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Abstract. Graph pattern matching is a central application in many fields. In var-
ious areas, the structure of the pattern can only be approximated and exact match-
ing is then too accurate. We focus here on approximations declared by the user
within the pattern (optional nodes and forbidden arcs), covering graph/subgraph
mono/isomorphism problems. In this paper, we show how the integration of two
domains of computation over countable structures,graphsandmaps, can be used
for modeling and solving various graph matching problems from the simple graph
isomorphism to approximate graph matching. To achieve this, we extend map
variables allowing the domain and range to be non-fixed and constrained. We
describe how such extended maps are designed then realized on top of finite do-
main and finite set variables with specific propagators. We show how a single
monomorphism constraint is sufficient to model and solve those multiples graph
matching problems. Furthermore, our experimental results show that our CP ap-
proach is competitive with a state of the art algorithm for subgraph isomorphism.

1 Introduction

Graph pattern matching is a central application in many fields [1]. Many different types
of algorithms have been proposed, ranging from general methods to specific algorithms
for particular types of graphs. In constraint programming, several authors [2, 3] have
shown that graph matching can be formulated as a CSP problem, and argued that con-
straint programming could be a powerful tool to handle its combinatorial complexity.

In many areas, the structure of the pattern can only be approximated and exact
matching is then far too stringent. Approximate matching is a possible solution, and
can be handled in several ways. In a first approach, the matching algorithm may allow
part of the pattern to mismatch the target graph (e.g. [4–6]). The matching problem can
then be stated in a probabilistic framework (see, e.g. [7]). In a second approach, the
approximations are declared by the user within the pattern, stating which part could be
discarded (see, e.g. [8, 9]). This approach is especially useful in fields, such as bioin-
formatics, where one faces a mixture of precise and imprecise knowledge of the pattern
structures. In this approach, which will be followed in this paper, the user is able to
choose parts of the pattern open to approximation.



Within the CSP framework, a model for graph isomorphism has been proposed by
Sorlin et al. [10], and by Rudolf [3] and Valiente et al. [2] for graph monomorphism.
Subgraph isomorphism in the context of the SBDD method for symmetry breaking is
shortly described in [11]. We also proposed in [9] a CSP model for approximate graph
matching, but without graph and map variables. Our propagators for monomorphism
are based on these works. A declarative view of matching has also been proposed in
[12] in the context of XML queries.

In constraint programming, two domains of computation over countable structures
have received recent attention : graphs and maps. In CP(Graph) [13], graph variables,
and constraints on these variables are described (see also [14, 15] for similar ideas).
CP(Graph) can be used to express and solve combinatorial graph problems modeled as
constrained subgraph extraction problems. In [16, 17], function variables are proposed,
but the domain and range are limited to ground sets. Such function variables are useful
for modeling problems such as warehouse location.

In this paper, we propose an extension to function variables by generalizing them
to non-fixed range and domain (source and target set). We call this extension CP(Map)
and show how approximate graph matching can be modeled and solved, within the CSP
framework, on top of CP(Graph+Map).

Contributions The main contributions of this work are the following:

– Extension of function variables, where the domain and range of the mapping are not
limited to ground sets, but can be finite set variables. Introduction of theMapVar
andMapconstraints which allow to use the non-fixed feature of our map variables.

– Demonstration of how a single constraint is able to express a wide range of graph
matching problems thanks to three high-level structured variables. In particular, we
show how switching a parameter from a fixed graph to a graph interval opens a
new spectrum of matching problems. We show how additional constraints imposed
on this graph interval enable the expression of hybrid problems such as approxi-
mate graph matching. The beauty and originality of this approach resides in that
those problems are either new or were always treated separately, illustrating the
expressive power and generality of constraint programming.

– Experimental evaluation of our CP approach. We show that this modeling exercise
is not only aesthetic but is actually competitive with the current state of the art in
subgraph isomorphism (vflib). The genericity of the approach does not hinder the
efficiency of the solver. On a standard benchmark set, we show that our approach
solves in a given time limit a fourth of the instances which cannot be solved by
vflib while only spending between 9% and 22% more time on instances solved by
the two competing approaches.

The next section describes the basic idea behind the CP(Graph) framework. CP(Map),
our extension to function variables in CP is described in Section 3. Approximate graph
matching is defined in Section 4, and its modeling within CP(Graph+Map) is handled in
Section 5. Section 6 analyses experimental results, and Section 7 concludes this paper.



2 CP(Graph)

Graphs have been around since the first years of constraint programming. Some prob-
lems involving undetermined graphs have been formulated using either binary variables,
sets ([14, 15]) or integers (successor variables e.g. in [18, 19]). CP(Graph) [13] unifies
those models by recognizing a common structure: Graph variables are variables whose
domain ranges over a set of graphs and as with set variables [20, 16], this set of graphs
is represented by a graph interval[D(G), D(G)] whereD(G), the greatest lower bound
(glb) andD(G), the least upper bound (lub) are two graphs withD(G) a subgraph of
D(G) (we writeD(G) ⊆ D(G)). These two bounds are referred to as the lower and
the upper bound. The lower boundD(G) is the set of all nodes and arcs whichmustbe
part of the graph in a solution while the upper boundD(G) is the set of all nodes and
arcs which could be part of the graph in some solution. The domain of a graph variable
with D(G) = [D(G), D(G)] is the set of graphsg with D(G) ⊆ g ⊆ D(G). Here,g is
used to denote a constant graph andG is used to denote a graph variable. This notation
is used throughout this paper: in CSP, lowercase letters denote constants and uppercase
letters denote domain variables.

Graph variables can be implemented using a dedicated data-structure or translated
into set variables, integer variables or binary variables. For instance, a graph variableG
can be modeled as a set of nodesN and a set of arcsE with an additional constraint
enforcing the relationE ⊆ N × N . Whatever the graph variable implementation, two
basic constraintsNodes(G, SN) andArcs(G, SA) allow to access respectively the set
of nodes and the set of arcs of the graph variable. To simplify the notation the expression
Nodes(G) is used to represent a set variable constrained to be equal to the set of nodes
of G. A similar notation is used for arcs.

Various constraints have been defined over such graph variables (or their preceding
specialized models); see for instance the cycle [18], tree [21], path [22, 23], minimum
spanning tree [24] or spanning tree optimization constraint [25]. In the remainder of
this article, we only use the two simple constraintsSubgraph(G1, G2) (also denoted
G1 ⊆ G2) andInducedSubgraph(G1, G2) (also denotedG1 ⊆∗ G2). G1 ⊆ G2 holds
if G1 is a subgraph ofG2, its propagator enforces that the lower and upper bounds
of G1 are subgraphs of the lower bound and upper bounds ofG2 respectively. The
constraintG1 ⊆∗ G2 states thatG1 is the node-induced subgraph ofG2. It holds if G1

is a subgraph ofG2 such that for each arca of G2 whose end-nodes are inG1, a is also
in G1.

3 CP(Map)

The value of a map variable is a mapping from a domain set to a range set. The domain
of a map variable is thus a set of mappings. Map variables were first introduced in CP
in [16] where Gervet defines relation variables. However, the domain and the range of
the relations were limited to ground finite sets. Map variables were also introduced as
high level type constructors, simplifying the modeling of combinatorial optimization
problems. This was first defined in [17] as a relation or map variableM from setv
into a setw, where supersets ofv andw must be known. Such map variables are then



compiled into OPL. This idea is developed in [26], but the domain and range of a map
variable are limited to ground sets. Relation and map variables are also described in
[27] as a useful abstraction in constraint modeling. Rules are proposed for refining
constraints on these complex variables into constraints on finite domain and finite set
variables. Map variables were also introduced in modeling languages such as ALICE
[28], REFINE [29] and NP-SPEC [30]. To the best of our knowledge, map variables
were not yet introduced directly in a CP language. One challenge is then to extend
current CP languages to allow map variables as well as constraints on these variables.

In the remaining of this section, we show how a CP(Map) extension can be realized
on top of finite domain and finite set variables.

3.1 The Map domain

We consider the domain of total surjective functions. Given two elementsm1 : s1 → t1
andm2 : s2 → t2, wheres1, s2, t1, t2 are sets, we havem1 ⊆ m2 iff s1 ⊆ s2 ∧ t1 ⊆
t2 ∧ ∀x ∈ s1 : m1(x) = m2(x). We also have thatm = glb(m1,m2) is a map
m : s → t with s = {x ∈ s1 ∩ s2 | m1(x) = m2(x)}, t = {v | ∃x ∈ s : m1(x) = v},
and∀x ∈ s : m(x) = m1(x) = m2(x). The lub between two elementsm1,m2 exists
only if ∀x ∈ s1 ∩ s2 : m1(x) = m2(x). In that case the lub is a mapm : s → t
with m(x) = m1(x) if x ∈ s1, andm(x) = m2(x) if x ∈ s2, s = s1 ∪ s2, and
t = {v | ∃x ∈ s : m(x) = v}. The domain of total surjective functions is then a meet
semi lattice, that is a semi lattice where every pairs of elements has a glb.

3.2 Map variables and the MapVar constraint

A map variable is declared with the constraintMapVar(M,S, T ), whereM is the map
variable andS, T are finite set variables of Cardinal [31]. The domain ofM is all the
total surjectivefunctions froms to t, wheres, t are in the domain ofS, T . We callS the
source setof M , andT the target setof M . WhenM is instantiated (when its domain
is a singleton), the source set and the target set ofM are ground sets corresponding to
the domain and the range of the mapping. As usual, the domain of a set variableS is
represented by a set interval[D(S), D(S)], the set of setss with D(S) ⊆ s ⊆ D(S).

Example Let M be a map variable declared inMapVar(M,S, T ), with dom(S) =
[{8}, {4, 6, 8}] anddom(T ) = [{}, {1, 2, 4}]. A possible instance ofM is {4 → 1, 8 →
4}. On this instance,S = {4, 8}, andT = {1, 4}. Another instance isM = {4 →
1, 8 → 1}, S = {4, 8}, andT = {1}.

Map variables can be used for defining various kinds of mappings, such as :

– Surjective function :SurjectFct(M,S, T ) ≡ MapVar(M,S, T ).
– Bijective function :BijectFct(M,S, T ) ≡ SurjectFct(M,S, T )
∧∀i, j ∈ S : i 6= j ⇒ M(i) 6= M(j).

– Injective function :InjectFct(M,S, T ) ≡ T ′ ⊆ T ∧ BijectFct(M,S, T ′)
– Total function :TotalFct(M,S, T ) ≡ T ′ ⊆ T ∧ SurjectFct(M,S, T ′)
– Partial function :PartialFct(M,S, T ) ≡ S′ ⊆ S ∧ TotalFct(M,S′, T )



In order to access individual elements of the map, we define the constraint
Map(M,X, V ), whereX andV are finite domain variables. Given a map variable de-
clared withMapVar(M,S, T ), the constraintMap(M,X, V ) holds whenX ∈ S∧V ∈
T ∧M(X) = V . We also define the constraintM1 ⊆ M2.

3.3 Implementing Map Variables in a Finite Domain Solver

When a map variableM is declared byMapVar(M,S, T ), a finite domain (FD) vari-
ableMx is associated to each elementx of the upper bound of the source set (D(S)).

The semantics of these FD variables is simple :Mx representsM(x), the image ofx
through the functionM . Since the source setS can be non-fixed,x might eventually not
be inS and its image would not be defined. A special value⊥ is used for this purpose.
The relationship between the domain of each variableMx and the set variablesS and
T can be stated as follows :

– (1) S = {x | Mx 6=⊥} (M is total)
– (2) T = {v | ∃x : Mx = v 6=⊥} (M is surjective)

GivenMapVar(M,S, T ), the domain ofM is the set of total surjective functions
m : s → t with s ∈ D(S), t ∈ D(T ), ∀x ∈ s : m(x) ∈ D(Mx), and∀x 6∈ s :⊥∈
D(Mx).

As can be seen on Figure 1, these variables are stored in an array and accessed
by valuex through a dictionary data structure (e.g. hashmap)index used to store the
index in the array of each value ofD(S). The initial domain of each FD variable is
D(T ) ∪ {⊥}.

3.4 Additional Constraints and Propagators

Given two map constraintsMapVar(M1, S1, T1) andMapVar(M2, S2, T2) the con-
straintM1 ⊆ M2 is implemented asS1 ⊆ S2 ∧ T1 ⊆ T2 ∧ ∀x ∈ S1 : M1x = M2x.
The last conjunct can be implemented as a set of propagation rules :

– x ∈ D(S1) → M1x = M2x

– for eachx ∈ D(S1) \D(S1) : M1x 6= M2x → x /∈ S1.

Fig. 1. Implementation ofMapVar(M, S, T ) (with initial domaindom(S) = [{8}, {4, 6, 8}]
anddom(T ) = [{}, {1, 2, 4}]), assuming (other) constraints already achieved some pruning.



The constraintMap(M,X, V ) is translated toElement(index(X), I, V )∧X ∈ S
∧ V ∈ T , whereS andT are the source and target sets ofM , I is the array representing
the FD variablesMx, andindex(X) is a finite domain obtained by taking the index of
each value of the domain ofX using theindex dictionary.

The implementation ofBijectFct(M,S, T ) is realized throughMapVar(M,S, T )
∧ AllDiffExceptV al(I,⊥) ∧ |S| = |T |, whereI is the array representing the FD
variablesMx, andAllDiffExceptV al holds when all the FD variables inI are differ-
ent when their value is not⊥ [32].

GivenMapVar(M,S, T ), the propagation betweenM , S andT is based on their
relationship described in the previous section, and is achieved by maintaining the fol-
lowing invariants :

– D(S) = {x | D(Mx) 6= {⊥}}
– D(S) =

{
x ∈ D(S) |⊥/∈ D(Mx)

}
– D(T ) = {v | v 6=⊥ ∧ ∃x : v ∈ D(Mx)}
– D(T ) ⊇ {v | v 6=⊥ ∧ ∃x : D(Mx) = {v}}

The last invariant is not an equality because when a value is known to be inT , it is not
always possible to decide which element inI should be assigned tov.

Propagations rules are then easily derived from these invariants (two rules per in-
variant) :

Mx = ⊥ → x /∈ D(S)

x /∈ D(S) → Mx = ⊥
x ∈ D(S) → Mx 6= ⊥
Mx 6= ⊥ → x ∈ D(S)

v /∈ D(T ) ∧ v 6= ⊥ → v /∈ D(Mx)

NbOccur(I, v) = 0 ∧ v 6= ⊥ → v /∈ D(T )
Mx = v 6= ⊥ → v ∈ D(T )

v ∈ D(T ) ∧NbOccur(I, v) = 1 ∧ v ∈ D(Mx) → Mx = v

whereNbOccur(I, v) denotes the number of occurrences ofv in the domains of the
FD variables inI. Each of these propagation rules can be implemented inO(1) (assum-
ing a bit representation of sets). The implementation of propagators also exploits the
cardinality information associated with set variables.

3.5 A global constraint based on matching theory

The above propagators do not prune theMx FD variables (except the⊥ value). We
show here how flow and matching theory can be used to design a complete filtering
algorithm for theMapVar(M,S, T ) constraint. The algorithm is similar to that of the
GCC and Alldiff constraints but is based on a slightly different notion: theV -matchings
(see [33]). In the remainder of this section we show thatV -matchings characterize the
structure of theMapVar constraint. Note that it also has similarities with the Nvalue,
Range and Roots constraints ([34, 35]).



Definition 1. Thevariable-valuegraph of aMapVar(M,S, T ) constraint is a bipartite
graph where the two classes of nodes are the elements ofD(S) on one side and the
elements ofD(T ) plus⊥ on the other side. An arc(x, v) is part of the graph iffv ∈
D(Mx).

Definition 2. In a bipartite graphg = (N1 ∪ N2, A), a matchingM is a subset of
the arcs such that no two arcs share an endpoint :∀(u1, v1) 6= (u2, v2) ∈ M : u1 6=
u2 ∧ v1 6= v2. A matchingM coversa set of nodesV , or M is a V -matching ofg iff
∀x ∈ V : ∃(u, v) ∈ M : u = x ∨ v = x

The following property states the relationship between matching in the bipartite graphs
and solutions of theMapVar constraint.

Property 1. Given the constraintMapVar(M,S, T ) and its associated variable-value
graphg, assuming the constraint is consistent, we have :

– (1) Any solutionm : s → t contains at-matching ofg, and anyt-matching can be
extended to a solution.

– (2) An arc(x, v) belongs to aD(T )-matching ofg, iff there exists a solutionm
with m(x) = v

Proof. (1) The solutionm is surjective; every node oft must have at least one incident
arc. If we choose one incident arc per node int, we have at-matching asm is a function.

Given at matching, letm : s → t be the bijective function corresponding to this
matching. Adding arcs tot leads to a surjective function. Lets′ = D(S) ∪ s, and
t′ = D(T ) ∪ t. Since the constraint is consistent,∀x ∈ s′ \ s ∃(x, v) ∈ g : v 6=⊥, and
∀v ∈ t′ \ t ∃(x, v) ∈ g. Adding all these arcs leads to a surjective function which is a
solution.

(2) (⇒) This is a special case of the second part of (1).
(⇐)Let m : s → t be a solution withm(x) = v. We then have(x, v) ∈ g. By (1),

the graphg contains at-matchingM which is also aD(T )-matching asD(T ) ⊆ t.
If (x, v) ∈ M we are done. Assume(x, v) /∈ M . Thenx is free with respect toM
becauseM(x) = v. As v ∈ t, v is covered by M; there is a variable nodew such that
(w, v) ∈ M . Then,x, v, w is an even alternating path starting in a free node. Replacing
(w, v) by (x, v) leads to anothert-matching, hence aD(T )-matching ofg. �

From Property 1, an arc-consistency filtering algorithm can be derived : compute the
setA of arcs belonging to someD(T )-matching of the bipartite graph; if(x, v) /∈ A,
removev from D(Mx). The computation of this set can be done using techniques such
as described in [33], with a complexity ofO(mn), wheren is the size ofT , andm is
the number of arcs in the variable-value graph.

4 Approximate graph matching and other matching problems

In this section, we define different matching problems ranging from graph homomor-
phism to approximate subgraph matching. The following definitions apply for directed
as well as undirected graphs.



A graph homomorphism between a pattern graphP = (Np, Ap) and a target
graphG = (N,A) is a total functionf : Np → N respecting themorphism con-
straint (u, v) ∈ Ap ⇒ (f(u), f(v)) ∈ A. The graphP is homomorphic toG through
the functionf . In a graph monomorphism, the functionf must be injective. In a
graph isomorphism the functionf must be bijective, and the condition(u, v) ∈ Ap ⇒
(f(u), f(v)) ∈ A is replaced by(u, v) ∈ Ap ⇔ (f(u), f(v)) ∈ A. Subgraph isomor-
phisms is defined over an induced subgraph of the target graph. Notice that subgraph
homo/mono-morphism are meaningless as graph homo/mono-morphism already maps
Np to a subset ofN . All these problems, except graph isomorphism are NP-complete.

A useful extension isapproximatesubgraph matching, where the pattern graph and
the found subgraph in the target graph may differ with respect to their structure [9]. We
choose an approach where the approximations are declared by the user in the pattern
graph through optional nodes and forbidden arcs.

In the previous graph matching problems, all the nodes of the pattern must be
matched. An interesting extension consists in allowing optional nodes in the pattern
graph. Those nodes need not necessarily be matched. If they are, all arcs incident to
them are considered part of the pattern and the matching constraints apply to them. In
other words, the pattern that is used in the morphism problem is an induced subgraph
of the pattern containing optional nodes.

In graph isomorphism, if two nodes in the pattern are not related by an arc, this
absence of arc is an implicit forbidden arc in the matching. It would be interesting to
declare explicitly which arcs areforbidden, leading to problems between monomor-
phism and isomorphism.

In Figure 2, mandatory nodes are represented as filled nodes, and optional nodes
are represented as empty nodes. Mandatory arcs are represented with plain line, and
arcs incident to optional nodes are represented with dashed lines. Forbidden arcs are
represented with a plain line crossed.

In that figure, node6 cannot be matched to nodef because only one of the arcs
(6, 4) and(6, 5) in the pattern can be matched in the target. The right side of the figure
presents two solutions of the matching problem. The nodes and arcs not matched in the
target graph are greyed.

Fig. 2.Example of approximate matching.



A pattern graph with optional nodes and forbidden arcs forms anapproximate pat-
tern graph, and the corresponding matching is called anapproximate subgraph match-
ing[9]. We focus here on approximate graph monomorphism.

Definition 1 An approximate pattern graphis a tuple (Np, Op, Ap, Fp) where
(Np, Ap) is a graph,Op ⊆ Np is the set of optional nodes andFp ⊆ Np × Np is
the set of forbidden arcs, withAp ∩ Fp = ∅.

Definition 2 An approximate subgraph matchingbetween an approximate pattern
graph P = (Np, Op, Ap, Fp) and a target graphG = (N,A) is a partial function
f : Np → N such that:

1. Np \Op ⊆ dom(f)
2. ∀ i, j ∈ dom(f) : i 6= j ⇒ f(i) 6= f(j)
3. ∀ i, j ∈ dom(f) : (i, j) ∈ Ap ⇒ (f(i), f(j)) ∈ A
4. ∀ i, j ∈ dom(f) : (i, j) ∈ Fp ⇒ (f(i), f(j)) /∈ A

The notationdom(f) represents the domain off . Elements ofdom(f) are called the
selected nodes of the matching. According to this definition, ifFp = ∅ the matching is a
subgraph monomorphism, and ifFp = Np×Np \Ap, the matching is an isomorphism.

5 Modeling graph matching and related problems

In this section, we show how CP(Graph+Map) can be used for modeling and solving a
wide range of graph matching problems.

The problems of graph matching can be stated along three different dimensions:

– homomorphism versus monomorphism versus isomorphism;
– graph versus subgraph matching;
– exact versus approximate matching

These different problems illustrated in Table 1. All these problems can be modeled and
solved through a morphism constraint on a map variable and two graph variables.

5.1 The basic morphism constraints

The two important morphism constraints introduced in this paper are the
SurjMC (P,G, M) andBijMC (P,G, M) constraints, which holds whenM is a to-
tal surjective / bijective mapping fromP to G respecting the morphism constraint.

SurjMC (P,G, M) ≡ SurjectFct(M,Nodes(P ),Nodes(G)) ∧MC(P,G, M)
BijMC (P,G, M) ≡ BijectFct(M,Nodes(P ),Nodes(G)) ∧MC(P,G, M)

with MC(P,G, M) ≡ ∀(i, j) ∈ Arcs(P ) : (M(i),M(j)) ∈ Arcs(G)

We now show how these two morphism constraints can be used to solve the different
classes of problems.



5.2 Exact matching

Let p be a pattern graph andg be a target graph. The graphsp andg are ground objects
in CP(Graph+Map). Graph homo and monomorphism can easily be modeled as shown
in Table 1. Homomorphim (resp. monomorphism) requires a surjective (resp. bijective)
function betweenp and a subgraph ofg, respecting the morphism constraint. We use
here a graph variable instead of a graph constant for the target graph (G with D(G) =
[∅, g])

Graph isomorphism requires a bijective function betweenp andg respecting two
morphism constraints : one between the graphs, and a second between the comple-
mentary graphs. This requires a complementary graph constraintCompGraph(G, Gc)
which holds ifNodes(G) = Nodes(Gc) = N andArcs(Gc) = (N ×N) \ Arcs(G).
For conciseness, we also use the functional notationComp(G) = Gc. In the subgraph
isomorphism problem, there should exist a isomorphism betweenp and an induced sub-
graph ofg.

Exact matching
homomorphism G ⊆ g ∧ SurjMC (p, G, M)
monomorphism G ⊆ g ∧ BijMC (p, G, M)
isomorphism BijMC (p, g, M) ∧ BijMC (Comp(p),Comp(g), M)
subgraph isomorph.G ⊆∗ g ∧ BijMC (p, G, M) ∧ BijMC (Comp(p),Comp(G), M)
Optional nodes
homomorphism P ∈ [pman, p] ∧ P ⊆∗ p ∧G ⊆ g ∧ SurjMC (P, g, M)
monomorphism P ∈ [pman, p] ∧ P ⊆∗ p ∧G ⊆ g ∧ BijMC (P, g, M)
isomorphism P ∈ [pman, p] ∧ P ⊆∗ p ∧ BijMC (P, g, M)

∧BijMC (Comp(P ),Comp(G), M)
subgraph isomorph. G ⊆∗ g ∧ P ∈ [pman, p] ∧ P ⊆∗ p ∧ BijMC (P, G, M)

∧BijMC (Comp(P ),Comp(g), M)
Forbidden arcs
monomorphism G ⊆∗ g ∧ BijMC (p, G, M) ∧ BijMC (pforb,Comp(G), M)

Table 1.Constraints for the matching problems

5.3 Optional nodes and forbidden arcs

To cope with the optional nodes in the pattern graph, we replace the fixed graph pattern
by a constrained graph variable, as illustrated in Table 1. Letp be the pattern graph
with optional nodes, andpman be the subgraph ofp induced by the mandatory nodes of
p. Graph monomorphisms with optional nodes amounts to find an intermediate graph
betweenpman and p which is monomorphic to the target graph. However, between
pman andp, only the subgraphs induced byp should be considered. When two optional
nodes are selected in the matching, if there is an arc between these nodes in pattern
graphp, this arc must be considered in the matching, according to our definition of
optional nodes, this is done through the use of the induced subgraph relation (⊆∗).



When all the nodes of the pattern graph are optional in the graph monomorphism,
we have themaximum common subgraphproblem by adding the size ofP as an objec-
tive function. Similarly for subgraph isomorphism, this leads to themaximum common
induced subgraphproblem.

Allowing the specification of a set of forbidden arcs amounts to a simple gen-
eralization of the isomorphism problem, lying between monomorphism and isomor-
phism. As in the model for isomorphism, forbidden arcs are handled through a mor-
phism constraint on the complement of the target graph. This time, only a speci-
fied setpforb of arcs are forbidden. Isomorphism constitutes a special case where
pforb = Arcs(Comp(p)). This illustrated for the monomorphism problem in Table 1

The problem of approximate subgraph matching as defined in section 5, simply
combines the use of optional nodes and forbidden arcs. Given an approximate pattern
graph(Np, Op, Ap, Fp) where(Np, Ap) is a graph,Op ⊆ Np is the set of optional
nodes, andFp ⊆ Np × Np is the set of forbidden arcs, and a target graph(N,A), we
define the following CP(Graph+Map) constants :

– p: the pattern graph(Np, Ap),
– pman: the subgraph ofp induced by the mandatory nodesNp \Op of p,
– g: the target graph(N,A),
– pforb : the graph(Np, Fp) of the forbidden arcs.

The modeling of approximate matching is then a combination of graph monomor-
phism with optional nodes, and forbidden arcs.

G ⊆∗ g ∧ P ∈ [pman, p] ∧ P ⊆∗ p ∧ BijMC (P,G, M)
∧Nodes(Pc) = Nodes(P ) ∧ Pc ⊆∗ pforb ∧ BijMC (Pc,Comp(G),M)

5.4 Global constraints

The main difference between theSurjMC (P,G, M) andBijMC (P,G, M) constraints
is an alldiff constraint ensuring the bijective property of the mappingM . A direct im-
plementation of these constraints based on their definition would be very inefficient. A
global constraint for

MC(P,G, M) ≡ ∀(i, j) ∈ Arcs(P ) : (M(i),M(j)) ∈ Arcs(G)

has been designed based on [2, 9], and generalized in the context of graph intervals and
our extension to function variables. This global constraint isalgorithmicallyglobal as
it achieves the same consistency as the original conjunction of constraints, but more
efficiently [36].

Redundant constraint, such as proposed in [2, 9] have also been developed to en-
hance the pruning. We also specialized global constraints for the different matching
families. For instance, a global constraint for filtering subgraph isomorphism was de-
veloped and was used to solve difficult instances in [37]. Regarding the approximate
matching with optional nodes, theMono propagator is specialized and assumes that a
P ⊆∗ p constraint is posted too, allowing a more efficient pruning. For the isomorphism
and for approximate matching with forbidden arcs, a single propagator combining the
two Mono propagator is also used, following the ideas developed in [9].



6 Experimental results

This section assesses the performance of the proposed CP(Graph+Map) framework for
graph matching. We compare our proposed solution withvflib [38, 39], the current
state of the art algorithm for subgraph isomorphism, improving over Ullman’s algorithm
[40].

The CP(Graph+Map) framework has been implemented over theGecode system
(http://www.gecode.org ), including graph variables and propagators, map vari-
ables and propagators, together with matching propagators.

Our benchmark set consists of graphs made of different topological structures as
explained in [2]. These graphs were generated using the Stanford GraphBase [41], con-
sisting of 1225 undirected instances, and 405 directed instances. The graphs range from
10 to 125 nodes for undirected graphs, and from 10 to 462 for directed graphs.

The experiments consist in performing subgraph monomorphism over the 1225
undirected instances, and subgraph isomorphism over the 405 instances. All solutions
are searched. Following the methodology used in [2], we ran the two competing algo-
rithms for five minutes on each of the problem instances. A run is calledsolvedif it
finishes under five minutes orunsolvedotherwise. All benchmarks were performed on
an Intel Xeon 3 Ghz.

Table 6 shows the experimental results. We report the percentage of solved instances
(sol.), the percentage of unsolved instances (unsol), the total running time (tot.T), the
mean running time (av.T) and memory (av.M) and the mean running time and memory
over instances solved by both approaches (resp. “av.T com.” and “av.M com.”).

The CP(Graph+Map) model solves more problem instances than the specialized
vflib algorithm. This difference is significant for subgraph monomorphism (61% vs.
48%). It is interesting to notice that around 4% of the instances solved byvflib were
not solved by our CP model. This shows that on some instances, standard algorithms can
be better, but that globally, CP(Graph+Map) solves more instances. It is clear that the
CP approach consumes more memory. The comparison of the average time is clearly in
favour of CP(Graph+Map) as it solves more instances. It is more interesting to compare
the mean execution time on the commonly solved instances. This shows that the time
overhead induced by the CP approach is minimal on the commonly solved instances :
about 9% for monomorphism over undirected graphs and 22% for isomorphism over
directed graphs.

We conclude that our approach is beneficial to someone willing to pay an average
time overhead of 9% to 22% on “simple” instances to be able to solve a fourth of
the instances of the benchmark which cannot be solved in the time limit by the other
method.

7 Conclusion

In this paper, we showed how the integration of two domains of computation over count-
able structures,graphs[13]. andmaps, [16], can be used for modeling and solving a
wide spectrum of of graph matching problems with any combination of the follow-
ing properties : monomorphism or isomorphism, graph or subgraph matching, exact or



All solutions; subgraph monomorphism over undirected graphs (5 min. limit)
solvedunsolvedtot.T av.T av.M av.T com.av.M com.

min sec kb sec kb
vflib 48% 51% 3273 160 11.91 4.96 97.6

CP(Graph+Map)61% 38% 2479 121 9115.46 5.43 8243

All solutions; subgraph isomorphism over directed graphs (5 min. limit)
solvedunsolvedtot.T av.T av.M av.T com.av.M com.

min sec kb sec kb
vflib 92% 7% 181 26.95 114.28 4.11 4.22

CP(Graph+Map)96% 3% 109 16.222859.85 5.04 2754
Table 2.Comparison of the two methods on monomorphism and isomorphism problems.

approximate matching (user-specified approximation [9]). To achieve this, we needed
to generalize the map variables with non-fixed source and target sets (of the Cardinal
kind [31]).

We showed how a single constraint able to use both fixed and non-fixed graph vari-
ables is sufficient to model all these graphs matching problems. Furthermore we showed
that this constraint programming approach is competitive with the state of the art algo-
rithm for subgraph isomorphism vflib based on the Ullman graph matching algorithm;
by solving substantially more instances (our approach solves more complex instances)
and requiring a small overhead over the simple instances.

Future work includes the definition of consistency for map variables, the analysis of
the impact of our flow-based filtering algorithm for map variables, the design of a more
efficient algorithm (we targetO(

√
mn)) for this global constraint and the extension

of graph matching to other graph comparison problems such as subgraph bisimulation
[42].
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