into K two-class problems, the positive examples of
a class C,; will be under-represented compared to the large
number of negative examples for class C,,...,C,. The presence of
large amount of negative examples in the training data poses
several pitfalls for classical machine learning systems.

The major problem of applying discriminative classical machine
learning techniques (e.g. decision trees, artificial neural
networks) in this situation is they either generate a trivial rejector
classifier, which classifies everything as a negative class (due to
the negative examples being the majority class); or overfits the
positive examples by generating large decision trees or highly
complex neural networks.

3. Research objective

The specific problem that we would like to address in this
research is learning from multi-class SCOP fold imbalanced
data sets where the protein examples from one class heavily
outnumber thoses from the other class (e.g. 1 to 5%). The
goal of this work is to develop a learning system to classify
multi-class problems in an imbalanced data situation. We have
devised eKISS (ensemble Knowledge for Imbalance Sample
Sets), an ensemble learning method to tackle these types of
problems. The objective of eKISS is to generate one-against-
others classifiers which are capable of learning over multi-class
examples under the skewed normal distribution of the training
examples, as well as providing explanation to the user.

4. eKISS (ensemble Knowledge for Imbalance Sample
Sets) Method

In our approach, we have applied the PART rule-based
machine learning technique to generate the base classifiers
for our ensemble learning system. PART (Frank and Witten,
1998) is a rule-induction algorithm that avoids global
optimisation, and generates accurate and compact rule sets
by combining the paradigms of “divide-and-conquer” (C4.5,
Quinlan, 1993) and “separate-and-conquer” (RIPPER, Cohen,
1995).

The basic idea of eKISS is to consider any rule R; as a
potential candidate rule for each of the new ensemble
classifiers. The main assumption made in eKISS is that all
the rules generated by the PART learning algorithm represent
possible classification rules, hence enlarging the search
space.

The eKISS search strategy is to find all the rules that
correctly classify the examples in the positive class, hence
improving the coverage of the positive examples under the
multi-class imbalanced data situation. We also believe these
positive rules are useful for providing insights to the human
expert in understanding the relationships between protein
structure and sequence information compared to a trivial
rejector classifier.

Technically, a rule Ry will be included in the new ensemble
classifier of a given class if it correctly classifies the positive
examples of that class. As a decision measure, we use the
normalised confidence measurement, cf_norm = (TP-
0.5)/(TP+FP(E+/E-)) as the cut-off point for rule selection.
The rules of the new classifier for class C; are all the rules
that satisfy the cut-off point.

5. Data Sets (adapted from Ding and Dubchak, 2001)
SCOP 1.61 (Sept 2002) and Astral 1.61 (Sept 2002)
#25 SCOP folds

125 amino acid physico-chemical properties

*408 Training set *174 Test set

6. Results and Discussion

We have performed ten-fold cross-validation on the training data
and evaluated the test set by comparing the performance of
PART and eKISS. Table 1 summarises the performance on the
training and test set. From the results, eKISS outperforms PART
on 20 classes based on the F,-measure. The results show that
eKISS increases the sensitivity and also the normalised positive
predictive accuracy compared to PART. Although our method
increases the True Positive-rate (TP-rate), as a trade-off it also
increases the False Positive-rate (FP-rate). Since the objective
of this study is to improve the rule coverage when classifying
protein functional classes, we permit the rule-set to cover some
false positives as a consequence of improving the positive
coverage of classical machine learning. However, the results
show that the increase of TP-rate is higher than the
corresponding increase of the FP-rate. We also tested eKISS on
a set of randomly generated data set, where eKISS is not
performing well as expected. In general, eKISS performs well in
learning from a small set of positive examples compared to the
negative examples. This is due to the fact that eKISS is capable
of generating a softer boundary for the classifier and thus
avoiding problems connected with the strong discriminative
boundary generated by classical learning systems.
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