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What is Bioinformatics ?

! An intersection of AI and genetics
! Two very popular (most wanted) sciences

! An opportunity 
! To use some of the most interesting computational 

techniques to solve some of the most important and 
rewarding questions

! Where Frankenstein meets the Terminator
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What is Bioinformatics?
Informatics

Computer Science
Computer Engineering

Information Science

Biology & 
Other 

Natural 
Sciences

Mathematics 
& Statistics

Bioinformatics

! Bioinformatics : the study of the application of
! molecular biology, computer science, artificial intelligence, statistics 

and mathematics
! to model, organize, understand and discover interesting information 

associated with the large scale molecular biology databases
! to guide essays for biological experiments
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Why is bioinformatics Important ?

! Genome sequencing, microarrays, …
lead to large amounts of data to be analyzed

! Leads to important discoveries 
! SmartMoney ranks Bioinformatics as #1 

among next HotJobs
! Exciting research potential

6INGI

Database Growth
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Challenges in Bioinformatics
! Many NP-hard problems: multiple alignment, distant 

homology, motif finding, protein folding, phylogeny, gene 
relationship in expression data, mining and learning, …

! From whole genome to functioning system of a biological 
organism

! Predicting interactions between genes and molecules

Can CP be helpful in some of these challenges ?
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Topics in Bioinformatics

! Sequencing genome

! Sequence alignment

! Searching databases

! Machine learning

! Hidden Markov Model

! Phylogenetic trees

! Functional genomics

! Simulation

! Structure prediction

! Microarrays (DNA chips) 

! Biochemical databases

! Biochemical network 

analysis

! Ethical, legal & social 

issues

! …
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Biological Networks

Inhibition
Catalysis

Reaction

Protein

1.2.3.4
Protein

Reaction

1.2.3.4

Compound

ComplexProtein

Protein

! Networks of interactions between biological 
entities within the cell 

! Bioentities and Interactions observed in experiments

! Stored in databases
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Bioentities

! Gene (part of the DNA)

! Polypeptide (Protein)

! Complex (formed by several polypeptides)

! Compound (ATP, ADP, Water,Proline, …)
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Interactions

! An interaction may be a transformation of  
bioentities into other bioentities
! Reaction : chemical reaction occurring within the cell

! Expression  :  Gene  → polypeptide

! Assembly  :  polypeptide forming a complex

! An interaction may be a control of a transformation
! Catalysis of a reaction by some enzyme (protein)

! Regulation of the expression of a gene
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Biochemical networks
One usually distinguish different types of networks :
! Metabolic network

! Series of reactions, possible controlled by enzymes, leading to some 
specific product

! Regulatory network
! Focus on the regulation of the enzyme activity, or on the stimulation 

of the enzyme expression

! Signal transduction network
! Transport of information (from membrane to gene)

These networks are usually represented using 
different models, and stored in different databases
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The aMAZE project
! Database for biological networks
! Prof. Shoshana Wodak, Molecular Biology & 

Bioinformatics, ULB, Belgium

! Based on a rich Object Oriented model:
! Integration of different types of networks

! metabolism
! regulation
! signal transduction, etc

! Extendable model

www.amaze.ulb.ac.be
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TFx

Gx

Gz

TFy

Feedforward loop

TFy

GmGlGk

Single input motif
(SIM)

view 3

view 2view 1

Regulatory modules analysis

Pathway analysis

Protein interactions

Boolean
modeling

ODE
simulationsView (n-1)

view n

Database
Model of

Cellular Network

Database representation should be rich enough
to enable various data models

[aMAZE, Wodak 2003]
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Bio.Net  as Object Graphs

Interaction

Transformation Control

Reaction Catalysis

Biochemical 
Entity

Gene complexCompound Protein

Inhibition
Catalysis

Reaction

Protein

1.2.3.4
Protein

Reaction

1.2.3.4

Compound

ComplexProtein

Protein

! Bioentities and interactions are objects

! Object hierarchy

! Relations between objects
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BioEntity
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*
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0-1

*
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Methionine Biosynthesis in 
Escherichia coli

L-aspartate

L-Aspartate-4-P

2.7.2.4

1.2.1.11

L-Homoserine

L-Aspartate semialdehyde

1.1.1.3

aspartate biosynth.aspartate biosynth.

aplha-succinyl-L-Homoserine

2.3.1.46

4.2.99.9

Homocysteine

Cystathionine

4.4.1.8

L-Methionine

2.1.1.13

2.5.1.6

L-Adenosyl-L-Methionine

2.1.1.14

AporepressorAporepressor

metJmetJ

codes for

is part ofassembly

is part ofassembly inhibitsinhibition

inhibitsinhibition

lysine biosynth.lysine biosynth.

threonine biosynth.threonine biosynth.

asdasd aspartate semialdehyde deshydrogenaseaspartate semialdehyde deshydrogenase

codes for catalyzescatalysis

metAmetA homoserine-O-succinyltransferase
codes for catalyzescatalysis

homoserine-O-succinyltransferase

catalyzes

cystathionine-gamma-synthasecystathionine-gamma-synthase
codes for catalysis

metCmetC cystathionine-beta-lyasecystathionine-beta-lyase

codes for catalyzescatalysis

metEmetE
Cobalamin-independent homocysteine transmethylaseCobalamin-independent homocysteine transmethylase

codes for catalyzescatalysis

codes for catalyzescatalysis

Cobalamin-dependent homocysteine transmethylaseCobalamin-dependent homocysteine transmethylasemetHmetH

metRmetR

codes for

metR activatormetR activator

up-regulatesup-regulatesup-regulates

repressesrepression

repressesrepression

repressesrepression

aspartate kinase II/homoserine dehydrogenase IIaspartate kinase II/homoserine dehydrogenase II

codes for catalyzescatalysis

catalyzescatalysis

repressesrepression

repressesrepression

ATPATP

ADPADP

NADPH; H+NADPH; H+

NADP+; PiNADP+; Pi

NADPH;H+NADPH;H+

NADP+NADP+

Succinyl SCoASuccinyl SCoA

HSCoAHSCoA

L-CysteineL-Cysteine

SuccinateSuccinate

H2OH2O

Pyruvate; NH4+Pyruvate; NH4+

5-Methyl THF5-Methyl THF

THFTHF

2.7.2.4

1.2.1.11

1.1.1.3

2.3.1.46

4.2.99.9

4.4.1.8

2.1.1.14 2.1.1.13activation

ATPATP

Pi; PPiPi; PPi
2.5.1.6

expression

expression

expression

expression

expression

expression

expression

expression

expression

metB

metL

metBL operonmetBL operon

metB

metL

repression

Holorepressor

[aMAZE, van Helden 2003]
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The BioMaze Project
! Analysis & Visualisation of biochemical 

networks
! Closely related to the aMAZE project

! Interdisciplinary and interuniversity project
! Y. Deville, CS, UCL, Louvain-la-Neuve
! S. Wodak, Bio, ULB, Brussels
! J.L. Hainaut, CS, FUNDP, Namur
! E. Zimany, CS, ULB. Brussels

! Funded by the Walloon Region
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The BioMaze-UCL Project

! Analysis of biochemical networks
! Application of CP and AI techniques

! People
! Y. Deville

! P. Dupont

! G. Dooms

! S. Zampelli
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Why analysing networks ?
Examples of biological questions 
! Give all pathways traversing a set of specified compounds 

or reactions (e.g. given a set of co-regulated genes, find a 
pathway that could be formed with the catalyzed reactions).

! Find all genes whose expression is directly or indirectly 
affected by a given compound.

! Show which paths or pathways may be affected when one 
or more gene/proteins are turned off or missing.

! Compare biochemical pathways from different organisms 
and tissues, or at different stages of annotation; highlight 
common features and differences; predict missing elements.

22INGI

Examples of analysis
! Structure of the network

! Path finding

! Distance between paths

! Pathway synthesis

! Pathway prediction

! Patterns discovery

! Functionally related enzyme clusters

! …
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Existing Approaches

! Most analysis use a simplistic model of 
biochemical networks
! E.g. compound graphs where nodes are 

bioentities and arcs are the reactions

! Many useful analysis are meaningless in such 
models

! Most analysis use specialized graph 
algorithms

! Analysis cannot easily be combined

24INGI

Overview

! Bioinformatics 

! Biological networks

! CLP(BioNet)

! Constraints for bio.net analysis

! Constraints for bio.net matching

! Perspectives
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Why CP ?
Why using CP for the analysis of biochemical 

networks ?
! Existence of efficient ad hoc graph algorithm for 

specific analysis
! Difficult to combine such algorithms
! Difficult to extend these algorithms to extended 

analysis
! New analysis usually need lot of programming 

effort
! Richness of the underlying model can be exploited 

through constraints
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Objectives of CLP(BioNet)

! Introduction of graph domain variable
! Values are biochemical networks

! Domains are sets of biochemical networks

! Exploiting the nature of graph

! Definition of constraints
! Dealing with graph domain variables

! Useful for the analysis of biochemical networks

! Extendable framework
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Related Work in CP

! Set constraints (e.g. [Gervet, 1997])
! Implementation techniques

! Propagation techniques

! Global constraints (e.g. [Beldiceanu, 2000])
! Graph algorithms

! Implementation techniques

28INGI

Graph
! A bio.net is represented by a graph
! A graph g=(N,A) is defined by 

! N : set of nodes
! A : set of arcs ( A ⊆ N x N )

For simplicity of presentation, no types for the nodes
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Graph domain variable
! A graph domain variable is declared with an initial domain, 

called  the reference graph of G
! The (initial) domain a gd-variable G is the set of all subsets 

of the reference graph

! We assume here that the gd-variables have the same 
reference graph
! Analysis of a single biological network
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Representation of a gd-variable

! A graph domain variable G is represented by
! its reference graph g = (Nref,Aref)
! a finite set domain variable N over Nref
! a finite set domain variable A over Aref
! The constraint A ⊆ N x N

! We denote 
! N = node(G)
! A = arc(G)
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Implementation

Choice of a constraint programming 
environemnt

! Choice of Oz
! Facility to develop new propagators
! Local expertise at UCL

! Peter Van Roy and his research team

32INGI

Implementation of gd-variable

! We do not explicitly use existing finite set variables; not 
suitable for implementation of specific graph propagators

! Reference graph g=(Nref,Aref)

! Nref : nodes labeled from 0 to n -1 

! Aref : represented as an adjacency matrix 
(n2 Boolean value)

A more elaborated representation could be used

0

1

3

2

4
011004

101013

110012

000011

011100

43210

Aref
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Implementation of gd-variable

! node(G) : fs-domain variable over Nref
! Vector of n Boolean domain variables

! State the presence/absence of the node in G

! Denoted  nodeBV(G)

0

1

3

2

4

110 -100 -1

43210

nodeBV(G)
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Implementation of gd-variable

! arc(G) : fs-domain variable over Aref
! Adjacency matrix of n2 Boolean domain variables
! State the presence/absence of the arcs in G
! Denoted arcBV(G)
! arcBV(G)ij = 0 when Arefij = 0 

0

1

3

2

4
04

103

0-10-102

00001

00-10-1000

43210

arcBV(G)
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Implementation of gd-variable

Internal constraint : arc(G) ⊆ node(G) x node(G)

! Represented by n2 propagators
arcBV(G)ij ⇒ nodeBV(G)i ∧ nodeBV(G)j

04

103

0-10-102

00001

00-10-1000

43210

arcBV(G)

110 -100 -1

43210

nodeBV(G)
0

1

3

2

4
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Constraints on gd-variables

! NodeInGraph(n,G)
! ArcInGraph(a,G)
! SubGraph(S,G)
! Path(P,ns,ne,max)
! EveryArc(G)
! ExistPath(ns,ne,max,G)
! Connex(G)
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NodeInGraph(n,G)
! G : gd-variable
! Constraint : n  ∈ node(G)
Implementation
! nodeBV(G)n

Basic constraints that can be negated

11100 -1

43210NodeInGraph(2)

0

1

3

2

4

nodeBV(G)
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ArcInGraph(a,G)
! G : gd-variable
! Constraint : a  ∈ arc(G)
Implementation
! arcBV(G)ij with a = (i,j)

Basic constraints that can be negated

04

103

0-1102

00001

00-10-1000

43210

ArcInGraph((2,3))

0

1

3

2

4

arcBV(G)
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SubGraph(S,G)
! S, G : gd-variables
! Constraint : S is a subgraph of G

node(S) ⊆ node(G) and  arc(S) ⊆ arc(G)
Implementation

! n2 + n  propagators

arcBV(S)ij ⇒ arcBV(G)ij

nodeBV(G)i ⇒ nodeBV(G)j
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Path(P,ns,ne,max)
! P : gd-variable

! ns, ne ∈ Nref

! max : integer

! Constraint : P is a path from ns to ne, length ≤ max

ns=n0 ∧ ne=nk ∧ node(P) = {n0,…, nk} ∧ k ≤ max

∧ arc(P) = { (ni, ni+1) | 0 ≤ i < j }

Path(P,0,4,3)

0

1

3 7

2

5

4
6
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Path implementation

! ns and ne must be in the path P
NodeInGraph(ns,P) ∧ NodeInGraph(ne,P)

! Degree of the nodes in P (i.e. number of neighbors)

! degree(ne)=degree(ns)=1
! Other nodes : degree(n)=2 

! Implemented by n propagators
nodeBV(P)i ⇔ Σ arcBV(P)ij = 2 (ne ≠ i ≠ ns)
Σ arcBV(P)ns j = 1
Σ arcBV(P)ne j = 1

0
3 7

2

5

6
41
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Path implementation

! nodes in P must be constrained 
to be a single connected component

! Implemented by a stateful propagator

! Data structure ConGraph
! lub of the possible graphs in the current domain of P

(i.e. drop the nodes and arcs not in G)

0

1

3 7

2

5

4
6

0

1

3 7

2

5

4
6

0
3 7

2

5

641
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ConGraph 

! If the nodes of P with nodeBV(P)i =1 (e.g. ns, ne) 
are not in the same connected component of ConGraph
Then failure
Else prune the nodes and arc in the other components

! Propagator reawaken when arc(P) is reduced

0

1

3 7

2

5

4
6
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Connected components

! Search of connected components
! Standard breadth-first, depth-limited (max) search, 

starting from ns
! Limited to the main connected component 

(i.e. containing ns )

! Exploiting the connected component
! Check whether the connected component is a tree 

(no cycle)
! In that case, assign the unique path to P
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Complexity of Path constraint

! Sum constraints
! At most  |Nref | constraints

! Amortized complexity of one constraints O(|Aref|)

! Hence complexity  O(|Nref |.|Aref|)

! Connected components
! Construction of ConGraph : O(|Aref|)

! Search of the connected components : O(|Aref|)

! Constraint executed when an arc is removed from P : O(|Aref|)

! Hence complexity O(|Aref|2) 

! Hence a global complexity of O(|Aref|2) for the constraint

46INGI

Enhancement (complexity)

! Dynamic graph connectivity algorithms 
[Holn & al., 1998]
! O( |Aref| .log((|Nref|)2)

! Find also the edge-connectivity of the graph

! Complex implementation
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Enhancement (pruning)

! In the main connected component 
(containing ne + ns) of ConGraph determine
! 2-edge-connected components (an arc can be 

removed without loosing the connected property)

! Bridges between these components

0
3 7

2

5

4
6

10

8

9
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Enhancement (pruning)

! From ConGraph and its main connected 
component (containing ne + ns), 
construct a tree
! 2-edge-connected components are the nodes

! Bridges are the arcs

0
3 7

2

5

4
6

10

8

9

0
2,3,4 5,6,7

8,9,10
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Enhancement pruning

! Determine the (unique) path from the node 
containing ns to the node containing ne

! All the arcs in this path must be in arc(P)
! All the arcs and nodes not in this path can be 

pruned from G

0 2,3,4 5,6,7

8,9,10

0
3 7

2

5

4 6

10

8

9

0
3 7

2

5

4 6

10
8

9
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Experimental results

Objectives
! Preliminary results showing the feasibility of 

the approach

Overview
! The experimental data
! Path finding
! Combined constraints
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The experimental data

! Graph extracted from aMAZE database
! Biochemical networks mostly Escherichia 

coli
! 9.773 Edges, 21.755 arcs
! Average arity : 4.45

Analysis is done on a part of such a graph

52INGI

Experiment 1
! Graph with 100 nodes in a single connected 

component, average degree 3.1

! Search of a path for each pair of nodes
4.950 paths
! Path length Average: 7.3 Std dev.: 2.3
! Num of vars : 15 148. 
! Num of propag Average: 20 519  Std dev.:  325
! Num of invoked propag

Average: 75 273   Std dev.: 7 402
! Run time Average:  324ms Std dev.: 73.7
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Experiment 1

54INGI

Experiment 1
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Experiment 2
! Graph with 200 nodes in two single connected 

components, average degree 3.1

! Search of a path for each pair of nodes
from the two components (5 000 failures)
! Path length Average: 0
! Num of vars : 60 298
! Num of propag : 80 400
! Num of invoked prop 

Average: 257 628 Std dev.: 8 158
! Run time Average: 240ms Std dev.: 38

56INGI

Experiment 2
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Experiment 3
! Graph with 100 nodes in a single connected 

component, average degree 3.1
! Search of a path between two specific nodes, with 

two constrained intermediate nodes (100 pairs of 
intermediate nodes)
! Path length Average: 5.88 Std dev.: 7.9
! Num of vars Average: 60193 Std dev.: 73
! Num of propag Average: 80 924 Std dev.: 3139
! Num of invoked prop 

Average: 378297  Std dev.: 555663
! Run time Average: 2261 ms

58INGI



30

59INGI

Overview

! Bioinformatics 

! Biological networks

! CLP(BioNet)

! Constraints for bio.net analysis

! Constraints for bio.net matching

! Perspectives

60INGI

Subgraph isomorphism
! Gp=(Np,Ap) : pattern graph
! G=(N,A) with |Np| ≤ |N|

! Find a function f : Np → N such that
! f is injective
! ∀ n1, n2 : (n1,n2) ∈ Ap ⇒ (f(n1),f(n2)) ∈ A

! Subgraph isomorphism is NP-complete

0

1

3

2

4

0 1

2

Pattern graph Gp G
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Family of problems

! Graph vs subgraph isomorphism
! Exact vs inexact matching

! Nodes with attributes, matching between two 
node is a distance

! Some arcs from the pattern graph are not 
considered.  Distance from the initial pattern and 
the chosen subpattern

62INGI

Analysis 
of Biochemical Networks

! Subgraph isomorphism is a basic operation for 
graph pattern matching

Applications
! Compare biochemical networks

! from different organisms and tissues
! at different stages of annotation; 
! highlight common features and differences; 
! predict missing elements ('reconstruction')

! Compile repertoires of recurrent network motifs 
(topological patterns) at different resolution levels
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Existing algorithms
Many existing algorithms for standard subgraph isomorphism

based on various techniques
! Cliques
! Fuzzy set theory
! Elastic graph matching
! Multiple graph matching
! Error correction
! Genetic algorithms
! Decision tree
! Neural networks
! Clustering
! Connected components
! Constraint programming  [Rudolf, 1998]  [Valiente, 2000]
! …
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SI as a CSP

! Gp=( Np,Ap) : pattern graph
! G=(N,A) with n = |Np|  ≤ |N| = d

! We use Np=(X1,…,Xn)

! Domain variables Xi ∈ N
! Di : domain of Xi

0

1

3

2

4

0 1

2

Pattern graph 
(Np,Ap)

N={0,1,2,3,4}
X0=0

X1=3

X2=2

G=(N,A)
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Subgraph Isomorphism
as a CSP

! Let i and j be distinct nodes from pattern graph 
! C1 :  Xi ≠ Xj for all i ≠ j

! C2 :  (Xi,Xj) ∈ A for all (i,j) ∈ Ap

! [Rudolf, 1998], [Valiente, 2000]
! How to achieve pruning ?

0

1

3

2

4

0 1

2

N={0,1,2,3,4}
X0=0

X1=3

X2=2

Pattern graph 
(Np,Ap) G=(N,A)
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C1 : Pruning

C1 :  Xi ≠≠≠≠ Xj for all i ≠≠≠≠ j

! allDiff(X1,..,Xn)  constraint
! More pruning than arc consistency on binary 

constraints
! O(n2d2) with n = |Np|  and d = |N|

! [Regin, 1994]
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C2 : Pruning
C2 : (Xi,Xj) ∈∈∈∈ A for (i,j) ∈∈∈∈ Ap
! When can we prune value a ∈ Di ?
! If there is no value b ∈ Dj s.t. (a,b) ∈ A
! Classical arc consistency 
Implementation
! Constraint can be reexpressed as

C2 :  Dj ∩∩∩∩ neigh(G,a) = ∅∅∅∅
! Independent from i; same pruning criteria for all neighbors of j in Ap
! S(j,a) = | Dj ∩ neigh(G,a) |
! S(j,a) : # neigbhors of a in Dj
! When S(j,a)=0, prune a from all neighbors of j in pattern graph
! Space complexity : O(nd)
! Time complexity : O(nd2) (instead of O(n2d2) for classical AC algorithm)

ai

j
Dj

Pattern graph 
(Np,Ap)

G=(N,A)
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C3 : Redundant constraint
! Candidate values for Xj if Xi=a ((i,j) ∈ Gp) 

(Dj ∩ neigh(G,a))

! Let  D = ∪ j ∈ neigh(Gp,i) Dj
! Candidate values for all the neighbors of i 

D ∩ neigh(G,a)
! There must be more candidates than neighbors :

C3 :  | D ∩∩∩∩ neigh(G,a) | ≥≥≥≥ | neigh(Gp,i) |
! We can prune value a ∈∈∈∈ Di if there are more neighbors 

than candidate values for these neighbors
! [Valiente, 2000]

i

j

a
Pattern graph 
Gp=(Np,Ap)

G=(N,A)

D Neigh(G,a)
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C3 : Redundant constraint
! Can be implemented with the following data 

structure

! R(i,b) = | { j ∈ neigh(Gp,i) s.t.  b ∈ Dj } |

! R(i,b) = # of b in the domain of the neighbors of i (D) 

! CT(i,a) = | { b ∈ neigh(G,a) s.t. R(i,b)>0 } |

Prune a from Di when  |neigh(Gp,i)| > CT(i,a)

! Space complexity O(nd)

! Time complexity O(nd2)

70INGI

Redundant constraint
! C2 only considers one neighbor of node i

! C3 considers globally all the neighbors node i

! Possible to consider a subset of the neighbors

! More pruning if the neighbors have similar domains 

i

j1

Pattern graph 
Gp=(Np,Ap)

D = {b} Neigh(G,a)={b,c,d}
{b}

{b}

{c,d}

j2
a

b

c

d
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A new constraint

Simple case
! Neighbors j1 and j2 of node i have similar 

domain (e.g. they have the same type)

C4 : | (Dj1 ∪∪∪∪ Dj2) ∩∩∩∩ neigh(G,a) | ≥≥≥≥ 2

i

j1

Pattern graph 
Gp=(Np,Ap)

D = {b} Neigh(G,a)={b,c,d}
{b}

{b}

{c,d}

j2
a

b

c

d
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C4 : Implementation 

! Using D = Dj1 ∪ Dj2, we get 
C4 : | D ∩∩∩∩ neigh(G,a) | ≥≥≥≥ 2

! Can be implemented as C3
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C4 : general case

! Neighbors j1, …, jk of node i have similar 
domain (e.g. they are of the same type)

! With D = Dj1 ∪ … ∪ Djk
C4 : | D ∩∩∩∩ neigh(G,a) | ≥≥≥≥ k

! For k=|neigh(G,i)|,  C4 ≡ C3
! For k=1,                  C4 ≡ C2

74INGI

C4 : complexity

! Same complexity than C2, but more 
constraints
! Let p = # additional constraints per node

! Space complexity O(npd)

! Time complexity O(npd2)

! Problem is the potential huge number of 
such constraints !  

! p must be small : only for discriminant
properties of nodes such as types
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C4 : Example

! Vary useful in biochemical networks

76INGI

Example

Pattern graph
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Extensions
! Introducing properties in nodes and in arcs (e.g. 

types, attributes)
! Including properties in patterns (e.g. type hierarchy, 

string patterns)
! Inexact pattern matching (distance between nodes 

and between arcs)
! Constraints on the pattern

! This reaction node should have between two and four 
substrates 

! Other pattern matching features
! Generic arc in pattern representing a path
! Generic node in pattern representing a (sub)graph

78INGI

Integration

Constraints and pattern matching
! Constraints on the pattern

! Constraints on the nodes
! This reaction node should have between two and four 

substrates 

! Other pattern matching features
! Generic arc in pattern representing a path
! Pattern as a constraint pattern variable
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Overview

! Bioinformatics 

! Biological networks

! CLP(BioNet)

! Constraints for bio.net analysis

! Constraints for bio.net matching

! Perspectives

80INGI

Subgraph isomorphism
! Gp=(Np,Ap) : pattern graph
! G=(N,A) with |Np| ≤ |N|

! Find a function f : Np → N such that
! f is injective
! ∀ n1, n2 : (n1,n2) ∈ Ap ⇒ (f(n1),f(n2)) ∈ A

! Subgraph isomorphism is NP-complete
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0 1

2

Pattern graph Gp G
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Family of problems

! Graph vs subgraph isomorphism
! Exact vs inexact matching

! Nodes with attributes, matching between two 
node is a distance

! Some arcs from the pattern graph are not 
considered.  Distance from the initial pattern and 
the chosen subpattern

82INGI

Analysis 
of Biochemical Networks

! Subgraph isomorphism is a basic operation for 
graph pattern matching

Applications
! Compare biochemical networks

! from different organisms and tissues
! at different stages of annotation; 
! highlight common features and differences; 
! predict missing elements ('reconstruction')

! Compile repertoires of recurrent network motifs 
(topological patterns) at different resolution levels
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Existing algorithms
Many existing algorithms for standard subgraph isomorphism

based on various techniques
! Cliques
! Fuzzy set theory
! Elastic graph matching
! Multiple graph matching
! Error correction
! Genetic algorithms
! Decision tree
! Neural networks
! Clustering
! Connected components
! Constraint programming  [Rudolf, 1998]  [Valiente, 2000]
! …

84INGI

SI as a CSP

! Gp=( Np,Ap) : pattern graph
! G=(N,A) with n = |Np|  ≤ |N| = d

! We use Np=(X1,…,Xn)

! Domain variables Xi ∈ N
! Di : domain of Xi

0

1

3

2

4

0 1

2

Pattern graph 
(Np,Ap)

N={0,1,2,3,4}
X0=0

X1=3

X2=2

G=(N,A)
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Subgraph Isomorphism
as a CSP

! Let i and j be distinct nodes from pattern graph 
! C1 :  Xi ≠ Xj for all i ≠ j

! C2 :  (Xi,Xj) ∈ A for all (i,j) ∈ Ap

! [Rudolf, 1998], [Valiente, 2000]
! How to achieve pruning ?
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N={0,1,2,3,4}
X0=0

X1=3

X2=2

Pattern graph 
(Np,Ap) G=(N,A)
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C1 : Pruning

C1 :  Xi ≠≠≠≠ Xj for all i ≠≠≠≠ j

! allDiff(X1,..,Xn)  constraint
! More pruning than arc consistency on binary 

constraints
! O(n2d2) with n = |Np|  and d = |N|

! [Regin, 1994]
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C2 : Pruning
C2 : (Xi,Xj) ∈∈∈∈ A for (i,j) ∈∈∈∈ Ap
! When can we prune value a ∈ Di ?
! If there is no value b ∈ Dj s.t. (a,b) ∈ A
! Classical arc consistency 
Implementation
! Constraint can be reexpressed as

C2 :  Dj ∩∩∩∩ neigh(G,a) = ∅∅∅∅
! Independent from i; same pruning criteria for all neighbors of j in Ap
! S(j,a) = | Dj ∩ neigh(G,a) |
! S(j,a) : # neigbhors of a in Dj
! When S(j,a)=0, prune a from all neighbors of j in pattern graph
! Space complexity : O(nd)
! Time complexity : O(nd2) (instead of O(n2d2) for classical AC algorithm)

ai

j
Dj

Pattern graph 
(Np,Ap)

G=(N,A)

88INGI

C3 : Redundant constraint
! Candidate values for Xj if Xi=a ((i,j) ∈ Gp) 

(Dj ∩ neigh(G,a))

! Let  D = ∪ j ∈ neigh(Gp,i) Dj
! Candidate values for all the neighbors of i 

D ∩ neigh(G,a)
! There must be more candidates than neighbors :

C3 :  | D ∩∩∩∩ neigh(G,a) | ≥≥≥≥ | neigh(Gp,i) |
! We can prune value a ∈∈∈∈ Di if there are more neighbors 

than candidate values for these neighbors
! [Valiente, 2000]

i

j

a
Pattern graph 
Gp=(Np,Ap)

G=(N,A)

D Neigh(G,a)
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C3 : Redundant constraint
! Can be implemented with the following data 

structure

! R(i,b) = | { j ∈ neigh(Gp,i) s.t.  b ∈ Dj } |

! R(i,b) = # of b in the domain of the neighbors of i (D) 

! CT(i,a) = | { b ∈ neigh(G,a) s.t. R(i,b)>0 } |

Prune a from Di when  |neigh(Gp,i)| > CT(i,a)

! Space complexity O(nd)

! Time complexity O(nd2)

90INGI

Redundant constraint
! C2 only considers one neighbor of node i

! C3 considers globally all the neighbors node i

! Possible to consider a subset of the neighbors

! More pruning if the neighbors have similar domains 
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Pattern graph 
Gp=(Np,Ap)

D = {b} Neigh(G,a)={b,c,d}
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A new constraint

Simple case
! Neighbors j1 and j2 of node i have similar 

domain (e.g. they have the same type)

C4 : | (Dj1 ∪∪∪∪ Dj2) ∩∩∩∩ neigh(G,a) | ≥≥≥≥ 2

i

j1

Pattern graph 
Gp=(Np,Ap)

D = {b} Neigh(G,a)={b,c,d}
{b}

{b}

{c,d}

j2
a
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c

d
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C4 : Implementation 

! Using D = Dj1 ∪ Dj2, we get 
C4 : | D ∩∩∩∩ neigh(G,a) | ≥≥≥≥ 2

! Can be implemented as C3
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C4 : general case

! Neighbors j1, …, jk of node i have similar 
domain (e.g. they are of the same type)

! With D = Dj1 ∪ … ∪ Djk
C4 : | D ∩∩∩∩ neigh(G,a) | ≥≥≥≥ k

! For k=|neigh(G,i)|,  C4 ≡ C3
! For k=1,                  C4 ≡ C2

94INGI

C4 : complexity

! Same complexity than C2, but more 
constraints
! Let p = # additional constraints per node

! Space complexity O(npd)

! Time complexity O(npd2)

! Problem is the potential huge number of 
such constraints !  

! p must be small : only for discriminant
properties of nodes such as types
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C4 : Example

! Vary useful in biochemical networks

96INGI

Example

Pattern graph



49

97INGI

Extensions
! Introducing properties in nodes and in arcs (e.g. 

types, attributes)
! Including properties in patterns (e.g. type hierarchy, 

string patterns)
! Inexact pattern matching (distance between nodes 

and between arcs)
! Constraints on the pattern

! This reaction node should have between two and four 
substrates 

! Other pattern matching features
! Generic arc in pattern representing a path
! Generic node in pattern representing a (sub)graph

98INGI

Integration

Constraints and pattern matching
! Constraints on the pattern

! Constraints on the nodes
! This reaction node should have between two and four 

substrates 

! Other pattern matching features
! Generic arc in pattern representing a path
! Pattern as a constraint pattern variable
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Overview

! Bioinformatics 

! Biochemical networks

! CLP(BioNet)

! Constraints for bio.net analysis

! Constraints for bio.net matching

! Perspectives

100INGI

CLP(BioNet)
! Analysis of biochemical networks can be performed  

on a rich typed graphs representation of the 
networks

! CLP(BioNet)
! Introduction of graph domain variable
! Definition of constraints
! Analysis of biochemical networks expressed as a 

combination of constraints
! Collaboration with biologists
! Simplicity and versatility of the analysis
! Extendable framework
! Preliminary results show the potential of this CP 

approach
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Future work

! Many things remains to be done…
! Definition of other constraints

! Integration of constraints and pattern matching 

! Efficient implementation

! Experimentation in collaboration with biologists

! Using CLP(BioNet) on other domains
! With complex network representation

! Analysis of the networks

! E.g. networking, …

102INGI
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