Consistency Techniques in Ordinary
Differential Equations”

Yves Deville!, Micha Janssen!, Pascal Van Hentenryck?

! Université catholique de Louvain,
PlL. Ste Barbe 2, B-1348 Louvain-la-Neuve, Belgium
2 Brown University, Box 1910, Providence, RI 02912, USA
{yde,mja}@info.ucl.ac.be pvh@cs.brown.edu

Abstract. This paper studies the application of interval analysis and
consistency techniques to ordinary differential equations. It presents a
unifying framework to extend traditional numerical techniques to inter-
vals. In particular, it shows how to extend explicit methods to intervals.
The paper also took a fresh look at the traditional problems encountered
by interval techniques and studied how consistency techniques may help.
It proposes to generalize interval techniques into a two-step process: a for-
ward process that computes an enclosure and a backward process that
reduces this enclosure. In addition, the paper studies how consistency
techniques may help in improving the forward process and the wrapping
effect.

1 Introduction

Differential equations (DE) are important in many scientific applications in areas
such as physics, chemistry, and mechanics to name only a few. In addition,
computers play a fundamental role in obtaining solutions to these systems.
THE PROBLEM A (first-order) ordinary differential equation (ODE) system O
is a n-dimensional system u’ = f(¢, u). Given an initial condition u(ty) = uo and
assuming existence and uniqueness of solution, the solution of O is a function
s* : £ — R" satisfying O and the initial condition s*(tg) = wug. Note that
differential equations of order p (i.e. f(¢t,u,u’,u”,...,uP) = 0) can always be
transformed into an ODE by introduction of new variables. Although an ODE
system can potentially be transformed into autonomous ODE (u' = f(u)) by
the addition of a new function w,1(t) (with u;, () = 1 and un41(to) = to), we
prefer to keep the time variable explicit for a clearer presentation of some of our
novel techniques. However, the autonomous form is more appropriate for some
treatment such as automatic differentiation.

There exist different mathematical methods for proving the existence and
uniqueness of a solution of an ODE system with initial value. But, in practice,
a system is generally required, not only to prove existence, but also to produce
numerical values of the solution s*(t) for different values of variable ¢. If, for
some classes of ODE systems, the solution can be represented in closed form (i.e.
combination of elementary functions), it is safe to say that most ODE systems
cannot be solve explicitly [Hen62]. For instance, the innocent-looking equation
u' = t*> + u? cannot be solved in terms of elementary functions!

* Published in the Proceedings of the Fourth International Conference on Principles
and Practice of Constraint Programming, LNCS, Springer-Verlag, 1998.

Discrete variable methods aim to approximate the solution s*(¢) of any
ODE system, not over a continuous range of t, but only at some points
to,t1,...,tm. Discrete variable methods include one-step methods (where s*(t;)
is approximated from the approximation w;_q of s*(t;—1)) and multistep meth-
ods (where s*(t;) is approximated from the approximation w;_1,...,u;_p of
s*(tj—1),-..,8"(tj—p)). In general, these methods do not guarantee the existence
of a solution within a given bound and may suffer from traditional numerical
problems of floating-point systems.

INTERVAL ANALYSIS IN ODE Interval techniques for ODE systems were intro-
duced by Moore [Mo066]. (See [BBCG96] for a description and a bibliography
of the application of interval analysis to ODE systems.) These methods provide
numerically reliable enclosures of the exact solution at points tg,%1,-..,tm. To
achieve this result, they typically apply a one-step Taylor interval method and
make extensive use of automatic differentiation to obtain the Taylor coefficients
[Moo79, Ral81, Cor88, Abe88]. The major problem of interval methods on ODE
systems is the explosion of the size of resulting boxes at points tg,t1,...,tn.
There are mainly two reasons for this explosion. On the one hand, step meth-
ods have a tendency to accummulate errors from point to point. On the other,
the approximation of an aribitrary region by a box, called the wrapping effect,
may introduce considerable imprecision after a number of steps. One of the best
systems in this area is Lohner’s AWA [Loh87, Sta96]. It uses the Picard iter-
ation to prove existence and uniqueness and to find a rough enclosure of the
solution. This rough enclosure is then used to compute correct enclosures using
a mean value method and the Taylor expansion on a variational equation on
global errors. It also applies coordinate transformations to reduce the wrapping
effect.

GoAL oF THE PAPER This paper mainly serves two purposes. First, it provides
a unifying framework to extend traditional numerical techniques to intervals. In
particular, the paper shows how to extend explicit methods to intervals. Second,
the paper attempts to take a fresh look at the traditional problems encountered
by interval techniques and to study how consistency techniques may help. It
proposes to generalize interval techniques into a two-step process: a forward
process that computes an enclosure and a backward process that reduces this
enclosure. In addition, the paper studies how consistency techniques may help
in improving the forward process and the wrapping effect.

The new techniques proposed in this paper should be viewed as defining
an experimental agenda to be carried out in the coming years. The techniques
are reasonably simple mathematically and algorithmically and were motivated
by the same intuitions as the techniques at the core of the NUMERICA system
[VHLD97]. In this respect, they should complement well existing methods. But,
as it was the case for NUMERICA, only extensive experimental evaluation will
determine which combinations of these techniques is useful in practice and which
application areas they are best suited for. Very preliminary experimental results
illustrate the potential benefits.

The rest of this paper is organized as follows. Section 2 provides the necessary

background and notations. Section 3 presents the generic algorithm that can be
instantiated to produce the various methods. Section 4 describes how to find
bounding box. Section 5 describes step methods used in the forward phase.
Section 6 describes the backward pruning based on box-consistency. Section
7 discusses the wrapping effect. Section 8 presents some experimental results.
Section 9 concludes the paper.

2 Background and Definitions

This paper uses rather standard notations of interval programming. F denotes
the set of F-numbers, D the set of boxes C R™ whose bounds are in F, Z the set
of intervals C R whose bounds are in F, and D (possibly subscripted) denotes
a box in D. Given a real r and a subset A of ", 7 denotes the smallest interval
in 7 containing r and OA the smallest box in D containing A. If g is a function,
¢ and G denote interval extensions of g. We also use g;(z) and G;(D) to denote
the it component of g(x) and G(D).

The solution of an ODE system can be formalized mathematically as follows.

Definition 1 Solution of an ODE System with Initial Value. A solution
of an ODE system O with initial conditions u(tg) = ug is a function s*(t) : & —
R™ satisfying O and the initial conditions s*(t9) = uo.

In this paper, we restrict attention to ODE systems that have a unique solution
for a given initial value. Techniques to verify this hypothesis numerically are
given in the paper. Moreover, in practice, as mentioned, the objective is to
produce (an approximation of) the values of the solution function s* of the
system O at different points tg, t1, . .., t;,. It is thus useful to adapt the definition
of a solution to account for this practical motivation.

Definition 2 Solution of an ODE System. The solution of an ODE system
O is a function s(tg,ug,t1) : ¥ x N x R — R™ such that s(tg,uo,t1) = s*(t1),
where s* is the solution of O with initial conditions u(tg) = uo.

The solution of an ODE system O can be used to obtain the solution of O at any
point for any initial value. It is useful to extend our definition to sets of values.

Definition 3 Set Solution of an ODE System. Let s be the solution of an
ODE system O. The set solution O at t; wrt to and D is the set s(to, D,t1) =
{s(to,u,t1) | u € D}.

The interval techniques presented in this paper aim at approximating set so-
lutions as tightly as possible. The next definition introduces the concept of
bounding box that is fundamental to prove the existence and the uniqueness
of a solution to an ODE system over a box and to bound the errors.

Definition 4 Bounding Box. Let s be the solution of an ODE system O. A
box B is a bounding boz of s in [to,t1] wrt D if, forall ¢ € [to, t1], s(to, D,t) C B.

Informally speaking, a bounding box is thus an enclosure of the solution on
the whole interval [to,t1]. The following theorem is an interesting topological
property of solutions.

Theorem 5. Let O be an ODE system u' = f(t,u) with f € C, let s be the
solution of O (i.e. existence and uniqueness), and let Fr(A) denote the fron-
tier of set A. Then, (1) s(to,D,t1) is a closed set; and (2) s(to, Fr(D),t;) =
Fr(s(to, D,t1)).

Proof. (Sketch) Under the given hypothesis, s € C [Har64]. Thesis (2) can then
be proven by showing that if & € Fr(D) then s(to,z,t1) € Fr(s(to, D,t1)) and
if x € D\ Fr(D) then s(to,z,t1) & Fr(s(to,D,t1)) [DJVHIS]. O
As a consequence, s(tj, D;,t;11) can be computed by considering the frontier of
D; only.

3 The Generic Algorithm

The interval methods described in this paper can be viewed as instantiations
of a generic algorithm. It is useful to present the generic algorithm first and to
describe its components in detail in the rest of the paper. The generic algorithm is
parametrized by three procedures: a procedure to compute a bounding box, since
bounding-boxes are fundamental in obtaining enclosures, a step procedure to
compute forward, and a procedure to prune by using step procedures backwards.
Procedure BOUNDINGBOX computes a bounding box of an ODE system in an
interval for a given box. Procedure STEP computes a box approximating the value
of s*(t;) given the approximations of s*(t;) (1 < k < j — 1) and the bounding
boxes By, ..., Bj_1. Procedure PRUNE prunes the boxes D; at t; using the box
Dj;_y at t;_1. The intuition underlying the basic step of the generic algorithm is
illustrated in Figure 1. The next three sections review these three components.
Note however that it is possible to use several step procedures, in which case the
intersection of their results is also an enclosure.

t1,D1,2)
t0,D0,t1)

10 t ©
Fig. 1. Computing correct enclosures of the solution
solve (O, Dy, < to,...,tm >)
begin
forall(j in 1..n)
begin
Bj := BoundingBox (O, D;_1,tj_1,t;);
:= Step(0,< Do,...,Dj_1 >, < tg,...,t; >,< Bo,...,Bj >);
Prune((’), Dj—l; tj—l; Dj, tj, Bj) ;

SRS
non

4 The Bounding Box

This section considers how to obtain a bounding box for an ODE system. As will
become clear later on, bounding boxes are fundamental to obtain reliable solu-
tions to ODE systems. The traditional interval techniques to obtain bounding
boxes are based on Picard operator [Har64, Moo79].

Theorem 6 (Picard Operator). Let Dy and B be two bozes such that Dy C
B, let [to,t1] € Z, and let h = t1 — to. Let O be an ODE system u' = f(t,u),
where f is continuous and has a Jacobian (i.e first-order partial derivatives) over
[to,t1]. Let & be the transformation (Picard Operator)

&(B) = Do + [0, h]F([to, t1], B)

where F' is an interval extension of f. If ®(B) C B, then (1) The O system with
initial value u(ty) € Do has a unique solution s; and (2) ®(B) is a bounding box

of s in [to,t1] wrt Dy.

Theorem 6 can be used for proving existence and uniqueness of a solution and
for providing a bounding box [Loh87, Cor95]. A typical algorithm starts from an
approximation BY = Dy and applies Picard operator. If #(B%) ¢ B, the algo-
rithm widens B? into B! (e.g., by doubling its size) and iterates the process. The
algorithm can also narrow the step size. Note that the existence of Jacobian(f)
can be checked numerically by evaluating its interval extension over the box.
Note also that the Picard operator uses a Taylor expansion of order 1. It can be
generalized for higher orders, which is interesting to increase the step sizes.

5 The Step Methods

This section describes step methods. The step methods are presented in isola-
tion. However, as mentioned previously, they can be used together, since the
intersection of their results is also a step method. We focus here on explicit one-
step methods. However, one could also consider implicit and multi-step methods
[DJVHIS].

5.1 Explicit One-Step Methods

This section considers one-step methods: It first describes traditional numerical
methods, moves to traditional interval methods, and proposes improvements
which can be obtained from consistency techniques.
TRADITIONAL NUMERICAL METHODS To understand traditional interval meth-
ods, it is useful to review traditional numerical methods. In explicit one-step
methods, the solution s of an ODE system O is viewed as the summation of two
functions:

S(to,Ug,tl) :SC(to,UO,tl) +€(t0,U0,t1). (].)

where the function sc can always be computed while the function e cannot. As
a consequence, a traditional numerical method based on an explicit one-step
method is an algorithm of the form

forall(: in 1..n) u; := sc(t;_1,ui1,t);

This algorithm approximates the solution s*(¢) for an initial value u(ty) = up.

Ezxample 1 Taylor Method. The Taylor method is one of the best known explicit
one-step methods where the function sc is given by the Taylor expansion of a
given order p, i.e.,

SCT(to,Ug,tl) = Ug + hf(o) (to,Uo) + ...+ ’;—Tf(pil) (to,Ug)

INTERVAL METHODS The key idea underlying (explicit or implicit) one-step
interval methods is to define an extension of the interval solution s.3

Definition 7 Interval Solution of an ODE System. Let s be the solution
of an ODE system O. An interval solution of O is an interval extension S of s,
ie.

Vto,tl € .7:) D() S D . S(to,Do,tl) g S(to,Dg,tl)
As a consequence, a traditional interval method based on an one-step method is
an algorithm of the form
Dy = 4o;
forall(; in 1..n)

D; :=8(ti-1,Di-1,t:);
This algorithm provides safe intervals for s*(t1),...,s*(tm), i.e.,
s*(t;) €D; (1<i<m).

DIrReCcT INTERVAL EXTENSIONS Traditionally, interval solutions are often con-
structed by considering an explicit one-step function s(to, uo,t1) = sc(to, uo, 1)+
e(to, uo, t1), by taking an interval extension SC of sc and by using a bounding
box to bound the error function e to obtain a function of the form S(tg, Do, t1) =
SC(to, Dy, tl) + E(to, Dy, tl).

Definition 8 Direct Explicit One-Step Interval Extension. Let s be an
explicit one-step solution of an ODE system O of the form
s(to, uo,t1) = sc(to, uo, t1) + e(to, uo, 1)

A direct explicit one-step interval extension of s is an interval solution S of the

form
S(to, Do, t1) = SC(to, Do, t1) + E(to, Bo, t1).

where SC is an interval extension of sc, By is a bounding box of s in [tg, 1] wrt
Dy, and E is an interval extension of e.

Possible examples are the Taylor and Runge-Kutta methods.

Example 2 Taylor Interval Solution. The Taylor Interval Solution of order p of
an ODE system O is defined as

ST(to, Dy, tl) = D0+hF(0) (to, D0)+. . .+h—fF(p 1)(t0, Do)—l-(+1 F()([to, tl], B)

where h = t; — t9, B is a bounding box of s in [¢o, tl] Wrt Dy, and the interval
functions F) are interval extensions of functions f) which can be obtained

by automatic differentiation. More information on automatic generation of the
value of these functions can be found in [Moo79, Ral80, Ral81, Cor88, Abe88|.

3 As usual, interval solutions could also be defined on particular subsets of F and D.

MEAN VALUE FORM STEP METHODS Mean value forms have been proposed
to use contraction characteristics of functions and may return smaller intervals.
From Equation 1, we may apply the mean value theorem on sc(to,u,t;) (on
variable u) to obtain

s(t(); u, tl) = SC(tO, m, tl) + Z?:l (%) (t07 f; tl) (U’l - ml) + e(t(); u, tl)
for some £ between v and m. As a consequence, any interval solution of s, may

serve as a basis to define a new interval solution.

Definition 9. Let D be a box (Iy,...,I,), m; be the center of I;, and Sy =
SCy + Ejpr be an interval solution of an ODE system O. The MVF solution of
O in D wrt SCyy, denoted by 7as(to, D, t1), is the interval function

SCiy (to, (7T, -), 1) + oy (835) (1) (1 = 70) + Ear(to, Do, 1)

—_

In the above definiton, the interval function (a?igi)(ji) can be evaluated by

automatic differentiation, during the evaluation of SC(to, I;, t1). extensions.
PIiECEWISE INTERVAL EXTENSIONS Direct interval techniques propagate entire
boxes through interval solutions. As a consequence, errors may tend to accum-
mulate as computations proceed. This section investigates a variety of techniques
inspired by, and using, consistency techniques that can be proposed to reduce the
accummulation of errors. The main idea, which is used several times in this paper
and was inspired by box-consistency, is to propagate small boxes as illustrated
in Figure 2.

Definition 10 Piecewise Explicit One-Step Interval Extension. Let s
be a solution to an ODE system O of the form

S(to,Ug,tl) = SC(to,Ug,tl) + €(t0,U0,t1).

A piecewise explicit one-step interval extension of s is a function S(to, D, 1)
defined as

S(to,Do,tl) = D{SC(to,’lﬂ),tl) | Ug € Do} +E(t0,B0,t1)

where SC is an interval extension of sc, By is a bounding box of s in [to, t1] wrt
Dy, and E is an interval extension of e.

Piecewise interval extensions of an ODE system are not only a theoretical con-
cept: they can in fact also be computed. The basic idea here is to express piece-
wise interval extension as unconstrained optimization problems.

Proposition 11. Let s be a solution to an ODE system O of the form
s(to, uo, t1) = sc(to, uo, t1) + e(to, uo, t1)-

A piecewise explicit one-step interval extension of s is a function S(to, D,t1)
defined as

Si(t();DO;tl) = [minueDOSCi(t07uatl)amamueDOSCi(toauatl)] + Ei(toaBoatl)

where 1 < ¢ < n, SC is an interval extension of sc, By is a bounding box of s
in [to,t1] wrt Do, and E is an interval extension of e.

u2

t0 t1
Fig. 2. A Piecewise Interval Solution

Note that these minimization problems must be solved globally to guarantee
reliable solutions. The implementation section discusses how a system like NU-
MERICA may be generalized to solve these problems. The efficiency of the system
of course depends on the step size, on the size of Dy, and on the desired accuracy.
It is interesting to observe that the function SC' does not depend on the error
term and hence methods that are not normally considered in the interval com-
munity (e.g., Runge-Kutta method) may turn beneficial from a computational
standpoint. It is of course possible to sacrifice accuracy for computation time
by using projections, the fundamental idea behind consistency techniques. For
instance, interval methods are generally very fast on one-dimensional problems,
which partly explains why consistency techniques have been successful to solve
systems of nonlinear equations.

Definition 12 Box-Piecewise Explicit One-Step Interval Extension.
Let s be a solution to an ODE system O of the form

s(to,uo, t1) = sc(to, uo,t1) + e(to, uo, t1).

A box-piecewise explicit one-step interval extension of s wrt dimension ¢ is a
function S;(to, D, t1) defined as

Si(t0,< Li,..., I, >,t1) = D{SC(t0,< I, ..., L, Ly, .., Iy, >,t1) | r e Ii}
+E(t07B07t1)

where SC is an interval extension of sc, By is a bounding box of s in [tg, 1]
wrt Dy, and E is an interval extension of e. The box-piecewise explicit one-step
interval extension of s wrt E and B is the function

S(to, Do, t1) = Nie1.nSi(to, Do, t1)

Each of the interval solutions reduces to a one-dimensional (interval) uncon-
strained optimization problem. The following property is a direct consequence
of interval extensions.

Proposition 13 (Box-)Piecewise Explicit One-Step Interval Solution.
The piecewise and boz-piecewise one-step interval extensions are interval so-
lutions.

In essence, box-optimal solutions safely approximate a multi-dimensional prob-
lem by the intersection of many one-dimensional problems. Of course, it is pos-
sible, and probably desirable, to define notions such as box(k)-piecewise interval
solutions where projections are performed on several variables. Finally, notice
that optimal interval solutions were defined with respect to a given bounding
box. More precise interval solutions could be obtained if local bounding boxes
were considered in the above definitions. It is easy to generalize our definitions
to integrate this idea.

5.2 Implementation Issues
Several of the novel techniques proposed in this section can be reduced to uncon-
strained optimization problems. In general, interval techniques for unconstrained
optimization problems require the function to satisfy a stability requirement (i.e.,
the optimum is not on the frontier of the box defining the search space). This
requirement is not guaranteed in this context since, by Theorem 5, we know that
the minimum of function s is on the frontier of Dy, and we minimize function
sc, an approximation of s.
Definition 14 min-stability. A function g is min-stable for box K =
(K1,...,K,) CR"if there exists some € > 0 such that

min(g(K)) = min(g(K"))
with K' = (K + [—¢€,€],..., K, +[—¢,¢€]).
Let K = (K4,...,K,) CR*beaboxand g: R* — R be a function to minimize
in K. Here are some necessary conditions for a point d in K to be a minimum
when the function is not min-stable.
99 (@) = 0 if d; is in the interior of K; (left(K;) < d; < right(K;))

ox;
FL(d) >0 if d; = left(K;)
FL(d) <0 if d; = right(K;)

Traditional interval algorithms for unconstrained minimization can be general-
ized to include the interval meta-constraints

left(I;) # left(K;) A right(l;) # right(K;) = (/89\) (D) =0

8Zi
—

left(I;) = left(K;) A right(l;) # right(K;) = (ﬂ)(p) >0

8Zi
—

left(I;) # left(K;) A right(l;) = right(K;) = (ggi)(p) <0

with g—gi an interval extension of (%), and D = ([,...,I,). The search

can also be restricted to the frontier by a&ding the redundant constraint
Vi<icaleft(l;) = left(K;) V right(1;) = right(K;)

and applying techniques such as constructive disjunction [VHSDar]. Note that

combining these two necessary conditions require some extra care to preserve

correctness.

6 Backwards Pruning: Box-Consistency for ODE

This section proposes another technique to address the growth of intervals in
the step methods. The fundamental intuition here is illustrated in Figure 3. We
know that all the solutions at ¢;_; are in D;_;. If, in Dj, there is some box
H such that S(tj,H,t;—1) N D;j_q = 0, then we know that the box H is not
part of the solution at ¢;. In other words, it is possible to use the step methods
backwards to determine whether pieces of the box can be pruned away. This
section formalizes this idea in terms of box-consistency.

to t1
Fig. 3. Pruning

Box consistency aims at reducing a box D; at t; given that the solution at ;_;
are known to be in D;_;.

Definition 15 Interval Projection of an ODE System. An interval pro-
jection ODE (S, i) is the association of an interval solution S and of an index i
(1<i<n).

Definition 16 Box Counsistency of an ODE System. Let S be an interval
solution of an ODE system . An interval projection ODE (S, ¢) is boz-consistent
at tl,Dl wrt to,Do if

L=0{r; € L; |0 #DoNS(t1,{I1,.... Li—1,75, Li1, ...,), to) }

where D; = ([,...,I,). An interval solution is boz-consistent at t1,D; wrt
to, Dy if its projections are box-consistent at t1, D1 wrt tg, Do-

Proposition17. Let Dy = (I1,...,1,), and I; = [l;,r;]. An interval projection
ODE (S, i) is box-consistent at t1, Dy wrt to, Do iff, when l; # 4,

w # DO N S(t17 (Ila "'7Ii717 [lialj_]ali+17 teey In>7t0)
A w 7é DO n S(tl, (Il, ---711'—17 [T’;,T’i],IH_l, ...,In>,t0)
and, when l; = r;,
(b 75 DO N S(tl, <11, ceey [i—17 [ll', li]7[i+17 ceey [n>,t1).

Traditional propagation algorithms can now be defined to enforce box-
consistency of ODE systems.

7 The Wrapping Effect

The wrapping effect is the name given to the error resulting from the enclosure
of a region (which is not a box) by a box. It only occurs for multidimensional
function. In one dimension, a perfect interval extension of a continuous function
g always yields the correct interval. However, a perfect interval extension of
a multidimensional function ¢ introduces overestimations in the resulting box,
because the set g(D) = {g(d)|d € D} is not necessarily a box. This effect is
especially important when the enclosure is used for finding a new region which
is also enclosed by a box. The wrapping effect is thus central in interval methods
for ODE. The following classical example, due to Moore [Moo66] and explained
in [Cor95] , illustrates this problem :

01 . —-0.10.1
[
w= (—1 0)“ with - uo € < 0.9 1.1)
The trajectories of individual point-valued solutions of this ODE are circles in
the ((u)1, (u)2)-phase space. The set of solution values is a rotated rectangle.

Figure 4 shows that the resulting boxes at t;_1, t;, t;41. Moore shows that the
width of the enclosures grow exponentially even if the stepsize (t; — t;—_1) con-
verges to zero. The wrapping effect can be reduced by changing the coordinate
system at each step of the computation process. The idea is to choose a coordi-
nate system more appropriate to the shape of s(t;_1,D;_1,t;), hence reducing
the overestimation of the box representation of this set (Figure 5).

(u)y
DO
Dl
(u))
D2
(u), (OX
Fig. 5. Reducing the Overestimation by
Fig. 4. The Wrapping Effect Coordinate Transformation

An appropriate coordinate system has to be chosen at each step. Assuming that
such coordinate systems are given by mean of (invertible) matrices M}, a naive
approach, based on an explicit one-step method, would consist of computing
Dj = S(tj—1,Mj—1.Dj_y,t;) ;
D= M; ' D,

(u), (u)

D’
J

t (), t.

j-1 j ©

Fig. 6. Coordinate transformation on e-boxes

where D and Dj_, are the boxes at ¢; and ¢;_; in their local coordinate system.
This approach is naive since it introduces three wrapping effects: in M;_; D;'71
to restore the original coordinate system needed to compute S, in the computa-
tion of S, and in the computation of Mjlej to produce the result in the new
coordinate system. To remedy this limitation, more advanced techniques (see,
for instance, [Loh87, Ste71, DS76]) have been proposed but they are all bound
to a specific step procedure. For instance, Lohner merges the two naive steps
together using a mean value form and use associativity in the matrix products
to try eliminating the wrapping effect. More precisely, the key term to be eval-
uated in his step method is of the form (M]-*lJMj_l)D;-_1 and the goal is to
choose M j_l so that M j_lJ M;_, is close to an identity matrix.

Piecewise interval extensions, however, reduce the wrapping effect in the
naive method substantially, as illustrated in Figure 6. The overestimations of
Mj,l.Dg._l and Mlej on e-boxes introduce wrapping effects that are small
compared to the overall size of the box and to the benefits of using piecewise
interval extensions. In addition, this reduction of the wrapping effect is not
tailored to a specific step method. The basic idea is thus (1) to find a linear
approximation of s(t;_1, M;—1.D}_,,t;); (2) to compute the matrix Mj_1 from
the linear relaxation; (3) to apply the naive method on e-boxes. Step (1) can
be obtained by using, for instance, a Taylor extension, while Step (2) can use
Lohner’s method that consists of obtaining a QR factorization of the linear
relaxation. Lohner’s method has the benefit of being numerically stable.

8 Experimental Results

This section compares some standard techniques with piecewise interval exten-
sions. This goal is to show that consitency techniques can bring substantial gain
in precision. The results were computed with Numerica with a precision of 1e-8,
using optimal bounding boxes.

Counsider the ODE u/(t) = —u(t) for an initial box [-1,1] at ¢, = 0. Table
1 compares the results obtained by an interval Taylor method of order 4 with
step size 0.5, the results obtained by the piecewise interval extension of the same
method, and the exact solutions. Relative errors on the size of the boxes are also

Taylor Piecewise Taylor Exact solution

t Result Error Result Error

0.0 | [-1.00000 , 1.00000] 0%|[-1.00000 , 1.00000] 0.00%| [-1.00000 , 1.00000]
0.5 | [-1.64870 , 1.64870] 171%|[-0.60703 , 0.60703]| 0.08%| [-0.60653 , 0.60653]
1.0 | [-2.71826 , 2.71821] 638%|[-0.36849 , 0.36849]| 0.17%| [-0.36788 , 0.36788]
1.5 | [-4.48150 , 4.48150] 1908%|[-0.22368 , 0.22368]| 0.25%| [-0.22313 , 0.22313]

2.5 ([-12.18163 , 12.18163]| 14740%|[-0.08242 , 0.08242]| 0.41%| [-0.08209 , 0.08209]
3.0 ([-20.08383 , 20.08383]| 40239%|[-0.05003 , 0.05003]| 0.50%| [-0.04979 , 0.04979]
[_
[_

[- [-
[[-
P F
2.0 | [-7.38864 , 7.38864] 5359%([-0.13578 , 0.13578]| 0.33%| [-0.13534 , 0.13534]
[[-
[- [-
[[-
[L

3.5 |[-33.11217 , 33.11217]|109552%|[-0.03037 , 0.03037]| 0.58%| [-0.03020 , 0.03020]
4.0 |[-54.59196 , 54.59196]|297962%|[-0.01844 , 0.01844]| 0.66%| [-0.01832 , 0.01832]
Table 1. ODE u/(t) = —u(t)

Taylor MVF Piecewise Taylor Exact solution
t Result Error Result Error
0.0 | [0.10000 , 0.40000 0.00%| [0.10000 , 0.40000] | 0.00%| [0.10000 , 0.40000
0.5 0.09511 , 0.33344] | 0.10%| [0.09524 , 0.33333

]
0.06798 , 0.37635] | 29.52%
1| 65.37%

0.09075 , 0.28583] | 0.14%
1.5 | [0.01027 , 0.35316] | 110.31%)| [0.08679 , 0.25010] | 0.16%| [0.08696 , 0.25000
2.0 | [-0.02004 , 0.35314] | 168.68%| [0.08318 , 0.22231] | 0.18%| [0.08333 , 0.22222

[[]
[[]
[[0.09091 , 0.28571]
% pa o
2.5 [—o0 , +00] [0.07985 , 0.20007] | 0.19%| [0.08000 , 0.20000]
[[]
[[]
[[]
[[]
[[]

[
[

1.0 | [0.03884 , 0.36099
[

3.0 0.07678 , 0.18188] | 0.19%| [0.07692 , 0.18182
3.5 0.07394 , 0.16672] | 0.20%| [0.07407 , 0.16667
4.0 0.07131 , 0.15389] | 0.21%| [0.07143 , 0.15385
4.5 0.06885 , 0.14290] | 0.21%)| [0.06897 , 0.14286
5.0 0.06656 , 0.13337] | 0.21%| [0.06667 , 0.13333

Table 2. ODE «/(t) = —u*(t)

given. As can be seen, the intervals of the traditional Taylor method grow quickly,
although this function is actually contracting. The piecewise interval extension,
on the other hand, is close to the exact solutions and is able to exploit the
contraction characteristics of the function.

Consider now the ODE u/(t) = —u?(t) for an initial box [0.1,0.4] at t, = 0.
Table 2 compares the results obtained by a mean value form of a Taylor method
of order 4, the results obtained by the piecewise interval extension of the Taylor
method of order 4, and the exact solutions. Once again, it can be seen that the
standard method leads to an explosion of the size of the intervals, while the
piecewise interval extension is close to the exact results. Note that the Taylor
method of order 4 also behaves badly on this ODE.

Consider now the system

{U'l(t) = —us(t) — 2ux(t)
uy(t) = —3uq(t) — 2ux(t)

for an initial box ([5.9,6.1],[3.9,4.1]) at tx = 0. Table 3 compares the results
obtained by an interval Taylor method of order 4, the results obtained by the

piecewise interval extension of the same method, and the exact solutions. Once
again, similar results can be observed.

Taylor Piecewise Taylor Exact solution
t |dim Result Error Result Error

0.0| ul | [5.90000 , 6.10000] 0.0%| [5.90000 , 6.10000] | 0.00%| [5.90000 , 6.10000]
u2 | [3.90000 , 4.10000] 0.0%| [3-90000 , 4.10000] | 0.00%| [3.90000 , 4.10000]
0.1| ul | [4.75414 | 5.02917] 24.4%| [4.78106 , 5.00225] | 0.07%| [4.78111 , 5.00214]

[[[
| | |
u2 | [1.70100 , 1.92226] | 0.1%] [1.70100 , 1.92226] | 0.10%| [1.70106 , 1.92210]
[[[
[[[
[[[

0.2| ul | [4.05742 , 4.42291] 49.6%| [4.11788 , 4.36246] | 0.12%| [4.11798 , 4.36226]
u2 | [0.06566 , 0.44081] 53.6%| [0.13089 , 0.37558] | 0.17%| [0.13103 , 0.37531]
0.3| ul | [3.65219 , 4.15688] 86.9%| [3.76933 , 4.03975] | 0.17%| [3.76951 , 4.03948]

u2 |[-1.19270 , -0.59227]| 122.4%)|[-1.02776 , -0.75721]| 0.21%|[-1.02754 , -0.75757]
0.4| ul | [3.43316 , 4.14938] | 140.1%| [3.64179 , 3.94076] | 0.20%| [3.64205 , 3.94042]
u2 |[-2.23853 , -1.30590] | 212.6%)|[-1.92176 , -1.62266]| 0.25%|[-1.92145 , -1.62309]
0.5| ul | [3.32116 , 4.35646] | 214.0%| [3.67355 , 4.00407] | 0.24%| [3.67391 , 4.00366]
u2 |[-3.19776 , -1.77303] | 332.1%|[-2.65071 , -2.32006]| 0.27%|[-2.65030 , -2.32056]

0.8| ul | [2.96130 , 6.26697] | 642.7%]| [4.39089 , 4.83740] | 0.32%]| [4.39158 , 4.83669]
u2 |[-6.63827 , -1.77474] | 992.7%|[-4.42981 , -3.98317]| 0.34%][-4.42906 , -3.98396]
0.9| ul | [2.57376 , 7.48325] | 898.0%| [4.78171 , 5.27530] | 0.34%)| [4.78254 , 5.27446]
u2 |[-8.39440 , -1.11612] |1379.6%|[-5.00212 , -4.50839]| 0.37%][-5.00122 , -4.50930]
1.0 ul | [1.85766 , 9.16200] |1243.6%| [5.23702 , 5.78264] | 0.36%| [5.23800 , 5.78165]
u2 |[-10.76604 , 0.11270][1901.0%|[-5.59955 , -5.05378]| 0.39%|[-5.59850 , -5.05484]

Table 3. ODE u) (t) = —u1(t) — 2us2(t) and u5(t) = —3u1(t) — 2u(t)

9 Conclusion

This paper studied the application of interval analysis and consistency tech-
niques to ordinary differential equations. It presented a unifying framework to
extend traditional numerical techniques to intervals showing, in particular, how
to extend explicit one-step methods to intervals. The paper also took a fresh look
at the traditional problems encountered by interval techniques and studied how
consistency techniques may help. It proposed to generalize interval techniques
into a two-step process: a forward process that computes an enclosure and a
backward process that reduces this enclosure. In addition, the paper studied
how consistency techniques may help in improving the forward process and the
wrapping effect. Very preliminary results indicate the potential benefits of the
approach. Our current work focuses on the full implementation and experimen-
tal evaluation of the techniques proposed in this paper in order to determine
which combinations of these techniques will be effective in practice. Future work
will also be devoted to the application of consistency techniques to ODE systems
with boundary values, since interval analysis and consistency techniques are par-
ticularly well-adapted when compared to traditional methods (as observed by
several members of the community).

Acknowledgment

Many thanks to Philippe Delsarte and Jean Mawhin for fruitfull discussions.
This research is partially supported by the Actions de recherche concertées
(ARC/95/00-187) of the Direction générale de la Recherche Scientifique — Com-
munauté Francaise de Belgique and by an NSF NYT award.

References

[Abe8S]

Oliver Aberth. Precise Numerical Analysis. William Brown, Dubuque,
Towa, 1988.

[BBCG96] Martin Berz, Christian Bischof, George Corliss, and Andreas Griewank, ed-

[Cor88]

[Cor95]

[DIVHOS]
[DS76]

[Har64]
[Hen62]

[Loh87]

[Moo66]
[MooT79]

[Ral80]

[Ral81]

[Sta96]

[SteT1]

itors. Computational Differentiation: Techniques, Applications, and Tools.
STAM, Philadelphia, Penn., 1996.

George F. Corliss. Applications of differentiation arithmetic. In Ramon E.
Moore, editor, Reliability in Computing, pages 127-148. Academic Press,
London, 1988.

G.F. Corliss. Theory of Numerics in Ordinary and Partial Diffential Equa-
tions (W.A. Light, M. Machetta (Eds), volume Vol IV, chapter Guaranteed
Error Bounds for Ordinary Differential Equations, pages 1-75. Oxford Uni-
versity Press, 1995.

Y. Deville, M. Janssen, and P. Van Hentenryck. Consistency Techniques
in Ordinary Differential Equations. Technical Report TR98-06, Université
catholique de Louvain, July 1998.

D.P. Davey and N.F. Stewart. Guaranteed Error Bounds for the Initial
Value problem Using Polytope Arithmetic. BIT, 16:257-268, 1976.

Ph. Hartman. Ordinary Differential Equations. Wiley, New York, 1964.

P. Henrici. Discrete Variable Methods in Ordinary Differential Equations.
John Wiley & Sons, New York, 1962.

Rudolf J. Lohner. Enclosing the solutions of ordinary initial and boundary
value problems. In Edgar W. Kaucher, Ulrich W. Kulisch, and Christian
Ullrich, editors, Computer Arithmetic: Scientific Computation and Program-
ming Languages, pages 255-286. Wiley-Teubner Series in Computer Science,
Stuttgart, 1987.

R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.
R.E. Moore. Methods and Applications of Interval Analysis. STAM Publ.,
1979.

Louis B. Rall. Applications of software for automatic differentiation in nu-
merical computation. In G6tz Alefeld and R. D. Grigorieff, editors, Funda-
mentals of Numerical Computation (Computer Oriented Numerical Analy-
sis), Computing Supplement No. 2, pages 141-156. Springer-Verlag, Berlin,
1980.

Louis B. Rall. Automatic Differentiation: Techniques and Applications, vol-
ume 120 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
1981.

O. Stauning. Enclosing Solutions of Ordinary Differential Equations. Tech-
nical Report Tech. Report IMM-REP-1996-18, Technical University Of Den-
mark, 1996.

N.F. Stewart. A Heuristic to Reduce the Wrapping Effect in the Numerical
Solution of ODE. BIT, 11:328-337, 1971.

[VHLDO97] P. Van Hentenryck, M. Laurent, and Y. Deville. Numerica, A Modeling

[VHSDar]

Language for Global Optimization. MIT Press, 1997.

P. Van Hentenryck, V. Saraswat, and Y. Deville. The Design, Implementa-
tion, and Evaluation of the Constraint Language cc(FD). Journal of Logic
Programming (Special Issue on Constraint Logic Programming), 1998 (to

appear).

This article was processed using the IATEX macro package with LLNCS style

