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Abstract

Interval methods for ordinary di�erential equations (ODEs) provide guaranteed enclosures of the
solutions and numerical proofs of existence and unicity of the solution. Unfortunately, they may
result in large over-approximations of the solution because of the loss of precision in interval com-
putations and the wrapping e�ect. The main open issue in this area is to �nd tighter enclosures of
the solution, while not sacri�cing e�ciency too much.

This paper takes a constraint satisfaction approach to this problem, whose basic idea is to iterate a
forward step to produce an initial enclosure with a pruning step that tightens it. The paper focuses
on the pruning step and proposes novel multistep �ltering operators for ODEs. These operators
are based on interval extensions of a multistep solution that are obtained by using (Lagrange and
Hermite) interpolation polynomials and their error terms. The paper also shows how traditional
techniques (such as mean-value forms and coordinate transformations) can be adapted to this new
context. Preliminary experimental results illustrate the potential of the approach, especially on sti�
problems, well-known to be very di�cult to solve.

1 Introduction

Di�erential equations (DE) are important in many scienti�c applications in areas such as physics,
chemistry, and mechanics to name only a few. In addition, computers play a fundamental role in
obtaining solutions to these systems.

The Problem A (�rst-order) ordinary di�erential equation (ODE) system O is a system of the
form

u1
0(t) = f1(t; u1(t); : : : ; un(t))

u2
0(t) = f2(t; u1(t); : : : ; un(t))

...
un

0(t) = fn(t; u1(t); : : : ; un(t))

In the following, we use the vector representation u0(t) = f(t; u(t)) or more simply u0 = f(t; u):
Given an initial condition u(tinit) = uinit and assuming existence and uniqueness of the solution,
the solution of O is a function s� : R ! R

n satisfying O and the initial condition s�(tinit) = uinit.
Note that di�erential equations of order p (i.e. f(t; u; u0; u00; : : : ; up) = 0 ) can always be transformed
into an ODE by introduction of new variables.

Discrete variable methods aim to approximate the solution s�(t) of an ODE system at some points
t0; t1; : : : ; tm. They include one-step methods (where s�(tj) is approximated from the approximation
uj�1 of s�(tj�1)) and multistep methods (where s�(tj) is approximated from the approximation
uj�1; : : : ; uj�p of s�(tj�1); : : : ; s

�(tj�p)). In general, these methods do not guarantee the existence
of a solution within a given bound and can only return approximations since they ignore error terms.
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Interval Analysis in ODE Interval techniques for ODE systems were introduced by Moore
[Moo66]. (See [BBCG96] for a description and a bibliography of the application of interval analysis
to ODE systems.) These methods provide numerically reliable enclosures of the exact solution at
points t0; t1; : : : ; tm. They typically apply a one-step Taylor interval method and make extensive use
of automatic di�erentiation to obtain the Taylor coe�cients [Moo79, Ral80, Ral81, Cor88, Abe88].
The major problem of interval methods on ODE systems is the explosion of the size of resulting
boxes at points t0; t1; : : : ; tm that is due to two reasons. On the one hand, step methods have a
tendency to accumulate errors from point to point. On the other, the approximation of an arbitrary
region by a box, called the wrapping e�ect, may introduce considerable imprecision after a number
of steps. Much research has been devoted to address this problem. One of the best systems in this
area is Lohner's AWA [Loh87, Sta96]. It uses the Picard iteration to prove existence and uniqueness
and to �nd a rough enclosure of the solution. This rough enclosure is then used to compute correct
enclosures using a mean value method and the Taylor expansion on a variational equation on global
errors. It also applies coordinate transformations to reduce the wrapping e�ect.

A Constraint Satisfaction Approach Our research takes a constraint satisfaction approach
to the problem of producing tighter enclosures. The basic idea [DJVH98] is to view the solving
of ODEs as the iteration of two steps: a forward process that produces an initial enclosure of the
solution at a given time (given enclosures at previous times) and a pruning process that tightens
this �rst enclosure. Our previous results, as most research in interval methods, mostly focused on
the forward process. Our current research, in contrast, concentrates on the pruning step, where
constraint satisfaction techniques seem particularly well adapted.

It is important to mention that taking a constraint satisfaction approach gives a fundamentally
new perspective on this problem. Instead of trying to adapt traditional numerical techniques to
intervals, the constraint satisfaction approach looks at the problem in a more global way and makes
it possible to exploit a wealth of mathematical results. In this context, the basic methodology
consists of �nding necessary conditions on the solution that can be used for pruning. This paper
will also show experimentally that the forward and backward steps are in fact orthogonal, clearly
showing the interest of the approach. We thus may hope that constraint satisfaction will be as
fruitful for ODEs as for combinatorial optimization and nonlinear programming.

Goal of the Paper As mentioned, the main goal of this paper is to design �ltering algorithms to
produce tighter enclosures of the solution. The problem is di�cult because, contrary to traditional
discrete or continuous problems, the constraints cannot be used directly since they involve unknown
functions (and their derivatives). The key idea of the paper is to show that e�ective multistep �ltering
operators can be obtained by using conservative approximations of these unknown functions. These
approximations can be obtained by using polynomial interpolations and their error terms. Once
these multistep �ltering operators are available, traditional constraint satisfaction techniques (e.g.,
box(k)-consistency [VHLD97]) can be applied to prune the initial enclosure.

Contributions This paper contains three main contributions. First, it proposes a generic �ltering
operator based on interval extensions of a multistep solution function and its derivatives. Second,
it shows how these interval extensions can be obtained using Lagrange and Hermite interpolation
polynomials. Third, it shows how the �ltering operator can accommodate standard techniques
such as mean-value forms and coordinate transformations to address the wrapping e�ect during the
pruning step as well. The paper also contains some preliminary experimental evidence to show that
the techniques are e�ective in tightening the initial enclosures.

Organization The rest of this paper is organized as follows. Sections 2 and 3 set up the back-
ground and recall the constraint satisfaction approach from [DJVH98]. Sections 4 and 5 are the
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core of the paper: Section 4 contains the novel generic multistep pruning operator, while Section 5
shows how to build the interval approximations it needs using Lagrange and Hermite polynomials.
Section 6 describes advanced techniques, i.e., how to adapt the multistep �ltering operator to the
mean-value form and to local coordinate transformations. Section 7 discusses the implementation
issues. Section 8 contains the experimental results and Section 9 concludes the paper. The proof of
all results are given in the appendix.

2 Background and De�nitions

This section brie
y reviews the notational conventions and the main de�nitions used in this paper.
Additional information can be found in [AH83, Neu90, Moo79, VHLD97, DJVH98]. Note that
Section 2.2 contains generalizations of the standard de�nitions needed for this paper.

2.1 Basic Notational Conventions

The following conventions are adopted in this paper. (Sequences of) small letters denote real values,
vectors and functions of real values. (Sequences of) capital letters denote real matrices, sets, intervals,
vectors and functions of intervals. Capital letters between square brackets denote interval matrices.
Bold face small letters denote sequences (delimited by \h" and \i") of real values. Bold face capital
letters denote sequences (delimited by \h" and \i") of intervals. All these (sequences of) letters may
be subscripted.

We use traditional conventions for abstracting 
oating-point numbers. If F is a 
oating-point
system, the elements of F are called F-numbers. If a 2 F , then a+ denotes the smallest F-number
strictly greater than a and a� the largest F-number strictly smaller than a. I denotes the set of
all closed intervals � R whose bounds are in F . A vector of intervals D 2 In is called a box. If
r 2 R, then r denotes the smallest interval I 2 I such that r 2 I . If r 2 R

n , then r = (r1; :::; rn).
If A � R

n , then 2A denotes the smallest box D 2 In such that A � D. We also assume that
t0; : : : ; tk, te and t are reals, u0; : : : ; uk are in Rn , and D0; : : : ; Dk are in In. Finally, we use tk to
denote ht0; :::; tki, uk to denote hu0; :::; uki, Ttk to denote the interval [min(t0; :::; tk);max(t0; :::; tk)],
Ttk;t to denote the interval [min(t0; :::; tk; t);max(t0; :::; tk; t)] and Dk to denote hD0; :::; Dki. The
following de�nitions are standard.

De�nition 1 Let A;B be sets, a 2 A, g a function and r a relation de�ned on A, and op 2
f+;�; �; =g. Then, g(A) = fg(x) j x 2 Ag, r(A) =

W
x2A r(x), A op B = fx op y j x 2 A; y 2 Bg

and a op A = fa op x j x 2 Ag.

2.2 Interval Extensions of Partial Functions

We assume traditional de�nitions of interval extensions for functions and relations. In addition, if
f (resp. c) is a function (resp. relation), then F (resp. C) denotes an interval extension of f (resp.
C). We also overload traditional real operators (e.g., +, *, =, ...) and use them for their interval
extensions. Because the techniques proposed in this paper use multistep solutions (which are partial
functions), it is necessary to de�ne interval extensions of partial functions and relations.

De�nition 2 (Interval Extension of a Partial Function) The interval function G : In ! Im

is an interval extension of the partial function g : E � R
n ! R

m if

8D 2 In : g(E \D) � G(D):

De�nition 3 (Interval Extension of a Partial Relation) The interval relation R � In is an
interval extension of the partial relation r � E � R

n if

8D 2 In : r(E \D)) R(D):
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In the context of ODEs, it is also useful to de�ne interval extensions with respect to some variables
only.

Notation 1 Let g : (x; y) 7! g(x; y). Then, g(a; �) denotes the unary function

g(a; �) : y 7! g(a; y):

A similar de�nition holds for g(�; a). The generalization to n-ary functions is straightforward.

De�nition 4 (Interval Extension wrt a Subset of the Variables) The function G : I �R !
I is an interval extension of the function g : R � R ! R wrt the 1st variable if the function G(�; a)
is an interval extension of g(�; a) for all a 2 R. A similar de�nition holds for an interval extension
wrt the 2nd variable. The generalization to Rn ! R

m (partial) functions is straightforward.

2.3 ODE Systems

The solution of an ODE system can be formalized mathematically as follows.

De�nition 5 (Solution of an ODE System with Initial Value) The solution of an ODE sys-
tem O with initial conditions u(tinit) = uinit is the function s�(t) : R ! R

n satisfying O and the
initial conditions s�(tinit) = uinit.

In this paper, we restrict attention to ODE systems that have a unique solution for a given initial
value. Techniques to verify this hypothesis numerically are well-known [Moo79, DJVH98]. Moreover,
in practice, as mentioned, the objective is to produce (an approximation of) the values of the solution
function s� of the system O at di�erent points t0; t1; : : : ; tm. It is thus useful to adapt the de�nition
of a solution to account for this practical motivation.

De�nition 6 (Solution of an ODE System) The solution of an ODE system O is the function
s(t0; u0; t) : R�R

n �R ! R
n such that s(t0; u0; t) = s�(t); where s� is the solution of O with initial

conditions u(t0) = u0.

This de�nition can be generalized to multistep functions.

De�nition 7 (Multistep solution of an ODE) The multistep solution of an ODE system O is
the partial function ms : A � (Rk+1 � (Rn )k+1 � R) ! R

n de�ned by

ms(tk;uk; t) = s(t0; u0; t) if ui = s(t0; u0; ti) for 1 � i � k;
unde�ned otherwise

where s is the solution of O.

It is important to stress that the multistep function is a partial function. Hence, interval extensions
of multistep functions may behave very di�erently outside the domain of de�nition of the functions.
This fact is exploited by the novel �ltering operators proposed in this paper.

Finally, we generalize the concept of bounding boxes, a fundamental concept in interval methods
for ODEs, to multistep methods. Intuitively, a bounding box encloses all solutions of an ODE going
through certain boxes at given times.

De�nition 8 (Bounding box) Let O be an ODE system, ms be the multistep solution of O, and
ft0; :::; tkg � T 2 I. A box B is a bounding box of ms over T wrt Dk and tk , if, for all t 2 T ,
ms(tk;Dk; t) � B.
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s(t0,D0,t1)

s(t1,D1,t2)

Figure 1: Intuition of the Step procedure

3 The Constraint Satisfaction Approach

The constraint satisfaction approach followed in this paper was �rst presented in [DJVH98]. It
consists of a generic algorithm for ODEs that iterates two steps: (1) a forward step that computes
an initial enclosure at a given time from enclosures at previous times and bounding boxes and (2)
a pruning step that reduces the initial enclosures without removing solutions. The forward process
also provides numerical proofs of existence and unicity of the solution. The intuition underlying the
basic step of the generic algorithm is illustrated in Figure 1.

Various techniques were presented in [DJVH98] for the forward step and these are not discussed
here. In contrast, this paper focuses on the pruning step, which is, in fact, the main novelty of
the approach. The pruning step prunes the last box Dk at tk produced by the forward step, using,
say, the last k boxes D0; : : : ; Dk�1 obtained at times t0; : : : ; tk�1.

1 To our knowledge, no research
has been devoted to pruning techniques for ODEs, except for the proposal in [DJVH98] to use the
forward step backwards. These techniques however are promising since they open new directions to
tackle the traditional problems of interval methods for ODEs.

4 A Multistep Filtering Operator for ODEs

This section presents a multistep �ltering operator for ODEs to tighten the initial enclosure of the
solutions e�ectively. It starts with an informal presentation to convey the main ideas and intuitions
before formalizing the concepts.

4.1 Overview

To understand the main contribution of this paper, it is useful to contrast the techniques proposed
herein with interval techniques for nonlinear equations. In nonlinear programming, a constraint
c(x1; : : : ; xn) can be used almost directly for pruning the search space (i.e., the carthesian prod-
ucts of the intervals Ii associated with the variables xi). It su�ces to take an interval extension
C(X1; : : : ; Xn) of the constraint. Now if C(I 01; : : : ; I

0

n) does not hold, it follows, by de�nition of
interval extensions, that no solution of c lies in I 01 � : : : � I 0n. This basic property can be seen as
a �ltering operator that can be used for pruning the search space in many ways, including box(k)-
consistency as in Numerica [VHLD97, VH98b]. Recall that a constraint C is box(1)-consistent wrt

1Note that the time t0 is not, in general, the time tinit of the initial condition.
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I1; : : : ; In and xi if the condition

C(I1; : : : ; Ii�1; [li; l
+
i ]; Ii+1; : : : ; In) ^ C(I1; : : : ; Ii�1; [u

�

i ; ui]; Ii+1; : : : ; In)

holds where Ii = [li; ui]. The �ltering algorithm based on box(1)-consistency reduces the interval of
the variables without removing any solution until the constraint is box(1)-consistent wrt the intervals
and all variables. Stronger consistency notions, e.g., box(2)-consistency, are also useful for especially
di�cult problems [VH98a]. It is interesting here to distinguish the �lter or pruning operator, i.e.,
the technique used to determine if a box cannot contain a solution, from the �ltering algorithm that
uses the pruning operator in a speci�c way to prune the search space.

The goal of the research described in this paper is to device similar techniques for ODEs. The
main di�culty is that there is no obvious �lter in this context. Indeed, the equation u0 = f(t; u)
cannot be used directly since u and u0 are unknown functions. We now discuss how to overcome
this problem and, in a �rst step, restrict attention to one-dimensional problems for simplicity.

Assume �rst that we have at our disposal the multistep solution ms of the equation. In this case,
the equation u0 = f(t; u) can be rewritten into

@ms

@t
(ht0; : : : ; tki; hv0; : : : ; vki; t) = f(t;ms(ht0; : : : ; tki; hv0; : : : ; vki; t)):

Let us denote this equation
fl(ht0; : : : ; tki; hv0; : : : ; vki; t):

At �rst sight, of course, this equation may not appear useful since ms is still an unknown function.
However, as Section 5 shows, it is possible to obtain interval extensions of ms and @ms

@t
by using,

say, polynomial interpolations together with their error terms. If MS and DMS are such interval
extensions, then we obtain an interval equation

DMS(ht0; : : : ; tki; hX0; : : : ; Xki; t) = F (t;MS(ht0; : : : ; tki; hX0; : : : ; Xki; t))

that can be used as a �ltering operator. Let us denote this operator by

FL(ht0; : : : ; tki; hX0; : : : ; Xki; t)

and illustrate how it can prune the search space. If the condition

FL(ht0; : : : ; tki; hI0; : : : ; Iki; t)

does not hold, then it follows that no solution of u0 = f(t; u) can go through intervals I0; : : : ; Ik at
times t0; : : : ; tk.

How can we use this �lter to obtain tighter enclosures of the solution? A simple technique
consists of pruning the last interval produced by the forward process. Assume that Ii is an interval
enclosing the solution at time ti (0 � i � k) and that we are interested in pruning the last interval
Ik. A subinterval I � Ik can be pruned away if the condition

FL(ht0; : : : ; tki; hI0; : : : ; Ik�1; Ii; te)

does not hold for some evaluation point te.
Let us explain brie
y the geometric intuition behind this formula. Figure 2 is generated from

an actual ordinary di�erential equation, considers only points instead of intervals, and ignores error
terms for simplicity. It illustrates how this technique can prune away a value as a potential solution
at a given time. In the �gure, we consider the solution to the equation that evaluates to u0 and
u1 at t0 and t1 respectively. Two possible points u2 and u02 are then considered as possible values
at t2. The curve marked KO describes an interpolation polynomial going through u0; u1; u

0

2 at times
t0; t1; t2. To determine if u02 is the value of the solution at time t2, the idea is to test if the equation
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Figure 2: Geometric Intuition of the Multistep Filtering Operator

is satis�ed at times te. (We will say more about how to choose te later in this paper). As can be
seen easily, the slope of the interpolation polynomial is di�erent from the slope speci�ed by f at
time te and hence u02 cannot be the value of the solution at t2. The curve marked OK describes
an interpolation polynomial going through u0; u1; u2 at times t0; t1; t2. In this case, the equation is
satis�ed at time te, which means that u2 cannot be pruned away.

Of course, the �lter proposed earlier generalizes this intuition to intervals. The interval function
DMS is an interval extension of @ms

@t
obtained, say, by taking an interval extension of the derivative

of an interpolation polynomial and a bound on its error term. The interval functionMS is an interval
extension of an interpolation polynomial and a bound on its error term. These interval functions are
evaluated over intervals produced by the forward process. The �ltering operator thus tests whether
a solution can go through interval I by testing this interval equation at time te. If a solution goes
through I , then the �lter must hold because the left- and the righ-hand sides of the �lter are both
interval extensions of @ms

@t
. If I does not contain a solution, by de�nition of partial interval extension

(See De�nition 3), no constraints are imposed on MS and DMS and there is no reason to believe
that the �lter will hold. It may hold because of a loss of precision in the computation or because we
are unlucky but a careful choice of the interpolation polynomials will minimize these risks.

It is important to stress that traditional consistency techniques and �ltering algorithms based
on this �ltering operator can now be applied. For instance, one may be interested in computing the
set

I 0k = 2fr 2 Ik j FL(ht0; : : : ; tki; hI0; : : : ; Ik�1; ri; te)g:

For multi-dimensional problems, one may be interested in obtaining box(k)-approximations of the
multi-dimensional sets de�ned in a similar fashion.

It is also important to mention that the �ltering operator can be used in many di�erent ways,
even if only the last interval (or box) is considered for pruning. For instance, once an interval
I � Ik is selected, it is possible to prune the intervals I0; : : : ; Ik�1 using, say, the forward process
run backwards as already suggested in [DJVH98]. This makes it possible to obtain tighter enclosures
of ms and @ms

@t
, thus obtaining a more e�ective �ltering algorithm for I .

Finally, it is useful to stress that the �ltering operator suggested here shares some interesting
connections with Gear's method, a traditional implicit multistep procedure that is particularly useful
for sti� problems. We may thus hope that the �ltering operator will be particularly well adapted for
sti� problems as well (as our prelimininary results show). We will say more about these connections
once some more technical details have been given.
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4.2 Formalization

We now formalize the intuition given in the previous subsection. A multistep �ltering operator is
de�ned as an interval extension of the original equation rewritten to make the multistep solution
explicit.

De�nition 9 (Multistep Filtering Operator) Let O be an ODE u0 = f(t; u) and let ms be the
multistep solution of O. A multistep �ltering operator for O is an interval extension of the constraint

@ms

@t
(tk;uk; te) = f(te;ms(tk;uk; te))

wrt the variables in uk.

It can be shown that a multistep �ltering operator never prunes solutions away.

Proposition 1 (Soundness of the Multistep Filtering Operator) Let O be an ODE u0 =
f(t; u), let FL be a multistep �ltering operator for O. If FL(tk;Dk; te) does not hold, then there
exists no solution of O going through Dk at times tk.

The intuition given previously was based on a natural multistep �ltering operator.

De�nition 10 (Natural Multistep Filtering Operator) Let O be an ODE u0 = f(t; u), let ms
be the multistep solution of O, let F be an interval extension of f , and let MS and DMS be interval
extensions of ms and @ms

@t
wrt to their second argument. A natural multistep �ltering operator for

O is an interval equation

DMS(ht0; : : : ; tki; hX0; : : : ; Xki; te) = F (te;MS(ht0; : : : ; tki; hX0; : : : ; Xki; te)):

There are other interesting multistep �ltering operators, e.g., the mean-value form of the natural
multistep �ltering operator (see section 6). Di�erent multistep �ltering operators may be more ap-
propriate when close or far from a solution as was already the case for nonlinear equations [VHLD97].

It remains to show how to obtain interval extensions of the solution function ms and its derivative
@ms
@t

.

5 Interval Extensions of the Solution Function

This section is devoted to interval extensions of the multistep solution function and its derivative.
These extensions are, in general, based on decomposing the (unknown) multistep function into the
summation of a computable approximation p and an (unknown) error term e, i.e.,

ms(tk;uk; t) = p(tk;uk; t) + e(tk;uk; t): (1)

There exist standard techniques to build p and to bound e. In the rest of this section, two such
approximations are presented. We also show how to bound the error term of the derivative of the
multistep solution functions, since these are critical to obtain multistep �ltering operators.

5.1 A Lagrange Polynomial Interval Extension

Our �rst interval extension is based on Lagrange polynomial interpolation.
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De�nition 11 (Lagrange Polynomial [KC96]) Let t0; :::; tk be distinct points. The Lagrange
polynomial that interpolates points (t0; u0); :::; (tk; uk) is the unique polynomial pL : R ! R

n of
degree � k satisfying pL(ti) = ui (0 � i � k). It is de�ned by

pL(t) =

kX
i=0

ui'i(t);

where

'i(t) =
Qk

j=0;j 6=i(t�tj)Q
k
j=0;j 6=i(ti�tj)

; 0 � i � k:

It is possible to bound the errors made by a Lagrange polynomial when interpolating a function.

Theorem 1 (Lagrange Error Term) Let a; b 2 R, g be a function in Ck+1([a; b];Rn ), let pL be
the Lagrange polynomial of degree � k that interpolates g at k + 1 distinct points t0; :::; tk in the
interval [a; b], and t 2 ([a; b] n Ttk) [ ft0; :::; tkg. Then,

1. 9�t 2 ]a; b[: g(t)� pL(t) =
1

(k+1)!g
(k+1)(�t)w(t);

2. 9�t 2 ]a; b[: g0(t)� p0L(t) =
1

(k+1)!g
(k+1)(�t)w

0(t).

where w(t) =
Qk

i=0(t� ti).

This result makes it possible to obtain interval extensions of ms and its derivative. Consider, for
instance, function ms. The key idea to obtain an interval extension of ms consists of considering
f (k)(�t;ms(tk;uk; �t)) in the error term obtained from Theorem 1 and of

1. replacing the unknown time �t by the interval [a; b] in which it takes its value;

2. replacing the unknown function ms by one of its bounding boxes.

Together, these ideas gives conservative approximations of the error terms and thus interval exten-
sions of the multistep solution function and of its derivative.

De�nition 12 (Lagrange Interval Polynomial) Let O be an ODE u0 = f(t; u) and ms be the
multistep solution of O. A Lagrange Interval Polynomial and its derivative for O are the functions
MSL and DMSL respectively de�ned by

MSL(tk;Dk; t) = PL(tk;Dk; t) +EL(tk;Dk; t);
DMSL(tk;Dk; t) = DPL(tk;Dk; t) +DEL(tk;Dk; t);

(2)

where
PL(tk;Dk; t) =

Pk
i=0Di'i(t);

DPL(tk;Dk; t) =
Pk

i=0Di'
0

i(t);
EL(tk;Dk; t) =

1
(k+1)!F

(k)(Ttk;t; Btk;t)w(t);

DEL(tk;Dk; t) =
1

(k+1)!F
(k)(Ttk;t; Btk;t)w

0(t);

w(t) =
Qk

i=0(t� ti):

(3)

and where F is an interval extension of f and Btk;t is a bounding box of ms over Ttk;t wrt Dk and
tk.

We now show that, under certain restrictions on t, MSL and DMSL are interval extensions respec-
tively of ms and @ms

@t
wrt the variables in uk.
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Figure 3: Geometric Intuition for the Hermite Polynomials

Proposition 2 (Correctness of Lagrange Interval Polynomials) Let O be an ODE u0 = f(t; u)
whose solutions are in Ck+1(Ttk;t;R

n ), ms be the multistep solution of O, and @ms
@t

be its deriva-
tive. Let MSL and DMSL be a Lagrange interval polynomial and its derivative for O. Then,
MSL and DMSL are interval extensions of ms and @ms

@t
wrt their second arguments forall t 2

(Ttk;t n Ttk) [ ft0; :::; tkg.

It is interesting at this point to make the connection between a natural multistep �ltering operator
based on Lagrange polynomials and Gear's method. Gear's method is a (traditional) implicit mul-
tistep method for solving ODEs that consists of solving (locally) a system of nonlinear equations
based on Lagrange polynomial to �nd an (approximate) value at tk given the (approximate) values at
t0; : : : ; tk�1. The nonlinear equations in Gear's method specify implicitly the value of the solution at
time tk (i.e., there is no evaluation point te as in our case). The multistep �ltering operator de�ned
here uses Lagrange polynomials in a global way to prune the search space. As a consequence, at a
very high level, the multistep �ltering operator based on Lagrange polynomials is to Gear's method
for ODEs what the interval Newton method is to Newton method for nonlinear equations.

5.2 An Hermite Polynomial Interval Extension

Lagrange polynomial interpolations are simple to compute but they only exploit a subset of the
information available. For instance, they do not exploit the derivative information available at each
evaluation point. This section presents an interpolation based on Hermite polynomials using this
information. The intuition, depicted in Figure 3, is to constrain the polynomials to have acceptable
slopes at the evaluation times. The �gure, that uses the same di�erential equation as previously,
shows that the interpolation polynomial must now have the correct slope at the various times. As
can be seen, the slope at time te di�ers even much more from the solution than with Lagrange
polynomials. As con�rmed by our preliminary experimental results, the use of Hermite polynomials
in the �ltering operator should produce tighter enclosures of the multistep solution and its derivatives
since the additional constraints tend to produce interpolation polynomials whose slopes are more
similar (thus reducing the approximations due to interval computations).

De�nition 13 (Hermite Polynomial [Atk88]) Let u00; :::; u
0

k 2 R
n . Assume that t0; :::; tk are

distinct points. The Hermite polynomial that interpolates points (t0; u0); :::; (tk; uk) and whose
derivative interpolates points (t0; u

0

0); :::; (tk ; u
0

k) is the unique polynomial pH : R ! R
n of degree

� 2k + 1 satisfying
pH(ti) = ui; 0 � i � k;
@pH
@t

(ti) = u0i; 0 � i � k:
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It is given by

pH(t) =

kX
i=0

ui'i(t) +

kX
i=0

u0i i(t);

where
li(t) =

w(t)
(t�ti)w0(ti)

;

w(t) =
Qk

i=0(t� ti);
 i(t) = (t� ti)[li(t)]

2;
'i(t) = [1� 2l0i(ti)(t� ti)][li(t)]

2; 0 � i � k:

It is possible to bound the errors made by a Hermite polynomial when interpolating a function.

Theorem 2 (Hermite Error Term) Let a; b 2 R, g be a function in C2k+2([a; b];Rn ), pH be the
Hermite polynomial of degree � 2k + 1 that interpolates g at k + 1 distinct points t0; :::; tk in the
interval [a; b] and whose derivative interpolates g0 at t0; :::; tk, and t 2 [a; b] n Ttk , Then,

1. 9�t 2 ]a; b[: g(t)� pH(t) =
1

(2k+2)!g
(2k+2)(�t)w

2(t);

2. 9�t 2 ]a; b[: g0(t)� p0H(t) =
1

(2k+2)!g
(2k+2)(�t)(w

2)0(t)

This result makes it possible to obtain interval extensions of ms and its derivative.

De�nition 14 (Hermite Interval Polynomial) Let O be an ODE u0 = f(t; u) and ms be the
multistep solution of O. An Hermite interval polynomial and its derivative for O are respectively
the functions MSH and DMSH de�ned by

MSH(tk;Dk; t) = PH (tk;Dk; t) +EH(tk;Dk; t);
DMSH(tk;Dk; t) = DPH (tk;Dk; t) +DEH(tk;Dk; t);

(4)

where
PH(tk ;Dk; t) =

Pk
i=0Di'i(t) +

Pk
i=0 F (ti; Di) i(t);

DPH(tk ;Dk; t) =
Pk

i=0Di'
0

i(t) +
Pk

i=0 F (ti; Di) 
0

i(t);

EH(tk ;Dk; t) =
1

(2k+2)!F
(2k+1)(Ttk;t; Btk;t)w

2(t);

DEH(tk ;Dk; t) =
1

(2k+2)!F
(2k+1)(Ttk;t; Btk;t)(w

2)0(t);

(5)

and where F is an interval extension of f and Btk;t is a bounding box of ms over Ttk;t wrt Dk and
tk.

We are now in a position of proving that MSH and DMSH are interval extensions respectively of
ms and @ms

@t
wrt the variables in uk, under the conditions of Theorem 2.

Proposition 3 (Correctness of Hermite Interval Polynomials) Let O be an ODE u0 = f(t; u)
whose solutions are in C2k+2(Ttk;t;R

n ), ms be the multistep solution of O, and @ms
@t

be its derivative.
Let MSH and DMSH be a Lagrange interval polynomial and its derivative for O. Then, MSH and
DMSH are interval extensions of ms and @ms

@t
wrt their second arguments forall t 2 (Ttk;t n Ttk).

It is also important to discuss the choice of the evaluation point te in the �lters using Hermite
polynomials. On the one hand, because of the derivative constraints, choosing te too close from tk
produces too weak a constraint, since the �lter is trivially satis�es at tk. On the other hand, choosing
it too far from tk increases the sizes of the time intervals, of the bounding box, and, possibly, the
polynomial evaluation itself. Hence, a reasonable choice of te should be a compromise between these
two extremes. Of course, it is always possible to use several evaluation times.
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6 Advanced Techniques

In this section, we consider some more advanced multistep �ltering operators.

6.1 A Mean-Value Multistep Filtering Operator

In solving nonlinear equations, it is often useful to use several interval extensions (e.g., the natural
extension and the Taylor extension) since they complement each other well. The natural extension
is in general more appropriate far from a solution, while the Taylor extension is better suited when
the search is closer to a solution [VHLD97]. This idea has also been used in solving systems of
di�erential equations [Loh87]. In this section, we present a mean-value form (MVF) of the multistep
pruning operator.

To understand the main intuition, recall that the multistep �ltering operator is a constraint of
the form

@ms

@t
� f(te;ms) = 0

The idea is to replace the left-hand side of this equation by its mean-value form, while assuming that
the multistep solution is of the form ms = p + e. Note that a direct application of the mean-value
form would require to approximate a term of the form @e

@u
, which is impossible since e is unknown. As

a consequence, it is necessary to consider an interval extension E of function e that is independant
from the variable u.

De�nition 15 (Mean-Value Multistep Filtering Operator) Let O be an ODE u0 = f(t; u),
let ms be the multistep solution of O expressed in the form

ms(tk;uk; t) = p(tk;uk; t) + e(tk;uk; t):

A mean-value multistep �ltering operator for O is an interval equation

K � [A]RT = 0 (6)

where K 2 In, [A] 2 In�n(k+1) and R 2 In(k+1) are de�ned as

K = DP (tk;mk; te) +DE(tk;Dk; te)� F (te; P (tk;mk; te) +E(tk;Dk; te));
[A] = DF (te; P (tk;Dk; te) +E(tk;Dk; te)) � DUP (tk;Dk; te)

� DDP (tk;Dk; te);

RT =

0
B@
D

T
0 � m0

T

...

D
T

k � mk
T

1
CA;

(7)

where P;DP;E;DE;DF;DUP; and DDP are interval extensions of p; @p
@t
; e; @e

@t
; @f
@u

(Jacobian of

f); @p
@uk

and @
@uk

@p
@t
, wrt the variables in uk and where mi 2 Di (0 � i � k) and mk = hm0; : : : ;mki.

The following lemma is the core of the correctness proof of the mean-value multistep �ltering oper-
ator.

Lemma 1 Let g : Rn � R
m ! R

p : (x; y) 7! g(x; y) be di�erentiable wrt variable x. Let D 2 In,
m 2 D and S � R

m . Then, for all x 2 D, we have:

g(x; S) � g(m;S) + @g
@x
(D;S) � (x�m):

Proposition 4 (Soundness of the Mean-Value Multistep Filtering Operator) A mean-
value multistep pruning operator is a multistep pruning operator.
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6.2 The Wrapping E�ect

The wrapping e�ect is a fundamental problem faced by interval methods. It comes from the fact
that the solution at each evaluation time must be enclosed by a box. The approximations, that
accumulate at each step, may signi�cantly reduce the precision. This problem has been well-studied
(see, for instance, [Loh87]) and a typical solution consists of choosing, at each evaluation time, a
local coordinate system that �ts the solution set as best as possible (which is equivalent to using
parallelepipeds (a generalization of boxes) as enclosures of the solution sets). The local coordinate
system for each ti 0 � i � k amounts to de�ning a linear transformation

ui =Miwi; 0 � i � k

and there are standard techniques to choose appropriate matrices Mi (see, e.g., [Loh87]). With this
idea in mind, it is possible to de�ne a multistep �ltering operator incorporating distinct coordinate
systems.

De�nition 16 (Preconditioned Multistep Filtering Operator) LetO be an ODE u0 = f(t; u),
letms be the multistep solution of O, and letM0; :::;Mk 2 R

n�n . A preconditioned multistep �ltering
operator for O is an interval extension of the constraint

@ms

@t
(tk; hM0wo; : : : ;Mkwki; te) = f(te;ms(tk; hM0wo; : : : ;Mkwki; te))

wrt the variables in w0; : : : ; wk.

Preconditioned multistep �ltering operators are particularly adapted to the mean-value form because
they enable us to control the wrapping by using associativity.

De�nition 17 (Preconditioned Mean-Value Multistep Pruning Operator) Let O be an
ODE u0 = f(t; u), let ms be the multistep solution of O of the form

ms(tk;uk; t) = p(tk;uk; t) + e(tk;uk; t):

and let M0; :::;Mk 2 R
n�n . A preconditioned mean-value multistep �ltering operator for O is an

interval equation of the form
K � ([A]M)R0T = 0 (8)

where R0 2 In(k+1) and M 2 Rn(k+1)�n(k+1) are de�ned as

R0T =

0
B@
D

0T

0 � m
0

0

T

...

D
0T

k � m0

k

T

1
CA; M =

0
BB@

M0 0 � � � 0

0 M1 � � � 0

...
...

. . .
...

0 0 � � � Mk

1
CCA; (9)

and where K 2 In and [A] 2 In�n(k+1) are as in De�nition 15 with

Di =MiD
0

i; mi =Mim
0

i (0 � i � k); mk = hm0; :::;mki: (10)

Note that the key in controlling the wrapping e�ect is the left-associaticity in ([A]M)R0T , since
the right-associativity [A](MR0T ) would reintroduce the wrapping e�ect. The correctness of the
preconditioned mean-value multistep �ltering operator is a direct consequence of the previous results.
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t Taylor With Natural Pruning Ratio
0.0 [ 0.99900 , 1.00000 ] [ 0.99900 , 1.00000 ] 1.0
0.1 [ 0.36248 , 0.37574 ] [ 0.36347 , 0.37379 ] 1.3
0.2 [ 0.12450 , 0.14811 ] [ 0.13030 , 0.14051 ] 2.3
0.3 [ 0.01792 , 0.08270 ] [ 0.04408 , 0.05581 ] 5.5
0.4 [ -0.06954 , 0.10652 ] [ 0.01196 , 0.02473 ] 13.8
0.5 [ -0.23236 , 0.24592 ] [ -0.00021 , 0.01375 ] 34.2
0.6 [ -0.64717 , 0.65214 ] [ -0.00512 , 0.01009 ] 85.4
0.7 [ -1.76397 , 1.76579 ] [ -0.00736 , 0.00920 ] 213.1
0.8 [ -4.79425 , 4.79491 ] [ -0.00868 , 0.00936 ] 531.5
0.9 [ -13.02514 , 13.02539 ] [ -0.00970 , 0.00995 ] 1325.7
1.0 [ -35.38525 , 35.38534 ] [ -0.01066 , 0.01075 ] 3305.4
1.1 [ -96.13003 , 96.13006 ] [ -0.01164 , 0.01167 ] 8248.0
1.2 [ -261.15328 , 261.15329 ] [ -0.01269 , 0.01270 ] 20571.3
1.3 [ -709.46641 , 709.46641 ] [ -0.01383 , 0.01383 ] 51299.1
1.4 [ -1927.38374 , 1927.38374 ] [ -0.01506 , 0.01507 ] 127937.8
1.5 [ -5236.05915 , 5236.05915 ] [ -0.01641 , 0.01641 ] 319077.3

Table 1: ODE u0(t) = �10u(t)

7 Implementation Issues

Let us brie
y discuss implementation issues to indicate that the approach is reasonable from a
computational standpoint. First, recall that any interval method should compute bounding boxes
and Taylor coe�cients over these boxes to produce the initial enclosures (forward step). As a
consequence, the error terms in the interpolation polynomials can be computed during this forward
step, without introducing any signi�cant overhead. Second, observe that the polynomials themselves
are trivial to construct and evaluate. The construction takes place only once and is about O(k2),
where k is the number of evaluation times considered. An evaluation of the natural multistep �ltering
operator based on these polynomials takes O(kn), where n is the dimension of the ODE system,
which is close to optimality. As a consequence, the main complexity will be associated with the
�ltering algorithm itself. Finally, the mean-value and preconditioned operator can be constructed
e�ciently since they only require information (e.g. the Jacobian) that is needed in the forward step
based on these techniques. An evaluation is slightly more costly but remains perfectly reasonable.
Note also that the cost of the �lter is substantially less than the backwards pruning technique
proposed in [DJVH98] which involves computing the Taylor coe�cients for each evaluation.

8 Experimental results

This section reports some preliminary evidence that the �ltering operator is an e�ective way to
tighten the enclosures produced by the forward process. The results are only given for sti� problems
although the �ltering operator is also e�ective on simpler problems. The experimental results are
obtained by applying box-consistency on the �ltering operator based on Hermite polynomials of
degree 5 (i.e. k = 2).

Table 1 presents the results on a simple problem. It shows the substantial gain produced by the
pruning step over a traditional interval Taylor method of order 4, using a natural �ltering operator.
Note that even with higher order interval Taylor series, the gain remains substantial (e.g. with a
Taylor series of order 8, the gain is bigger than 105 at time 1.5). Table 3 considers a quadratic ODE
and compares a Taylor MVF (mean-value form) method (of order 4) as in Lohner's method [Loh87]
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t Piecewise Taylor Taylor with Natural Pruning Ratio
0.0 [ 0.00000 , 0.00000 ] [ 0.00000 , 0.00000 ] 1.0
0.3 [ -0.30291 , 0.89395 ] [ -0.07389 , 0.41865 ] 2.4
0.6 [ -2.07810 , 3.20739 ] [ 0.23293 , 0.87991 ] 8.2
0.9 [ -8.65903 , 10.22568 ] [ 0.15993 , 1.19334 ] 18.3
1.2 [ -31.47707 , 33.34114 ] [ 0.22960 , 1.62460 ] 46.5
1.5 [ -109.32716 , 111.32215 ] [ 0.09149 , 1.95039 ] 118.7
1.8 [ -374.18327 , 376.13097 ] [ -0.06153 , 2.33463 ] 313.1
2.1 [ -1274.89513 , 1276.62155 ] [ -0.48267 , 2.66253 ] 811.2
2.4 [ -4337.28310 , 4338.63402 ] [ -1.10181 , 3.05072 ] 2089.3
2.7 [ -14749.13410 , 14749.98886 ] [ -2.04553 , 3.44376 ] 5373.9
3.0 [ -50148.94757 , 50149.22981 ] [ -3.27441 , 3.96133 ] 13861.5

Table 2: ODE u0(t) = �10(u(t)� sin(t)) + cos(t)

t Taylor MVF With Natural Pruning With Mean-Value Pruning
0.0 [ 0.99900 , 1.00000 ] [ 0.99900 , 1.00000 ] [ 0.99900 , 1.00000 ]
0.5 [ 0.46864 , 0.70655 ] [ 0.55967 , 0.70655 ] [ 0.55996 , 0.70655 ]
1.0 [ 0.23241 , 0.56479 ] [ 0.32344 , 0.52051 ] [ 0.39500 , 0.52037 ]
1.5 [ 0.07896 , 0.52853 ] [ 0.20427 , 0.42314 ] [ 0.30245 , 0.39728 ]
2.0 [ -0.08931 , 0.57922 ] [ 0.13409 , 0.36708 ] [ 0.24612 , 0.30683 ]
2.5 [ -0.43481 , 0.83518 ] [ 0.08495 , 0.32876 ] [ 0.20736 , 0.25151 ]
3.0 [ -3.05917 , 2.54748 ] [ 0.04613 , 0.29898 ] [ 0.17931 , 0.21180 ]
3.5 . . . [ 0.01298 , 0.27534 ] [ 0.15795 , 0.18317 ]
4.0 . . . [ -0.01759 , 0.25548 ] [ 0.14116 , 0.16119 ]
4.5 . . . [ -0.04783 , 0.23822 ] [ 0.12761 , 0.14393 ]
5.0 . . . [ -0.07463 , 0.22312 ] [ 0.11644 , 0.12998 ]

Table 3: ODE u0(t) = �1:5u2(t)

with a natural �ltering operator and a mean-value �ltering operator. The Taylor MVF method
deteriorates quickly and explodes after time 3. The natural �ltering operator does much better as
can easily be seen. The mean-value �ltering operator is even better and, in fact, converges towards
the interval [0,0] when t grows. Table 2 considers another problem that leads to an explosion of
the piecewise Taylor method (of order 4), i.e., the best forward method possible. The pruning step,
using a natural �ltering operator, substantially reduces the explosion in this case, although the step
size is large (0.3). This clearly shows that the pruning step is orthogonal to the forward step (since
it improves the best possible forward step) and is thus a promising research direction. Note also
that a smaller step size (e.g., 0.2) would produce a tighter enclosure (e.g., [-0.14803,0.46879] at time
3) and smaller steps further improve the precision.

9 Conclusion

This paper was concerned with the solving of ODE systems using interval methods that provide
guaranteed enclosures of the solutions and numerical proofs of existence and unicity of the solution.
Unfortunately, they may result in large over-approximations of the solution because of the loss of
precision in interval computations and the wrapping e�ect.

This paper took a constraint satisfaction approach to �nd tighter enclosures of the solution,
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while not sacri�cing e�ciency too much. The basic idea underlying this approach is to iterate a
forward step to produce an initial enclosure with a pruning step that tightens it. The paper focused
on the pruning step and proposed novel multistep �ltering operators for ODEs. These operators
overcome the fact that the constraints cannot be used directly by approximating the multistep
solution through interval extensions based on (Lagrange and Hermite) interpolation polynomials
and their error terms. The paper also showed how traditional techniques (such as mean-value
forms and coordinate transformations) can be adapted to this new context. Finally, the paper also
indicated that the �ltering operators can be implemented e�ectively and preliminary experimental
results were given to illustrate the potential of the approach.

The constraint satisfaction approach seems to open novel directions and future work will aim
at validating its potential through a complete implementation and the investigation of new pruning
operators, since it should be possible to derive a pruning operator from the mathematical properties
underlying any implicit method.
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A Proofs of the Results

Theorem 1 (Lagrange Error Term) Let a; b 2 R, g be a function in Ck+1([a; b];Rn ), let pL be
the Lagrange polynomial of degree � k that interpolates g at k + 1 distinct points t0; :::; tk in the
interval [a; b], and t 2 ([a; b] n Ttk) [ ft0; :::; tkg. Then,

1. 9�t 2 ]a; b[: g(t)� pL(t) =
1

(k+1)!g
(k+1)(�t)w(t);

2. 9�t 2 ]a; b[: g0(t)� p0L(t) =
1

(k+1)!g
(k+1)(�t)w

0(t).

where w(t) =
Qk

i=0(t� ti).

Proof
1. See [KC96].
2. Let t be a point in ([a; b] n Ttk ) [ ft0; :::; tkg. Put �(x) = g(x)� pL(x) � �w(x), where � is given

by � =
g0(t)�p0

L(t)
w0(t) : The function � is in Ck+1([a; b];Rn ) and it takes the value 0 at the k+1 points

t0; :::; tk. By Rolle's Theorem, �0 has at least k distinct zeros in Ttk that are not in ft0; :::; tkg and
that are distinct from t. Moreover, �0(t) = 0. Thus, �0 has at least k + 1 distinct zeros in [a; b]. By
Rolle's Theorem, �00 has at least k distinct zeros in ]a; b[. Similarly, �000 has at least k � 1 distinct
zeros in ]a; b[, etc. Finally, we see that �(k+1) has at least one zero, say �t, in ]a; b[. We have:

�(k+1) = g(k+1) � p
(k+1)
L � �w(k+1) = g(k+1) � (k + 1)!�:

Hence,

0 = �(k+1)(�t) = g(k+1)(�t)� (k + 1)!� = g(k+1)(�t)� (k + 1)!
g0(t)�p0

L(t)
w0(t) :

2

Proposition 1 (Correctness of Lagrange Interval Polynomials) Let O be an ODE u0 = f(t; u)
whose solutions are in Ck+1(Ttk;t;R

n ), ms be the multistep solution of O, and @ms
@t

be its deriva-
tive. Let MSL and DMSL be a Lagrange interval polynomial and its derivative for O. Then,
MSL and DMSL are interval extensions of ms and @ms

@t
wrt their second arguments forall t 2

(Ttk;t n Ttk) [ ft0; :::; tkg.

Proof Let t 2 (Ttk;t n Ttk) [ ft0; :::; tkg. Let pL(tk;uk; �) be the Lagrange polynomial interpolating
points (t0; u0); :::; (tk; uk). Let eL(tk;uk; t) = ms(tk;uk; t) � pL(tk ;uk; t). Let E be the domain of
de�nition of function ms(tk; �; t). If uk 2 E and u(t) = ms(tk;uk; t), then, by Theorem 1, there
exists �t; �t 2 Ttk;t such that

eL(tk;uk; t) =
1

(k+1)!u
(k+1)(�t)w(t) = 1

(k+1)!f
(k)(�t; u(�t))w(t);

@eL
@t

(tk;uk; t) =
1

(k+1)!u
(k+1)(�t)w

0(t) = 1
(k+1)!f

(k)(�t; u(�t))w
0(t):

Clearly, we have:
pL(tk ; E \Dk; t) � PL(tk;Dk; t);
@pL
@t

(tk ; E \Dk; t) � DPL(tk;Dk; t);
eL(tk ; E \Dk; t) � EL(tk;Dk; t);
@eL
@t

(tk ; E \Dk; t) � DEL(tk;Dk; t);

and thus
ms(tk; E \Dk; t) � MSL(tk;Dk; t);
@ms
@t

(tk; E \Dk; t) � DMSL(tk;Dk; t);

which means that MSL and DMSL are interval extensions respectively of ms and @ms
@t

wrt the
variables in uk. 2
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Theorem 2 (Hermite Error Term) Let a; b 2 R, g be a function in C2k+2([a; b];Rn ), pH be the
Hermite polynomial of degree � 2k + 1 that interpolates g at k + 1 distinct points t0; :::; tk in the
interval [a; b] and whose derivative interpolates g0 at t0; :::; tk, and t 2 [a; b] n Ttk , Then,

1. 9�t 2 ]a; b[: g(t)� pH(t) =
1

(2k+2)!g
(2k+2)(�t)w

2(t);

2. 9�t 2 ]a; b[: g0(t)� p0H(t) =
1

(2k+2)!g
(2k+2)(�t)(w

2)0(t)

Proof
1. See [Atk88].
2. Let t be a point in [a; b] n Ttk . Put �(x) = g(x) � pH(x) � �w2(x), where � is given by

� =
g0(t)�p0

H(t)
(w2)0(t) : Function � 2 C2k+2([a; b];Rn ), and � takes the value 0 at the k+1 points t0; :::; tk.

By Rolle's Theorem, �0 has at least k distinct zeros in Ttk , and distinct from t0; :::; tk. Moreover,
�0(t) = 0 and t 62 Ttk . We also have �0(ti) = 0 for 0 � i � k. Thus, �0 has at least 2k + 2 distinct
zeros in [a; b]. By Rolle's Theorem, �00 has at least 2k + 1 distinct zeros in ]a; b[. Similarly, �000 has
at least 2k distinct zeros in ]a; b[, etc. Finally, we see that �(2k+2) has at least one zero, say �t, in
]a; b[. We have:

�(2k+2) = g(2k+2) � p
(2k+2)
H � �(w2)(2k+2) = g(2k+2) � (2k + 2)!�:

Hence,

0 = �(2k+2)(�t) = g(2k+2)(�t)� (2k + 2)!� = g(2k+2)(�t)� (2k + 2)!
g0(t)�p0

H(t)
(w2)0(t) :

2

Proposition 2 (Correctness of Hermite Interval Polynomials) Let O be an ODE u0 = f(t; u)
whose solutions are in C2k+2(Ttk;t;R

n ), ms be the multistep solution of O, and @ms
@t

be its derivative.
Let MSH and DMSH be a Lagrange interval polynomial and its derivative for O. Then, MSH and
DMSH are interval extensions of ms and @ms

@t
wrt their second arguments forall t 2 (Ttk;t n Ttk).

Proof Let t 2 Ttk;t n Ttk . Let pH(tk;uk; �) be the Hermite polynomial that interpolates points
(t0; u0); :::; (tk ; uk) and whose derivative interpolates points (t0; f(t0; u0)); :::; (tk; f(tk; uk)). Let
eH(tk;uk; t) = ms(tk;uk; t)�pH(tk;uk; t). Let E be the domain of de�nition of functionms(tk; �; t).
If uk 2 E and u(t) = ms(tk;uk; t), then, by Theorem 2, there exists �t; �t 2 Ttk;t such that

eH(tk;uk; t) =
1

(2k+2)!u
(2k+2)(�t)w

2(t) = 1
(2k+2)!f

(2k+1)(�t; u(�t))w
2(t);

@eH
@t

(tk;uk; t) =
1

(2k+2)!u
(2k+2)(�t)(w

2)0(t) = 1
(2k+2)!f

(2k+1)(�t; u(�t))(w
2)0(t):

Clearly, we have:
pH(tk; E \Dk; t) � PH(tk ;Dk; t);
@pH
@t

(tk; E \Dk; t) � DPH (tk;Dk; t);
eH(tk; E \Dk; t) � EH(tk ;Dk; t);
@eH
@t

(tk; E \Dk; t) � DEH(tk ;Dk; t);

and thus
ms(tk ; E \Dk; t) � MSH(tk ;Dk; t);
@ms
@t

(tk ; E \Dk; t) � DMSH(tk ;Dk; t);

which means that MSH and DMSH are interval extensions respectively of ms and @ms
@t

wrt the
variables in uk. 2
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Lemma 1 Let g : Rn � R
m ! R

p : (x; y) 7! g(x; y) be di�erentiable wrt variable x. Let D 2 In,
m 2 D and S � R

m . Then, for all x 2 D, we have:

g(x; S) � g(m;S) + @g
@x
(D;S) � (x�m):

Proof Let 1 � i � p. Let x 2 D and e 2 S. By the mean-value theorem, we can write:

gi(x; e) = gi(m; e) +
@gi
@x

(�i; e) � (x�m);

for some �i on the straight line between x and m. As D is a convex set, the straight line between x
and m must lie in D and we have

gi(x; e) 2 gi(m; e) +
@gi
@x

(D; e) � (x�m);

for each 1 � i � p. Thus,

g(x; e) 2 g(m; e) + @g
@x
(D; e) � (x �m):

Furthermore,

g(m;S) + @g
@x
(D;S) � (x�m) �

S
e2S(g(m; e) +

@g
@x
(D; e) � (x�m))

�
S
e2Sfg(x; e)g = fg(x; e) j e 2 Sg = g(x; S):

2

Proposition 3 (Soundness of the Mean-Value Multistep Filtering Operator) A mean-
value multistep pruning operator is a multistep pruning operator.

Proof Assuming the notations of De�nition 15, let uk 2 Dk. Then the multistep �ltering operator
can be written as ,

@p
@t
(tk;uk; te) +

@e
@t
(tk;uk; te)� f(te; p(tk;uk; te) + e(tk;uk; te)) = 0

+
@p
@t
(tk;uk; te) +DE(tk;Dk; te)� f(te; p(tk;uk; te) +E(tk;Dk; te)) = 0

+ (by Lemma 1)
K�ART

with K = @p
@t
(tk;mk; te) +DE(tk;Dk; te)� f(te; p(tk;mk; te) +E(tk ;Dk; te))

A = @f
@u
(te; p(tk;Dk; te) +E(tk;Dk; te)) �

@p
@uk

(tk;Dk; te)�
@

@uk

@p
@t
(tk;Dk; te)

RT =

0
B@
u
T
0 � m

T
0

...

u
T

k � m
T

k

1
CA

It follows that the mean-value multistep �ltering operator is a multistep �ltering operator. 2
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