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Abstract

This paper considers initial value problems (I\VVPs) for ordinary differential equations (ODESs) where
some of the data is uncertain and given by intervals as is the case in many areas of science and engineering.
Interval methods provide a way to approach these problems, but they raise fundamental challenges in ob-
taining high accuracy and low computation costs. This work introduces a constraint satisfaction approach
to these problems which enhances traditional interval methods with a pruning step based on a global re-
laxation of the ODE. The relaxation uses Hermite interpolation polynomials and enclosures of their error
terms to approximate the ODE. Our work also shows how to find an evaluation time for the relaxation that
minimizes its local error. Theoretical and experimental results show that the approach produces significant
improvements in accuracy over the best interval methods for the same computation costs. The results also
indicate that the new algorithm should be significantly faster when the ODE contains many operations.

1 Introduction

Initial value problems (I\VPs) for ordinary differential equations (ODEs) arise naturally in many applications
in science and engineering, including chemistry, physics, molecular biology, and mechanics to name only a
few. An ordinary differential equation Q is a system of the form

u'(t) = fi(ui(t),..., un(t))

w®) = falur(t),. . un(®))

often denoted in vector notation by w'(t) = f(u(t)) or v’ = f(u).! An initial value problem is an ODE
with an initial condition u(tg) = wg. It is often the case that the parameters and/or the initial values are not
known with certainty but are given as intervals. Hence, traditional methods may not be the simplest way to
approach the resulting parametric ordinary differential equations since, in essence, they would have to solve
infinitely many systems. Interval methods, pioneered by Moore [M0066], provide an approach to tackle
parametric ODEs. They return enclosures of exact solutions at different points in time, i.e., for a given IVP,
they are guaranteed to return intervals containing the exact solution. In addition, they inherently accommodate
uncertainty in the parameters or initial values by using intervals instead of floating-point numbers. In this
paper, we talk about ODESs to denote both traditional and parametric ODEs.

10nly autonomous systems are considered in this paper. It is easy to generalize the results to non-autonomous systems.



Traditional interval methods usually consist of two processes applied at each integration step: (1) a bound-
ing box process that proves existence and uniqueness of the solution and computes a rough enclosure (called a
bounding box) of the solution over a time interval [t, t1]; (2) a forward process that computes an enclosure of
the solution at ¢;. The bounding box process, which is specific to interval methods, is necessary to bound the
error terms in the forward process. The forward process is generally realized by applying a one-step Taylor
interval method and making extensive use of automatic differentiation [Ral81] to obtain the Taylor coeffi-
cients [Eij81, Kru69, Moo66, Moo79]. However, the major problem of such methods is the explosion of the
size of the boxes at successive points as they often accumulate errors from point to point and lose accuracy
by enclosing the solution by a box (this is called the wrapping effect). Lohner’s AWA system [Loh87] was
an important step in interval methods which features efficient coordinate transformations to tackle the wrap-
ping effect. More recently, Nedialkov and Jackson’s IHO method [NJ99] improved on AWA by extending a
Hermite-Obreschkoff’s approach (which can be viewed as a generalized Taylor method) to intervals. Another
recent approach, the Taylor models, was proposed by Berz & Makino [BM98] for reducing the wrapping ef-
fect. Their scheme validates existence and uniqueness and also computes tight enclosures of the solution in
one process, contrary to the other methods mentioned above.

The research described in this work takes a constraint satisfaction approach to ODEs. Its basic idea
[DJVH98, JDVH99, JVHDO01] is to view the solving of ODEs as the iteration of three processes: (1) a
bounding box process, (2) a predictor process that computes initial enclosures at given times from enclosures
at previous times and bounding boxes, and (3) a pruning process that reduces the initial enclosures without
removing solutions 2. The real novelty in our approach is the pruning component. It is based on the construc-
tion of a non-trivial constraint from a relaxation of the ODE, a key concept in constraint satisfaction [\VVH98].
This constraint can then be used to prune the solution space at the various integration points.

The main contribution of this work is to show that an effective pruning technique can be derived from
a relaxation of the ODE, importing a fundamental principle from constraint satisfaction into the field of
validated differential equations. Four main steps are necessary to derive an effective pruning algorithm.

1. The first step consists in obtaining a relaxation of the ODE by safely approximating its solution using
Hermite interpolation polynomials;

2. The second step consists in using the mean-value form of this relaxation for more accuracy and effi-
ciency. Unfortunately, these two steps, which were skeched in [JDVH99], are not sufficient, and the
resulting pruning algorithm still suffers from traditional problems of interval methods;

3. The third fundamental step [JVHDO1] consists in globalizing the pruning by considering several suc-
cessive relaxations together. This idea of generating a global constraint from a set of more primitive
constraints is also at the heart of constraint satisfaction. It makes it possible, in this new context, to
address the problem of dependencies (and hence the accumulation of errors) and the wrapping effect
simultaneously;3

4. The fourth and final step consists of finding an evaluation time for the relaxation which minimizes the
local error of the relaxation. Indeed, the global constraint generated in the third step, being a relaxation
of the ODE, is parametrized by an evaluation time. Interestingly, for global filters based on Hermite
interpolation polynomials, the (asymptotically) optimal evaluation time is independent from the ODE
and induces negligible overhead on the computational cost of the methods.

Theoretical and experimental results show the benefits of the approach. From a theoretical standpoint, the
constraint satisfaction approach provides a quadratic improvement in accuracy (asymptotically) over the best

2Qbserve that interval extensions of predictor/corrector methods (e.g., [NJ99]) can also be viewed as the composition of a predictor
and a pruning step.

SGlobal constraints in ordinary differential equations have also been found useful in [CB99]. The problem and the techniques in
[CB99] are however fundamentally different.



interval method we know of for the same computation costs. The theoretical results also show that our
approach should be significantly faster for a given precision when the ODE contains many operations. Ex-
perimental results, obtained from an object-oriented implementation of our algorithms, confirm the theory.
They show that the constraint satisfaction approach often produces significant improvements in accuracy over
existing methods for the same computation costs and should produce significant gain in computation times
when the ODE contains many operations. Of particular interest is the versatility of the approach which can
be tailored to the problem at hand.

The rest of the paper is organized as follows. Section 2 introduces the main definitions and notations.
Section 3 gives a high-level overview of the constraint satisfaction approach to parametric ODEs. The next
four sections are the core of the paper. Section 4 introduces multistep filters, Section 5 presents multistep
Hermite filters as a special case of multistep filters, Section 6 describes how to choose an evaluation time to
minimize the local error of a multistep Hermite filter, and Section 7 presents the overall algorithm. Sections
8 and 9 report the theoretical and experimental analyses, and Section 10 concludes the paper.

2 Background and Definitions

2.1 Basic Notational Conventions

Small letters denote real values, vectors and functions of real values. Capital letters denote matrices, sets,
intervals, vectors and functions of intervals. A vector of intervals D € IR" is called a box. If A C R"”, then
OA denotes the smallest box D € IR™ such that A C D, and g(A) denotes the set {g(z) | z € A}. If M
is a regular (point or interval) matrix, then A7 ! denotes an enclosure # of the inverse of M. A relation is a
function » : R® — Bool, where Bool denotes the booleans. We also assume that ¢;, ¢, and ¢ are reals, u; is
in R™, and D; and B; are in IR™ (i € N). We use m(D) to denote the midpoint of D and s(D) to denote
D — m(D). Observe that m(D) + s(D) = D. We use w(D) to denote the width of a box. More precisely,
w([a,b]) =b—aandw((I1,...,I,)) = (w(l),...,w(,))if; e IR If g: R™ - R,z = (21,...,%m)

and Z = (x4, - -, 2;,) With iy, ... 4, € 1..m, then Jzg(x) denotes the Jacobian matrix
8 2]
5 zg;l () ... ﬁ (z)
2] n. . 2 n.
(,)g—il(:c) R mg,-p (z)

In particular, we write 7g(z) = J,g(z) (differentiation wrt all variables of g). If not specified, n denotes the
dimension of the ODE (i.e., the number of scalar equations), h > 0 denotes the step size of the integration,
and k denotes the number of previous values of the solution at times tg, ..., tx—1 used to compute the new
value at time ¢, (k-step approach).

Notation 1 (Bold Face Notations) Let A be a set and a; € A where s € N. We use the following bold face
notations.

a = (ag,...,a;) € AF+1,
a; = (ai,-- -,a(i+1)k—1_) € Ak,
QAj.it+j = (ai,...,aiﬂ-) € AT,
Observe thatag = (ag, .. .,ar—1),a1 = (ak,...,a2r—-1),anda = (ag, . .., ar). The following asymptotical

notations are standard:

4By enclosure of a set A, we mean a set containing A.



Notation 2 (Asymptotical Notations) Consider two functions f,g : R — R and let z > 0. We use the
following standard notations.

O(g(z)) if F3¢>0,Fe>0:2>e=|f(z)] < clg()|,
O(g(z)) if I¢>0,3e>0:2<e=|f(z)| < clg(z)],
F@ =9 Qglz)) if 3e>0,3e>0:2<e=|f(z)] >

The notations extend component-wise for vectors and matrices of functions.

Finally we assume that the underlying interval arithmetic is exact for the theoretical parts of this work (i.e.
there are no rounding errors). The implementation of course uses outwardly directed rounding.

2.2 Basic Definitions

As traditional, when we consider an ODE «' = f(u) and an interval of integration T', we assume f € C" (),
where r is sufficiently large and Q is an open set such that 7" x €2 contains the trajectories of the solutions
on T °. In addition, we restrict our attention to ODEs that have a unique solution for a given initial value.
Techniques to verify this hypothesis numerically are well-known [NJC99, Mo066, M0079, CR96, Ned99]. In
order to make the dependence on the initial condition (¢o, ug) explicit, we introduce the following definition
of the solution to an ODE.

Definition 1 (Solution of an ODE) Let A C Rx R™ x R be an open set. The solution of an ODE u' = f(u)
is the function s : A — R™ such that

Js
| i (to, w0, t) = f(s(to, o, 1)),
V(to,UO,t) eA: { S(to,Uo,to) = .

Observe that, since we restrict attention to autonomous systems in this work, we can write
S(to, z, t) = 5(07'7:77—)7

where T = t — tg, and thus

s Os
w(to,.’]}',t) = ﬁ(o,xﬂ').
In particular, when ¢ = t, the function
09s ds
_-(t05$5t) = —.(to,{L‘,T)
ot (to,z,t0) or (0,2,0)

depends only on z. This justifies the following notation, which captures the notions of real and interval Taylor
coefficients of the solution of an ODE as well as their Jacobians.

Notation 3 (Taylor Coefficients and Jacobians) Let s be the solution of an ODE Q, z € R", D € IR",
and let ¢y be any real number. Then,

1_m,:;i§t,x,t ;
(); = 7157 (to, 2, 1) (to,z,t0)

2. {(SE)] | T € _D} C (D)J e IR”;

5The standard mathematical symbol C”(2) denotes the set of all functions whose r-th derivative exists and is continuous on Q.



3, = Jud 5t (t0, 0.t ;
j(:L')J T 71 98 (to, ,t) (to,z,t0)

5. (2)j1, (D)ju, J(x);, and J(D),, denote respectively the I-th component of (z);, (D);, J(x); and
J(D);.

In the context of our multistep approach (to be presented in Section 3), it is useful to generalize Definition 1
in order to make the dependence on the last & + 1 redundant conditions (¢o,uo), - - - , (tx, ux) explicit.

Definition 2 (Multistep solution of an ODE) Let s be the solution of an ODE Q. The multistep solution of
O is the partial function ms : A C RFt1 x (R*)k+1 xR — R™ :

_ | s(to,uo,t) if u; = s(to,uo,t:), 1 <i <k,
ms(t, u,t) = { undefined otherwise.

Since we are dealing with interval methods, we need to introduce the notions of interval extensions of a
function and a relation. These notions were introduced in [VHMD97]. However, because the techniques
proposed in this work use multistep solutions, which are partial functions, it is necessary to generalize the
notion of interval extension to partial functions and relations.

Definition 3 (Interval Extension of a Partial Function) The interval function G : IR™ — TR™ is an inter-
val extension of the partial functiong : E C R® — R™ if

VD € IR" : g(EN D) C G(D).

Definition 4 (Interval Extension of a Partial Relation) The interval relation R : IR™ — Bool is an inter-
val extension of the partial relation r : E C R® — Bool if

VD elIR": (3z € END :r(x)) = R(D).

Finally, we generalize the concept of bounding boxes, a fundamental concept in interval methods for ODEs, to
multistep methods. Intuitively, a bounding box encloses all solutions of an ODE going through certain boxes
at given times over a given time interval. Bounding boxes are needed to enclose error terms in validated
methods for ODEs (see Section 5).

Definition 5 (Bounding Box) Let @ be an ODE system, ms be the multistep solution of @, and
{to,...,tx} C T € IR Abox B is a bounding box of @ over T" wrt (t,D) if, forall t € T', ms(t,D, ¢t) C B.

2.3 The Midpoint Technique

The midpoint technique is a standard tool in interval computation. It consists of decomposing a matrix A as
the sum of its midpoint matrix and the remainder matrix composed of symmetric intervals:

A =m(A) + s(A).
In this paper, the midpoint technique is used in the following two cases:

1. enclosing a set of real matrix-matrix-vector products (see Sections 4.4 and 4.5);

2. converting an implicit interval linear system into an explicit one by matrix inversion (see Section 4.2).



Assume that we are interested in enclosing the set
P={ABd| A€ A, B€e B, de D}

where A, B are interval matrices and D is an interval vector. Assume also that w(A) is small and that the
wrapping effect in the product CD, where C = AB, is small. A straightforward and cheap way to enclose
the set P consists of computing the product A(BD). In general, this product does not yield accurate results
because of the wrapping effect which occurs in the product £ = BD and in the product AE. Another
sraightforward way of enclosing the set P is to compute the product (AB)D. By hypothesis, the wrapping
effect is small in this case and the product is an accurate enclosure of P. However, the multiplication of
the two interval matrices A and B is a costly process (due to costly sign tests and rounding mode switches
in modern RISC architectures - see [Knu94] for more details). In order to avoid this product, we apply the
midpoint technique on A. By distribution and rearrangement of the parentheses, we can write

P C Q= (m(A)B)D + s(A)(BD). (1)

It is interesting to observe that no multiplication between two interval matrices occurs in @ (note the
importance of the parentheses!). From an accuracy standpoint, the wrapping effect in (m(A4)B)D is small
(by hypothesis) and the remainder term s(A)(BD) is small (because w(A) is small). Hence, @ is an accurate
enclosure of the set P which avoids the costly multiplication of two interval matrices.

Now consider the implicit interval linear system

AoXo+ A1 X, =B, (2)
Xo € Do, X1 C Dy,

where Ag, A; are interval matrices, and B, Do, D are interval vectors. We assume that Ay contains no
singular point matrix. The exact solution set to this system is given by

S = {(x0,z1) € (Do, D1) | Ao € Ag, 3A; € Ay, Fb € B : Agzo + A121 = b}.
We are interested in converting the system (2) into a system
Xo=CX,+E,
which is explicit in the variable X and such that
S CH{(zo,z1) € (Dg,D1) | IC € C, Je € E : 29 = Cz1 + €}.

A straightforward solution consists of computing an enclosure A, * of the inverse of 4q, multypling both
sides of (2) by A;* and rearranging the parentheses:

Xo=—(Ag 41) X1 + 4, 'B. ®)
However, the system (3) suffers from two drawbacks:

e \We have to invert the interval matrix Aq. Computing an accurate enclosure of the inverse of an interval
matrix is a costly process [Ned99]);

e We have to multiply the two interval matrices Agl and A;.



To eliminate these operations, we apply the midpoint technique both on A¢ and A, in (2). By distributivity,
we have
m(Ao)Xo = —m(A1)X1 + B — 5(Ag)Xo — s(A1)X1. 4

Since Xo C Dy and X; C D,, we can replace X by Dy in the term involving s(Aq) and X; by D, in the
term involving s(A;):

m(Ag)Xo = —m(A1)X1 + B — s(Ag) Dy — s(A1)D;. ®)

Note that it is important to have precise enclosures D; and D,. To obtain a system which is explicit in the
variable X, we compute an enclosure m(A4o) ! of the inverse of the point matrix m(4o), we multiply both
sides of (5) by m(A4)~*, and we rearrange the parentheses:®

Xo = —(m(Ao)flm(Al))Xl + m(Ao)il(B - S(Ao)DO - S(Al)Dl).

Observe that, in this last system, there is no interval matrix inversion and no product of two interval matrices.

3 The Constraint Satisfaction Approach

The constraint satisfaction approach followed in this work was first presented in [DJVH98]. It consists of a
generic algorithm for ODEs that iterates three processes:

1. A bounding box process that computes bounding boxes for the current step and proves (numerically)
the existence and uniqueness of the solution;

2. A predictor process that computes initial enclosures at given times from enclosures at previous times
and bounding boxes;

3. A pruning process that reduces the initial enclosures without removing solutions.

The intuition of the successive steps is illustrated in Figure 1. Bounding box and predictor components are
standard in interval methods for ODEs. This paper thus focuses on the pruning process, the main novelty
of the approach. Our pruning component is based on relaxations of the ODE, a fundamental concept in the
field of constraint satisfaction. To our knowledge, no other approach uses relaxations of the ODE to derive
pruning operators and the only other approaches using a pruning component [NJ99, Rih98] were developed
independently. Note also that, in the following, predicted boxes are generally superscripted with the symbol
— (e.g., D; ), while pruned boxes are generally superscripted with the symbol x (e.g., D).

The pruning component uses safe approximations of the ODE to shrink the boxes computed by the pre-
dictor process. To understand this idea, it is useful to contrast the constraint satisfaction to nonlinear program-
ming [VHMKO97, VHMD97] and to ordinary differential equations. In nonlinear programming, a constraint
c(x1,...,xy,) can be used almost directly for pruning the search space (i.e., the Cartesian product of the
intervals I; associated with the variables x;). It suffices to take an interval extension C'(X, ..., X,) of the
constraint. Now if C'(I,...,I}) does not hold, it follows, by definition of interval extensions, that no so-
lution of ¢ lies in I] x ... x I} . The interval extension can be seen as a filter that can be used for pruning
the search space in many ways. For instance, Numerica uses box(k)-consistency on these interval constraints
[VHMD97]. Ordinary differential equations raise new challenges. Inan ODE V¢ : uw' = f(u), functions u
and u’ are, of course, unknown. Hence it is not obvious how to obtain a filter to prune boxes.

6Note that, even though m(Ag) is a point matrix, the enclosure m(Ag)~"! of its inverse is generally not a point matrix, because of
rounding errors.
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Figure 1: Successive Integration Steps

One of the main contributions of our approach is to show how to derive effective pruning operators for
parametric ODEs. The first step consists in rewriting the ODE V¢ : u' = f(u), in terms of its multistep

solution ms to obtain
oms

Vi o (6u,t) = f(ms(t,u,0)). (6)
Let us denote this relation V ¢ : fI(t,u,t). This rewriting may not appear useful since ms is still an unknown
function. However it suggests a way to approximate the ODE. Indeed, we show in Section 5 how to ob-
tain interval extensions of ms and 85’;3 by using Hermite polynomial interpolations together with their error
terms. This simply requires a bounding box for the considered time interval and safe approximations of ms
at successive times, both of which are available from the bounding box and predictor processes. Once these

interval extensions are available, it is possible to obtain an interval relation of the form

Vt: FL(t,D,t), @

which approximates the original ODE safely, i.e., if FL(t, D, t) does not hold for a time ¢, it follows that no
solution of the ODE can go through boxes Dy, . .., Dy at times tg, ..., ;. Relation (7) is still not ready to
be used as a filter because ¢ is universally quantified. The solution here is simpler and consists of restricting
attention to a finite set 7" of times (possibly a singleton) to obtain the relation

Vt € T: FL(t,D,¢),

which produces a computable filter. The relation FL is a relaxation of the ODE (6) in a constraint satisfaction
sense [VH98], i.e., given a time ¢, it produces a relation that can be used to prune the domain of the variables.
The so-obtained relation is in fact a conservative approximation of the actual ODE at the given time. The
following definition and proposition capture these concepts more formally.

Definition 6 (Multistep Filter) Let @ be an ODE and s its solution. A multistep filter for @ is an interval
relation FL : RF+! x (IR?)*+!1 x R — Bool satisfying

u; € D; )
The variable ¢ is called the evaluation time of the multistep filter.

Proposition 1 (Soundness of Multistep Filters) Let Q be an ODE and let FIL be a multistep filter for Q. If
FL(t,D,t) does not hold for some ¢, then there exists no solution of @ going through D at times t.
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Figure 2: Geometric Intuition of the Multistep Filter.

How can we use this filter to obtain tighter enclosures of the solution? A simple technique consists of pruning
the last box computed by the predictor process. Assume that D} is a box enclosing the solution at time ¢;
(0 <@ < k) and that we are interested in pruning the last predicted box D . A subbox D C D, can be
pruned away if the condition

FL(t,(Dg§,...,D}_1,D),te)

does not hold for some evaluation point .. Let us explain briefly the geometric intuition behind this relation
by considering what we call natural filters. Given interval extensions MS, DMS and F' respectively of ms,

3(;’;3 and f, it is possible to approximate the ODE ' = f(u) by the relation

DMS(t,D,t) = F(MS(t,D,1)).

In this relation, the left-hand side of the equation represents the approximation of the slope of «w while the
right-hand represents the slope of the approximation of u. Since the approximations are conservative, these
two sides must intersect on boxes containing a solution. Hence an empty intersection means that the boxes
used in the relation do not contain the solution to the ODE system. Figure 2 illustrates the intuition. It is
generated from an actual ordinary differential equation, considers only points instead of intervals, uses an
interpolation polynomial as an approximation of u, and ignores error terms for simplicity. It illustrates how
this technique can prune away a value as a potential solution at a given time. In the figure, we consider the
solution to the equation that evaluates to ug and w; at ¢y and ¢1, respectively. Two possible points us, and
us, are then considered as possible values at ¢2. The curve marked KOdescribes an interpolation polynomial
going through ug, uy, u), at times ¢o, t1,t2. To determine if u), is the value of the solution at time ¢., the idea
is to test if the equation is satisfied at time ¢.. (We will say more about how to choose ¢, later in this paper).
As can be seen easily, the slope of the interpolation polynomial is different from the slope specified by f at



time ¢, and hence u/, cannot be the value of the solution at ¢, since we assume that the values uo and u; were
correct at to and ¢;. The curve marked OK describes an interpolation polynomial going through wg, u1, us at
times tg, 1, t2. In this case, the equation is satisfied at time ¢., which means that u, cannot be pruned away.

The filter proposed earlier generalizes this intuition to boxes. Both the left- and the right-hand sides
represent sets of slopes, and the filter fails when their intersection is empty. Traditional consistency techniques
and algorithms based on this filter can now be applied. For instance, one may be interested in updating the
last box computed by the predictor process using the operator

D; =0{r € D, | FL(t,(Dj,..., Dj_y,),t)}.

which is defined in terms of an evaluation time ¢.. One of the main results of this paper consists in showing
that ¢, can be chosen optimally (in an asymptotic sense) to maximize pruning. The following definition is a
novel notion of consistency for ODESs to capture pruning of the last » boxes.’

Definition 7 (Backward Consistency of Multistep Filters) A multistep filter F'L is backward-consistent in
(t,D) for time e if
Dy, =0{uy € Dy, | Jug € Dg : FL(t,u,e)}.
A system of r successive multistep filters {FL,-}0<Z.<T is backward(r)-consistent in (to. g4+r—1,Do..ktr—1)
for time vector (e, ..., e,—1) if -
D kyr1 = O{Wk ptr-1 € Dppyr—1 | Fug € Do :

VO<i<r:FL(t; pti Wi ki €:)}- 8

Informally speaking, the parameter r in the definition determines the strength of the consistency, i.e., the num-

ber of backward variables each variable depends on. The following propaosition is an immediate consequence
of Definition 7. It states that the strength of the consistency increases with parameter r.

Proposition 2 (Property of Backward Consistency) If a system of »+1 (r > 0) successive multistep filters

{FL;i}q<;<, is backward(r + 1)-consistent in (to. s+r, Do..x+r) fOr time vector (eo, . .., e,), then the system
1. {FL;}o<;, is backward(r)-consistent in (to. x+r—1, Do..x4+-—1) for time vector (eo, ..., e,_1);
2. {FL;}, ;<, is backward(r)-consistent in (t1. x4r, D1..x4-) for time vector (e1, ..., e,).

In the next section, we introduce coordinate transformations in multistep filters to represent the sets of solu-
tions compactly, i.e., to handle the wrapping effect (see Section 4.5). It is thus useful to generalize the above
definition by introducing affine transformations.

Definition 8 (Generalized Backward Consistency) Let Y; € IR™ (i € N). A multistep filter FL is
backward-consistent in (t,Y) for time e if there exists an invertible affine transformation a : Re(k+D)
R*(*+1) such that

Vi = O{yx € Y | Jyo € Yo : FL(t,a(y),e)}.

A system of r successive multistep filters { FL; }o<;< is backward(r)-consistentin (to. x4+r—1, Yo.. k+r—1) fOr

time vector (eg, ...,e,—_1) if there exists an invertible affine transformation ag, 4 ,_; : R*k+7) 5 Re(k+r)
such that
Yikgr—1 = O{¥rkktr—1 € Yi pyr—1 | Iyo € Yo :
V0 <i < r:FLi(t; kti, i k+i(Yo.k+r—1),€:)}- ©)

Note that Proposition 2 also holds for generalized backward consistency. In the rest of this paper, we use
“backward consistency” instead of “generalized backward consistency” for simplicity. The algorithm used in
our computational results enforces backward(k)-consistency of a system of & filters we now describe.

“We will give an explicit form for Dy, later in the paper.

10



4 Multistep Filters

Filters rely on interval extensions of the multistep solution and of its derivative wrt ¢. These extensions are, in
general, based on decomposing the (unknown) multistep solution into the sum of a computable approximation
p and an (unknown) error terme, i.e.,

ms(t,u,t) = p(t,u,t) + e(t,u,t). (10)
There exist standard techniques to build p and % and to bound e and %. Section 5 reviews how they can
be derived from Hermite interpolation polynomials. Here we simply assume that they are available, and we

show how to use them to build filters.

4.1 Natural Filters

Section 3 explained how natural multistep filters can be obtained by simply replacing the multistep solution
ms, its derivative ‘9";5 and the function f by their interval extensions MS, DMS and F' to obtain

[l
DMS(t,D,t) = F(MS(t,D,1)).

It is not easy however to enforce backward consistency on a natural filter since the variables may occur in
complex nonlinear expressions. This problem is addressed by mean-value filters that we now study.

4.2 Mean-Value Filters

Mean-Value Forms Mean-value forms (MVFs) play a fundamental role in interval computations and are
derived from the Mean-Value theorem. They correspond to problem linearizations around a point and result
in filters that are systems of linear equations with interval coefficients and whose solutions can be enclosed
reasonably efficiently. Mean-value forms are effective when the sizes of the boxes are sufficiently small,
which is the case in ODEs. In addition, being linear equations, they allow for an easier treatment of the
so-called wrapping effect, a crucial problem in interval methods for ODEs to be discussed in Sections 4.3 and
4.5. As a consequence, mean-value forms are especially appropriate in our context and will produce filters
which are efficiently amenable to backward consistency. The rest of this section describes how to obtain
mean-value filters.

Implicit Mean-Value Filters Consider the function

d(t,u,e,de, t) = %(t,u, t) +de — f(p(t,u,t) + e).

If the multistep solution ms is defined at (t,u), i.e. the ODE has a solution going through wy, ..., u; at
to, - - - , tx, then, by (10), we have the relation
o(t,u,e(t,u,t), %(t,u, t),t) = 0.

Letu*,u € D € IRk+1) e* ¢ € E € IR" and de*,de € DE € IR". By the Mean-Value theorem, we
canwrite (1 <4 < n)

0;(t,u,e,de,t) = 6;(t,u*, e* de*,t)
+t7(u,e,de)6i(t7 Hi, Eia C‘i: t) (11 - U*v € — 8*, de — de*)

= 6i(t,u*,€*,d6*,t) + ¢i(t;ﬂi,§j,t)(ll — 11*)
+40;(t, i, &, t) (e* — e) + de; — def,
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where
i, i, &y t) = Tu B2 (8, i, 1) — T fi(p(t, i, t) + &) Tup(t, i, 1)
Yi(t, i, &, 1) = T fi(p(t, pis 1) + &)

for some p; € DY, §; € E, and {; € DE. This allows us to define a new multistep filter, which we will call
an implicit mean-value filter. Such a filter is parametrized by the initial domain D° of the variable u.

Definition 9 (Implicit Mean-Value Filter) An implicit mean-value filter for ODE v’ = f(u) in D° €
IR"(*+1) is an interval relation

FL(t,D,t) &

5(t,m0,me,mae, ) + A(t, DO, B(t, DO, ), DE(t, D%, 1), ) (X, By, DE,y) =0, D

where
A is an interval extension of the function j(u&,degd,
E and DE are interval extensions resp. of e and &,
D C DO, (12)
X=D-m%E, = E(,D°t) —m.,DE,, = DE(t,D°,t) — mge,
m°® = m(D%),m. = m(E(t,D°,t)),ma4. = m(DE(t,D°,t)).

Formula 11 is called implicit beacuse D appears implicitly. The Jacobians in (12) can be computed by
means of automatic differentiation tools (see e.g. [Ral81]). The following proposition states that an implicit
mean-value filter does not eliminate any solution of the ODE. It is a direct consequence of the Mean-Value
theorem.

Proposition 3 An implicit mean-value filter for ODE O is a multistep filter for O.

Explicit Mean-Value Filters In general, for initial value problems, we will be interested in pruning the
last predicted box D, . Hence it is convenient to derive a mean-value filter which is explicit in Dj. Let
D~ e IR**+1) pe the predicted box of variable u and define X as D — m(D~). An implicit mean-value
filter is an interval constraint of the form

®(t)X =T(1),

where ®(t) € TR*>*™*+1) and T'(¢) € IR™. Let us apply the midpoint technique (see Point 2 of Section 2.3)
on the matrix ®(t). We can write ®(t) = m(®(t)) + s(®(¢)), and
m(®(t)X =T(t) — s(®(¢))X. (13)

The term s(®(¢))X is normally small (of size O(||w(D™)||?)), and we can substitute X on the right side of
(13) for s(D™), since X = D — m(D~) and we are looking for a pruned box D* C D~. We obtain the
system

m(®(t))X =T (t) — s(2(t))s(D7). (14)
Equation (14) can be rewritten as
k
S Ait)X; = K(t),
=0

where A;(t) € R**™,i=0,...,kand K(t) € IR". Let us isolate the term involving X}, :

Ap(®) Xy = K(t) = ) Ai(t) X, (15)
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Multiplying both sides of (15) by A (¢)~! (recall that A (¢)~! denotes an enclosure of the inverse of A (t))
gives
k—1

Xp = AT K () = > (Ar(t) " Ai(t)) Xi.
i=0
We are now in position to define explicit mean-value filters which play a fundamental role in our approach.

Definition 10 (Explicit Mean-Value Filter) An explicit mean-value filter for ODE O in D € TR™*+1) js
an interval relation

>
|
—

FL(t,D,t) & X = Ax(t) 'K(@) — ) (A(t) " A1) X,

i

Il
<

where
X =D — m(D°),
D CD°,
(Ao(t) -~ - Ax(t)) = m(®(¢)) € Rrxn(kHh),
K(t) =T(t) — s(®(t))s(D°) € IR",
the relation ®(¢)X = T'(¢) is an implicit mean-value filter for © in D°.

Proposition 4 An explicit mean-value filter for ODE O is a multistep filter for O.

It is easy to use an explicit mean-value filter to prune the predicted box D, at time ¢, given the boxes
Dg,...,.Dj;_, from the previous integration steps, since X}, (and thus D) has been isolated. The filter simply
becomes

k—1
Dy =m(Dy) + Ap()) K (1) = Y (Ax(t) 7 Ai(®)) (D} —m(Dy), (16)
=0
and the pruned box Dj, at time ¢, is given by
D;=D,NDj.

It follows directly that the explicit mean-value filter is backward-consistent in D*.

4.3 Problems in Mean-Value Filters

Mean-value filters often produce significant pruning of the boxes computed by the predictor process. How-
ever, they suffer from two limitations: the wrapping effect which is inherent in interval analysis and a variable
dependency problem induced by the use of a multistep method. We review both of these before describing
how to address them.

Wrapping Effect The wrapping effect is the name given to the overestimation that arises from enclosing a
set by a box. In the context of ODEs, the set of solutions at each integration step is over-approximated by a
box. These over-approximations accumulate step after step and may result in an explosion in the sizes of the
computed boxes. The standard solution used in interval methods for ODES to obtain tighter solution bounds
is to choose, at each step, an appropriate local coordinate system to represent the solutions compactly (see
[Loh87], [NJ99]). How does the wrapping effect occur in our context? Let us rewrite an explicit mean-value
filter from Equation (16) as

k-1
Xp=K(t)+ ZAi(t)Xi;
=0
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Figure 3: (a) A zonotope in R? and the smallest enclosing box; (b) Coordinate transformation where the
enclosing box better fits the zonotope.

and let us assume that Aq(¢), . .., Ax—1(t) are point matrices and that K (¢) is a point vector. Given the boxes
Xo, -- ., X1 computed at the previous steps, the exact solution set to be enclosed by X, is

Z = {K(t) +2Ai(t)$i | (.’L’g,...,.’L’kfl) (S (XO;---;Xkl)} .

i=0

The set Z is called a zonotope 8 (i.e., a generalization of a parallelepiped). Figure 3 (a) illustrates a zonotope
in R? (for £ = 3) and its smallest enclosing box. As can be seen, the box significantly overestimates the
zonotope. Figure 3 (b) shows that the zonotope can be enclosed much more tightly by using a coordinate
transformation. It should be mentioned however that finding a good coordinate system is not necessarily a
trivial task (e.g., one idea is to find approximations of the main directions of the zonotope) and may not be
sufficient because of the variable dependency problem that we now discuss.

Variable Dependencies in Explicit Filters Consider the application of an explicit mean-value filter at two
successive time steps with respective evaluation times e and e;. We obtain equations of the form:

X Ko(eg) + Aoole0)Xo + ... + Ag,p—1(e0) Xk—1,
Xk+1 = K1(61)+A1’0(61)X1 +...+A1,k,1(€1)Xk.

The second equation computes the box X1 assuming that X, ..., X are independent, which is not the
case because of the first equation. Hence, the dependencies between Xq,..., X are lost when moving
from the first to the second time step. The variable dependency problem arises because successive explicit
mean-value filters overlap, i.e., each computed box X; is used in & successive filters. One-step methods do
not encounter this problem because each computed box X; is used only at one time step to compute the
following box X;,1. Global filters, which are presented in the next section, avoid this variable dependency
problem and make it possible to apply standard techniques for the wrapping effect.

8Note that W. Kiihn uses zonotopes in another context, i.e., as compact enclosures of solutions [Kuh98, Kuh98a, Kuh99].
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Figure 4: Intuition of the Globalization Process (k = 3): Predicted boxes D5, D, , and Dy for times ¢3, ¢4,
and t5 are pruned globally using boxes D§, Dy, and D3 computed for times ¢, 1, and .

4.4 Global Filters

The main idea underlying global filters is to cluster several mean-value filters together so that they do not
overlap. The intuition is illustrated in Figure 4 for k = 3. It can be seen that the global filter prunes the
3 predicted boxes D3, Dy, and Dy for times ¢3, ¢4, and t5 using the boxes Dj, Dy, and D3 computed
for times o, ¢1, and ¢». Observe also that global filters do not overlap, i.e., the boxes D§, Dj, and D3 are
not used in subsequent filters. More precisely, a global filter is a system of & successive explicit mean-value
filters.

Definition 11 (Global Filter) A global filer for ODE O in D§,,_, is a system
{FL;i(t;..k+i Di.k+i> €i) Jo<ick Of k successive explicit mean-value filters for O respectively in
Dg..lw SR Dg—1..2k—1 given as

X = Ko(eo) + Ao’o(eo)Xo +...4+ Ao,kfl (eo)Xk,1
Xk+1 = Kl(el) +A1’0(€1)X1 +...+A1,k71(€1)Xk (17)
Xok—1 = Kp_1(ep—1)+ Ap—10(en—1)Xp—1+ ...+ Ap—1,5—1(er—1)Xok—2,

where Xg. 251 = Do..2k—1 — m(DS,,%,l).

The key idea to remove the variable dependency problem is to solve (17) globally by transforming the global
filter into an explicit form

X, Xo
: = C(eo) : + R(eo)
Xog—1 Xk—1
or, more concisely,
X1 = C(eg)Xo + R(eq), (18)

where C(eg) € TR™ "% and R(eq) € TR,

An interesting property of global filters is that each pruned box at times ¢3, ¢4, or ¢5 can be computed only
in terms of the predicted boxes and the boxes at times ¢, ¢, and ¢, by using Gaussian elimination. Hence, it
removes the dependencies introduced in D and D . Consider a system with k = 3:

X3 = AgoXo + Ao1 X1 + Ap2 X2 + Ko

Xy =A10Xi + AnXo+ ApXs + K,

X5 = Ay Xo + Ao1 X3 + Aga Xy + K>
Variable X4 can be eliminated from the last equation to obtain

X5 = A Xo + A21 X3 + Ao (A10X1 + A11 X + A2 X5 + Kq) + Ko,
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function EXPLICITGLOBALFILTER(Q, to, DY, By x—1,t1,D?, By, e)
begin

1 fori:=0 tok—1 do
2 (K, Aio,- -5 Aig—1) := EMVFL(O, t;. i, DY ;1 Bit1.ivk, €:);
3 endfor
4 fori: =k —1 downto0 do
5 Rz = iy
6 for{:=¢ downto1 do
7 A" :=m(Aik—1);
8 R;:=R; + A*K;_1 + S(Ai,k—l)S(D2+l_1)§
9 forj:=k—1 downto1 do
10 A,’J' = Ai,j—l + A*Al_l’j
11 endfor
12 A,',() = A*Al,1,0
13 endfor
14 endfor
15  return ((A,-,j)gé;éi:i s(Ri)o<ick 1)
end

Figure 5: An Algorithm for Computing an Explicit Global Filter.

To avoid multiplying interval matrices (e.g., 422 A410), We can apply the midpoint technique (see Point 1 of
Section 2.3) to obtain

Xs = AxpXo+ Ay Xs+m(Ax)(A10X: + A Xo + A1 X3 + K7)

+Ks + s(As2)s(Dy). (19)

By distribution and rearrangement of the parentheses, we can rewrite (19) as

Xs = (m(A22)A10)X1 + (Aog + m(A22)A11)Xo + (A1 +m(A22)A12)Xs
+m(A22)K1 + Ko + S(AQQ)S(DZ)

Variable X3 can be eliminated from this equation in a similar fashion to obtain a filter involving only X3,
Xo, X1, and X>. Similarly, variable X3 can be eliminated from the second equation to obtain a filter only
involving X4, Xo, X1, and X».°

A generic algorithm for computing an explicit global filter is given in Figure 5. It receives as input the
ODE system Q, the previous integration times tg, the pruned boxes DY, and the bounding boxes B1__1,
the new integration points ty, the predicted boxes DY for these integration points, the bounding boxes B
for the new integration points, and the evaluation times for the filters. It generates the matrix and vectors of
the explicit global filter which can be used to compute the pruned boxes. The resulting filter is backward(k)-
consistent with respect to the resulting boxes. Its precise specification is as follows.

Specification 1 (EXPLICITGLOBALFILTER) Let B; be a bounding box of ODE @ over [t;_1,t;] wrt
(to, D), for1 < i < 2k —1. Let

(C(eo), R(eo)) = EXPLICITGLOBALFILTER(Q, to, D9, By & 1,t1,D, By, eo),

9As observed by one of the reviewers, there are still some dependencies, but these are very small.
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Xy = Do — m(DY), and X; = D; — m(DY). Then, the system S : X; = C(eq)Xo + R(eo) is a global
filter for O in (DY, DY).

The algorithm is generic in the sense that it uses the function EMVFL to generate an explicit mean-value
filter. How to generate such a filter is discussed in Section 5, but its specification is given as follows.

Specification 2 (EMVFL) Let B; be a bounding box of ODE O over [t;_1,t;] wrt (tg, Do), for 1 < i < k.
Let (K (t), Ao(t), .., Ag—1(t)) = EMVFL(Q,t,D°, (By,..., B),t). Then, the interval relation

k—1
FL(t,D,t) & X = K(t) + Y _ Ai(t)X;
=0

where X = D — m(D?) and D C DO is an explicit mean-value filter for @ in DO.

Finally, observe that global filters not only remove the variable dependency problem by globalizing the prun-
ing process. They also have the advantage of producing square systems which makes it possible to apply
standard techniques to address the wrapping effect. The next section discusses the wrapping effect in detail.

4.5 The Wrapping Effect in Global Filters

The wrapping effect in global filters arises when multiplying a nk x nk matrix and a box of nk elements.
Fortunately, since the matrices in global filters are square, the wrapping effect can be handled as in one-step
methods by using local coordinate transformations and QR factorizations [Loh87]. We now explain this
process in detail. Initially, starting from the previous boxes D¢ and predicted boxes D7, we need to solve
the system

D; —m(Dy) = Ci(eo)(Dg — m(Dg)) + Ri(eo)

or, equivalently, the system
X1 = C1(e0)Xo + Ri(eo),

where X; = Dy — m(D7) and X = D — m(D{). The pruned boxes are then obtained by
D* =D N (X; +m(D7)).
The key idea in tackling the wrapping effect is to find a good coordinate system to represent the solution X,
compactly so that errors will not accummulate drastically in subsequent integration steps. For this purpose,
we introduce a coordinate transformation
Miy: =w —m(DY)
which can be reexpressed in terms of the x variables as
My, =x; + m(Dy ) —m(D7).
We then solve the system
MY, = Ci(eg)Xo + Ri(eg) + m(D7) —m(D7)
by inverting the matrix M:

Y1 = (M Ci(e0))Xo + M ' (Ry(eo) + m(D7) — m(DY)).

17



The matrix M; and the boxes Y; and Dj are then sent to the next integration step. Observe that Y is a
compact representation of D7 in the local coordinate system.

In the next integration step, the boxes D} are used (together with other data) to compute new predicted
boxes D5 as well as the new global filter

Dy —m(Dy) = Ca(e1)(D} — m(DY)) + Ra(e1)).
Since M1y1 = u; — m(D¥) by the coordinate transformation, the above filter can be rewritten into
X2 = (Cg(el)Ml)Yl =+ Rz(el),

where X, = Do — m(D; ). Observe the associativity of the multiplication which is critical in reducing the
wrapping effect. The new boxes are computed as

D; =D, N (Xz +m(Dy)).

Once again, we would like to represent the set of solutions X, compactly and we use a local coordinate
transformation
Myys = uz — m(D3)

to obtain the system
MY, = (Ca(e1)M1)Y1 + Ra(er) + m(Dy) — m(D3).
This equation system can be solved by inverting Ms:
Yo = (M; H(Ca(e1) M1)) Y1 + M, ' (Ra(er) +m(Dy ) —m(D3)).

Once again, observe the associativity in the multiplication to tackle the wrapping effect. The hope is that the
matrix M{1(02(e1)M1) be diagonally dominant or triangular. Also, M», Y5, and D3 will be sent to the
next integration step. As a consequence, at integration step ¢, we solve

X;=(Ci(ei-1)M; 1)Y; 1+ Ri(e; 1)
where X; = D; — m(D;), and the new boxes are obtained by
D =D; N(X; +m(D;)).

The local coordinate transformation
M;y; = u; —m(DJ)
is used to compute the new Y; which is given by

Yi = (M; ' (Ci(ei—1)M;1))Yi1 + M Y(Ri(ei—1) + m(D;) — m(D;)).

K3

In addition, in order to avoid the costly (see [Knu94]) product of the two interval matrices M, * and
Ci(e;—1)M;_1, we use the standard midpoint technique (see Point 1 of Section 2.3) to obtain

Y;: = (m(M;]')(Ci(ei-1)M;i—1))Yi—1 + m(M; ") (Ri(ei—1) + di)+
S(Miil)((ci(ei—l)Mi—l)Yi—l + R;(ei—1) + dy),

where d; = m(D; ) — m(D}). This last system can be rewritten into

Y; = (m(M;")(Ci(ei—1)M;—1))Yi1 +m(M; ") (Ri(ei—1) + dy)

+s(M; ) (X; +dy)

by definition of X;. In this process, the choice of an appropriate matrix M; is, of course, crucial. Lohner’s
QR factorization technique [Loh87] is a very successful scheme to obtain such a matrix.
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function PRUNE(Q, to, D¢, B1..k—1, Yo, Mo, t1,D7,B1)

begin
(C1, R1) := EXPLICITGLOBALFILTER(Q, to,D§, B1. k—1,t1, D7, B1, ep);
Ct = C1 Mo;

X1 = CfYO + Rl;
D} := (X1 +m(Dg)) N (Dy);
M, := COORDTRANSFO(CY, Yo);
d; := m(D7) — m(D});
Yy i= (m(M; )CF) Yo +m(M; )(Ry +di) + (M ) (X +dy);
return (D¥, Yy, M;)
end

O~NO OIS WN P

Figure 6: The Pruning Algorithm on Global Filters.

4.6 A Pruning Algorithm based on Global Filters

We are now in position to present a pruning algorithm based on global filters. The pruning algorithm enforces
backward(k)-consistency on a global filter composed of k£ mean-value filters. The algorithm is shown in
Figure 6, and its specification is as follows.

Specification 3 (PRUNE) Let ms be the multistep solution of ODE @ and B; a bounding box of Q over
[t,;l,ti] wrt (to,Do) for 1 <3<2k-—1. Let

(D7,Y1, M) =PRUNE(Q, tg,D§, B1..k—1, Yo, My, t1, D7, B1),
Ao = {Moyo + m(Dg) | yo € Yo} NDg and A; = {M1y: + m(D}) | y1 € Y1} N Dj3. Then,
1. ms((to,t1), (Ao, D7),t:) C ms((to,t1), (Ao, A1),t;), fork <i <2k —1;
2. DI CDy;

3. there exists a global filter which is backward(k)-consistent in ((tq,t1),(Yo,D%)) and in
((to,t1),(Yo,Y1)) for a given time vector.

The algorithm receives as input the ODE O, the previous integration times tq, the pruned boxes D¢ computed
at times tq, the bounding boxes B1 ;1 for all previous integration steps, the boxes Yo and matrix A, from
the previous integration step as well as the new integration times t+, the predicted boxes D; and the bounding
boxes B; for these integration times. It returns the pruned boxes D7 for integration steps t; as well as the
new boxes Y and the new matrix A/; to be used in the next integration step. The algorithm itself follows the
same steps as outlined in the preceeding section. It computes the explicit form of the global filter (line 1), the
new boxes X; (line 2), and the pruned boxes D7 (line 3). It then computes the new matrix M; (line 4) and
the new boxes Y (line 6).

5 Hermite Filters

In the previous section, we assumed the existence of interval extensions of p and dp/dt, and we assumed that
we could bound the error terms e and de/dt. We now show how to use Hermite interpolation polynomials
for this purpose. Informally speaking, a Hermite interpolation polynomial approximates a function g € C"
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(for sufficiently large ) which is known implicitly by its values and the values of its successive derivatives
at various points. A Hermite interpolation polynomial is specified by imposing that its values and the values
of its successive derivatives at some given points be equal to the values of g and of its derivatives at the same
points. Note that the number of conditions (i.e., the number of successive derivatives that are considered)
may vary at the different points [SB80, Atk88].

Definition 12 (Hermite(o) Interpolation Polynomial) Consider the ODE w' = f(u) and let ¢ =
(00,...,0k) €Nl 6, £0(0<i<k)ando, = Zf:o o;. The Hermite(o) interpolation polyno-

mial wrt f and (t, u) is the unique polynomial ¢ of degree < o, — 1 satisfying
¢ (t:) = ji(ui); (0<j<oi—1,0<i<k). (20)

Proposition 5 (Hermite(o) Interpolation Polynomial) The polynomial ¢ satisfying the conditions (20) is
given by

k o;—1
a(t) =D > Mui)jpi (1) (21)
i=0 j=0
where '
Gioim1(t) = ligi—1(t), i=0,...,k,
o;—1 v . .
piit) = Lii(t) - ZV:J""‘l l’gj)(ffi)(piy(t)’ i=0,....k,j=0,...,0i = 2, (22)
L) = R Hly;;? (ti-_—tt"u) =0,k j=0,...,0i 1.

It is easy to take interval extensions of a Hermite interpolation polynomial and of its derivative. The Taylor
coefficients (D;); of the solution specifying the derivative conditions at the various interpolation points, as
well as their Jacobians 7 (D;); needed in the mean-value Hermite filters, can be computed by automatic
differentiation techniques (see e.g. [M0066, M0079, Ral81]). The only remaining issue is to bound the error
terms. The following standard theorem (e.g., [SB80, Atk88]) provides the necessary theoretical basis.

Theorem 1 (Hermite Error Term) Let p(t, u,t) be the Hermite(c) interpolation polynomial in ¢ wrt f and
(t,u). Letu(t) = ms(t,u,t), ms(t,u,t) = p(t,u,t) +e(t,u,t), T = Ofto, ..., tx, t}, 05 = >r_, 03 and
w(t) = TTEo(t — )7 We have (1 < i < n)

136 €T et u,t) = 2ul™ (&)w(t);

2. 380,600 €T Z(t,u,8) = 2l (€)' () + hmrul™ ) (.)w(t).

How to use this theorem to bound the error terms? If B is a bounding box (produced by the bounding box
process) for the ODE over T = O{to,..., %k, t} wrt (to,uo), it suffices to compute two boxes (B),, and
(B)s,+1 by automatic differentiation. We then obtain

e(t,ut) € (B),w(t);
5 (tut) € (B)o,w'(t) + (B)o,41w(t).

As a consequence, we can compute an effective relaxation of the ODE by specializing global filters with a
Hermite interpolation polynomial and its error bound. In the following, filters based on Hermite(o) interpo-
lation are called Hermite(o) filters, and a global Hermite(o) filter is denoted by GHF(o). Reference [Jan01]
discusses how to evaluate Hermite polynomials accurately.
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6 Optimal Hermite Filters

Let us summarize what we have achieved so far. The basic idea of our approach is to approximate the ODE
Vit: o' = f(u) by afilter
Vt: FL(t,D,t).

We have shown that a global filter which prunes the last £ boxes by using & successive mean-value filters
addresses the wrapping effect and the variable dependency problem. We have also shown that a global
filter can be obtained by using Hermite interpolation polynomials together with their error bounds. As a
consequence, we obtain a filter

Y € GHF(O’)(t, D, e())

which can be used to prune the last & predicted boxes. The main remaining issue is to find an evaluation time
vector eg which miminizes the sizes of the solution boxes in

GHF(0)(t,D, eq).

The purpose of this section is to show that there exists an optimal evaluation time vector (in a precise sense
that we will define) and that it can be approximated or computed efficiently.

6.1 Preview of the Approach

Our goal is to find an evaluation time vector eq which miminizes the sizes of the solution boxes in a global
Hermite filter. However, this is a difficult problem in general. We will thus solve a simpler problem, which
consists in choosing an evaluation time that minimizes the local error of an individual filter, i.e., the size of
the enclosure of ms(tg, uo, tx) produced by the filter, assuming that the point values ug, - . . , ug—1 are given
(and, of course, that ms(to, uo, t) is defined).°

Definition 13 (Local Error of a Filter) Let FL be a filter for ODE «' = f(u). The local error of FL wrt
(to,ug, t), denoted by e;,.(FL, tg,ug, t), is defined as

eloc(FL7t07u07t) = w(D{uk € R | FL(taua t)}) -

Since in a global filter we compute & boxes in one step, the step size is defined as h = t; — to. Our analysis is
based on the assumption that the step size A is sufficiently small. When we talk about an optimal evaluation
time, the term optimal is thus to be understood in an asymptotic sense.

In the following, we restrict our attention to Hermite filters which satisfy a certain hypothesis (Section
6.2). To find an optimal evaluation time, we first derive the local error (Section 6.3). From the local error, we
can then characterize the optimal evaluation time (Section 6.4). Two of the main results of this section are as
follows:

1. For a sufficiently small step size h, the relative distance (t. — t)/h between the optimal evaluation
time ¢, and the point ¢;, in a Hermite(c) filter depends only on the relative distances (t;4+1 —t;)/h (i =
0,...,k — 1) between the interpolation points to, ..., ¢, and on ¢.** In particular, it does not depend
on the ODE itself;

2. From a practical standpoint, the computation of the optimal evaluation time induces a negligible over-
head of the method. In particular, if we assume ¢;11 —t; = h/k (i € N), the relative distance between
the optimal evaluation time and ¢, can be precomputed once for all for given k and o.

10As observed by one of the reviewers, the local error may be called more appropriately excess-width, since the enclosure contains
the exact solution. We kept the term “local error” because of the analogy with traditional methods.
1Note that h = t, — to (and not h = t;, — t;_1) because of the globalization process.
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The third main result is concerned with the order of a Hermite((co, . .., o)) filter which is shown to be
O(hos+1), where o, = Zf:o o; when the evaluation point is chosen carefully.

6.2 Assumptions and Notations

The following assumptions are used in this section. We assume that the integration times are increasing, i.e.
to < ... < tg, andthatt — t; = O(h). We also assume that the function f satisfies a Lipschitz condition on
O CR™:

de € R, Vu,v € Q:[[f(u) — f0)ll < cllu—l. (23)

Note that (23) holds if we assume f € C*(£2). We further assume that the interval extension F of function f
satisfies (D C Q)
w(F (D)) = O(w(D)). (24)

For instance, (24) holds if F'is the natural interval extension of f and (23) holds. We also assume that B is a
bounding box of v/ = f(u) over T = O{ty, ..., tx,t} wrt (to, ug) and that (see [Ned99])

w((B)j) = O(w(B)) = O(h), j €N (25)

From (23), the condition (25) holds if (B); is a sufficiently tight enclosure of the set {(z); | € B}. In
addition, we assume that the multistep solution ms is defined at (o, ug) or, in other words, that the ODE has a

solution going through wg, . . . , ug—1 attimes to, ..., tx—1. We also use the notations o = (09, ..., 0%), 05 =
Zf:o o, and w(t) = Hf:o (t — t;)7¢. Since we are interested in computing an enclosure of ms(tg, ug, tx,)
from the point values uo, - . . , ux_1, we will consider a Hermite filter FL satisfying
0
FL(t7 (u07v)7t) = 6_1t)(t7 (u07v)7t) + DE(t) - F(p(t7 (110, U)a t) + E(t)) =0 (26)
where

e F'is an interval extension of f;

o E(t) = (B)s, w(t);

e DE(t) = (B)s,w'(t) + (B)o, +1w(t);

e p(t, (ug,v),t) is the Hermite(o) interpolation polynomial in ¢ wrt f and (t, (ug, v)).

Let us introduce the function
6(t, (g, v), 1) = - (t, (o, v), 1) — f(p(t, (0, v), ) +m.(t))
where m.(t) = m(E(t)). From the hypothesis (24), the condition (26) can be rewritten as
FL(t, (ug,v),t) = 4(t, (ug,v),t) = —DE(t) + O(w(E(t))). (27)

In the case (24), the condition (27) is satisfied for natural Hermite filters (see Section 4.1), provided that the
interval extensions MS and DMS of ms and agzs yield point values when evaluated at point arguments (recall
that we assume exact interval arithmetic for the theoretical parts of this paper). If we assume that the interval
extension of the Jacobian of f satisifies the same condition as F, i.e., w(7(D)o) = O(w(D)), then (27)

is satisfied for implicit mean-value Hermite filters. It is also a good approximation for explicit mean-value
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Hermite filters if the matrix inversion is accurate (see Section 4.2). We will also denote the Jacobian of § wrt
variable v by

(I)(t,'U) = jvé(t,(uo,v),t)
jv%(ta(umu)at) - Jf(p(t,(uo,v),t) +me( ))jup( (110, ),t).

Finally, we introduce the following functions:
)\(t) — ((Eo'k 2B‘]+1 (t tk)J) + (Zo'k 1ﬂ] (t—‘]t'k)J) Zﬁ;(ll ti;’j) ﬂ_(t)’
50:15/81' J)(tk()raj_]-;"'aa'k_]-)
n(t) = T2 (ti;t;) s

6.3 Local Error of a Natural Hermite Filter

To characterize the local error of a Hermite filter, we first need a technical lemma which characterizes the
behavior of the derivatives of the filter.

Lemma 1l We have
1. &(t,v) = IX(t) + O(1);
2. Mt) =07y,
BNt =0O(h Y forty 1 <t <ty

This lemma shows that ® (¢, v) is a ©(h~!) asymptotically diagonal matrix for t;_; < t < t. Its proof is
given in [Jan01]. We are now in position to characterize the local error of a Hermite filter.

Theorem 2 (Local Error of a Hermite Filter) Let F'L be a Hermite(o) filter for «’ = f(u) satisfying (27).
We have

L eoc(FL, to, 10, t) = [(IA(t) + O(1)) 'O (w(B)) (Jw'(t)] + [w(B)]);
2. etoc(FL, o, u0,t) = Q(R?) (Jw'(t)] + [w(t)]);
3. Iftp_1 <t < tg,then eloc(FL, to,ll(),t) = @(hz) (|U)I(t)| + |’U}(t)|)

Proof Consider two arbitrary vectors vy, v, € R™ such that
FL(t, (ug,v1),t) & FL(t,(ug,vs),t).
By the Mean-Value theorem, we can write
a(t, (ug,va),t) — 0(t, (ug,v1),t) = ®(t,v)(v2 — v1),

where v is on the straight line between v, and vo. When the matrix ®(¢, v) is regular, we can write by Lemma
1and (27)
ve—v; = 7Lt v)(6(t ,(uo,vz) t) — (t, (ug,v1),t))
= (IX(t) +0(1))"" (DE(t) — DE(t) + O(w(E(t)))) -
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Since the two vectors v, and v, are chosen arbitrarily, it follows from (25) that

eloc(FL, to, u0,t) = [(ZA(t) + O(1)) "} (w(DE(?)) + O(w(E(t))))
= |(IA(#) + 0(1) 7' O(w(B)) (Jw' ()] + [w(®)]) ,
which proves Point 1. Points 2 and 3 are now direct consequences of Lemma 1 and (25). O

We are now ready to show how to find an optimal evaluation time for Hermite filters.

6.4 Optimal Evaluation Time for a Natural Hermite Filter

Our first result characterizes the order of a Hermite filter. It also hints on how to obtain an optimal evaluation
time. Recall that the order of a method (or of a filter) is the order of the local error minus 1.

Theorem 3 (Order of a Hermite Filter) Let F'L be a Hermite(o) filter for v’ = f(u) satisfying (27). Then,
1. There exists ¢ such that tx_1 <t < g, and w'(t) = 0;
2. Ifty_1 <t <trandw'(t) = 0, then e;o.(FL, to, ug,t) = O(h7+2);
3. Ifw!(t) # 0, then ey (FL, to, ug,t) = Q(hos+1).

Proof Consider an evaluation time ¢ such that ¢ — ¢, = O(h). We have w(t) = O(h¢) and w'(t) =
O(hos~1). Firstassumethatt,_1 < t < tx and w'(t) = 0. By Rolle’s theorem, since w(tx—1) = w(tx) = 0,
there exists such an evaluation time ¢. By Theorem 2, e;,.(FL, to,ug,t) = O(h’+*?). Now assume that
w'(t) # 0. By Theorem 2, e;o.(FL, to,ug,t) = Q(ho=11). |

Theorem 3 indicates that a better order for Hermite filters is obtained when we choose an evaluation time ¢
that is a root of the polynomial w’. This is the basis of our next result which describes a necessary condition
for optimality.

Theorem 4 (Necessary Condition for Optimal Hermite Filters) Let FL be a Hermite(o) filter for u' =
f(u) satisfying (27) and let ¢, € R be such that

€loc(FL,to,u0,t.) = . tmig(h){eloc(FLa to, uo,t)}
=

for h sufficiently small. Then, t. is a zero of the function ~.

Proof Assume that ¢ — ¢, = O(h) and that & is sufficiently small. By Theorem 3, w'(t.) must be zero to
minimize the local error. Note that FL(t, (uo,v), t;) holds for any v € R™ if w'(¢;) =0 (0 < i < k). Thus
te ¢ {to,-..,tr} and w(t.) # 0. Since w'(t) = w(t)~y(t), we conclude that y(¢.) = 0 |

Our next result specifies the number of zeros of the function « as well as their locations.

Proposition 6 The function « in Theorem 4 has exactly k zeros so,...,sk—1 such that ¢t; < s; < t;41
0<i<k).

Proof We have w'(t) = w(t)y(t). By Rolle’s theorem, as w(t;) = w(t;11) = 0, w' has a root s; with
t; < 8; < tip1 and w(s;) # 0 (0 < i < k). Furthermore, the roots of w' are in {sq, ..., sg_1, to,- - -, tx } be-
cause t; is a root of multiplicity o; —1 (0 < ¢ < k) and w' is of degree o5 —1, i.e., k+2f:0(a,~ —1)=o0s—1.
Since « is not defined at ¢o, . . ., t, its zeros are in {sg, ..., Sk—1}. O

We are now ready to characterize precisely the optimal evaluation time for a Hermite filter.
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Theorem 5 (Optimal Evaluation Time) Let FL be a Hermite(o) filter for ' = f(u) satisfying (27), let
89 < ... < sk_1 bethe zeros of v, and let ¢, € R such that

6[OC(FL, to,llo,te) = ‘ tmig(h){eloc(FLa tO,UO,t)}.
—tp=

Then, for A sufficiently small,

[(w/A)(te)| = min — {|(w/X)(s)]}-

te{so,...,s—1}

Proof Let us assume that h is sufficiently small. From Theorem 4, we know that t. € {so,...,sk—1}. By
definition, fori = 0,...,k — 1, w'(s;) = w(s;)y(s;) = 0 and, from Theorem 2,

€ioc(FL, %0, 10, 8) = [(IX(s:) + O(1)) ™' [©(w(B))|w(s:)|-

From Proposition 6, if t = s; (1 =0, ...,k — 1), B is a bounding box over T' = O{to, . . ., tk, si } = [to, tk]
wrt (to, ug) and the factor ©(w(B)) does not depend on ¢t = s;. We have thus to minimize the function

p(t) = |(IA(®) + O(1)) " w(®)]

fort € {so,...,5k—1}. By Lemma 1, A(sx_1) = ©(h~'). Therefore, we must have A(t.) = ©(h~') and
p(te) = [(w/N)(t.)|- Let us now assume that there exists i € 0..k — 1 such that |(w/X)(s;)| < [(w/N)(te)]-
We can write
[(w/N)(si)] < [(w/N)(te)] = A(si) = O(R™)
= p(si) = [(w/A)(si)]
= p(si) < plte)

which is a contradiction. O

6.5 Discussion

It is important to discuss the consequences of Theorem 4 in some detail. First observe that the relative
distance (t. — t;)/h between the optimal evaluation time ¢, and the point ¢;, depends only on the relative

distances (t;+1 — t;)/h (i = 0,...,k — 1) between the interpolation points ¢, . .., t; and on the vector o.
In particular, it is independent from the ODE itself. For instance, for & = 1, we have v(t) = tf—go + 25
and v has a single zero given by t, = %g%gﬂ In addition, if oo = ... = oy, then the zeros of ~ are

independent from o. In particular, for & = 1, we have t. = (to + t1)/2. From a practical standpoint, the
computation of the optimal evaluation time induces a negligible overhead of the method. In particular, if we
assume t;+1 — t; = h/k (i € N), then the relative distance between ¢;, and the optimal evaluation time can
be precomputed and stored for a variety of values of k£ and o. Finally, it is worth stressing that any zero of
function - gives an O(h?=*1) order for the Hermite filter provided that A(t) = ©(h~!) at that zero. Hence
any such zero is in fact a potential candidate for the optimal evaluation time. In our experiments (see the next
section), the right-most zero was always the optimal evaluation time when o¢ = ... = oy, although we have
not been able to prove this result.

6.6 Illustration

We now illustrate the theoretical results presented in this section. Table 1 gives approximative values of the
relative distance (t. — ¢x)/h between the rightmost zero ¢, of the function - and the point ¢ (1 < k < 6),
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k 1 2 3 4 5 6
(te —tr)/h | —0.5000 | —0.2113 | —0.1273 | —0.0889 | —0.0673 | —0.0537

Table 1: Relative Distance between the Rightmost Zero ¢, of v and t; when oy = ... = 0.
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Figure 7: The functions y, w,w’, A and w /X for the case k = 4,0 = (2,2, 2,2, 2).

foroo =...=orand t;41 —t; = h/k (i =0,...,k — 1). For two interpolation points, ¢, is in the middle
of to and ¢;. It then moves closer and closer to ¢, for larger values of k.

Figure 7 illustrates the functions v, w, w', A and w/\, for k = 4 and o = (2,2,2,2,2). The top-left
figure shows the function w' and , as well as the zeros of . The top-right figure shows the function w with
the zeros of +y in superposition. The bottom-left figure shows function A with the zeros of +y in superposition.
The bottom-right picture shows the function w/\ and the zeros of . It can be seen that the right-most zero
minimizes the local error in this example.

6.7 Validity of the Asymptotic Assumption

Our analysis is based on the assumption that the step size h is sufficiently small. But how small is sufficiently
small? According to our experiments, the actual step sizes are generally small enough so that the asymptot-
ically optimal evaluation times produced by the above theory are good approximations of the real optima.
There are two reasons for these small actual step sizes:

1. the need to bound the local error, which limits the stability of validated methods and makes stiff prob-
lems more challenging;

2. the existing bounding box process, which often impose the strongest restriction on the step size, espe-
cially for stiff problems.
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Figure 8: Local Error of Global Hermite Filters as a Function of the Evaluation Time for the Lorentz System.

Figure 8 illustrates our theoretical results experimentally on a specific ODE. It plots the local error of sev-
eral global Hermite filters (GHF) as a function of the evaluation time for the Lorenz system (e.g., [HNW87]).
It is assumed that ¢;41 — ¢; is constant (0 < ¢ < 2k — 2). In addition, we assume that, in each mean-value
filter composing the GHF, the distance between the evaluation time and the rightmost interpolation point is
constant. In the graphs, [to, tx] = [0,0.01] and h = ¢, — to = 0.01. The figure also shows the rightmost
zero of the function ~ as obtained from Table 1. As we can see, the rightmost zero of ~ is a very good
approximation of the optimal evaluation time of the filter for all the cases displayed.

7 The Algorithm

We are now in position to present our algorithm for enclosing solutions of initial value problems for para-
metric ordinary differential equations. The algorithm is presented in Figure 9, and Figure 10 gives the speci-
fication of the functions not covered so far. The first two lines initialize the integration process and compute
the initial bounding boxes, pruned domains, and the boxes and matrices needed for the wrapping effect. The
main step of the integration are the lines 4-6. Line 4 computes the new bounding boxes, line 5 uses them to
compute the new predicted boxes, and line 6 applies the pruning step to compute the new pruned boxes.

8 Theoretical Analysis

This section presents theoretical results on the efficiency of our method and compares it to the best interval
methods we are aware of.

27



function SOLVE(Q, Dy, to..mk—1)
begin

OOk WN

o

By := BOUNDINGBOX(Q, tg, Do, to);
(D§, Yo, Mp) := INITIALIZEMULTISTEP(Q, to, Do, B1. k—1);
fori:=1tom—1 do
B; := BOUNDINGBOX(Q, tix—1,D},_{,ti);
D; :=PREDICTOR(O, tix—1,D}_;,t:, B;);
(D}, Y, M;) := PRUNE(Q, t;_1,D7 1, B(i_1)kt1..ik—1> Yi1, Mi 1,
tiaD;aBi);
endfor
return DY , . 13

end

8.1

Figure 9: The Constraint Satisfaction Algorithm for Initial Value Problems for Parametric ODEs.

Overview of the Methods

We analyze the cost of our SOLVE algorithm based on the global Hermite filter method GHF and compare it to
Nedialkov’s IHO method [NJ99], the best interval method we know of. Indeed, the IHO method outperforms
interval Taylor series methods such as Lohner’s method [Loh87]. Here are the various methods used in the
theoretical and experimental comparisons.

The GHF Method In the GHF method, each iteration in the loop of function SoLVE is called a step of the
integration. The (constant) step size in GHF is given by h = t; — to. Assuming that ¢,,, = max(c) and
os = 09 + ...+ ox, the remaining components of GHF are specified as follows:

1.

The BOUNDINGBOX function in GHF uses a Taylor series method [Moo66, CR96, NJC99] of order
p+q+1to compute B;. Moreover, we assume that By, = ... = B(;11)x—1, i.., the function computes
a single bounding box over [tix—1,%(i+1)k—1] (@ > 1);

. The PREDICTOR function uses Moore’s Taylor method [M0066] of order ¢ + 1 to compute the boxes

D; . Note that we compute the Taylor coefficients of f only once at (t;x—1,D},_,);

. The evaluation point in Hermite filters (i.e., in function EMVFL) is the rightmost zero of function ~y

(see Section 6 and Table 1). GHF(o) is thus a method of order o5 + 1;

. Function EXPLICITGLOBALFILTER needs ¢,,, — 1 Jacobians (i.e., 7(Dj)1, ..., J(D;)s..—1) at each

interpolation point ¢; for (i — 1)k < j < (i + 1)k — 1 to compute the k explicit mean-value Hermite
filters in EMVFL. GHF only computes Jacobians at predicted boxes and not at pruned boxes. More
precisely, it only computes k(o,, — 1) Jacobians at (t;,D;") and reuses the k(c,, — 1) Jacobians at
(t;—1,D;_,) which were computed during the previous step ¢ — 1;

. The function COORDTRANSFO uses Lohner’s QR-factorization technique (see [Loh87]);

. The function INITIALIZEMULTISTEP uses a one-step mean-value Taylor method.

The IHO Method The IHO method is implemented exactly as described in [NJ99]. Its step size is h as in
the GHF method. Besides the pruning, there are some interesting differences between GHF and IHO. First,
the predictor function in IHO uses a mean-value Taylor method of order ¢ + 1. Second, the Jacobians in IHO
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Specification 4 (SOLVE) Let s be the solution of ODE @ and D1 = SOLVE(Q, Do, to...mk—1). Then,
for 1 << mk — 1, S(to,Do,ti) C D;.

Specification 5 (BOUNDINGBOX) Let By, =BOUNDINGBOX(Q, tg, Do, t1..x). Then, for 1 <i < k, B;
is a bounding box of @ over [t;_1,t;] wrt (tg, Do).

Specification 6 (INITIALIZEMULTISTEP) Let ms be the multistep solution of ODE Q and B; be a bounding
box of @ over [t;_1,t;] wrt (tg, Do) for1 <i < k —1. Let

(Dy, Yo, M) = INITIALIZEMULTISTEP(Q, to, Do, B1. k—1)
and A = {Myo +m(Dy) | yo € Yo} NDg. Then, for 0 <4 < k — 1, ms(to, Do, t;) C ms(to, A, ;).

Specification 7 (PREDICTOR) Let s be the solution of ODE @ and B; a bounding box of @ over [t;_1, ;)]
wrt (to, Do), for 1 <i < k. Let

D, = PREDICTOR(Q, tg, Do, t1..k, B1..k)-

Then, for 1 < i < k, s(to, Do, t;) C D;.
Figure 10: The Specification of the Main Functions.

are recomputed at pruned boxes. IHO uses a Taylor series method of order p + ¢ + 1 to compute a bounding
box as in GHF.

The IHO* Method To obtain experimental results as informative as possible, we introduce IHO*, a variant
of IHO that is closer to GHF. In particular, the predictor in IHO* uses Moore’s Taylor method of order ¢ + 1
instead of the mean-value Taylor method of the same order. Also, IHO* does not recompute the Jacobians
at pruned boxes; it reuses the Jacobians at predicted boxes instead as in GHF. IHO* and GHF only differ in
the pruning step. Interestingly, IHO* is extremely close in precision to IHO on almost all benchmarks for a
given step size. There are a few benchmarks where the loss of precision is significant or where a smaller step
size must be used. Of course, IHO* is faster than IHO for a given step size.

8.2 Comparison Hypotheses

We make the following assumptions and conventions for simplicity. Consider the ODE u' = f(u). We
assume that (the natural encoding of) function f contains only arithmetic operations. We denote by N; the
number of %, / operations in f, by N, the number of £ operations, and by N the sum N; + N». We also
assume that the cost of evaluating [7(D;); is n times the cost of evaluating (D;),. We report only the main
operations of the methods, i.e., (1) products of a real and an interval matrix which arise in the pruning step and
(2) the generation of Jacobians 2. These are the main operations for problems of sufficiently high dimension
where f contains sufficiently many operations. Note that products of a real and an interval matrix can be
optimized to substantially reduce the number of sign tests and rounding mode switches, which are costly
tasks (see [Knu94]). As a consequence, the cost per interval arithmetic operation in a real-interval matrix
product is less than the cost of an operation on two intervals in a Jacobian computation. We thus report
separately the number of interval arithmetic operations involved in products of a real and an interval matrix

12Matrix inversions and the QR-factorization in COORD TRANSFO are not counted here.
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0 | Cost-1 | Cost-2 |

IHO - 2[%1°nN; + O(o,nN,)
IHO* - [%]1°nN1 + O(osnN>)
GHF 7k3n3 ((om — 1)2 + 1)knN; + 0 knNo
GHF-1 — (|22 ]? + 1)nN; + O(o,nNN>)
GHF-2 | (1o, — Z)o2n® (0, —2)nN

Table 2: Cost Analysis : Methods of the Same Order.

[ | Cost-2 |
IHO 2| -1 °nN; + O(o,nNa)
IHO* [Z—=]2nN; + O(o,nNN>)

[ GHF-L [ ((Z2 ]2+ DnN, + O(0,nNs) |

Table 3: Cost Analysis : Methods of Different Orders but of Similar Cost.

in the pruning step (Cost-1) and the generation of Jacobians (Cost-2). Note that Cost-1 is a fixed cost in the
sense that it is independent from the ODE. Cost-2 is a variable cost which increases as the expression of f
contains more operations.

8.3 Methods of the Same Order

We first compare the costs of GHF(c) and IHO™)(p, q) for p + ¢ = o, and ¢ € {p,p + 1}. The methods
are thus of order o, + 1. Table 2 reports the main cost of a step in IHO, IHO*, and GHF. It also shows the
complexity of two particular cases of GHF: GHF-1 is an implementation with only two interpolation points
(k = 1) and |01 — go| < 1, while GHF-2 is an implementation with two conditions on every interpolation
points (cg = ... = o = 2).

The first main result is that GHF-1 is always cheaper than IHO®™). Hence a GHF method with only two
interpolation points is guaranteed to run faster than IHO®). The next section shows that an improvement in
accuracy is also obtained in this case. Observe that Cost-2 in IHO* is approximately half as much as in IHO
because the Jacobians are not computed at pruned boxes in IHO*. Note also that Cost-2 is smaller in GHF-1
than in IHO* because IHO* evaluates one more Jacobian, i.e., 7 (D;),.

GHF-2 is more expensive than GHF-1 and IHO*) when £ contains few operations because the Jacobians
are cheap to compute in this case and the fixed cost Cost-1 becomes large wrt Cost-2. However, when f con-
tains many *, / operations (which is the case in many practical applications), GHF-2 becomes substantially
faster because Cost-1 in GHF-2 is independent of f and Cost-2 is substantially smaller in GHF-2 than in
GHF-1 and IHO™). This result shows the versatility of the approach that can be taylored to the application
at hand.

8.4 One-Step Methods of Different Orders but of Similar Cost

We now show that GHF methods can be tailored to be asymptotically more precise than IHO methods for a
similar cost. Consider the costs of the IHO(*)(p, ¢) and GHF-1 methods when we assume that p+¢ = o, — 2
and ¢ € {p, p+ 1}. Under these conditions, IHO™) is a method of order o, — 1, while GHF-1 is a method of
order o5 + 1. Table 3 reports the main cost of a step in IHO, IHO*, and GHF-1. Cost-2 is similar in GHF-1
and IHO* (and about twice as much in IHO). The GHF-1 method is thus asymptotically more precise (by two
orders of magnitude) than IHO* for a similar cost.
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9 Experimental Analysis

We now report experimental results of a C++ implementation *3 of our SoLVE algorithm based on the global
Hermite filter method GHF(o). We performed our tests on a Sun Ultra 10 workstation with a 333 MHz Ul-
traSparc CPU. The underlying interval arithmetic and automatic differentiation packages are PROFIL/BIAS
[Knu94] and FADBAD/TADIFF [BS96, BS97].

The Benchmarks Many of the benchmarks are standard. They come from various domains, including
chemistry, biology, mechanics, physics and electricity. The equation, initial conditions, and interval of in-
tegration for each initial value problem are given in [Jan01]. Note that the comparisons only uses point
initial conditions; they could easily be generalized to interval conditions. The “full Brusselator” (BRUS), the
“Oregonator” (OREG), and HIRES all model famous chemical reactions. Both OREG and HIRES are stiff
problems. The Lorenz system (LOR) examplifies the so-called “strange attractors”. The Two-Body problem
(2BP) comes from mechanics, and the van der Pol (VDP) equation describes an electrical circuit. All these
problems are described in detail in [HNW87, HW91]. We also consider a problem from molecular biology
(BIO) and the Stiff DETEST problem D1 [Enr75]. Finally, we consider four dynamical systems (LIEN, P1,
P2, P3), where the function f contains more operations. LIEN, P2 and P3 are taken from [Per00].

Overview of the Experiments  The experimental results obey the same assumptions as the theoretical anal-
ysis. They include three types of comparisons :

1. One-step methods of the same order;
2. One-step methods of different orders, but of similar cost;

3. Multistep versus one-step methods of the same order.

The tables report, for a given step size, the global error, the error ratio (an error ratio higher than 1 means that
GHF is more precise), the execution time of both methods (in seconds), and the time ratio (a time ratio higher
than 1 means that GHF is faster). They also report the execution time of IHO* between parentheses. As
mentioned, we observed small precision loss in IHO* over IHO and only for the larger step sizes. Since this
was not very significant, we assume that the error values in IHO* are nearly the same as in IHO. A “-”” symbol
in the tables means that the method failed to integrate the ODE for the corresponding step size. Finally, note
that the global error at point ¢; is given by the infinity norm of the width of the enclosure D; at ¢;, i.e., the
quantity |jw(D;)|| at the end of the interval of integration.

9.1 One-Step Methods

Same Order Table 4 reports the experimental results for the IHO™) (p, p) and GHF(p, p) methods of order
2p + 1 on several benchmarks, orders, and step sizes. In general, for a given step size, GHF and IHO* have
a similar accuracy and execution time. GHF is usually slightly faster as predicted by the theoretical results.
The difference should be larger for higher dimensional problems where f contains many operations. IHO is
slower than GHF and IHO*. For a given problem and given order, the error ratio is generally constant wrt the
step size, confirming that GHF and IHO®™) are methods of the same order.

13The code is available at ht t p: / / www. i nf 0. ucl . ac. be.
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VP IHO GHF h Error Time
P.g o IHO | GHF | Rato IHO | GHF | Ratio
BRUS 33 33 1E-1 2.3E-3 1.2E-3 19
7.5E-2 45E-5 24E-5 19
5E-2 9.7E-7 4.9E-7 20
25E-2 5.2E-9 2.7E-9 19
1.25E-2 3.2E-11 17E-11 19
1E-2 6.5E-12 3.5E-12 19 5.1(4.0) 3.9 13
44 4.4) 1E-1 17E-4 9.9E-5 17
7.5E-2 2.0E-6 11E-6 18
5E-2 10E-8 5.0E-9 20
2.5E-2 7.4E-12 3.2E-12 2.3 28(2.1) 2.0 14
55 (55 1E-1 2.4E-5 16E-5 15
7.5E-2 12E-7 7.6E-8 16
5E-2 1.6E-10 9.4E-11 17 1.9(14) 13 15
77 () 1E-1 76E-7 5.2E-7 15
7.5E-2 6.6E-10 4.7E-10 14 1.9(1.4) 13 15
838 898) 1E-1 15E-7 11E7 14
7.5E-2 5.4E-11 4.0E-11 14 2.2(1.6) 15 15
LOR 33 (33 1.25E-2 4.8E-1 3.2E-1 15
1E-2 6.7E-2 45E-2 15
7.5E-3 7.7E-3 4.9E-3 16
5E-3 4.3E-4 26E-4 17
2.5E-3 3.1E-6 2.0E-6 16 11(8) 8 14
44 44) 2E-2 15E-1 10E-1 15
1.75E-2 27E-2 18E-2 15
15E-2 5.0E-3 3.0E-3 17
1.25E-2 8.0E-4 4.6E-4 17
1E-2 9.0E-5 5.0E-5 18
7.5E-3 6.0E-6 3.1E-6 19 4.7 (3.6) 3.6 13
77 () 3E-2 3.0E-3 2.4E-3 12
2.75E-2 4.5E-4 3.6E-4 12
2.5E-2 6.6E-5 5.3E-5 12
2.25E-2 7.7E-6 6.2E-6 12 30(23) 22 14
I 2BP 33 33) 1E-1 4.5E-3 7.6E-4 6.0
7.5E-2 11E-4 3.7E-5 30
5E-2 3.3E-6 1.2E-6 27
2.5E-2 1.5E-8 4.5E-9 3.3 3.6(29) 2.6 14
44 [CX)] 1.25E-1 2.9E-4 74E-5 39
1E-1 12E-5 3.0E-6 4.0
7.5E-2 3.4E-7 8.5E-8 4.0
5E-2 3.4E-9 9.2E-10 3.7 2.5(19) 1.7 15
7,7 () 15E-1 11E-6 5.6E-7 20
1.25E-1 2.3E-9 9.7E-10 24 2.0(15) 13 15
VDP 33 (33 4E-2 15E-2 5.8E-3 26
3E-2 5.9E-5 3.8E-5 16
2E-2 17E-6 9.6E-7 18
1E-2 1.0E-8 5.3E-9 19
5E-3 7.4E-11 3.8E-11 19
2.5E-3 4.7E-13 2.6E-13 18 14 (11.2) 116 12
44 4.4) 4E-2 4.7E-5 4.0E-5 12
3E-2 8.4E-7 5.1E-7 16
2E-2 9.0E-9 45E-9 20
1E-2 11E-11 4.7E-12 2.3 4.5(3.7) 3.8 12
55 (55 4E-2 2.6E-6 2.1E-6 12
3E-2 2.3E-8 1.6E-8 14
2E-2 6.7E-11 3.9E-11 17 29(23) 24 13
I BIO 33 33) 75E-3 4.6E-6 2.0E-6 23
5E-3 8.2E-9 3.4E-9 24
2.5E-3 2.2E-11 9.2E-12 2.4 7.0(5.4) 5.1 14
44 [CX)] 75E-3 13E-6 T6E-7 17
5E-3 2.9E-10 1.3E-10 22
2.5E-3 9.7E-14 3.3E-14 2.9 10(7.5) 7.0 14
OREG 33 33) 15E-2 15E-4 2.2E-4 0.7
1E-2 8.0E-6 11E-5 0.7
7.5E-3 1.0E-6 14E-6 0.7
5E-3 6.0E-8 7.9E-8 0.8 9.6 (7.7) 7.5 13
44 [CX)] 2.5E-2 24E-4 34E-4 0.7
2E-2 12E-5 1.6E-5 0.7
15E-2 6.1E-7 7.6E-7 0.8
1E-2 15E-8 1.9E-8 0.8
7.5E-3 1.1E-9 1.4E-9 0.8 8.2(6.5) 6.4 13
D1 88 (88) 11E-1 11E-6 1.3E-6 0.8
1E-1 13E-7 14E-7 09
9E-2 15E-8 17E-8 0.9
8E-2 15E-9 1.7E-9 0.9
7E-2 13E-10 14E-10 0.9
6E-2 7.3E-12 8.3E-12 0.9
5E-2 2.8E-13 3.1E-13 0.9 24(18) 19 13
HIRES 44 (4,4) 25E-1 3.2E-7 6.1E-7 05
2E-1 24E-8 4.3E-8 06
15E-1 11E-9 2.6E-9 04
1E-1 2.8E-11 5.0E-11 0.6
5E-2 4.8E-14 6.9E-14 0.7 23(17) 16 14
838 [CES) 4E-1 2.9E-6 12E-5 0.2
35E-1 4.9E-8 3.9E-8 13
3E-1 8.0E-10 6.2E-10 13
25E-1 77E-12 6.0E-12 13
2E-1 3.4E-14 2.8E-14 12 10.9 (7.4) 7.2 15

Table 4: One-Step Methods of the Same Order.
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Different Orders The theoretical results indicated that, given a step size, the GHF method can always be
tailored to be asymptotically more precise than IHO* for a similar computation cost. We now validate this
claim experimentally. Table 5 compares IHO(p, p) (order 2p + 1) and GHF(p + 1, p + 1) (order 2p + 3). On
the benchmarks, GHF is always faster than IHO, and it produces significant improvements in accuracy. As
expected, the gain in precision increases when the step size decreases confirming that GHF is a method of
higher order than IHO. GHF is slightly slower than IHO* but, of course, it produces significant improvement
in accuracy. GHF and IHO* should have a similar execution time for higher dimensional problems where f
contains many operations, as predicted by the theoretical analysis.

Error wrt Time It is interesting to compare the various methods by plotting the error as a function of the
execution time. Figure 11 plots IHO™) (p, p), GHF(p, p), and GHF(p + 1, p + 1) using the results in Tables
4 and 5. We take p = 8 for D1 and HIRES and p = 3 for the other problems. The curve of IHO* is always
slightly above the curve of GHF(p, p) (except for D1). GHF(p + 1, p + 1) is almost always below the other
curves, and IHO is always above the other curves. These results confirm the theoretical results and indicate
that GHF(p + 1, p + 1) is superior to the other methods.

9.2 Multistep Versus One-Step Methods

We now compare multistep GHF methods versus IHO™) and the one-step GHF method of the same order.
We restrict attention to problems where the function f contains more operations. Tables 6, 7, 8, and 9 report
the results respectively for the four tested examples and for several orders and step sizes 4. For a given step
size, multistep GHF methods usually produce much more precise results than one-step methods (especially
for large step sizes); they also allow for larger step sizes. Multistep GHF methods are generally as fast as the
one-step GHF method and IHO*; they are faster when f has many operations, as is the case in LIEN (which
contains many multiplications). The tables also show that, for a given step size, the one-step GHF method is
slightly more precise and faster than IHO*, and that IHO is slower.

Figures 12, 14, 13 and 15 plot the error as a function of the execution time. The main result is that
multistep GHF methods perform better than one-step methods on these problems. In general, multistep
methods produce several orders of magnitude improvements in precision for a fixed execution time. The
one-step GHF method performs slightly better than IHO*. Note that, for the LIEN problem, GHF methods
with many interpolation points are more efficient and allow for smaller execution times.

9.3 Discussion

Before concluding this section, it is important to make a number of remarks.

In GHF, the enhancement in precision obtained by recomputing the Jacobians at pruned boxes is in-
significant in all problems we tested. Instead, this recomputation increases the computational cost. Our
experimental results showed that this also holds for the IHO method in general.

As pointed out by Nedialkov [Ned99], the stability of interval methods depends not only on the stability
of the underlying approximation formula (as in standard numerical methods) but also on the corresponding
formula for the truncation error. Hence, interval extensions of standard numerical methods designed for stiff
problems may need smaller step sizes. Another restriction on the step size in interval methods comes from
the bounding box process, whose current implementations require very small step sizes to be able to compute
bounding boxes in the case of stiff problems. This explains why the differences in efficiency between interval
methods are not as sharp as for traditional methods.

14Note that in the LIEN problem, we used a bounding box computation method of order 13 for o5 > 12.
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VP THO GHF h Error Time
|| P.q | - | | IHO | GHF | Rato IHO | GHF | Ratio ||
BRUS 33 (44 1E-1 2.3E-3 1.0E-3 23
7.5E-2 45E-5 1.3E-5 35
5E-2 9.7E-7 12E-7 81
25E-2 5.2E-9 9.5E-11 55
1.25E-2 3.2E-11 2.0E-13 160 4.0(3.2) 3.6 11
44 (55) 1E-1 17E-4 1.0E-4 17
7.5E-2 2.0E-6 9.9E-7 20
5E-2 1.0E-8 3.2E-9 31
2.5E-2 7.4E-12 6.4E-13 12 28(2.1) 24 12
LOR 33 (44 1.25E-2 4.8E-1 1.3E-2 15
1E-2 6.7E-2 12E-3 56
7.5E-3 7.7E-3 5.7E-5 135
5E-3 4.3E-4 9.7E-7 443 5.4 (4.0) 4.9 1.1
44 (55) 2E-2 15E-1 6.2E-2 24
1.75E-2 27E-2 9.0E-3 3.0
15E-2 5.0E-3 12E-3 42
1.25E-2 8.0E-4 12E-4 6.7
1E-2 9.0E-5 7.2E-6 13
7.5E-3 6.0E-6 2.6E-7 23 4.7 (3.6) 4.1 11
I 2BP 33 (4,4) 1E-1 4.5E-3 2.5E-5 180
7.5E-2 11E-4 7.6E-7 145
5E-2 3.3E-6 8.9E-9 371
2.5E-2 15E-8 4.1E-11 366 3.6 (2.9 3.0 12
44 (55 1.25E-1 2.9E-4 11E5 26
1E-1 12E-5 3.6E-7 33
7.5E-2 3.4E-7 5.6E-9 61
5E-2 3.4E-9 5.5E-11 62 25(19) 2.0 13
VDP 33 (4,4) 4E-2 15E-2 2.5E-3 6.0
3E-2 5.9E-5 9.7E-6 6.1
2E-2 17E-6 8.8E-8 19
1E-2 10E-8 6.2E-11 161
5E-3 7.4E-11 9.0E-14 822 7.4(5.6) 7.2 1.0
44 (55 4E-2 47E5 3.6E-5 13
3E-2 8.4E-7 3.6E-7 23
2E-2 9.0E-9 1.6E-9 5.6
1E-2 11E-11 2.8E-13 39 45(3.7) 42 11
I BIO 33 (4,4) 75E-3 4.6E-6 1.7E-6 27
5E-3 8.2E-9 12E-9 6.8
2.5E-3 2.2E-11 4.8E-13 46 7.0(5.4) 6.2 11
44 (55 75E-3 13E-6 TTE-T 17
5E-3 2.9E-10 9.3E-11 31
2.5E-3 9.7E-14 1.0E-14 9.7 10(7.5) 8.4 12
OREG 33 (4,4) 2E-2 2.6E-3 7.0E-5 37
15E-2 15E-4 11E-6 136
1E-2 8.0E-6 2.2E-8 364
7.5E-3 1.0E-6 15E-9 667
5E-3 6.0E-8 4.6E-11 1304 9.6 (7.7) 8.6 11
44 (55 2.5E-2 24E-4 14E-4 17
2E-2 12E-5 3.9E-6 31
15E-2 6.1E-7 16E-8 38
1E-2 15E-8 6.3E-11 238 6.2(4.9) 5.3 12
D1 838 9.9 11E-1 11E-6 3.9E-8 28
1E-1 13E-7 3.6E-9 36
9E-2 15E-8 3.5E-10 43
8E-2 15E-9 2.9E-11 53
7E-2 13E-10 1.8E-12 72
6E-2 7.3E-12 7.8E-14 94 20(15) 18 11
HIRES 44 (55) 3E-1 13E-5 1.9E-6 6.8
25E-1 3.2E-7 6.0E-8 53
2E-1 24E-8 24E-9 10
15E-1 11E-9 4.6E-11 24
1E-1 2.8E-11 3.2E-13 88 12 (8.5) 9.3 13
838 ©9 4E-1 2.9E-6 2.5E-5 0.1
3.5E-1 4.9E-8 4.1E-8 12
3E-1 8.0E-10 6.5E-10 12
25E-1 77E-12 6.2E-12 12
2E-1 3.4E-14 2.9E-14 12 10.9 (7.4) 7.9 14
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Figure 11: Comparison of the Methods IHO™)(p, p), GHF(p, p) and GHF(p + 1,p + 1) for the Problems
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IVP IHO GHF h Error Time
|| | P.a | - | | IHO | GHF | Raio IHO | GHF | Raio ||
LIEN 33 (33) 5E-1 8.8E-7 7.2E-7 12
4E-1 14E-8 11E-8 13
3E-1 8.4E-10 4.7E-9 0.2
2E-1 23E-11 5.4E-11 04
1E-1 1.3E-13 1.3E-13 10
5E-2 8.7E-16 8.8E-16 1.0 8.3(6.7) 6.1 14
33 (2,22) 5.5E-1 - 2.1E-6 -
5E-1 8.8E-7 25E-7 35
4E-1 14E-8 3.0E-9 47
3E-1 8.4E-10 19E-10 44
2E-1 23E-11 6.9E-12 33
1E-1 1.3E-13 3.7E-14 35
5E-2 8.7E-16 2.6E-16 3.3 8.3(6.7) 6.3 13
44 (4,4) 5E-1 25E-7 2.0E-7 13
4E-1 1.0E-9 7.6E-10 13
3E-1 19E-11 14E-11 14
2E-1 11E-13 8.3E-14 13
1E-1 8.3E-17 6.5E-17 35 6.1(4.8) 4.4 14
44 2222 5.8E-1 - 6.7E-8 -
5.5E-1 - 8.5E-9 -
5E-1 25E-7 7.2E-9 35
4E-1 1.0E-9 5.0E-11 20
3E-1 19E-11 11E-12 17
2E-1 11E-13 9.9E-15 11
1E-1 8.3E-17 3.8E-17 22 6.1(4.8) 4.6 13
55 (55) 5E-1 1.2E-7 9.4E-8 13
4E-1 1.2E-10 9.1E-11 13
3E-1 7.4E-13 5.7E-13 13
2E-1 9.9E-16 7.2E-16 14 4.2(33) 3.0 14
55 22222) 5.8E-1 - 6.3E-9 -
55E-1 - 8.2E-10 -
5E-1 12E-7 9.3E-11 1290
4E-1 1.2E-10 2.0E-12 60
3E-1 7.4E-13 24E-14 31
2E-1 9.9E-16 1.0E-16 10 4.2(3.3) 3.1 13
6,6 (6,6) 5E-1 7.2E-8 6.0E-8 12
45E-1 3.5E-10 29E-10 12
4E-1 1.7E-11 14E-11 12
3.5E-1 9.1E-13 7.4E-13 12
3E-1 4.0E-14 3.3E-14 12 3.7 (2.9) 2.7 14
6,6 (4,44) 5.5E-1 - 1.2E-7 -
5E-1 7.2E-8 2.0E-10 360
45E-1 3.5E-10 18E-11 19
4E-1 17E-11 13E-12 13
35E-1 9.1E-13 9.0E-14 10
3E-1 4.0E-14 3.9E-15 10 3.7(2.9) 2.7 14
6,6 B333 5.8E-1 - 3.8E-8 -
5.5E-1 - 8.6E-10 -
5E-1 7.2E-8 3.9E-10 185
45E-1 3.5E-10 3.0E-11 12
4E-1 1.7E-11 6.0E-13 28
3.5E-1 9.1E-13 4.8E-14 19
3E-1 4.0E-14 2.3E-15 17 3.7(2.9) 2.6 14
6,6 222222 6E-1 - 15E-8 -
5.5E-1 - 1.7E-10 -
5E-1 7.2E-8 14E-11 5143
45E-1 3.5E-10 16E-12 219
4E-1 1.7E-11 14E-13 121
3.5E-1 9.1E-13 1.3E-14 70
3E-1 4.0E-14 9.0E-16 44 3.7 (2.9) 2.8 13
88 (88) 5E-1 2.5E-8 2.1E-8 12
45E-1 25E-11 21E-11 12
4E-1 5.1E-13 4.3E-13 12
35E-1 11E-14 9.7E-15 12
3E-1 2.0E-16 1.7E-16 12 5.1(3.7) 34 15
838 4444 5.8E-1 - 12E8 -
5.5E-1 - 8.9E-11 -
5E-1 25E-8 1.7E-11 1471
45E-1 25E-11 6.7E-13 37
4E-1 5.1E-13 6.8E-15 75
3.5E-1 1.1E-14 4.1E-16 27 4.4(3.2) 2.8 16
99 9,9 5E-1 15E-8 1.3E-8 12
45E-1 7.2E-12 6.2E-12 12
4E-1 9.7E-14 8.3E-14 12
3.5E-1 1.4E-15 1.2E-15 12 5.1(3.7) 3.4 15
99 (6,6,6) 5.5E-1 - 1.9E-8 -
5E-1 15E-8 5.3E-12 2830
45E-1 7.2E-12 16E-13 45
4E-1 9.7E-14 4.0E-15 24
3.5E-1 14E-15 1.3E-16 11 5.1(3.7) 32 16
99 (333333 6E-1 - 35E-7 -
5.5E-1 - 25E-11 -
5E-1 1.5E-8 75E-13 20000
45E-1 7.2E-12 22E-13 33
4E-1 9.7E-14 2.0E-14 48
3.5E-1 1.4E-15 25E-14 0.06 5.1(3.7) 3.1 1.6

Table 6: Multistep Versus One-Step Methods : the LIEN Problem.
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VP IHO GHF h Error Time
|| | P.a | - | | IHO | GHF | Raio IHO | GHF | Ratio |
P1 33 33) 5E-2 8.1E-5 5.2E-5 16
4E-2 4.0E-6 2.3E-6 17
3E-2 2.0E-7 11E-7 18
2E-2 6.1E-9 29E-9 21
1E-2 33E-11 14E-11 24
5E-3 24E-13 9.7E-14 2.5 27(22) 21 13
33 222 6.5E-2 - 17E-4 -
6E-2 - 3.2E-5 -
5E-2 8.1E-5 2.9E-6 28
4E-2 4.0E-6 2.8E-7 14
3E-2 2.0E-7 2.1E-8 95
2E-2 6.1E-9 7.9E-10 78
1E-2 3.3E-11 4.0E-12 8.4
5E-3 24E-13 3.3E-14 7.3 27 (22) 23 12
6,6 (6.6) 5E-2 6.3E-7 4.8E-7 13
4E-2 4.8E-9 3.7E-9 13
3E-2 1.7E-11 13E-11 13
2E-2 1.2E-14 9.3E-15 13 19 (13.4) 128 15
66 @43 = B 36E5 B
6E-2 - 3.2E-7 -
5E-2 6.3E-7 8.5E-9 74
4E-2 4.8E-9 14E-10 34
3E-2 17E-11 9.7E-13 18
2E-2 1.2E-14 7.0E-15 17 19 (13.4) 139 14
6,6 (3333 T5E-2 - 5.9E-5 -
TE-2 - 3.1E-6 -
6E-2 - 9.7E-8 -
5E-2 6.3E-7 3.2E-9 197
4E-2 4.8E-9 6.2E-11 78
3E-2 1.7E-11 49E-13 35
2E-2 1.2E-14 2.9E-14 0.4 19 (13.4) 154 12
88 88 6E-2 12E-4 9.9E-5 12
5.5E-2 6.8E-7 5.4E-7 13
5E-2 35E-8 2.8E-8 13
4.5E-2 1.9E-9 15E-9 13
4E-2 8.1E-11 6.4E-11 13
3.5E-2 27E-12 22E-12 12
3E-2 6.6E-14 5.4E-14 12 19 (13.5) 12.8 15
8.8 (4444) 7.5E-2 - 3.7E-6 -
7E-2 - 18E-7 -
6.5E-2 - 2.3E-8 -
6E-2 12E-4 3.2E-9 37500
5.5E-2 6.8E-7 4.1E-10 1659
5E-2 35E-8 4.8E-11 729
4.5E-2 1.9E-9 4.6E-12 413
4E-2 8.1E-11 3.7E-13 219
3.5E-2 27E-12 5.4E-14 50
3E-2 6.6E-14 3.5E-14 19 19 (13.5) 14 14
99 99 6E-2 4.5E-5 3.7E-5 12
5.5E-2 21E-7 17E-7 12
5E-2 8.6E-9 6.9E-9 12
4.5E-2 3.4E-10 2.7E-10 13
4E-2 11E-11 8.6E-12 13
3.5E-2 2.6E-13 2.1E-13 12 19 (13.9) 134 14
99 666) 7E2 - 13E6 -
6.5E-2 - 6.0E-8 -
6E-2 45E-5 5.6E-9 8393
5.5E-2 21E-7 5.1E-10 412
5E-2 8.6E-9 4.1E-11 210
4.5E-2 3.4E-10 26E-12 131
4E-2 11E-11 15E-13 73
3.5E-2 2.6E-13 1.3E-14 20 19 (13.9) 13.6 14

Table 7: Multistep Versus One-Step Methods : the P1 Problem.
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VP IHO GHF h Error Time
P, o IHO | GHF | Ratio IHO | GHF | Ratio
P2 838 (88) 1E-1 1.9E-5 1.6E-5 12
9E-2 4.4E-7 3.6E-7 12
8E-2 17E-8 14E-8 12
TE-2 5.7E-10 4.6E-10 12
6E-2 15E-11 12E-11 12 5.6 (4.1) 3.9 14
88 (4444 14E-1 - 3.0E-6 -
13E1 - 3.7E-7 -
12E-1 - 5.5E-8 -
11E-1 - 8.0E-9 -
1E-1 1.9E-5 11E-9 17273
9E-2 4.4E-7 1.3E-10 3385
8E-2 17E-8 17E-11 1000
7E-2 5.7E-10 5.5E-12 104
6E-2 15E-11 4.0E-12 3.7 5.6 (4.1) 49 11
99 9,9 1E-1 8.5E-6 7.0E-6 12
9E-2 14E-7 11E-7 13
8E-2 3.7E-9 3.1E-9 12
7E-2 8.9E-11 7.3E-11 12
6E-2 1.6E-12 14E-12 11 7.0(5.1) 4.8 15
99 (6,6,6) 13E1 - 3.7E-6 -
12E1 - 2.0E-7 -
11E1 - 19E-8 -
1E-1 8.5E-6 18E-9 4722
9E-2 14E-7 15E-10 933
8E-2 3.7E-9 11E-11 336
7E-2 8.9E-11 15E-12 59
6E-2 1.6E-12 1.0E-12 16 7.0(5.1) 5.2 13

Table 8: Multistep Versus One-Step Methods : the P2 Problem.

VP IHO GHF h Error Time
P, q - IHO | GHF | Ratio IHO | GHF | Ratio
P3 44 (4,4) 5E-1 19E-3 14E-3 14
4E-1 4.0E-6 2.7E-6 15
3E-1 6.2E-8 3.9E-8 16
2E-1 3.4E-10 2.0E-10 17
1E-1 2.7E-13 9.4E-14 2.9 3.5(2.7) 25 14
44 2222 6.5E-1 - 9.1E-5 -
6E-1 - 11E-5 -
5E-1 1.9E-3 7.0E-7 2714
4E-1 4.0E-6 4.3E-8 93
3E-1 6.2E-8 15E-9 43
2E-1 3.4E-10 15E-11 23
1E-1 2.7E-13 16E-14 17 35(2.7) 33 11
838 (88) 5E-1 2.6E-5 2.1E-5 12
45E-1 15E-7 1.2E-7 12
4E-1 5.4E-9 4.4E-9 12
3.5E-1 1.7E-10 14E-10 12
3E-1 3.7E-12 3.0E-12 12 3.3(24) 2.2 15
838 4444) 6.8E-1 - 8.9E-5 -
6.5E-1 - 8.3E-7 -
BE-1 - 4.8E-8 -
5.5E-1 - 6.4E-9 -
5E-1 26E-5 7.6E-10 34211
4.5E-1 15E-7 8.8E-11 1705
4E-1 5.4E-9 7.9E-12 684
35E-1 1.7E-10 5.4E-13 315
3E-1 3.7E-12 5.1E-14 73 3.3(24) 2.5 13
99 9,9 5E-1 1.0E-5 8.2E-6 12
4.5E-1 4.3E-8 3.5E-8 12
4E-1 11E-9 9.2E-10 12
3.5E-1 24E-11 2.0E-11 12
3E-1 3.5E-13 2.9E-13 12 3.9(29) 2.7 14
99 666 6E-1 E 6857 B
5.5E-1 - 2.0E-8 -
5E-1 10E-5 1.6E-9 6250
45E-1 4.3E-8 1.2E-10 358
4E-1 11E-9 71E-12 155
3.5E-1 24E-11 3.0E-13 80
3E-1 3.5E-13 14E-14 25 3.9(2.9) 29 13

Table 9: Multistep Versus One-Step Methods : the P3 Problem.

38



Error

Error

Error

Error

10

IHO(3,3)
IHO*(3,3)
GHF(3,3)
GHF(2,2,2)

IHO(5,5)
IHO*(5,5)
GHF(5,5)
GHF(2,2,2,2,2)

15 2 25 3

Time (s)

35 4

IHO(8,8)
IHO*(8,8)
GHF(8,8)
GHF(4,4,4,4)

-4

35
Time (s)

Error

Error

Error

-10

10

1078

IHO(4,4)
IHO*(4,4)
GHF(4,4)
GHF(2,2,2,2)

Time (s)

IHO(6.6)
IHO*(6,6)
GHF(6,6)
GHF(4,4,4)
GHF(3,3,3,3)
GHF(2,2,2,2,2,2)

15 2 2.5 3 35 4
Time (s)
—— IHO(9,9)
—o— IHO*(9,9)
—8— GHF(9,9)
—%— GHF(6,6,6)
—<— GHF(3,3,3,333)
2 3 4 5

Time (s)

Figure 12: Multistep Versus One-Step Methods : the LIEN Problem.
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Figure 13: Multistep Versus One-Step Methods : the P1 Problem.

39




Error

Error

-5

10

10

-10

15 2 25 3

Time (s)

35 4

10
——H0G.3) —— HO(6,6)
-4 —o— IHO*(3,3) 107 —o— IHO*(6,6)
—5— GHF(3,3) —&— GHF(6,6)
—— GHF(2,2,2) —— GHF(4,4,4)
- 10° GHF(3,3,3,3)
-8 § 10-10
i
10 10712
12 10
14 10718
0 5 10 15 20 25 30 0 5 10 15 20
Time (s) Time (s)
2 10"
—— IHO(8,8) —+ IHO(9,9)
- —o— IHO*(8.,8) & —— HO*(9,9)
—=— GHF(8,8) 10 X —&— GHF(9,9)
o 1 —%— GHF(4,4,4,4) —— GHF(6.,6.6)
10°
: 5
w 10710
10
12 10
14 < 1074
5 10 15 20 6 8 10 12 14 16 18 20
Time (s) Time (s)
Figure 14: Multistep Versus One-Step Methods : the P2 Problem.
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Figure 15: Multistep Versus One-Step Methods : the P3 Problem.



In our experiments, we always chose oo = ... = oy. Indeed, the main cost of the method is determined
by maxo<i<x{0o;} and the order of the method is maximized when o¢ = ... = oy. Since the actual step sizes
are sufficiently small, this choice is thus always better. If we could use larger step sizes (e.g. by improving
the bounding box process), then stability requirements might make other choices preferable.

The results close to machine precision are not very significant since rounding errors, not the actual
method, are determining the accuracy. This explains why the curves in the figures tend to join for high
precisions in some cases (e.g. in LIEN, P1, P2).

9.4 Summary

We now summarize our experimental results. The main conclusions are:

1. The one-step GHF method is almost always better than existing (one-step) interval methods;

2. When f contains few operations, the one-step GHF method outperforms multistep GHF methods (and
other existing methods);

3. When f contains many operations, multistep GHF methods outperform the one-step GHF method (and
other existing methods);

4. GHF methods are very versatile and can be tailored to the application at hand;

5. The experimental results confirm the theoretical analysis.

In particular, the one-step GHF method performs generally better than the IHO* method, a variant of Ne-
dialkov’s IHO method we proposed and which performed better than the original method on almost all our
benchmarks. For low dimensional problems or when f contains few operations, the one-step GHF method is
only slightly better than IHO*. For higher dimensional problems where f contains many operations, the one-
step GHF method is asymptotically more precise (by two orders of magnitude) than IHO* for the same cost.
When f contains few operations, the one-step GHF method is more effective than multistep GHF methods
which have a relatively high fixed cost. When f contains many operations, multistep GHF methods perform
better than one-step methods. They may produce orders of magnitude improvements in accuracy for a given
execution time. Alternatively, they may reduce computation times substantially for a given precision since
they avoid expensive Jacobian computations. Finally note that, although our implementation used a constant
order and step size, it can be easily enhanced to incorporate standard order and step size control strategies,
e.g., Eijgenraam’s [Eij81] or Nedialkov’s [Ned99] techniques.

10 Conclusion

This paper described a constraint satisfaction approach to initial value problems for parametric ordinary
differential equations (i.e., ordinary differential equations where some data or initial conditions are uncertain
and given by intervals). The main novelty of the constraint satisfaction approach is to introduce, inside
traditional interval methods, a pruning component which reduces the size of the predicted boxes by using
relaxations of the ODE (also called filters). The presented an effective pruning algorithm which uses (1)
relaxations of the ODE based Hermite interpolation polynomials and enclosures of their error terms; (2) a
globalization process to reduce variable dependency problems, and evaluation points that minimize the local
error of the relaxations. The pruning component was integrated in an integration algorithm which also uses
traditional techniques to handle the wrapping effect.
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The novel integration algorithm was analyzed both theoretically and experimentally. The theoretical
results indicate that, for the same computation costs, our algorithm provides quadratic (asymptotic) improve-
ment in accurary over the best interval method we know of. They also show that our algorithm is signif-
icantly faster when the ODE contains many operations. Experimental results on a variety of standard and
new benchmarks validated the theoretical results. The algorithm shows significant gains in accuracy, while
not degrading computational performance. The experimental results also illustrate that the approach could
produce significant gain in computation time when the ODE contains many operations.

It is also important to stress the versatility of our algorithm and of our approach. On the one hand, global
Hermite filters can be tailored to the problem at hand by choosing the number of interpolation points as well
as the number of derivative conditions imposed at each interpolation point. On the other hand, the pruning
algorithm itself is generic and new pruning techniques may easily be incorporated.

There are a wealth of topics for further research:

1. The current algorithm can be enhanced in many ways to include, for instance, order and step size
control strategies, and the automatic selection of the number of interpolation points and the number of
derivative conditions imposed at each interpolation point.

2. The constraint satisfaction approach is clearly in its infancy and new relaxations (e.g., using splines,
trigonometric interpolation, Legendre, Chebyshev, and Laguerre polynomials) should be investigated.

3. Compared to standard numerical methods, validated methods generally use smaller step sizes and stiff
problems are particularly challenging. The main factors that limit the step size are the need to enclose
error terms and the bounding box process. Finding efficient bounding box techniques is probably the
main bottleneck at this point and it would be interesting to study how pruning techniques could help in
this respect. Once we will be able to increase the step size, it will be important to analyze the stability
of our approach and to compare it to the stability of other validated methods. The choice of many of the
parameters mentioned in Point (1) will be guided by stability requirements in the case of stiff problems.
Furthermore, our asymptotic theory for choosing an optimal evaluation time may not be valid anymore
and we may have to find new techniques for choosing a good evaluation time.

4. A possible alternative to validated methods consists of dropping the enclosures of the error terms and
the bounding box process in the interval method. We can thus keep the parametric aspect of the ODEs,
but we lose the validated aspect of the method. However, the advantage is that larger step sizes can be
used in this case. From our experimental results, we can expect a higher gain in performance of our
GHF method over the IHO®™) method for those larger step sizes. In addition, if we consider an ODE
for which it is not possible to compute the Taylor coefficients (u)2, (u)3, - . . of the solution, a multistep
GHF(o) method with o; < 2, i = 0, ..., k, is the only interval method (we know of) which is able to

integrate the ODE, since it does not need any Taylor coefficient.

5. A very promising direction of further research is the application of our approach to standard numerical
methods for ODEs. Indeed, to our knowledge, the idea of evaluating a Hermite filter at a point which
is different from the point at which the current value is computed is completely new. We can apply our
asymptotic theory for the choice of an optimal evaluation time in the case of nonstiff problems. For
stiff problems, the choice of a good evaluation time will be guided by stability requirements. Note that
when ¢ = (1,...,1), i.e., the Hermite interpolation polynomial reduces to a Lagrange interpolation
polynomial, we can apply the classical linear stability theory to our approach.

6. Finally, it would be interesting to apply the constraint satisfaction approach to boundary value prob-
lems, where pruning arises naturally.

In summary, the constraint satisfaction approach should be a valuable addition to existing methods for the
reliable solutions of differential equations and there are considerable room for further research in this area.
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