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Abstract: Classification and prediction of protein structure has been a central 
research theme in structural bioinformatics.  Due to the imbalanced distribution of 
proteins over multi SCOP classification, most discriminative machine learning suffers 
the well-known ‘False Positives’ problem when learning over these types of 
problems.  We have devised eKISS, an ensemble machine learning specifically 
designed to increase the coverage of positive examples when learning under multi-
class imbalanced data sets.  We have applied eKISS to classify 25 SCOP folds and 
show that our learning system improved over classical learning methods.   
 

1. Introduction 
 
Learning the similarities (or differences) between protein structures is very important 
in understanding the relationship between protein sequence, structure and function, 
and for the analysis of possible evolutionary relationships. Several new initiatives 
(e.g. structural genomics) and improvement of the methods for structure 
determination will result in a rapid increase in the number of structures. These high-
throughput structure determination projects will produce structural data on proteins 
for which very little is known about their biology. Thus sophisticated computational 
methods are needed to detect, search for and compare remote protein homology in 
the hope that knowledge can be transferred to the new unknown protein (e.g. 
inference about function). 

Machine learning is one such approach that has been widely used in the 
development of automatic protein structure classification and prediction (Turcotte et 
al, 2001; Selbig and Argos, 1998; King et al., 1994).  One of the aims of structural 
genomics is to enhance the understanding of the relationships between amino acid 
sequence and its corresponding protein fold.  Hence, one of the advantages of using 
symbolic machine learning approaches for this purpose is to generate human 
understandable classifiers (rules) from some biological background knowledge that 
can explain the current protein folds in the Protein Data Bank (PDB).   

The SCOP database (Lo Conte et al, 2002) is a comprehensive hierarchical human 
classification of known protein structures, according to their evolutionary and 
structural relationships.  The SCOP database is divided into 4 hierarchical levels: 
Class, Fold, Superfamily and Family.  For SCOP 1.61 (Sept 2002), the 44327 protein 
domains were classified into 701 folds, resulting in an average of 64 domains per 
fold.  The number of domains per fold varies in SCOP, where some of the folds are 
highly populated (e.g. TIM barrels) while some of the folds only contain a few 
examples (e.g. the HSP40/DnaJ peptide-binding fold only contains one protein).  
Thus, in order to perform learning over the SCOP folds, the common one-against-
others approach (two-class problem) will result in learning with an imbalanced data 
set.  This imbalanced proportion of examples in each class contributes to the poor 
performance of standard machine learning techniques (e.g. decision trees).  Existing 
machine learning approaches tend to produce a strong discriminatory classifier (high 
accuracy) with very low sensitivity (also called completeness) when learning on these 
types of problems. 
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The specific problem we would like to address here is learning from multi-class 
SCOP fold imbalanced data sets where the protein examples from one class heavily 
outnumber those from the other class (e.g. 1 to 5%).  The goal of this work is to 
develop a learning system to classify multi-class problems in an imbalanced data 
situation.  We have devised eKISS (ensemble Knowledge for Imbalance Sample 
Sets), an ensemble learning method to tackle these types of problems.  The objective 
of eKISS is to generate one-against-others classifiers which are capable of learning 
over multi-class examples under the skewed normal distribution of the training 
examples, as well as providing explanation to the user.  

  

2. Machine Learning Background 
 
For a supervised classification problem, a set of training data (positive and negative 
examples) in the form of {x, y | x ∈ attributes, y ∈ classes} is provided to the learner 
L.  The learner's task is to induce a set of rules that can discriminate positive 
examples (E+) from negative ones (E-), and thus propose a classification for new 
instances.  The common approach of treating multi-class learning is to transform the 
K classes into a set of two-class problems, which is also known as one-against-
others method.  This approach faces one serious pitfall when learning in multi class 
problems: when we transform the K classes into K two-class problems, the positive 
examples of a class C1 will be under-represented compared to the large number of 
negative examples for class C2,…,CK.  The presence of large amount of negative 
examples in the training data poses several pitfalls for classical machine learning 
systems.   

The major problem of applying discriminative classical machine learning techniques 
(e.g. decision trees, artificial neural networks) in this situation is they either generate 
a trivial rejector classifier, which classifies everything as a negative class (due to the 
negative examples being the majority class); or they overfit the positive examples by 
generating large decision trees or highly complex neural networks.  Most 
discriminative learning approaches apply recursive partitioning of the instance space 
into regions labelled with the majority class in that region.  Furthermore, the heuristic 
of stopping or pruning criteria for the partitioning procedure is constructed to avoid 
‘overfitting’ the training examples which is solely based on the overall accuracy or the 
overall error rate of the classifier, which represents a weak measurement under the 
imbalanced data.  This heuristic, known as Occam’s razor in the machine learning 
literature, suggests that a learning algorithm should prefer “simpler” to more 
“complex” classifiers in order to avoid overfitting the training examples.  Wolpert’s 
“No-free-lunch” theorems pointed out that all such heuristics fail as often as they 
succeed in supervised learning problems (Wolpert, 2001).  Hence, most classical 
machine learning methods suffer the above mentioned drawbacks and perform 
poorly under the two-class imbalanced data situation.  This scenario is described as 
the “curse of imbalanced data” in machine learning terminology  (Kubat et al, 1998).   
To overcome the two-class imbalanced data set problem, some attempts have been 
proposed in the machine learning community which involve either (i) reducing the 
negative class by randomly removing the negative examples from the training set; or 
(ii) increasing the positive class by replicating the positive examples.  Removing or 
increasing the training examples is not suitable in this research domain due to the 
multi-class nature of the training examples and the limited number of the real protein 
data.   

Another approach for handling multi-class problems is to generate all the possible 
pairwise two-class classifiers between K classes from the training examples.  This 
approach is known as all-versus-all method in which given K classes of training 
examples, the machine learning methods will generate two-class classifiers for all the 
K(K-1)/2 classifiers.  The unseen proteins have to be classified by these classifiers; 
every classifier provides a vote for the class label, and the majority voted class will be 
the predicted class for the new proteins.  In the ideal case, the correct class will get 
the maximum votes for all the class-paired classifiers. In our case, we observed that 
this approach does not perform well due to the votes of the correct class being 
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randomly distributed among other classes. Most classifiers always produced a trivial 
rejector which votes for a negative class.  This problem is also observed by Ding and 
Dubchak (2001) where they described the votes for the most popular voted class 
decreasing gradually from maximum to minimum and simply returning the class with 
the highest vote.  The other disadvantage of this approach is the large number of 
classifiers, which is very difficult and hard to analyse for the purpose of providing 
insights into understanding the protein sequence-structure relationships. 
 

3. Methods 
 
In this paper, we propose eKISS, an ensemble machine learning approach, which 
integrates the classifiers generated from the one-against-other and all-against-all 
approaches to improve the coverage of the positive protein examples under the 
multi-class imbalanced data.  Ensemble machine learning can be loosely defined as 
a set of classifiers whose individual decisions are combined in some way to classify 
new examples (Dietterich, 2000).  Several empirical studies have shown that the 
performance of ensemble machine learning approaches is better than that of single 
methods due to the drawbacks discussed in the background section as well as the 
existing “No-free-lunch” theorems in the individual learning algorithms (Tan and 
Gilbert, 2003; Bauer and Kohavi, 1999; Quinlan, 1996).   

In our approach, we have applied the PART rule-based machine learning technique 
to generate the base classifiers for our ensemble learning system.  PART (Frank and 
Witten, 1998) is a rule-induction algorithm that avoids global optimisation, and 
generates accurate and compact rule sets by combining the paradigms of “divide-
and-conquer” (C4.5, Quinlan, 1993) and “separate-and-conquer” (RIPPER, Cohen, 
1995).  PART adopts the separate-and-conquer strategy in that it builds a rule, 
removes the covered instances, and continues constructing rules recursively by 
generating a partial decision tree from the remaining instances.  The number of rules 
generated from PART is fewer and more compact compared to RIPPER and C4.5.   
We have performed a one-against-others procedure to generate K two-class 
classifiers and also an all-against-all approach to produce K(K-1)/2 classifiers.  We 
then combined these K + K(K-1)/2 base classifiers to generate a new classifier per 
class, called the ensemble classifiers.  For this protein fold classification problem, the 
ensemble contains 25 + (25 x 24)/2 = 325 base classifiers.  Since PART is a rule-
based learning system, each PART classifier contains a set of decision rules.  To 
simplify the presentation, we assume that each base PART classifier contains k 
positive decision rules, denoted Ri1,  Ri2,  …, Rik for the base classifier number i. 

Classical machine learning methods generate a classifier by performing a heuristic 
search through the possible classification rules (true hypotheses) of the given 
instance space, trying to find rules that can “best” approximate the true classification 
of the instance space.  Since the heuristics employed so far are not suitable for the 
multi-class imbalanced data sets, the classical machine methods suffer the “curse of 
learning in imbalanced data” and most of the time return a near optimal trivial rejector 
classifier. 

The basic idea of eKISS is to consider any rule Rij as a potential candidate rule for 
each of the new ensemble classifiers.  The main assumption made in eKISS is that 
all the rules generated by the PART learning algorithm represent possible 
classification rules, hence enlarging the search space.  The eKISS search strategy is 
to find all the rules that correctly classify the examples in the positive class, hence 
improving the coverage of the positive examples under the multi-class imbalanced 
data situation.  We also believe these positive rules are useful for providing insights 
to the human expert in understanding the relationships between protein structure and 
sequence information compared to a trivial rejector classifier.  Technically, a rule Rij 
will be included in the new ensemble classifier of a given class if it correctly classifies 
the positive examples of that class.  As a decision measure, we use the normalised 
confidence measurement, cf_norm = (TP-0.5)/(TP+FP(E+/E-)) as the cut-off point for 
rule selection.   The rules of the new classifier for class Ci are all the rules that satisfy 
the cut-off point.  The normalised confidence measurement has been applied by 
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Quinlan (1993) in evaluating the goodness of the decision rules derived from the 
decision trees.  This measurement takes into account the ratio of the positive and 
negative examples and thus produces a much more sensitive measurement for 
computing the accuracy of the rules in an imbalanced data situation.  Obviously, 
some (but not all) of the rules of the base classifier of a class will be in the new 
classifier of the same class, as well as rules from other base classifiers.  In our 
system, cf_norm represents the tuning parameter for trade-off between the coverage 
of the positive examples (TP-rate) and the precision (positive predicted value).  
eKISS allows the user to select the classifier that best suits his/her classification 
purpose by alternating the cf_norm value.   Furthermore, in order to assist the user in 
selecting his/her choice of classifiers, the system can automatically generate ROC 
(Receiver Operating Characteristic) curves that provide an initial visualisation tool to 
facilitate the selection process.   Note that the ensemble approach of eKISS is 
slightly different from the traditional ones; instead of combining decisions from 
different base classifiers, we combine the rules of the classifiers to generate new 
classifiers.  

The proposed method has been designed to increase the sensitivity (positive 
coverage) of the classifiers.  One would then expect the method to have a reduced 
specificity (also called soundness).  As will be shown in the results, this approach is 
useful when the ratio E+/E- is very low, and also when the initial classifiers yield little 
sensitivity.  In that case, the loss of specificity is small compared to the increase of 
sensitivity, yielding more useful classifiers.  Obviously, for some classes the base 
classifiers can be preferred to the new one. 

 

4. Data set 
 
The protein data set that we used in this study was from Ding and Dubchak (2001), 
which can be obtained from http://www.nersc.gov/~cding/protein.  The original data 
used by Ding and Dubchak (2001) contains two different sets, a training set and a 
test set.  The training set was extracted from the PDB_select sets (Hobohm and 
Sander, 1994) by filtering out all the proteins that have less than seven examples for 
each SCOP classification.  All of the pair-wise protein sequence identities of this set 
are less than 35%.  From this set, Ding and Dubchak compiled 313 proteins from 27 
most populated SCOP folds that they referred to as Ntrain in their paper.  The test set 
Ntest in their paper was extracted from PDB_40D (Lo Conte et al., 2000) which 
contains 386 representatives of the same 27 SCOP folds with sequence similarity 
less than 35% (filtering out all the proteins with sequence identity more than 35% of 
PDB_40D and excluding the proteins in the Ntrain).  The attributes used in the learning 
system are extracted from protein sequences according to the method described in 
Dubchak et al (1997) where a protein sequence is represented by a set of parameter 
vectors on various physico-chemical and structural properties of amino acids along 
the sequence.  These properties are hydrophobicity, polarity, polarizability, predicted 
secondary structre, normalised van der Waals volume and the amino acid 
composition of the protein sequence.  In this study, we combined all the protein 
sequence parameters resulting 125 physico-chemical and structural properties of 
amino acids as our learning attributes. 

Before exploiting these data, we analysed both the training and test sets and found 
some interesting errors in both data sets, especially in the training set (Ntrain).  The 
first error is the inconsistency of the data sets.  Ding and Dubchak (2001) used the 
protein data from PDB_selects as the training set, at a time when the SCOP 
classification did not exist.  Although Ding and Dubchak (2001) reclassified the 
training set according to the early SCOP database, we still believe the domain 
definition in SCOP was still not well defined.  Their test set was extracted from the 
more recent SCOP database (SCOP 1.48, Dec 1999) for which the domain 
definitions are well defined and which clearly contains major changes compared to 
the early SCOP version which had been used to assign the training set.  We found 
some protein examples in the training set which had not been assigned into domains 
at that time (due to the earlier domain definitions by SCOP) but were present in the 



To Appear in Proceedings of the German Conference on Bioinformatics (GCB 2003) 

 5 

test set as different chopped domains.  Probably this “dirty” data may have 
contributed to some poor performance of Ding and Dubchak’s (2001) analysis.  At 
the same time, this also shows that the domain definition has evolved in the SCOP 
database over time by careful manual assignment; an automatic and intelligent 
system may facilitate this protein fold classification process.   

Therefore, we have extracted the data set by removing the error from both training 
and testing examples.  We applied the protein fold classification according to the 
SCOP 1.61 (Nov 2002, Lo Conte et al, 2002) and Astral 1.61 (Chandonia et al 2002) 
with sequence identity less than 40% (Nov 2002), removing those fold class with less 
than 8 examples.  After performing this cleaning stage, our protein fold data contains 
582 examples distributed in 25 fold SCOP classes.  We randomly divided the data 
into a training set (408 protein examples) and a test set (174 protein examples).   

Standard measurements have been applied to evaluate the goodness of our 
classifiers compared to PART: true positive rate (also called positive coverage or 
sensitivity, TPR = TP/(TP+FN)), false positive rate (FPR = FP/(FP+TN) or (1 – 
specificity)), positive predicted value (PPV = TP/(TP+FP)) and F1-measure ((2Sn x 
PPV)/(Sn + PPV)) (van Rijsbergen, 1979) which evaluates the trade off between 
sensitivity and positive predicted value. 

 

5. Results and Discussion 
 
We performed ten-fold cross-validation on the training data and evaluated the test set 
by comparing the performance of eKISS and PART.  Table 1 summarises the 
performance on the training and test sets.  From the results, eKISS outperforms 
PART on 20 classes based on the F1-measure. The results show that eKISS 
increases the sensitivity and also the positive predictive accuracy compared to 
PART.  Although our method increases the true positive rate (TPR), as a trade-off it 
also increases the false positive rate (FPR).  Since the objective of this study is to 
improve the rule coverage when classifying protein folding classes, we permit the 
rule-set to cover some false positives as a consequence of improving the positive 
coverage of classical machine learning.  However, the results show that the increase 
of TP-rate is higher than the corresponding increase of the FP-rate.  

In order to verify the hypothesis that the set of rules from all the base classifier forms 
a useful search space for the generation of the new classifiers, we also used a set of 
random rules (obtained by applying PART on a randomly generated data set).  The 
performances of the resulting new classifiers were clearly under the performance of 
eKISS.  

In general, eKISS performs well in learning from a small set of positive examples 
compared to the negative examples because eKISS is capable of generating a softer 
boundary for the classifier.  It thus avoids problems connected with the strong 
discriminative boundary generated by classical learning systems.  One of the 
essential conditions for ensemble methods to perform better than any of its individual 
classifier members is the diversity of the base classifiers.  Two classifiers are diverse 
if they perform different prediction errors on new instances.  The advantage of having 
diverse base classifiers is illustrated as follows; let us assume an ensemble of three 
base classifiers {h1, h2, h3} and a new instance x.  If the base classifiers are identical 
(i.e. not diverse), then when the prediction of h1(x) for its corresponding class label y 
is wrong, h2(x) and h3(x) will also wrongly predict the class label y.  Thus, the 
ensemble h*(x) of these base classifiers will not improve the prediction of class y for 
x.  However, if the errors made by the base classifiers are uncorrelated and when the 
prediction of h1(x) is wrong, then the prediction of h2(x) and h3(x) might be correct.  
Therefore the ensemble h*(x) which obtained the final prediction from collecting the 
majority vote of its base classifiers will correctly classify x (Dietterich, 2000).  We 
believe that the base classifiers of eKISS are made diverse by combining the one-
against-others and the all-against-all PART classifiers.  Re-selecting the appropriate 
rules from these base classifiers creates the diversity of the ensemble and hence 
improves the positive coverage of eKISS. 
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Another interesting finding from this experiment is that the rule sets generated from 
eKISS are much smaller than those of the original PART system.  We would have 
expected eKISS rule-sets to contain more rules compared to PART due to 
"collecting" additional rules from other classifiers, but it turns out they have increased 
sensitivity.  We believe that these rule-sets are useful for classifying protein folds and 
thus can assist wet experimental biologists in understanding the co-relationships 
between amino acid physico-chemical properties and functions. 

 
Table 1: Performance evaluation of eKISS (cf_norm = 0.69) and PART over training 

and testing sets. 
Training Set Test  Set SCOP (SCOP id) Method 

TPR FPR PPV F1-measure TPR FPR PPV F1-measure 
eKISS 0.611 0.255 0.076 0.131 0.833 0.399 0.069 0.128 Globin-like (a.1) 
PART 0 0.038 0 Undefined 0.167 0.048 0.111 0.133 
eKISS 0.500 0.246 0.056 0.100 1.000 0.491 0.057 0.108 Cytochrome c (a.3) 
PART 0.100 0.023 0.033 0.050 0 0.006 0 Undefined 
eKISS 0.944 0.468 0.133 0.227 1.000 0.485 0.101 0.184 DNA-binding 3-helical 

bundle (a.4) PART 0.050 0.056 0.050 0.050 0 0.066 0 Undefined 
eKISS 0.333 0.091 0.083 0.131 0.750 0.259 0.064 0.118 4-helical up-and-down 

bundle (a.24) PART 0 0.010 0 Undefined 0 0.029 0 Undefined 
eKISS 0.500 0.322 0.061 0.105 1.000 0.420 0.066 0.123 4-helical cytokines (a.26) 
PART 0 0.021 0 Undefined 0 0.029 0 Undefined 
eKISS 0.333 0.166 0.060 0.095 0 0 0 Undefined EF hand-like (a.39) 
PART 0 0.015 0 Undefined 0.100 0.030 0.100 0.125 
eKISS 0.790 0.443 0.155 0.248 1.000 0.692 0.120 0.214 Immunoglobulin-like  

β-sandwich (b.1) PART 0.200 0.094 0.039 0.065 0 0.084 0 Undefined 
eKISS 0.520 0.367 0.066 0.111 0.833 0.548 0.052 0.097 Cupredoxin-like (b.6) 
PART 0.033 0.019 0.100 0.050 0 0.060 0 Undefined 
eKISS 1.000 0.713 0.109 0.193 1.000 0.813 0.056 0.106 Viral coat & capsid 

proteins (b.10) PART 0.033 0.049 0.100 0.05 0 0.047 0 Undefined 
eKISS 0.400 0.175 0.038 0.068 0.667 0.275 0.041 0.077 Concanavalin A-like 

lectins/glucanases (b.29) PART 0.100 0.007 0.100 0.100 0 0.006 0 Undefined 
eKISS 0.667 0.203 0.076 0.137 0.750 0.253 0.065 0.12 SH3-like barrel (b.34) 
PART 0.100 0.013 0.100 0.100 0 0.018 0 Undefined 
eKISS 0.148 0.160 0.016 0.027 0.667 0.376 0.088 0.156 OB-fold (b.40) 
PART 0.050 0.058 0.050 0.050 0.067 0.082 0.071 0.069 
eKISS 0.400 0.068 0.075 0.124 1.000 0.265 0.082 0.151 β-Trefoil (b.42) 
PART 0 0.020 0 Undefined 0 0.018 0 Undefined 
eKISS 0 0.034 0 Undefined 1.000 0.265 0.082 0.151 Lipocalins (b.60) 
PART 0.050 0.016 0.050 0.050 0 0.024 0 Undefined 
eKISS 0.933 0.541 0.178 0.295 1.000 0.768 0.138 0.242 TIM α/β-barrel (c.1) 
PART 0.083 0.159 0.056 0.067 0 0.124 0 Undefined 
eKISS 0.357 0.173 0.027 0.050 0 0 0 Undefined NAD(P)-binding 

Rossmann-fold (c.2) PART 0 0.025 0 Undefined 0.333 0.018 0.400 0.364 
eKISS 0.313 0.220 0.021 0.040 0.500 0.310 0.055 0.098 FAD/NAD(P)-binding 

domain (c.3) PART 0.157 0.005 0.400 0.195 0 0.024 0 Undefined 
eKISS 0.670 0.477 0.091 0.154 0 0 0 Undefined Flavodoxin-like (c.23) 
PART 0.225 0.079 0.117 0.145 0 0.071 0 Undefined 
eKISS 0.571 0.362 0.045 0.082 1.000 0.692 0.041 0.079 P-loop containing 

nucleotide (c.37) PART 0 0.017 0 Undefined 0 0.047 0 Undefined 
eKISS 0 0 0 Undefined 1.000 0.265 0.082 0.151 Thioredoxin-fold (c.47) 
PART 0 0.008 0 Undefined 0.111 0.012 0.333 0.111 
eKISS 0 0.053 0 Undefined 0 0 0 Undefined Ribonuclease-H-like 

motif (c.55) PART 0.033 0.015 0.100      0.050 0 0.029 0 Undefined 
eKISS 0.920 0.271 0.142 0.239 0.750 0.529 0.032 0.062 α/β-Hydrolases (c.69) 
PART 0.050 0.020 0.025 0.033 0 0.018 0 Undefined 
eKISS 0 0.080 0 Undefined 0.500 0.276 0.041 0.075 β-grasp (ubiquitin-like) 

(d.15) PART 0 0.007 0 Undefined 0 0.006 0 Undefined 
eKISS 0.313 0.088 0.067 0.108 0.600 0.317 0.103 0.176 Ferrodoxin-like (d.58) 
PART 0.025 0.128 0.014 0.018 0 0.059 0 Undefined 
eKISS 1.000 0.496 0.166 0.281 1.000 0.640 0.112 0.202 Knottins (small 

inhibitors, toxins, lectins) 
(g.3) 

PART 0.100 0.083 0.100 0.100 0 0.053 0 Undefined 

 
The disadvantage of using overall accuracy and error rate as the heuristic for 
stopping or pruning criteria is due to the large value of the denominator in both 
measurements.  Assume that the training examples contain 990 negative examples 
and 10 positive examples. Then a trivial rejector classifier that classifies all the 
training examples as negative class will have an overall accuracy of 
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(990/1000)×100% = 99% and error rate of only 1%, which represents a high accurate 
classifier.  This trivial rejector classifier tends to outperform all non-trivial classifiers 
but it is a meaningless classifier which is unable to discriminate between instances in 
both classes.  This example also illustrates that the overall accuracy and error rate is 
not a sensible measure of the effectiveness or usefulness of a classifier under the 
imbalanced data set.  The information retrieval (IR) community has a long history in 
classifying documents under imbalanced sample sets.  F1-measure (van Rijsbergen, 
1979) is the popular measurement that the IR community applies to evaluate the 
trade-off between TP-rate and FP-rate.  We believe this measurement is a sensible 
evaluation method in this problem as our system constantly outperforms PART. 
 

6. Conclusions 
 
We have proposed eKISS, an ensemble method that has been specifically designed 
to increase the sensitivity (positive coverage) of the classifiers without losing much of 
its corresponding specificity when learning over multi-class imbalanced data sets 
where protein examples from one class heavily outnumber examples from the other 
class.  We have applied this approach to classification of 25 SCOP protein folds and 
our preliminary results show that this approach is useful when the ratio E+/E- is very 
low, and also when the initial classifiers yield little sensitivity.  In that case, the loss of 
specificity is small compared to the increase of sensitivity, yielding more useful 
classifiers.  The rules generated by eKISS are shorter and may provide hints to the 
understanding of amino acid physico-chemical properties and it’s constituted fold. 
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