LS(Graph & Tree): A Local Search Framework for
Constraint Optimization on Graphs and Trees

Pham Quang Dung
University of Louvain
1348 Louvain-la-Neuve,
Belgium

Yves Deville
University of Louvain
1348 Louvain-la-Neuve,
Belgium

Pascal Van Hentenryck
Brown University
Providence, RI 02912, USA

pvh@cs.brown.edu

quang.pham@uclouvain.beYves.Deville@uclouvain.be

ABSTRACT

LS(Graph & Tree) is a local search framework which aims
at simplifying the modeling of Constraint Satisfaction Opti-
mization Problems on graphs (CSOP on graphs or GCSOP).
Optimum Constrained Trees (OCT) problems (a subclass of
CSOP on graphs) in which we need to find an optimum sub-
tree with additional constraints of a given weighted graph
arise in many real-life applications. This paper introduces
the LS(Graph & Tree) framework and local search abstrac-
tions for OCT problems. These abstractions are applied
to model and solve the edge weighted k-Cardinality Tree
(KCT) problem. The modeling as well as experimental re-
sults show the significance of the abstractions.

Categories and Subject Descriptors
H.4 [Constraint Optimization]

Keywords

Constraint Optimization, Constrained Tree Problems, KCT,
Local Search, Graph Theory

1. INTRODUCTION

Constraint Satisfaction Optimization on graphs (CSOP
on graphs or GCSOP) appears in various real-life appli-
cations such as telecommunication and transportation net-
works [11] distributed mutual exclusion [18], bit compres-
sion for information retrieval [6], etc. Optimum Constrained
Tree (OCT) problems especially arise in the telecommuni-
cation network design such as: Degree Constrained Mini-
mum Spanning Tree (DCMST) [16, 2], Bounded Diameter
Minimum Spanning Tree (BDMST) [12], Capacitated Min-
imum Spanning Tree Problem (CMST) [19, 1], Minimum
Diameter Spanning Tree (MDST) [17], Edge-Weighted k-
Cardinality Tree (KCT), [5, 7], Steiner Minimal Tree (SMT)
[20, 8], Optimum Communication Spanning Tree Problems
(OCST) [10], etc. For solving these problems, metaheuristic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.

Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

approaches like local search have been shown to be compet-
itive in comparison with other exact techniques. Unfortu-
nately, these local search algorithms are often large, intri-
cate, and are tedious to design, implement and maintain.

We introduce in this paper the LS(Graph & Tree) frame-
work which aims at simplifying the modeling of local search
algorithms for CSOP on graphs and trees. This framework
supports constraint-based architecture [13] which uses con-
straints and objective functions to describe and control lo-
cal search, and features compositionality, modularity and
reuse. Programmers do not have to pay attention to com-
plicated data structures and algorithms on graphs (for ex-
ample, the computation of the number of connected compo-
nents of a graph, diameter of a tree, etc.) because these are
implemented within LS(Graph & Tree). Rather they can
concentrate on the modeling and on the exploration over
various heuristic and metaheuristic strategies for the search
procedure. For each constraint appearing on the considered
problem, two approaches are possible. In the first approach,
called soft constraint, one relaxes this constraint, allowing
solutions to have a number of constraint violations and di-
rect the search in order to reduce these constraint violations.
In the second, called hard constraint, one maintains this con-
straint and considers only local moves that conserve it. To
do this, one has to manipulate a data structure allowing to
compute at each step the set of appropriate local moves.
For the constrained tree problems on graphs, most of local
search algorithms in the literature follow this approach and
manipulate a dynamic tree (a dynamic graph in which the
Tree constraint is always satisfied).

In this paper, we present abstractions which are dedicated
to the modeling and solving of OCT problems by local search
techniques. It proposes abstractions which model dynamic
trees, abstractions describing GraphInvariants, GraphCon-
straints and GraphObjectives which are defined over these
dynamic trees.

LS(Graph & Tree) offers openness and extensibility. One
can extend it by designing and implementing new compo-
nents such as GraphlInvariant, GraphConstraint or GraphQOb-
jective. We have implemented two versions of the abstrac-
tions: one in COMET [13] and one in C++. We also compare
these two versions. The C++ version has been applied to
model and solve the KCT problem.

The paper is organized as follows. In Section 2, we briefly
introduce the LS(Graph & Tree) framework. Section 3 pre-
sents abstractions representing dynamic trees as well as in-
variants, constraints and objective functions which are de-
fined over these dynamic trees. Section 4 gives an overview

Figure 1: LS(Graph & Tree) architecture

of the framework implementation. We show in Section 5
an application of these abstractions to the modeling and
solving of a particular OCT problem: the edge weighted
k-Cardinality (KCT) problem. Section 6 summarizes our
contributions and proposes future research directions.

2. THELS(GRAPH & TREE) FRAMEWORK

The architecture of the LS(Graph & Tree) is based on the
COMET architecture [13] and is organized into four layers de-
picted in Figure 1. It is composed of two main independent
components: a declarative component (layers 1, 2, 3) which
models the problem in terms of constraints and functions,
and a search component which specifies the heuristic and
meta-heuristic search algorithms. The architecture enables
local search algorithms to be high-level, compositional, and
modular. It is possible to add new constraints and to modify
or remove existing ones, without having to worry about the
global effect of these changes. It allows programmers to ex-
periment with different search heuristics and meta-heuristics
without affecting the problem modeling.

Graph variable Graph variables have already been in-
troduced in constraint programming [9]. Graph variables
are called VarGraph, the core of our local search framework.
A VarGraph describes dynamic graphs (a graph G that can
be modified, by adding or removing some nodes and edges,
within a bound [gIb(G), lub(G)] ') over which, GraphlInvari-
ants, GraphConstraints and GraphObjectives are defined.
GraphlInvariant is a concept representing objects which main-
tain some properties of a dynamic graphs (for instance, the
sum of weights of all the edges of a graph, the diameter of
a tree, etc.). GraphConstraint and GraphObjective are con-
cepts describing differentiable objects which maintain some
properties (for instance, the number of violations of a con-
straint or the value of an objective function) of a dynamic
graph. The main difference of GraphConstraint and Gra-
phObjective from Graphlnvariant is the available interface,
allowing to query the impact of local moves (modification of
the dynamic graph) on these properties. Each modification
over a VarGraph induces a propagation which updates auto-
matically all Graphlnvariants, GraphConstraints and Gra-
phObjectives defined over that VarGraph thanks to a de-
pendency graph which represents the dependence between
these objects. In the framework, VarGraph is an abstract

!Given a dynamic graph G, we denote glb(G), lub(G) re-
spectively the lower bound and upper bound of G, we also
denote V(G), E(G) respectively the set of nodes and the set
of edges of G.

interface GraphConstraint{
1. VarGraph[] getVarGraphs () ;
var{int} violations();
var{boolean} isTrue();
int getAddNodeDelta(VarGraph g, Node v);
int getRemoveNodeDelta(VarGraph g, Node v);
int getAddEdgeDelta(VarGraph g, Edge e);
int getRemoveEdgeDelta(VarGraph g, Edge e);
int getReplaceEdgeDelta(VarGraph g, Edge oe, Edge ne);

0N O WN

}

Figure 2: Interface GraphConstraint (partial descrip-
tion)

class from which, VarUndirectedGraph, VarDirectedGraph,
VarTree (which is detailed in Section 3), etc. are derived.

The Neighborhood and Local move The Neighbor-
hood of a solution is a set of neighboring solutions of the
current solution which are generated by a local change over
that solution. A local move is the action of taking a local
change over the current solution to generate a new solution.
Naturally, a local change over a dynamic graph is an addi-
tion or a removal of one or some nodes (edges) or the replace-
ment of some nodes (edges) by other nodes (edges). In this
framework, we consider the following basic local moves on
graphs: addNode, removeNode, addEdge, removeEdge, and
replaceExdge. We can also combine some of the above ac-
tions to generate more complex local moves (i.e., in variable
neighborhood search).

There exist various constraints on graphs such as: Tree(G)
which specifies that the VarGraph G is an undirected tree;
SimplePath(G, s,t) which specifies that the VarGraph G
is a simple path from node s to node t; Connected(G)
which specifies that the VarGraph G is connected, etc. Such
constraints have already been introduced in constraint pro-
gramming [9]. In order to foster the compositionality and
reuse, all soft graph constraints implement the same in-
terface GraphConstraint (see Figure 2). Moreover, this
makes it possible to design constraint combinators [14] (e.g.
GraphConstraintSystem). The method getVarGraphs (line
1) gives access to a list of VarGraphs within the GraphCon-
strasnt. The violations and the truth value of the GraphCon-
straint are returned by the methods violations (line 2) and
isTrue (line 3). The remaining methods (lines 4-8) provide
the differentiable API of the GraphConstraint. They make
it possible to query the variation of the violations under
various update actions (local moves). The Tree constraint
Tree(G), for instance, can thus be violated by a solution.
But the interface allows to query its violations and to select
a neighbor reducing the violations of this constraint.

3. TREE VARIABLES

This section presents the VarTree (also called tree vari-
able) abstraction providing a hard Tree constraint in
LS(Graph &Tree). By using this abstraction, the Tree con-
straint is thus satisfied all along the search.

3.1 Basic local moves for a VarTree

Given a dynamic unrooted tree T', we specify a set of basic
modifications conserving the tree property. We consider in
this framework the following basic modifications:

1. add edge action An edge e = (u,v) € E(lub(T)) \
E(T) can be added to T if T' is empty, or if there is
exactly one node u or v in the tree T: u € V(T') XO0R

Figure 3: replace an edge by another edge

v € V(T'). This edge is called insertable edge. The set
V(T) is also updated.

2. remove edge action An edge e = (u,v) € E(T)
can be removed from T if one node u or v is a leaf of
T: degr(u) = 1V degr(v) = 1. This edge is called
removable edge. The set V(T') is also updated.

3. replace cycle edge action An edge e2 of T can be
replaced by another edge e1 = (u1,v1) € E(lub(T)) \
E(T) with uy,v1 € V(T) conserving the tree property
in the following case: ez is not a leaf of T, thus the
removal of ex from T disconnects T', and then the in-
sertion of e; reconnects two subtrees generated by the
removal of ez from T (see Figure 3). The edge e is
called replacing edge, and ez is called replaceable edge
of e;1. In other words, the insertion of e; creates a cycle
containing e2 and the removal of ez removes the cycle
and restores the tree property. The set of nodes of T’
is unchanged by this replacement.

3.2 The Abstractions

The objective of the VarTree abstraction is to provide
an easy way to navigate in the neighborhood as well as
to perform local moves while maintaining the tree prop-
erty. Programmers do not have to manipulate sophisticated
data structures and algorithms to maintain the sets of in-
sertable, removable, replacing and replaceable edges. Rather,
they can focus on exploring various metaheuristics strate-
gies. The key center is the class VarTree which is partially
described in the following COMET snippet:

class VarTree extends VarGraph{
set{Edge} getInsertableEdges();
set{Edge} getRemovableEdges();
set{Edge} getReplacingEdges();
set{Edge} getReplaceableEdges(Edge e);

OO WN =

The methods give access to the lists of insertable edges (line
2), removable edges (line 3), replacing edges (line 4) and re-
placeable edges of a given edge e (line 5). Over this abstrac-
tion, we can reuse some GraphConstraints, GraphObjectives
which are defined over VarGraph, such as Weight (G, ind)
2 which represents an objective function specifying the sum
of weights of all the edges of the given VarGraph G, and

2In this framework, each edge or node of a graph can have
multiple properties. ind is the index of the considered prop-
erty of each edge.

void stateModel(){
LSGraphSolver 1ls = new LSGraphSolver();
UndirectedGraph g = new UndirectedGraph("graph.inp");
VarSpanningTree tree = new VarSpanningTree(ls,g);

Weight weight = new Weight(ls,tree,0);
GraphObjective goc = alpha*diameterCstr + betaxweight;
1s.close();

void localmove(){
selectMin(ei in tree.getReplacingEdges(),
eo in tree.getReplaceableEdges(ei))
(goc.getReplaceEdgeDelta(tree,e0,ei)){
12: ls.replaceEdge(tree,eo0,ei);

O 00N O WN e

= o -

Figure 4: The BDMST problem :
greedy local move

modeling and

DegreeAtMost (G,d) which represents a constraint specify-
ing that the degree of each node of the VarGraph G cannot
exceed d.

The VarSpanningTree abstraction is an extension of Var-
Tree representing a dynamic spanning tree of a given undi-
rected graph. This abstraction is dedicated to model and
solve Optimum Constrained Spanning Tree problems, for
instance, DCMST [16, 2], BDMST [12], OCST [10]. In this
abstraction, only replace cycle edge action is allowed, in-
sertable edges list and removable edges list are hence empty.

The VarRootedTree abstraction is an extension of VarTree
representing the dynamic rooted tree (with a fixed node rep-
resenting the root of the tree) of a given directed or undi-
rected graph. This abstraction can be used to model and
solve CMST problem [19, 1]. Over this abstraction, some
GraphObjectives are defined, for instance, Height (T, v) rep-
resenting the height of the node v in the VarRootedTree T;
Capacity(T,v,ind) representing the sum of weights of all
the nodes of the subtree of the VarRootedTree T rooted at
node v (ind is the index of considered weight of each node.)

3.3 Example

In order to illustrate these abstractions, we give an ex-
ample of a modeling for BDMST [12]. Given an undirected
weighted graph G and an integral value D, the BDMST
problem is to find a minimum spanning tree of G whose di-
ameter (the maximal number of edges on any path of the
tree) cannot exceed D.

For elegance, all the example codes here are presented in
COMET. The modeling is presented in Figure 4 in which line
2 initializes an LSGraphSolver object 1s which manages all
the VarGraph, VarTree, Graphlnviants, GraphConstraints
and GraphObjectives and relations (dependency graph) be-
tween these objects. The input graph g and a VarSpanning-
Tree tree are created and initialized in lines 3-4. The
GraphConstraint diameterCstr constrains the diameter of
the tree. It is initialized in line 5. BDMST is a problem with
a constraint (over the diameter) to be satisfied and an objec-
tive function (the total weight of the tree) to be minimized.
These are then combined into a global objective function
with weights alpha and beta (line 7). Lines 10-14 show a
simple greedy local move for BDMST. It selects a replacing
edge ei and a replaceable edge eo of ei such that goc reduces
most when replacing eo by ei (line 11). Line 12 performs
the move which also updates automatically all GraphCon-
straints and GraphObjectives defined over tree thanks to a
dependency graph maintained in 1s.

GraphConstraint diameterCstr = new DiameterAtmost(1ls,tree,D);

4. IMPLEMENTATION

For implementing a differentiable object likes GraphCon-
straint (representing soft constraints) or GraphObjective, we
have designed a dedicated data structure and (incremental)
algorithms allowing to efficiently maintain the considered
properties and to query the variations of these properties
under various local moves. To implement an abstraction
representing a hard constraint likes VarTree, we maintain
an auxiliary data structure allowing to efficiently navigate
in the neighborhood while maintaining this hard constraint.
For lack of space, we do not present here the implementation
of all abstractions and their complexities, but we summarize
the implementation of the VarTree abstraction which is es-
sential in the framework.

In order to facilitate their manipulation, all VarTree ab-
stractions including VarSpanningTree, VarRootedTree are
stored as rooted tree with a special node representing the
root of the tree. Each node (except the root) of the tree
has exactly one father node. On this rooted tree, the near-
est common ancestor ® of each pair of two nodes are
fundamental for the replace cycle edge action. Given
a replacing edge e = (u,v), we can easily compute the list
of replaceable edges of e by iterating all edges from u and
v towards nca(u,v) on the current tree. Nearest common
ancestors are also helpful when implementing some Graph-
Constraints and GraphObjectives on VarTree, for instance,
LongestPath, Capacity. Berkman and Vishkin [4] proposed
an algorithm to compute the nearest common ancestor of all
pairs of nodes of the tree. It was reused in [3]. An inter-
mediate data structure is precomputed in O(n log n); each
query nca(u,v) is then computed in O(1) time. We extend
this algorithm with an incremental implementation. Our in-
cremental algorithm does not improve the time complexity
in the worst case (O(n log n) for each local move) but is ef-
ficient in practice. Experimental results, not reported here
for lack of space, showed that incremental update is 2 times
faster than recomputation from scratch.

We implemented two versions of the framework: one in
C++ (C++ version) and one in COMET [13] (COMET version)
(each version contains about 10,000 lines of code). COMET
is a novel programming language providing a number of in-
novative control abstractions for local search. By using the
COMET version, we gain the facility when carrying out vari-
ous metaheuristics strategies with the nice built-in control
abstractions of COMET. We also benefit from the incremen-
tal variables, built-in invariants, constraints and objectives
that simplify the modeling of local search algorithms. The
local search programs are also short and concise. In con-
trast, by using the C++ version, we gain the performance
(the VarTree implementation in COMET is about 2.5 times
slower than in C++), but from a programming standpoint,
it is more sophisticated. An integration of the C++ imple-
mentation within the COMET solver (written in C++) would
make the COMET version as efficient as the C++ version.

S. EXPERIMENTS

We present in this section an application of the framework
to the modeling and solving of the KCT problem [5, 7].

3Given a rooted tree T and two nodes u,v € V(T),
the nearest common ancestor of v and v denoted by
nca(u,v) is the ancestor of v and v that located farthest
from the root of T.

Given an edge-weighted graph G = (V,E) and a value k
(1 <k <|V|—=1), KCT consists of finding a subtree of G
with exactly k& edges, such that the sum of weights of all
the edges is minimal. KCT has gained considerable interest
of many researchers. KCTLib [15] proposes three different
metaheuristic approaches for KCT in which a Tabu Search
exploits a neighborhood structure using the two first local
moves described in Section 3.1. Our third update action
(replace cycle edge action) is thus not exploited. A C++
implementation of this Tabu Search (denoted by TS_KCT) is
also distributed in this library. We implement a Tabu Search
using VarTree abstraction in the C++ version of LS(Graph
& Tree) framework (denoted by MTS_KCT_VT) exploiting
the same Tabu Search schema than TS_KCT, but exploring
a larger neighborhood by including the replace cycle edge
action.

We compare our MTS_KCT_VT with TS_KCT on two ex-
periments. The first experiment is carried out over a sub-
set of standard benchmarks on KCTLib which are sparse
graphs. The second experiment is performed over new dense
graphs which are complete euclidean graphs generated ran-
domly as follows: we generate randomly n nodes with co-
ordinates (x,y) where x and y are generated by a uniform
distribution in the interval [1..500], the weight of each edge
is the euclidean distance between their endpoints. All the
experiments are carried out on an Intel Pentium R dual-
core processor 1.60GHz and 512MB of memory with Ubuntu
7.10.

In the first experiment, we test over 35 4-regular graphs
whose order varies from 25 to 1000 (the value of k is 20 for
this benchmark). The algorithm is executed 20 times for
each instance with the time limit of 5 minutes. For lack of
space, the complete results are not reported here. These
instances are not difficult and all the runs return the best
known solution. On half of the instances, MTS_KCT_VT
is faster, with an average speed-up of 12. For the other
instances, TS_KCT is faster with an average speed-up of 10.
The two algorithms are thus complementary.

In the second experiment, two graphs of order 500 of the
new data set (complete euclidean graphs) are chosen. For
each of these two graphs, we experiment with k = 200, 300,
400, 480. Each of the two tabu searches was run 20 times for
each problem instance (combination of a input graph and a
value of k). The time limit is 60 minutes. The experimental
results are shown in Table 1. For each instance, columns 3-6
report the minimal, maximal, average values and the stan-
dard deviation of the objective function of best found solu-
tion (in 20 runs) by TS_KCT, and the columns 7-8 present
the average value (in 20 runs) of the earliest iteration and
the earliest time (in sec.) obtaining this solution. The same
information of MTS_KCT_VT are presented in the columns
9-14. The experimental results show that MTS_KCT_VT
finds better solution than TS_KCT thanks to an exploration
over a larger neighborhood. Moreover, the average value
of the objective function of the best found solutions and
the average value of the number of iterations for reaching
these solutions of MTS_KCT_VT are smaller than TS_KCT.
The standard deviations of the objective function found by
two tabu searches show that among 20 random runs, the
best solutions found by TS_KCT vary much more than the
ones found by MTS_KCT_VT. However, the size of neigh-
borhood in MTS_KCT_VT is large, hence slowing down the
neighborhood exploration, but the average time is often bet-

Graph k TS_KCTI[15] MTS_KCT_VT

gEcl500 min | Max avg stdev. | avglt avgT min Max avg stdev. | avglt avgT p-val
200 | 2459 | 2936 | 2657.3 | 146.64 | 1173.0 | 2270.6 | 2422 | 2586 | 2479.9 | 41.09 | 542.9 | 2317.8 | 5.50e-05

in3 300 | 3857 | 4253 | 4067.3 | 111.83 | 1224.9 | 2500.6 | 3807 | 3960 | 3899.1 | 52.25 | 224.6 | 1446.6 | 7.79e-06
400 | 5332 | 5773 | 5519.6 | 117.36 | 1500.2 | 2644.8 | 5206 | 5326 | 5299.1 | 23.59 | 267.8 | 1841.2 | 9.87e-08
480 | 6711 | 6882 | 6786.0 58.04 | 3470.3 | 1803.2 | 6693 | 6700 | 6696.9 1.82 | 359.1 | 2661.6 | 1.51e-06
200 | 2483 | 3102 | 2765.1 | 160.34 | 1135.3 | 1975.3 | 2391 | 2599 | 2471.2 | 46.07 | 486.2 | 2139.5 | 1.97e-07

in5 300 | 3857 [4457 | 4135.9 | 126.81 | 1208.5 | 2536.9 | 3827 | 3947 | 3864.8 | 35.17 | 300.3 | 1946.0 | 1.64e-08
400 | 5518 | 5839 | 5654.6 79.82 | 1401.9 | 2362.4 | 5403 | 5470 | 5447.9 | 18.95 | 249.9 | 1953.1 | 5.47e-10
480 | 6856 | 7037 | 6931.5 53.40 | 4016.9 | 1823.3 | 6815 | 6842 | 6827.1 | 11.36 | 223.1 | 1752.2 | 5.43e-08

Table 1: Comparison between TS_KCT and MTS_KCT_VT on random euclidean graphs

ter. The p-values of the statistical student-hypothesis test
(last column) indicate that there is enough evidence to sup-
port the conclusion that the objective values reached with
MTS_KCT_VT are significantly smaller than with TS_KCT.
In conclusion, MTS_KCT_VT and TS_ KCT are both good
on simple problems, but complementary. However, on com-
plex dense graphs, our MTS_KCT_VT is better than the
TS_KCT.

6. CONCLUSIONS

We presented in this paper the LS(Graph & Tree) frame-
work which aims at simplifying the modeling and solving of
Constraint Satisfaction Optimization Problems on graphs
and trees by local search. LS(Graph & Tree) supports both
VarGraph (and its extensions) and standard COMET incre-
mental variables (e.g. var{int}). However, in the current
version, one cannot combine VarGraph and standard COMET
variables in the same constraint or objective function. This
limitation can however be lifted without computational over-
head. The proposed computation model features constraint-
based architecture [13] and has number of benefits. From a
programming standpoint, local search algorithms are short
and concise. From a computational standpoint, some built-
in components are efficiently implemented with auxiliary
data structures and (incremental) algorithms. One can im-
plement efficiently existing local search algorithms without
having to manipulate complex data structures as well as im-
plementing sophisticated algorithms on graphs. From a lan-
guage standpoint, the computational model features com-
positionality, modularity and reuse. It is easy to add new
constraints or objective functions to the model without mod-
ifying the search component. We can also explore various
heuristics and metaheuristics over a same model. The de-
velopment time of programs is much reduced allowing to
quickly implement various local search algorithms. We also
compared two implementations of our framework; one in
C++ and one in COMET. The VarTree abstractions have been
applied to solve the KCT problem. The problem modeling
and experimental results show the significance of the ab-
stractions. Our future work will extend LS(Graph & Tree)
to other structures such as directed acyclic graphs, paths,
etc., and will focus on the design and implementation of local
search abstractions dedicated for the modeling and solving
Optimum Constrained Path problems on graphs.

Acknowledgments

We would like to thank Christian Blum and Maria José Blesa
Aguilera who have kindly provided the C++ software for
solving the KCT problem. Thanks to the reviewers for their
helpful comments.

7. REFERENCES

[1] R. K. Ahujaa, J. B. Orlinb, and D. Sharma. A
composite very large-scale neighborhood structure for
the capacitated minimum spanning tree problem.
Operations Research Letters 31, pages 185-194, 2003.

[2] R. Andrade, A. Lucena, and N. Maculan. Using
lagrangian dual information to generate degree
constrained spanning trees. Discrete Applied
Mathematics, pages 703-717, 2006.

[3] M. A. Bender, M. Farach-Colton, G. Pemmasani,

S. Skiena, and P. Sumazin. Lowest common ancestors
in trees and directed acyclic graphs. Journal of
Algorithms 57, pages 75-94, 2005.

[4] O. Berkman and U. Vishkin. Recursive star-tree
parallel data structure. SIAM J. Comput.,
22(2):221-242, 1993.

[5] C. Blum and M. Blesa. New metaheuristic approaches
for the edge-weighted k-cardinality tree problem.
Computers and Operations Research, pages
32(6):1355-1377, 2005.

[6] A. Bookstein and S. T. Klein. Compression of
correlated bit-vectors. Information Systems,
16(4):387—-400, 1991.

[7] M. Chimani, M. Kandyba, I. Ljubic, and P. Mutzel.
Obtaining optimal k-cardinality trees fast. 10th
Workshop on Algorithm Engineering and Ezxperiments
2008, San Francisco (ALENEX08), SIAM, pages
27-36, 2008.

[8] M. de Aragédo, E. Uchoa, and R. Werneck. Dual
heuristics on the exact solution of large Steiner
problems. In Proceedings of the Brazilian Symposium
on Graphs, Algorithms and Combinatorics
GRACO’01, Fortaleza, 2001.

[9] G. Dooms, Y. Deville, and P. Dupont. Cp(graph):
Introducing a graph computation domain in constraint
programming. International Conference on Principles
and Practice on Constraint Programming, LNCS
3709, pages 211-225, 2005.

[10] T. Fischer. Improved local search for large optimum
communication spanning tree problems. In MIC’2007
- Tth Metaheuristics International Conference, 2007.

[11] M. Gomes, R. Andrade, C. Santiago, and N. Maculan.
Spanning tree algorithms to some hard combinatorial
problems. in : Proceedings of Optimization Days,
Montreal/Canada, pages 83-84, 1997.

[12] M. Gruber, J. van Hemert, and G. Raidl.
Neighborhood searches for the bounded diameter
minimum spanning tree problem embedded in a vns,
ea, and aco. Proceedings of the Genetic and

Evolutionary Computation Conference, pages
1187-1194, 2006.

P. V. Hentenrych and L. Michel. Constraint-based
local search. The MIT Press, London, England, 2005.
P. V. Hentenryck, L. Michel, and L. Liu.
Constraint-based combinators for local search.
International Conference on Constraint Programming,
LNCS 3258, pages 47-61, 2004.

KCTLib. http://iridia.ulb.ac.be/ cblum/kctlib/, 2003.

M. Krishnamoorthy, A. T. Ernst, and Y. M. Sharaiha.

Comparison of algorithms for the degree constrained
minimum spanning tree. Journal of Heuristics, pages
587-611, 2001.

(17]

(18]

(19]

E. Nardelli and G. Proietti. Finding all the best swaps
of a minimum diameter spanning tree under transient
edge failures. Journal of Graph Algorithms and
Applications vol. 5, no. 5, pages 39-57, 2001.

K. Raymond. A tree-based algorithm for distributed
mutual exclusion. ACM Trans. Comput. Syst.,
7(1):61-77, 1989.

M. Reimann and M. Laumanns. A hybrid aco
algorithm for the capacitated minimum spanning tree
problem. Proceedings of First International Workshop
on Hybrid Metaheuristics, pages 1-10, 2004.

M. Zachariasen. Local Search for the Steiner Tree
Problem in the Euclidean Plane. Furopean Journal of
Operational Research, 119:282-300, 1999.

