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Abstract

Initial value problems for parametric ordinary differential equations (ODES) arise in many areas of
science and engineering. Since some of the data is uncertain, traditional numerical methods do not apply.
This paper considers a constraint satisfaction approach that enhances traditional interval methods with a
pruning component which uses a relaxation of the ODE and Hermite interpolation polynomials. It solves
the main theoretical and practical open issue l€eft in this approach: the choice of an optimal evaluation time
for the relaxation. As a consequence, the constraint satisfaction approach is shown to provide a quadratic
(asymptotical) improvement in accuracy over the best interval methods, while improving their running
times. Experimental results on standard benchmarks confirm the theoretical results.

1 Introduction

Initial value problems (1VPs) for ordinary differential equations (ODES) arise naturally in many applications
in science and engineering, including chemistry, physics, molecular biology, and mechanics to name only a
few. An ordinary differential equation O is a system of the form

wi'(t) = filt,ui(t),... ,un(t))
un' (t) = fr(tyui(t), ... ,un(t))

often denoted in vector notation by w’(t) = f(t,u(t)) or u’ = f(¢,u). Aninitial value problemisan ODE
with aninitial conditionu(to) = wo. Inaddition, in practice, it is often the case that the parameters and/or the
initial values are not known with certainty but are given as intervals. Hence traditional methods do not apply
to the resulting parametric ordinary differential equations since they would have to solve infinitely many
systems. Interval methods, pioneered by Moore [Moo66], provide an approach to tackle parametric ODEs.
These methods return enclosures of the exact solution at different points in time, i.e., they are guaranteed
to return intervals containing the exact solution. In addition, they accommodate easily uncertainty in the
parameters or initial values by using intervals instead of floating-point numbers. Interval methods typically
apply a one-step Taylor interval method and make extensive use of automatic differentiation to obtain the
Taylor coefficients [Eij81, Kru69, M0oo66, Moo79]. Their major problem however isthe explosion of thesize
of the boxes at successive points as they often accumulate errors from point to point and lose accuracy by
enclosing the solution by a box (this is called the wrapping effect). Lohner's AWA system [Loh87] was an
important step in interval methods which features efficient coordinate transformationsto tackle the wrapping
effect. More recently, Nedialkov and Jackson’s IHO method [NJ99] improved on AWA by extending a
Hermite-Obreschkoff’s approach (which can be viewed as a generalized Taylor method) to intervals (see also



[Ber98]). Note that interval methods inherently accommodate uncertain data. Hence, in this paper, we talk
about ODES to denote both traditional and parametric ODEs.

This research takes a constraint satisfaction approach to ODEs. Its basic idea [DJVH98, JDVH99,
JVHDO1]] is to view the solving of ODEs as the iteration of three processes: (1) a bounding box process
that computes bounding boxes for the current step and proves (numerically) the existence and uniqueness
of the solution, (2) a predictor process that computes initial enclosures at given times from enclosures at
previous times and bounding boxes and (3) a pruning process that reduces the initial enclosures without re-
moving solutions. The real novelty in our approach is the pruning component. Pruning in ODES however
generates significant challenges since ODES contain unknown functions. The main contribution of our re-
search is to show that an effective pruning technique can be derived from a rel axation of the ODE, importing
a fundamental principle from constraint satisfaction into the field of differential equations. Four main steps
are necessary to derive an effective pruning algorithm. The first step consists in obtaining a relaxation of
the ODE by safely approximating its solution using, e.g., Hermite interpolation polynomials. The second
step consists in using the mean-value form of this relaxation to solve the rel axation accurately and efficiently.
Unfortunately, these two steps, which were skeched in [JDVH99], are not sufficient and the resulting pruning
algorithm still suffers from traditional problems of interval methods. The third fundamental step, which was
presented in [JVHDO1], consists in globalizing the pruning by considering several successive relaxations to-
gether. Thisidea of generating aglobal constraint from a set of more primitive constraintsis also at the heart
of constraint satisfaction. It makes it possible, in this new context, to address the problem of dependencies
and the wrapping effect simultaneously.! The fourth step, which is the main contribution of this paper, con-
sists of choosing an evaluation time for the relaxation that maximizes pruning. Indeed, the global constraint
generated in the third step, being a relaxation of the ODE itself, is parametrized by an evaluation time. In
[JVHDO1], the evaluation time was chosen heuristically and its choice was | eft as the main open issue in the
constraint satisfaction approach to parametric ODEs.

The main contribution of this paper is to close this last open problem and to show that, for global filters
based on Hermite interpolation polynomials, the optimal evaluation time is independent from the ODE itself
and can be precomputed before starting the integration steps at negligible cost. This result has fundamental
theoretical and practical consequences. From a theoretical standpoint, it can be shown that the constraint
satisfaction approach provides a quadratic improvement in accuracy (asymptotically) over the best interval
methods we know of while decreasing their computation costs as well. This result also implies that our ap-
proach should be significantly faster when the function f is very complex. Experimental results confirm the
theory. They show that the constraint satisfaction approach often produces many orders of magnitude im-
provementsin accuracy over existing methods while decreasing computation times. Alternatively, at similar
accuracy, other approaches are significantly slower. The rest of the paper is organized as follows. Section 2
introduces the main definitions and notations. Section 3 givesa high-level overview of the constraint satisfac-
tion approach to parametric ODEs. Section 4 isthe core of the paper. It describes how to choose an evaluation
time to maximize pruning. Sections 5 and 6 report the theoretical and experimental analyses and Section 7
concludes the paper. The appendix contains the proofs of the main results. A comprehensive presentation of
all results, including detailed algorithms, is available in the technical report version of this paper.

2 Background and Definitions

Small letters denote real values, vectors and functions of real values. Capital letters denote matrices, sets,
intervals, vectors and functions of intervals. TR denotes the set of all closed intervals C R. A vector of
intervals D € IR" iscaled abox. If »r € R, then 7 denotes the smallest interval I € IR such that » € 1.

1Global congtraints in ordinary differential equations have also been found useful in [CB99]. The problem and the techniques in
[CB99] are however fundamentally different.




If r € R, then7 = (71,... ,7,). We often use r instead of 7 for simplicity. If A C R", then O A denotes
the smallest box D € IR™ such that A C D and g(A) denotes the set {g(z) | « € A}. We also assume
that a, b, t;, t. and t areredls, I; € IR, u; isin R*, and D; and B; arein IR” (i € N). We use m(D) to
denote the midpoint of D and s(D) to denote D — m(D). Observethat m(D) + s(D) = D. Weuse D . g to
denote the Jacobian of g wrt 2 and w (D) to denote the width of abox. More precisely, w([a,b]) = b — a and

(s 1) = (L), ... w(ln)).

Notation 1 Let A beasetanda; € A wherei € N. We use the following bold face notations.

a = (ap,-..,a)) € Ak+L
a; = (ai,. - 7a(i+1)k71') € A¥ )
a; i+j = (a,-, - ,ai+j) € Aitl

Observethat ag = (ag, ... ,ak—1), a1 = (ag,... ,a2,—1), and a = (ao, ... ,a). Inthetheoretica parts,

we assume that the underlying interval arithmetic is exact. As traditional, we restrict attention to ODEs that
have a unique solution for a given initial value and where f € C °°. Techniques to verify this hypothesis
numerically are well-known [Moo79, DJVH98]. Moreover, in practice, the objective is to produce (an ap-

proximation of) the values of the solution of O at different pointst g, t1, . .. , t,,. Thismotivatesthefollowing
definition of solutions and its generalization to multistep solutions.

Definition 1 (Solution of an ODE) Thesolutionof an ODE O on I € IR isthefunctions: R x R” x R —
R"™ suchthat V¢ € I : %(to,uo,t) = f(t, s(to, uo, t)) for aninitial condition s(to, uo, to) = uo-

Definition 2 (M ultistep solution of an ODE) The multistep solution of an ODE O is the partial function
ms : A C RFH x (R*)FH! x R — R" defined as ms(t, u, t) = s(tg, ug,t)if u; = s(tg, ug,t;) (1 <
i < k) where s isthe solution of O and is undefined otherwise.

Since multistep solutions are partial functions, we generalize interval extensionsto partial functions.

Definition 3 (Interval Extension of a Partial Function) Theinterval function G : TR™ — IR™ isaninter-
val extension of the partial functiong : E C R® — R™ if VD € IR" : g(E N D) C G(D).

Finally, we generalize the concept of bounding boxes to multistep methods. Intuitively, a bounding box
encloses all solutions of an ODE going through certain boxes at given times over a given time interval.
Bounding boxes are often used to approximate error termsin ODES.

Definition 4 (Bounding Box) Let O be an ODE system, ms be the multistep solution of O, and
{to,... ,tx} C T € IR. Abox B isaboundingbox of O over T'wrt (t,D) if, for all t € T', ms(t,D, t) C B.

3 The Constraint Satisfaction Approach

The constraint satisfaction approach followed in this paper was first presented in [DJVH98]. It consists
of a generic algorithm for ODES that iterates three processes. (1) a bounding box process that computes
bounding boxes for the current step and proves (numerically) the existence and uniqueness of the solution,
(2) apredictor process that computesinitial enclosures at given times from enclosures at previous times and
bounding boxes and (3) apruning processthat reducestheinitial enclosureswithout removing solutions. The
bounding box and predictor components are standard in interval methods for ODEs. This paper thus focuses
on the pruning process, the main novelty of the approach. Our pruning component is based on relaxations of
the ODE. To our knowledge, no other approach uses relaxations of the ODE to derive pruning operators and



the only other approaches using a pruning component [NJ99, Rih98] were developed independently. Note
also that, in the following, predicted boxes are generally superscripted with the symbol — (e.g., D 1), while
pruned boxes are generally superscripted with the symbol * (e.g., D 7).

The pruning component uses safe approximations of the ODE to shrink the boxes computed by the predic-
tor process. To understand thisidea, it is useful to contrast the constraint satisfaction approach to nonlinear
programming [VHMD97] and to ordinary differential equations. In nonlinear programming, a constraint
¢(x1, ... ,xy,) can be used amost directly for pruning the search space (i.e., the Cartesian product of the
intervals I; associated with the variables x;). It suffices to take an interval extension C(X1,... ,X,,) of
the constraint. Now if C(I1, ... , 1)) does not hold, it follows, by definition of interval extensions, that no
solution of ¢ liesin I] x ... x I. Theinterval extension can be seen as afilter that can be used for pruning
the search space in many ways. For instance, Numerica uses box(k)-consistency on these interval constraints
[VHMD97]. Ordinary differential equationsraise new challenges. INnanODEV ¢ : u' = f(t,u), functionsu
and u’ are, of course, unknown. Hence it is not obvious how to obtain afilter to prune boxes.

One of the main contributions of our approach is to show how to derive effective pruning operators for
parametric ODEs. Thefirst step consistsin rewriting the ODE in terms of its multistep solution msto obtain

Vi 2ms(g a,t) = f(t, ms(t,u,t)).

Let usdenotethisformulaV ¢ : fi(t,u,t). Thisrewriting may not appear useful since msisstill an unknown
function. However it suggests away to approximate the ODE. Indeed, we show in Section 3.3 how to obtain
interval extensions of ms and % by using polynomial interpolations together with their error terms. This
simply requires a bounding box for the considered time interval and safe approximations of ms at successive
times, both of which are available from the bounding box and predictor processes. Once these interval
extensions are available, it is possible to obtain an interval formulaof the form

Vt:FL(t,D,t)

which approximates the original ODE. The above formulais still not ready to be used as a filter because ¢
is universally quantified. The solution hereis simpler and consists of restricting attention to afinite set 7' of
times (possibly a singleton) to obtain the relation

Vt € T:FL(t,D,t)

which produces a computablefilter. Indeed, if the relation F'L(t, D, t) does not hold for atimet, it follows
that no solution of ' = f(¢,u) can go through boxes Dy, ..., Dy, at times ty,... ,t;. The following
definition and proposition capture these concepts more formally.

Definition 5 (Multistep Filter) Let O be an ODE and s its solution. A multistep filter for O is an interval
relation FL : RE+1 x (IR?)k*+1 x R — Bool satisfying

u; € D;

S(to,uojti) = u; (0 <i< k’) } = Vt: FL(t7D7t)_

How can we use this filter to obtain tighter enclosures of the solution? A simple technique consists of
pruning the last box computed by the predictor process. Assume that D } is a box enclosing the solution at
timet; (0 <i < k) and that we are interested in pruning the last predicted box D ;. A subbox D C D, can
be pruned away if the condition FL(t,(D§,... ,D;_,,D),t.) does not hold for some evaluation point ¢..
Let us explain briefly the geometric intuition behind this formulaby considering what we call natural filters.
Given interval extensions MS and DMS of ms and 35;‘5, it is possible to approximate the ODE v’ = f(t, u)
by the formula

DMS(t,D,t) = F(t, MS(t, D, t)).



In this formula, the left-hand side of the equation represents the approximation of the slope of v while the
right-hand represents the slope of the approximation of «. Since the approximations are conservative, these
two sides must intersect on boxes containing a solution. Hence an empty intersection means that the boxes
used in the formula do not contain the solution to the ODE system. Traditional consistency techniques and
algorithms based on thisfilter can now be applied. For instance, one may beinterested in updating the last box
computed by the predictor process using the operator D ; = O{r € D, | FL(t,(Dg,... ,D;_;,7),te)}.
Observe that this operator uses an evaluation time ¢, and the main result of this paper consists in showing
that t. can be chosen optimally to maximize pruning. Thefollowing definitionisanovel notion of consistency
for ODEs to capture pruning of the last r boxes.

Definition 6 (Backward Consistency of Multistep Filters) A multistep filter FL(t,D,e) is backward-
consistentin (t, D) for timeeif D = O {uy, € Dy, | Jug € Dy : FL(t,u,e)}. Asystemof r successive mul-
tistep filters { F'L;(t;. x+i, Di..k+i, €i) Yooy 1S DaCkward(r)-consistent in (to..x+r—1,Do..x+-—1) fOr times
e; (0<i<r)if B

D rr—1 = O{up pr—1 € Dppyro1 | Fug € Do : V0 <0 <7 FLi(b5 kti, Wi pyir€d) ) -

3.1 Multistep Filters

Filtersrely on interval extensions of the multistep solution and of its derivativewrt t. These extensionsare, in
general, based on decomposing the (unknown) multistep solution into the sum of a computable approximation
pandan (unknown) errorterme, i.e., ms(t,u, t) = p(t,u, t) + e(t, u, t). Thereexist standard techniquesto
buildp and ? andto bound e and ‘3;3 Section 3.3 reviewshow they can be derived from Hermiteinterpolation
ponnom|aIs Herewes mply assumethat they are avail able and we show how to usethem to build filters. The
presentation so far showed how natural multistep filters can be obtained by simply replacing the multistep
solution and its derivative wrt ¢ by their interval extensions to obtain DMS(t,D,t) = F(t, MS(t,D,t)).
It is not easy however to enforce backward consistency on a natural filter since the variables may occur in
complex nonlinear expressions. This problem is addressed by mean-valuefilters that we now briefly explain.

Mean-value forms (MVFs) play a fundamental role in interval computations and are derived from the
mean-value theorem. They correspond to problem linearizations around a point and result in filters that
are systems of linear equations with interval coefficients and whose solutions can be enclosed reasonably
efficiently. Mean-value forms are effective when the sizes of the boxes are sufficiently small, which is the
casein ODEs. Inaddition, being linear equations, they allow for an easier treatment of the so-called wrapping
effect, a crucia problem in interval methods for ODEs. As a consequence, mean-value forms are especially
appropriate in our context and will produce filters which are efficiently amenable to backward consistency.
Therest of this section describes how to obtain mean-valuefilters. Mean-value filters are presented in detail
in [JVvHDO1] and in the technical report version of this paper. For the purpose of this paper, it is sufficient
to observe that they lead to a system of linear equations with interval coefficients. More precisely, let D — €
IR"™*+1) pe the predicted box of variable u and define X as D — m (D ~). A mean-value filter is a system
of equations of the form Zf:o A;()X; = K(t) where A;(t) € R*™*™, i =0,...,kand K(t) € IR". In
general, for initial value problems, we will be interested in pruning the last predicted box D, . Henceit is
convenient to derive amean-valuefilter whichisexplicitin D, by isolating X, to obtain

k—1

X = ) LK (t) Z (1)) Xi. 2

i=0

which is an explicit mean-value filter (A, (t) ! denotes an enclosure of the inverse of A (t)). Itis easy to
use an explicit mean-valuefilter to prunethe predicted box D - at time;, giventheboxes Dy,. .. ,Dj_, from
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Figure 1: Intuition of the Globalization Process (k = 3).

the previous integration steps, since X, (and thus D},) has been isolated. The filter simply becomes

k—1
Dy =m(Dy) + Ault) 'K (1) = Y (Au(t) ' A1) (DF - m(D;))

i=0

and the pruned box D at time ¢, is given by D} = D, N D, . It follows directly that the explicit mean-value
filter is backward-consistentin D*.

3.2 Global Filters

Mean-value filters may produce significant pruning of the boxes computed by the predictor process. However,
they suffer from two limitations: the wrapping effect which is inherent in interval analysis and a variable
dependency problem since the same boxes are used indirectly several times in a multistep method, possibly
inducing a significant loss of precision. These two problems were addressed in [JVHDO01] through global
filters. The main idea underlying global filters is to cluster several mean-value filters together so that they do
not overlap. The intuition is illustrated in Figure 1 for £ = 3. It can be seen that the global filter prunes the
3 predicted boxes D5, D, , and Dy for times ¢3, t4, and ¢5 using the boxes D¢, D7, and D3 computed for
times ¢y, ¢1, and ¢». Observe also that global filters do not overlap, i.e., the boxes D¢, Dy, and D3 will not
be used in subsequent filters. More precisely, a global filter is a system of & successive explicit mean-value
filters. 1t can be transformed into an explicit form X; = C'(eq)Xo + R(eo) where C(eg) € IR >"* and
R(ep) € IR™. An interesting property of global filters is that each pruned box at times ¢, t4, or t5 can
be computed only in terms of the predicted boxes and the boxes at times ¢, ¢1, and ¢ by using Gaussian
elimination. The resulting filter is backward(k)-consistent with respect to the resulting boxes. Finally, observe
that global filters not only remove the variable dependency problem by globalizing the pruning process. They
also produce square systems which makes it possible to apply standard techniques from one-step methods
(e.g., local coordinate transformations and QR factorizations [Loh87]) to address the wrapping effect.

3.3 HermiteFilters

So far, we assumed the existence of interval extensions of p and dp/9dt and bounds on the error terms e and
Oe/0t. \We now show how to use Hermite interpolation polynomials for this purpose. Informally speaking,
a Hermite interpolation polynomial approximates a continuously differentiable function f which is known
implicitly by its values and the values of its successive derivatives at various points. A Hermite interpolation
polynomial is specified by imposing that its values and the values of its successive derivatives at some given
points be equal to the values of f and of its derivatives at the same points. Note that the number of conditions
(i.e., the number of successive derivatives that are considered) may vary at the different points.

Definition 7 (Her mite(o) Interpolation Polynomial) Consider the ODE w’' = f(t,u) and let ¢ =
(0g,...,01) ENFtlando; #0 (0 < i < k). Leto, = Ef:o oi, ugo) = u;, and ugj) = fUD(t;,u4)

(0<i<k&0<j<o;—1). TheHermite(o) interpolation polynomial wrt f and (t,u) is the unique
polynomial ¢ of degree < o, — 1 satisfying ¢@ (t;) = ul’) (0<j<o;—1&0<i<k).



Proposition 1 (Hermite Inter polation Polynomial) The polynomial ¢ satisfying conditions of definition 7
is given by

k o;—1
att) =" 3 u L) ®
=0 j=0
where
Ligi-1(t) = ligi—1(t), i=0,....k
ng(t) = ll](t) - ZZZ:;}t,-l li;/) (tz)LlV(t)v i=0,... 7k7 J=0,...,0,—=2 (4)
—t;) —k —t, \7" - -
lij(t) = %HZ;? (ttiftt.,) , 1=0,...,k, 7=0,...,0,—1

It is easy to take interval extensions of a Hermite interpolation polynomial and of its derivatives. The only
remaining issue is to bound the error terms. The following standard theorem (e.g., [SB80], [Atk88]) provides
the necessary theoretical basis.

Proposition 2 (Hermite Error Term) Let p(t,u,t) be the Hermite(o) interpolation polynomial in ¢ wrt f
and (t,u). Letu(t) = ms(t,u,t), T = Ofto,... ,tp, t}, 05 = Sor_y oi and w(t) = [[o, (t — t;)7". We
have (1 <i<mn)

eI T et ut) = L 7177V (g, u(@)w(t);

03816, €T it ut) = U%gfi(arl)(fl,ivU(fl,i))w'(t) + ﬁfi(gs)(fzmU(fz,i))w(t)-

How to use this proposition to bound the error terms? It suffices to take interval extensions of the formula
given in the proposition and to replace &;, &1, &2, by T and w(&;), w(& i), u(&2,;) by a bounding box for
the ODE over T'. As a consequence, we can compute an effective relaxation of the ODE by specializing
global filters with a Hermite interpolation and its error bound. In the following, filters based on Hermite(o)
interpolation are called Hermite(o) filters and a global Hermite(o) filter is denoted by GHF (o).

4 Optimal Pruningin Hermite Filters

Let us summary what we have achieved so far. The basic idea of our approach is to approximate the ODE
Vi: u = f(t,u) by afilter Vi : FL(t,D,t). We have shown that a global filter prunes the last k& boxes
by using & successive mean-value filters and it addresses the wrapping effect and the variable dependency
problem. We have also shown that a global filter can be obtained by using Hermite interpolation polynomials
together with their error bounds. As a consequence, we obtain a filter Veo : GHF (0)(t,D, eg) which
can be used to prune the last k& predicted boxes. The main remaining issue is to find an evaluation time
vector eg which maximizes pruning or, alternatively, which miminizes the sizes of the solution boxes in
GHF(o)(t,D,eq). More precisely, our main goal in choosing an evaluation time vector is to minimize the
local error of the filter, i.e., the sizes of the boxes produced by the filter.

Definition 8 (Local Error of a Filter) Let F'L be afilter for ODE u' = f(t,u). Thelocal error of F'L wrt
(to, llo,t) iSdeﬂI‘IEdElSelOC(F’L,tO7 uo,t) =w (D{Uk € R? | F’L(t7 u, t)}) .

Observe that a global filter is obtained from several mean-value filters. Hence minimizing its local error
amounts to minimizing the local error of individual mean-value filters. Moreover, since the local error is
defined by evaluating the filter on real numbers, we can restrict attention, without loss of generality, to natural
Hermite filters and do not need to consider their mean-value forms. To find an optimal evaluation time, we
first derive the local error (Section 4.1). From the local error, we can then characterize the optimal evaluation
time (Section 4.2). Two of the main results of this section are as follows:



1. For a sufficiently small stepsize h = t¢;, — to, the relative distance between the optimal evaluation
time and the point ¢, in a natural or mean-value Hermite filter depends only on the relative distances
between the interpolation points ¢, ... , t; and on o. It does not depend on the ODE itself.

2. From a practical standpoint, the optimal evaluation time can be precomputed once for all for a given
step size and o. This computation does not induce any overhead of the method.

The third main result is concerned with the order of a natural Hermite filter which is shown to be O(h 7= 1)
where o, = Ef:o o; when the evaluation point is chosen carefully (but not necessarily optimally!).

41 Local Error of aNatural Her mite Filter

To analyze the local error and determine the optimal evaluation time, we use standard asymptotical notations.

Notation 2 (Asymptotical Notations) Consider two functions f,g : R — R and let h > 0. We use the
following standard notations

e f(h)=0(g(h))ifdc>0,Fe >0:h<e=|f(h)] <clg(h);
o F(h)=Q(g() if3e > 0,3 > 0: h <= = |f(h)] > clg(h)];
o f(h) = 0O(g(h))if f(h) = O(g(h)) and f(h) = Q(g(h)).

The notations extend component-wise for vectors and matrices of functions.

Note that these notations characterize the behaviour of a function when h is sufficiently small. Asymptotic
notations in computer science characterize, in general, the behaviour of algorithms when the size n of the
problem becomes larger. These notations are simply obtained by substituting ~ by 1/n. We also make a
number of assumptions in this section. (Additional, more technical, assumptions are given in the appendix.)
We assume that the step size h is given by ¢, —to and that the integration times are increasing, i.e., to < ... <
tr. Moreover, we assume that the multistep solution ms is defined at (t o, uo) or, in other words, that O has
a solution going through wg, ... ,u;—1 attimes tq, ... ,tx—1. We also use the notations ¢ = (o9, ... ,0%),
05 = Zf:o o, and w(t) = Hfzo(t —t;)¢. To characterize the local error of a natural Hermite filter, we first
need a technical lemma which characterizes the behavior of the derivatives of the filter.

Lemmal Consider an ODE u' = f(t, u), let p(t,u,t) be the Hermite(o) interpolation polynomial in ¢ wrt
fand (t,u) and let ®(t) = D,, gf(t w,t) — Dy f(t, p(t,u,t) + e)Dy, p(t,u,t), e € R*. Then, when
t — tr = O(h) and h is sufficiently small, we have

L @)~ INt); 22 0(1t) =O(R L) ifANt) £0; 3. A(t) £0for tg 1 <t <ty
where A(t) is defined by the formula
A(t) — ((Zo'k 2ﬂ]+1 (t tk)f) + (ZO'L 1ﬁj (t t'k ) le;(l) tko:,ty) W(t),
ﬂ():]-?ﬂj (J)(tk()T J_17'-~7Uk_17 (5)
m(t) =I5 ()
This lemma shows that ®(¢) is a ©(h ') almost diagonal matrix for t;,_; < t < t. Its proof is given in the
appendix. We are now in position to characterize the local error of a natural Hermite filter.

Theorem 1 (Local Error of a Natural Hermite Filter) Let F'L be a natural Hermite(o) filter for ' =
f(t,u) and assumethat t — t;, = O(h). Wth the notations of Lemma 1, we have



1. if ®(t) isnot singular, then e;oc(F L, to, ug, t) = |®71(t)| (O(Rh)|w(t)| + O(h)|w' (t)]);
2. if ®(t) isnot singular, then ®(¢) = ©(h~1);
3. iftg—1 <t <t andif h issufficiently small, then ®(¢) isnot singular;

We are now ready to show how to find an optimal evaluation time for natural Hermite filters.

4.2 Optimal Evaluation Time for a Natural Hermite Filter

Our first result is fundamental and characterizes the order of a natural Hermite filter. It also hints on how to
obtain an optimal evaluation time. Recall that the order of a method is the order of the local error minus 1.

Theorem 2 (Order of a Natural Hermite Filter) Assume that ¢ — ¢, = O(h) and let F'L be a natural
Hermite(o) filter. With the notations of Lemma 1, we have

1. Thereexistst suchthatt,_ <t <t andw'(t) = 0;
2. Iftj_y <t <t w'(t)=0,andh issufficiently small, then e;o. (F L, to, ug,t) = O(host2);
3. Ifw'(t) # 0 and ®(t) isnot singular, then e;o.(F L, tg, ug,t) = O(host1).

Observe that the above theorem indicates that the zeros of w’ are evaluation times which lead to a method of
a higher order for natural and mean-value Hermite filters (provided that the matrix ®(¢) be non-singular at
these points). This is the basis of our next result which describes a necessary condition for optimality.

Theorem 3 (Necessary Condition for Optimal Natural Hermite Filters) Let F'L beanatural Hermite(o)
filter and let t. € R be such that ejo.(F'L, to, g, te) = ming 4, —on){eioc(FL, to, ug,t)}. e have that,

for h sufficiently small, ¢ isa zero of the function v(¢) = Ef_o =

Our next result specifies the number of zeros of the function + as well as their locations.
Theorem 4 Thefunction v in Theorem 3 has exactly &k zeros s, . . . , sp—1 satisfyingt; < s; < tit1.
We are now ready to characterize precisely the optimal evaluation time for a natural Hermite filter.

Theorem 5 (Optimal Evaluation Time) Let F'L be a natural Hermite(o) filter, let t. € R be such that
eloc(F'L,to, o, te) = ming_y, —o(n){eioc(F L, to, uo,t)}, 16t A and ~ be the functions defined in Lemma 1
and Theorem 3 respectively, and let s, . .. , s;—1 bethe zeros of v. Then, for h sufficiently small,

(/M) = _ min — {[(w/A)(s)]} (6)

5€{50,- 5k —1}

It is important to discuss the consequences of Theorem 3 in some detail. First observe that the relative
distance between the optimal evaluation time t. and the point ¢; depends only on the relative distances

between the interpolation points ¢, . . . , t; and on the vector o.In particular itis independent from the ODE
itself. For instance, for k = 1, we have 7( ) = 72 o = Tibotooly
In addition, if oy = ... = oy, then the zeros of  are mdependent from o. In particular, for £ = 1, we have

te = (to + t1)/2. As a consequence, for a given o and step size h, the relative distance between ¢, and an
optimal evaluation time t. can be computed once at the beginning of the integration. In addition, since it does
not depend on the ODE itself, this relative distance can be precomputed and stored for a variety of step sizes
and vectors o. The overhead of choosing an optimal evaluation time is thus negligible. Finally, it is worth



(te —tg)/h | —0.5000 | —0.2113 | —0.1273 | —0.0889 | —0.0673 | —0.0537

F 1 2 3 7 5 5 |
|

Table 1: Relative Distance between the Rightmost Zero ¢, of v and ¢, when oy = ... = 0.
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Figure 2: Thefunctions~, w,w’, A and w/\ forthecase k = 4,0 = (2,2,2,2,2).
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Figure 3: Local Error of Globa Hermite Filters as a Function of the Evaluation Time for the Lorentz System.
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stressing that any zero of function ~ in Theorem 3 gives an O(h?:*1) order for the Hermite filter (provided
that the matrix ®(¢) be non-singular at that zero). Hence any such zero is in fact an appropriate evaluation
time, although it is not necessarily optimal. In our experiments, the right-most zero was always the optimal
evaluation time, although we have not been able to provethis result theoreticaly.
We now illustrate the theoretical results experimentally. Table 4.2 gives approximative values of the
relative distance between the rightmost zero of the function v and the point ¢, (1 < k < 6), for o9 =
. = o, and h = t;, — to. Observe that, for two interpolation points, . isin the middle of ¢ty and ¢;. It
then moves closer and closer to ¢, for larger values of k. Figure 2 illustrates the functions -y, w, w', A, and
w/Afork =40 = (2,2,2,2,2) and their sometimes complex interactions. The top-left figure shows the
function w’ and -y, as well asthe zeros of . The top-right figure shows the function w with the zeros of + in
superposition. The bottom-Ieft figure shows function A with the zeros of + in superposition. The bottom-right
picture shows the function w/ A and the zeros of . It can be seen that the right-most zero minimizesthe local
error in thisexample. Figure 3illustrates our theoretical results experimentally on aspecific ODE. It plotsthe
local error of several global Hermite filters (GHF) as a function of the evaluation time for the Lorenz system
(e.g., [HNW8T7]). It isassumed that t;; — t; isconstant (0 < 7 < 2k — 2). In addition, we assume that,
in each mean-value filter composing the GHF, the distance between the evaluation time and the rightmost
interpolation point is constant. In the graphs, [to, ;] = [0,0.01] and h = t;, — to = 0.01. The figure also
shows the rightmost zero of the function ~ as obtained from Table 4.2. Aswe can see, the rightmost zero of
~ isavery good approximation of the optimal evaluation time of the filter for al the cases displayed.

5 Theoretical Analysis

We analyze the cost of our algorithm based on the global Hermite filter method GHF(o) and compare it to
Nedialkov’s IHO(p, ¢) method [NJ99], the best interval method we know of. Nedialkov shows that the IHO
method outperformsinterval Taylor series methods (e.g. Lohner’s AWA [Loh87]). The step size is given by
h = t—to and we use the same step sizein GHF(o) and IHO(p, g). Leto,,, = max(o) ando s = oo +. . .+0.
At each step ¢, we use the following assumptions when comparing GHF(o) and IHO(p, q):

1. The bounding box process uses a Taylor series method ([CR96], [NJC99]) of order o ;. Moreover,
we assume that By, = ... = B(;1)x—1, I-€., the function computes a single bounding box over
[tik—1,t(i41)k—1];

2. Thepredictor process uses Moore’s Taylor method [Mo066] of order ¢ + 1 (same order asthe predictor
used in IHO(p, ¢)) to compute the boxes D ; ;

3. We choose the rightmost zero of function + (see Section 4.2 and Table 4.2) as an evaluation timein the
Hermite filters. Consequently, the GHF(c) method is of order o + 1.

For simplicity of the analysis, we assume that (the natural encoding of) function f contains only arithmetic
operations. We denote by N; the number of , / operationsin f, by N the number of & operations, and by
N thesum N; 4+ N,. We also assume that the cost of evaluating D, f(") isn timesthe cost of evaluating f ().
We report separately interval arithmetic operations involved in (1) products of areal and an interval matrix
which arise in the pruning step (Cost-1) and (2) the generation of Jacobians (Cost-2). Note that Cost-1 isa
fixed cost in the sense that it is independent from the ODE. Cost-2 is a variable cost which increases as the
expression of f becomes more complex.

Methods of the Same Order We first compare the costs of the GHF(¢) and IHO(p, ¢) methods when
we assumethat p + ¢ = o5 and ¢ € {p,p + 1}. The methods GHF and IHO are thus of the same order
(o5 + 1). Table 2 reports the main cost of a step in the IHO method and our GHF method. It also shows
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0 | Cost-1 | Cost-2 |

[ HO | - | 2[%1°nNy + O(o,nN,) |
GHE B (om — D2 1 D)knN; + opkniN
GHF-1 - (1222 + 1)nNy + O(0snN»)
GHF-2 | (o, — & )o2n® (05 —2)nN

Table 2: Cost Analysis: Methods of the Same Order.

I | Cost-2 |
IHO QLUSTAJZ’I’LNl + O(U’S’I’LNz)
GHF-1 | ([Z"]? + 1)nN; + O(osndN>)

Table 3; Cost Analysis: Methods of Different Orders.

the complexity of two particular cases of GHF. The first case (GHF-1) corresponds to a polynomial with
only two interpolation points (k¢ = 1) and |01 — oo| < 1, while the second case (GHF-2) corresponds to
a polynomial imposing two conditions on every interpolation points (6o = ... = o} = 2). Thefirst main
result is that GHF-1 is always cheaper than IHO, which means that our method can always be made to run
faster by choosing only two interpolation points. (The next section will show that improvement in accuracy
is also obtained in this case). GHF-2 is more expensive than GHF-1 and IHO when f is ssimple because in
this case the Jacobians are cheap to compute and the fixed cost Cost-1 becomes large wrt Cost-2. However,
when f contains many operations (which is the case in many practical applications), GHF-2 can become
substantially faster because Cost-1 in GHF-2 isindependent of f and Cost-2 is substantially smaller in GHF-
2 thanin GHF-1 and IHO. It aso shows the versatility of the approach that can be taylored to the application
at hand.

One-Step Methods of Different Orders  We now show that our approach can be made both asymptotically
more precise and faster. Consider the costs of the IHO(p, ¢) and GHF(o ¢, o1 ) methods when we assume that
oy —oo| <1,p+q=0s—2andq € {p,p+ 1}. Under these conditions, IHO is amethod of order o s — 1,
while GHF is a method of order o + 1. Table 3 reports the main cost of a step in IHO and GHF. As can
be seen from the table, GHF is always cheaper than IHO. The GHF method is thus both asymptotically more
precise (by two orders of magnitude) and faster than the IHO method.

6 Experimental Analysis

We now report experimental results of a C++ implementation of our approach on a Sun Ultra 10 workstation
with a 333 MHz UltraSparc CPU. The underlying interval arithmetic and automatic differentiation packages
are PROFIL/BIAS[Knu94] and FADBAD/TADIFF [BS96, BS97] respectively. Many of the tested examples
are classical benchmarksfor ODE solvers. These problems are taken from various domains, including chem-
istry, biology, mechanics, physics and electricity. The equation, initial conditions and interval of integration
for each initia value problem are given in Appendix B. Note that, athough we could use interval initial
conditions, we consider only point initial conditionsto compare the different methods. The “full Brusselator”
(BRUS) and the “Oregonator” (OREG), atiff problem, model famous chemical reactions, the Lorenz system
(LOR) isan example of the so-called “strange attractors”, the Two-Body problem (2BP) comesfrom mechan-
ics, and the van der Pol (VDP) equation describes an electrical circuit. All these problems are described in
detail in [HNW87]. We also consider a problem from molecular biology (BIO), the Stiff DETEST problem
D1 [Enr75], and another stiff problem (GRI) from [Gri72]. Finally, we consider four problems (LIEN, P1,
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Figure 4: Experimental Comparison of the Methods IHO(p, p), GHF(p, p) and GHF(p + 1, p + 1).

P2, P3) where the ODE has a more complex expression (i.e. the function f contains many operations). They
are taken from [Per00]. The experimental results follow the same assumptions as in the theoretical analy-
sis section and we make three types of comparisons. (1) one-step methods of the same order; (2) one-step
methods of different orders, but of similar cost; and (3) multistep versus one-step methods of the same order.
The figures report the global excess (where the global excess at point ¢ ; is given by the infinite norm of the
width of the enclosure D; at t;, i.e., the quantity ||w(D;)||~) @ the end of the interval of integration of the
compared IHO and GHF methods. These figures are based on the tables given in Appendix C where we
report the global excess, the excess ratio (an excess ratio higher than 1 meansthat GHF is more precise), the
execution time of both methods (in seconds) and the time ratio (atime ratio higher than 1 means that GHF is
faster).

One-Step Methods  Figure 4 plots the excess as a function of the execution time in the methods IHO(p, p),
GHF(p, p) and GHF(p + 1,p + 1) for the problems of Tables 4 and 5. We take p = 8 for GRI and D1
and p = 3 for the other problems. As we can see from the figure, the curve of IHO is aways above the
curves of the GHF methods, showing that IHO is less precise than the GHF methods for a given execution
time or, aternatively, IHO is dower than the GHF methods for a given precision. Thus, although GHF(p, p)
may sometimes be less precise than IHO(p, p) for agiven step sizein the stiff problems OREG, GRI and D1,
GHF(p, p) still performsbetter than IHO(p, p) becausethe cost of astepislessin GHF(p, p) thanin IHO(p, p).
The figure also shows that GHF(p + 1, p + 1) performs better than GHF(p, p) in al cases. Furthermore, our
results confirm that IHO(p, p) and GHF(p, p) are methods of the same order, and that GHF(p + 1,p + 1) isa
method of higher order.
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Figure 5: Experimental Comparison of Multistep and One-Step Methods.

Multistep Versus One-Step Methods  We now compare multistep GHF methods versus IHO and one-step
GHF methods of the same order in problems where the ODE has a more complex expression (i.e., f contains
many operations). Figure 5 plots the excess as a function of the execution time in several methods for the
problems of Table 6. Again, the curve of IHO is always above the curves of the GHF methods, showing that
the latter perform better on these problems. Furthermore, we observe that the curves of the one-step GHF
methods are above those of the multistep GHF methods. Multistep GHF methods perform thus better in these
Cases.

Summary The results indicate that our method produces orders of magnitude improvements in accuracy
and runs faster than the best known method. The theoretical results are also confirmed by the experiments.
When f contains many operations, using many interpolation pointsis particularly effective. For very complex
functions, the gain in computation time could become substantial. When f is simple, using few interpolation
points becomes more interesting.

7 Conclusion

This paper considered a constraint satisfaction approach to initial value problems for parametric ordinary
differential equations introduced in [DJVH98, JDVH99, VHDO01]. It solved the main theoretical and prac-
tical open issue in this approach: the choice of an optimal evaluation time for the filters. In particular, it
showed that the optimal evaluation time for afilter isindependent of the ODE itself and can be precomputed,
thus inducing no overhead for the method. This result has important theoretical and practical consequences.
The theoretical results show that the constraint satisfaction approach provides a quadratic improvement in
accuracy over the best interval methods, while improving their running times. The experimental results on
standard benchmarks confirm the theoretical results.
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A Proof of the Main Results.

The following assumptions are used in the proofs. We assume that the step size h is given by #, — to and that the
integration times areincreasing, i.e., to < ... < tr. We assume that the interval extension F' of f is sufficiently precise,
ie,

F(t, D) = f(t, D)

when w(D) is sufficiently small. We also assume (see [Ned99]) that

1 .
: FY9T,B(T))) = O(h
o (GamF @By =em
where B(T') is a bounding box of «' = f(t,u) over T with respect to a given (t,D). Finaly, we assume that the
multistep solution ms is defined at (to, uo) or, in other words, that O has a solution going through w, . .. ,ux—; a
timesto, ... ,tx—1. Weaso use the notationsintroduced in Theorem 2. In particular, we assumethat o = (oo, ... ,o%),
os =8 o andw(t) = [[iy(t —t;)7. Finally,if 2 = (z1,... ,,) ad g = (g1, ... , gx), then D, g denotes the
matrix

991 991
[ Oz e Oxn -|
[ O9n  Ogn J
Oxq e Oxn
We first prove the following lemma.

Lemma?2 Consider an ODEw' = f(t,u), let p(t, u, t) bethe Hermite(c) interpolation polynomial int wrt f and (t, u)
and let ®(t) = Dy, 22 (uk,t) — Dy f(t,p(up, ) Duyp(ui,t). 1 tg_1 < t < ty, then (Dy, 2Bt (ug,t)); = O(h™")
fori=1,...,n.

Proof Assume that t — ¢ = O(h). Lett. €ty 1,t[, i € 1.n and q(t) = Dy, pi(u,t). Observe that ¢ (t) =
O(h™7) or hiq)(t) = O(1), for al j > 0. By definition of p, for I = 0,... ,kandj = 1,... ,0; — 1, we
have U~ (t;) = 0 and thus ¢’ (t;) =

0
O(h*7) or hiq¥)(t;) = O(h). Furthermore, for I = 0,... k — 1,
qi(tl) =0= O(h) and qi(tk) = 0(1)

By continuity and by Rolle’s Theorem, for h sufficiently small, if #7/¢) has at least n; distinct O(h) values at
€1, 1 €n,, then B T1U T has at least n; — 1 distinct zeros C1, ..., Coy—1, With €1 < (1 < €2 < ..o < €nyo1 <
Cny—1 < Eny. THUS, C1,... ,Cay—1 are distinet from ¢, if @90 () = 0 (since @Y (¢;) = 0 = dU~Y(¢;) = 0),
1=0,...,k 4

Let r; be the minimum number of O(h) values of h? qi(J ) at distinct interpolation points and n; the minimum number
of O(h) values of k7 ¢’ at distinct points. We can write :

n; = Mnj-1 —1+T]'
= mj—2—2+rj_1+7;
= nj3—3+rj2+rj-1+7; @

= m-G-D+3_,n

Let us assume that hq;(t.) = 0. Sincethe no — 1 distinct zeros of hq; arising from the nq distinct zeros of ¢; are strictly
smaller than ¢, they are distinct from ¢, > t;_1. Thus, wehaven; = no — 1+ 1+ r1 = ro + r1. In particular,
Noy—1 =To+71— (0s —2) + 305 =2 -0, + 372" r,. Wecan easily verify that 7' r, = 0, — 1. We
obtain n,, 1 = 1.

However, since ¢/>* V) (t) # 0, i.e ¢*~" has no zeros, and n,, 1 = 0, we have a contradiction. As a
consequence, for h sufficiently small, we must have ¢; (t.) # 0. a

We are now in position to prove Lemma 1.
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Lemmal Consider anODEu = (t u), let p(t, u, t) bethe Hermite(o) interpolation polynomial int wrt f and (t, u)
and let ®(t) = D,, 2 = (t,u,t) — Dy f(t,p(t,u,t) + €) Dy, p(t,u,t), e € R". Then, whent — ¢, = O(h) and h is
sufficiently small, we have

1 ®(t) = IAt); 2. M(t) = O(h 1) if A(t) £ 0; 3. A\(t) A O0for tp—y <t <ty
where \(t) is defined by the formula

A(t) = ((ij02 Bi+1 o tk)J) + (Z;io_l B; (t—]_t!k)] ) kol t,:ftu) 7 (t);

0=10 =—7D(t), j=1,... ,ox — I ®)
k=1 t—t, \

() =TI (&)

Proof Leti € 1..n and ¢(¢t) = Dy, pi(t, u,t). From the definition of Hermiteinterpolation polynomials (see Proposition

1), we can rewrite ¢(¢) and ¢’ (¢) asfollows

q(t) = Z;’kochLk]( )

ke e vk il (8)

ST il (t )

(Zak 1d (t— tk) )ﬂ'(t) )

=

(O = (T d S ) + (S0 4 S TES 72 ) (o)

where a,; € R, ¢j,d; € R™ areindependent of ¢. From Proposition 1 and by definition of ¢(t), it follows that

dj = cofj + O(h' ™) = &3 + O(h' ™) (10)
where 8; = ©(h77) (sincety < ... < tx) and e; isthe i-th canonical vector. Let @ = (¢f,...,¢2)T. Ast —t), =
O(h),

d’l(t) = q’(t) _Dufi(tvp(tvuvt) +e) Dukp(tvuat) (11)
= ¢(t)-0(1)0(1)
For h sufficiently small, we can write
dj ~ elﬂj (12)
and
¢i(t) = ¢ (t) = eiA(t) (13)
Wehave \(t) = ©(h™1) if A(t) # 0 and, by Lemma2, fort,_; <t < t and h sufficiently small, A(t) # 0. m|

Theorem 1 (Local Error of a Natural HermiteFilter) Let FL be a natural Hermite(o) filter for «' = f(¢,u) and
assumethat ¢ — ¢, = O(h). Wth the notations of Lemma 1, we have

1. if ®(t) isnot singular, then ejoc (F L, to, uo,t) = | 71(t)] (O(h)|w(t)| + O(h)|w' (t)]);
2. if ®(t) isnot singular, then ®(t) = O(h™1);
3. ifty_1 <t <ty andif hissufficiently small, then ®(¢) isnot singular;

Proof Consider the relation

r(t, (uo,v),t) & Je € E(t),Ade € DE(t) : §(t, (uo,v), e,de,t) =0 14
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where

§(t (u07 ) €, de t) = a_p(tv (llo,U),t) +de — f(tvp(tv (uo,v),t) +6);

( ) = ( Jw(t);
DE(t) = Bi(t)w'(t) + Ba(t)w(t);
Bi(t) = ;5 F (T, B(T)); (15)
Ba(t) = o F72) (T, B(T));
B(T) isabounding box of ' = f(t,u) over T = O{to,... ,tk,t} Wrt (to, uo);

p(t, (uo,v),t) isthe Hermite(o) interpolation polynomia in ¢ wrt f and (t, (uo, v)).

Sincet—t, = O(h), itfollowsthat, for h sufficiently small, F'(¢, p(t, (ug,v),t)+ E(t)) =~ f(t,p(t, (uo,v), t)+ E(t)).
Theset {v € R" | r(t, (uo,v),t)} isthus agood approximation of the set {v € R* | FL(t, (uo,v), t)} provided that
B(T) isthe bounding box used in F'L. Consider now two arbitrary vectors v, v € R™ such that

d(t, (uo,v1),e1,der, t) = d(t, (uo,v2),e,de,t) =0 (16)
for somees, e € E(t) and de1,de € DE(t). By Taylor’s Theorem, 6 (t, (uo, v2), e, de, t) isequal to
5(t, (w0, v1), e1,der, t) + ®(t)(va — v1) + ¥(t)(e1 — e) + de — dey + O(|Jvz — v1||*> + |le — e1]]?) a7
where

@(t) = DU%(t,(uO,’Ul),t)—Duf(t,p(t,(llo7v1)7t)+61)Dvp(t,(ll0,’l)1),t) (18)
Duf(t,p(t, (u07U1)7t) + 61)

Sincet — t;, = O(h), we have, for h sufficiently small, that

S
—~
~
~

B(t)(va —v1) + U(t)(e1 —e) +de —dey =0 (19)
When the matrix ®(¢) is non singular, we can write

vr —v2 = D7) (T(t)(er — €) + de — dea) . (20)
Since the two vectors are chosen arbitrarily, it follows that

127 ()] (12 () lw(E(t) + w(DE(t))) 1)
|27 (O] ((E(®)]dr(t) + d2(t))[w(t)] + da ()]’ (£)])

where d;(t) = w(Bi1(t)) and da2(t) = w(Bz(t)). Since, by hypothesis, di(t),dz(t) = ©(h), t —t, = O(h), and
¥(t) = O(1), we have

eloc(FL,to,u0,t)

Q

eioc(F L, to, w0, t) = |27 ()] (O(A)w(t)| + O (h)w'(¢)]) (22)

which proves Point 1. Points 2 and 3 are now direct consequences of Point 1 and of Lemma 1. ]

Theorem 2 (Order of a Natural Hermite Filter) Assumethatt—¢, = O(h) andlet F L bea natural Hermite(o) filter.
With the notations of Lemma 1, we have

1. Thereexistst suchthat ty—1 <t < tx andw'(¢) = 0;

2. Ifte_1 <t <t w'(t) =0, and h issufficiently small, then e;oc(FL, to, uo, t) = O(h7**?);

3. Ifw'(t) # 0 and ®(t) isnot singular, then e;oc(FL, to, ug, t) = O(h7=T).
Proof Consider an evaluation time ¢ such that ¢t — ¢, = O(h) with h sufficiently small. We have w(t) = O(h?*) and
w'(t) = O(h°*™1). Firgt assumethat t,_1 < t < t, and w'(t) = 0. By Rolle’s Theorem, since w(tx—1) = w(ty) = 0,

there exists such an evaluation time ¢. By Theorem 1, e;oc(F L, to, uo, t) = O(h7=*?). Now assume that w’ (t) # 0 and
®(t) isnot singular. By Theorem 1, ejoc(F L, to, uo, t) = O(h7*T1).

18



Theorem 3 (Necessary Condition for Optimal Natural Hermite Filters) Let F'L be a natural Hermite(o) filter and
let t. € R be such that ejoc(FL,to,u0,t.) = ming_y, —on){eioc(FL,to,u0,t)}. We have that, for h sufficiently
small, t. isa zero of the function

k

W) =3 7 (23)
i=0 ¢

Proof Assume that ¢ — t, = O(h) and that h is sufficiently small. By Theorem 2, w’(t.) must be zero to minimize
the local error. Note that ®(¢;) issingular if w'(¢;) = 0 (0 < i < k). Thuste € {to,...,tr} and w(t.) # 0. Since
w'(t) = w(t)y(t), we conclude that v(t.) = 0. O

Theorem 4 Thefunction ~ in Theorem 3 has exactly k zeros so, . .. , sp—1 suchthatt; < s; < tiy1 (0 <i < k).
Proof We have w'(t) = w(t)y(t). By Rolle’s Theorem, asw(t;) = w(t;+1) = 0, w’ hasaroot s; witht; < s; < t;41
and w(s;) # 0 (0 <4 < k). Futhermore, we can verify that -y has at most k zeros. m|

Theorem 5 (Optimal Evaluation Time) Let FL be a natural Hermite(o) filter, let ¢ € R be such that
(ZIOC(F'L,t()7 up, te) = IIliIIt_tkzo(h){eloc(F‘L,t()7 up, t)}, |et

W)= 77 (24)
i=0 ¢

and let so, ... , sx—1 bethe zeros of 4. Then, for h sufficiently small,

[(w/N)(Ee)l = min — {[(w/A)(s)]} (25)

s€{s0,.--Sk—1}

where the function )\ is defined in Lemma 1.

Proof By definition, w'(s;) = w(si)y(si) = 0, fori = 0,...,k — 1. From Theorem 1 and Lemma 1,
6loc(}:‘Latf)vu()v Si) ~ |(UJ/)\)(8@)| o

B TheBenchmarks.

e The full Brusselator (BRUS)
wy =14 ufug — (us + 1)ug
uh = urus — wiug

Uy = —uruz + o (26)

a=1, [to,tf] = [07 14]7u(t0) = (17 2, 1)

e The Lorentz system (LOR)
uy = o(uz —uy)
’
Uy = —ULU3 + pUL — U2
uy = ujuz — fus 27)

o=10,p=28,3= 8/37 [to,tf] = [07 10]7u(t0) = (15,15, 36)
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e The Two-Body problem (2BP)

u’l = us
u’2 = U4
o Ul
U= —
T e
— u2
W= — e r
4 (u%+u%)3/2

[to,tf] = [07 20]7u(t0) = (170707 1)

e The van der Pol equation (VDP)

=15, [t07 tf] = [07 20]7 u(to) = (27 0)
e Molecular biology problem (BIO)

uy = vi —vd usui /(kd + u1) — kds uy

uy = (v1 ua/ (ke +u))((1 —u2)/ (k1 +1 — u2)) — vz ua(kz + u2)

ug = ’u,z’l)g(]. — ’LL3)/(I€3 +1-— U3) — V4 ’LL3/(]€4 =+ ’LL3)

vi = 0.025, vd = 0.25, kd = 0.02, kds = 0.01,
k1 =0.005, k2 = 0.005, k3 = 0.005, k4 = 0.005,
vy =3,v2 =1.5,v3 =1,v4 =0.5,kc =0.5
[to,tr] = [0, 3], u(te) = (0.01,0.01,0.01)

e The Oregonator (OREG)
uh = 77.27(u2 4+ ur (1 — 8.375 x 107 %uy — u2))
wy = =i (us — (1 + wr)uz)
uwy = 0.161(u1 — us)

[to,tf] = [07 15]7 u(to) = (17 2, 3)
e Grigorieff tiff problem (GRI)

uy = —50.5u1 + 49.5us
why = 49.5u; — 50.5uq

[to, ts] = [0,10], u(to) = (3,1)
e The Stiff DETEST Problem D1
u) = 0.2(u2 — u1)
uy = 10ug — (60 — 0.125us3)us + 0.125us3
uy =1
[to, tf] = [0, 20], u(to) = (0,0,0)
e The Lienard system (LIEN)

/ 2
uy = uz — (a1uo + az2ug + . .. + arug)
U’2 = —u1

r=2l,a0=...=a, =1,Jto, t5] =0, 20], u(to) = (0.2,0.1)
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e Problem P1

! 2 2 3
U = —U2 — U1UZ + U3 — Uy

! 3 3
Uy = U1 + U3 — U

o 2 2 5
Uz = —ULU3 — U3U] — U2U3 — U3

[to, t7] = [0,100], u(to) = (0.4,0.1,0.2)

o Problem P2

u) = —2u2 + ugus — u3

uh = up —urus — us

uh = uguy — ul

[to, tf] = [0,20], u(to) = (1.5,1.2,1)
e Problem P3

’ 2.2 4 2 3 4
up = uius — ui + auiusz + Pui — uy

1 3 3 3 2
Uy = w1y — uiu2 + aus + Buius

a=-1,8=1, [to,tf] = [07 50]7u(t0) = (0'27 06)

C Experimental Results
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VP THO | GHF h Excess Time
P, g - IHO | GHF | Raio | IHO | GHF | Ratio
BRUS | 33 | (3 TE1 233 | 12£3 19
7562 | 45E5 | 24E5 19
5E-2 97E7 | 49E7 20
2562 | 5269 | 27E9 19
12562 | 32611 | 17EA1 | 19
1E-2 65612 | 35612 | 19 51 39 13
i3 | @d TET 1764 | 99ES 17
7562 | 20E6 | LIE6 18
5E-2 10E8 | 50E9 20
2562 | 74E12 | 32612 | 23 28 20 14
55 | 55 TE1 24E5 T6E5 15
752 | 1267 | 76E8 16
5E-2 16E-10 | 94EL | 17 19 13 15
TN TET TBET7 | 5257 5
7562 | 66E-10 | 47E10 | 14 19 13 15
88 | @9 TET T5E7 TIE7 13
7562 | 54E-11 | 40E11 | 14 22 15 15
LOR 33 | @3 | L1E2 | 4881 | 3261 15
1E-2 67E2 | 45E2 15
7563 | 77E3 | 49E3 16
5E-3 4384 | 26E4 17
2563 | 31E6 | 20E6 16 1 8 14
73 | @A) 22 T5ET TOET 5
L7562 | 2762 18E-2 15
1562 | 50E3 | 30E3 17
12562 | BOE4 | 46E4 17
1E-2 90E5 | 50E5 18
7563 | 60E6 | 31E6 19 47 36 13
EA A ) 3E2 3053 | 243 12
275E-2 | 4564 | 36E4 12
2562 | 66E5 | 53E5 12
22562 | 7766 | 62E6 12 30 22 14
[ 28p 33 | @33 TE1 Z5E3 | 76E4 60
7562 | 11E4 | 37ES 30
5E-2 33E6 | 1266 27
2562 | 1568 | 45E9 33 36 26 14
74 | @A | 1BELI | 2054 | 74ES 39
1E-1 1265 | 30E6 40
7562 | 34E7 | 85E8 40
5E-2 3489 | 92E10 | 37 25 17 15
77 | ) | I5EL TIE6 | 56E7 20
12561 | 2369 | 97E10 | 24 20 14 14
VDP 33 | 33 JE2 T5E2 | 58E3 26
3E2 59E5 | 38E5 16
262 L7E6 | 96E7 18
1E-2 10E8 | 53E9 19
5E-3 7411 | 38E11 | 19
2563 | 47613 | 26E13 | 18 14 12 12
i3 | @d 7E2 47E5 | 40E5 12
3E-2 84E7 | BIET 16
262 90E-9 | 45E9 20
1E-2 LIE11 | 47612 | 23 45 37 12
55 | 55 L= 26E6 | 21E6 12
3E2 23E8 | 16E8 14
2E-2 6711 | 39E11 | 17 29 23 13
BIO 33 | @3 | T75E3 | 46E6 | 20E6 23
5E-3 82E9 | 34E9 24
2563 | 22611 | 92E12 | 24 7.0 5.1 14
74 | @A | 75E3 I3E6 | 7657 17
5E-3 29610 | 13810 | 22
2563 | 97E-14 | 33E14 | 29 10 7.1 14
OREG | 33 | (33 | 15E2 I5E4 | 2264 07
1E-2 80E-6 | LIES 07
7563 | 10E6 | 14E6 07
5E-3 60E-8 | 7.9E-8 08 96 76 13
T4 | @A) | 2582 | 2484 | 34E4 07
2E-2 1265 | 16ES5 07
1562 | 61E7 | T76E7 08
1E-2 15E8 | 19E8 08
7563 | 11E9 | 14E9 08 82 6.4 13
GRI 66 | (66) JE2 TBE7 | 21E7 09
3E-2 18E9 | 2269 09
262 46E-12 | 54E-12 | 09
1E-2 31E16 | 38E-16 | 08 24 20 12
88 | B9 652 3557 | 4057 09
5E-2 5569 | 6.2E9 09
4E-2 54E-11 | 61E11 | 09
3E-2 19E-13 | 21E13 | 09
2E-2 12616 | 15E16 | 08 15 13 12
D1 88 | 88 | LIEL TIE6 13E6 08
1E-1 1367 L4E7 09
9E-2 1568 | 17E8 09
8E-2 L15E-9 L7E-9 09
7E-2 13610 | 14E10 | 09
6E-2 73812 | 83E12 | 09
5E-2 28E13 | 31E13 | 09
4E-2 71E15 | 83E15 | 09 30 25 12

Table 4: One-Step Methods of the Same Order.
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VP THO | GHF R Excess Time
|| | p.q | o | | IHO | GHF | Raio IHO | GHF | Ratio
BRUS 33 (@.2) TE1 23E3 TOE3 23
75E-2 45E-5 13E5 35
5E-2 9.7E-7 12E-7 81
25E-2 5269 | 95611 55
125E-2 | 32611 | 20E-13 160 40 36 11
7 [&5) TET T7E4 TOE4 7
75E-2 20E-6 99E-7 20
5E-2 10E-8 32E-9 31
2562 | 74612 | 64E-13 12 28 24 12
LOR 33 @) | 12562 | 48EL 13E2 15
1E-2 6.7E-2 1.2E-3 56
7563 7763 57E-5 135
5E-3 43E-4 9.7E7 443 54 49 11
7 [&5) 262 T5E1 6252 27
L7562 | 27E2 9.0E-3 30
15E-2 5.0E-3 12E-3 42
125E-2 | BOE-4 12E-4 6.7
1E-2 9.0E-5 7266 13
7.5E-3 6.0E-6 26E-7 23 47 41 11
2BP 33 @4) 1E1 4563 25E5 180
75E-2 L1E-4 76E-7 145
5E-2 33E-6 89E-9 371
25E-2 1568 | 41E11 366 36 30 12
77 5 | 12551 | 294 TIES 2%
1E-1 12E5 36E-7 33
75E-2 34E-7 5.6E-9 61
5E-2 34E-9 | 55E-11 62 25 20 13
VDP 33 @2) 2E2 15E2 2563 60
3E-2 59E-5 9.7E-6 61
2E-2 L7E-6 8.8E-8 19
1E-2 L0E-8 | 62E-11 161
5E-3 74E-11 | 90E-14 822 74 7.2 1.0
77 [65) =) 77ES 36E5 13
3E-2 84E-7 36E-7 23
2E-2 9.0E-9 16E-9 56
1E-2 LIE-11 | 28E-13 39 45 4.2 11
BIO 33 @4 | 753 26E-6 1766 27
5E-3 8.2E-9 1.2E-9 68
2563 | 22611 | 48613 46 70 62 11
77 G5 | 753 T3E6 TIE7 17
5E-3 29E-10 | 93E-11 31
2563 | 97E14 | 10E-14 9.7 10 84 12
OREG 33 @2) 2E2 26E3 70E5 37
15E-2 15E-4 L1E-6 136
1E-2 8.0E-6 22E8 364
75E-3 10E-6 15E-9 667
5E-3 60E-8 | 46E-11 1304 96 86 11
77 G5 | 2562 2054 TAE4 17
2E-2 12E5 39E-6 31
15E-2 6.1E-7 16E-8 38
1E-2 1568 | 63E11 238 62 53 12
GRI 66 (&) 5E-2 21E2 21E7 51220
4E2 18E-7 4.0E-9 45
3E-2 18E9 | 24E-11 75
2E-2 46E-12 | 27E-14 170 12 11 11
88 ©9 TE2 18EY5 TOE6 | 95E+I0
6E-2 35E-7 10E-8 35
5E-2 55E-9 | 12E-10 46
4E-2 54E-11 | 7.4E-13 73
3E-2 19613 | 15E-15 127 1.0 09 11
DI 88 99 TIEL TIE6 39E8 28
1E-1 13E-7 36E-9 36
9E-2 1568 | 35E-10 43
8E-2 1569 | 29611 53
7E-2 13610 | 18612 72
6E-2 73612 | 7.8E-14 % 20 18 11
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VP | THO GHF R Excess Time
|| |p.q - | | IHO | GHF | Ratio | IHO | GHF | Ratio ||
[EN | 33 €5 JEL | 148 TIE8 13
3E1 | B4E10 | 47E9 02
261 | 23E11 | 54E1L 04
161 | 13613 | 13613 10
SE2 | B7E-16 | 88E16 10 9.2 7.2 13
33 @2 | 481 | T4E8 | 30E0 77
3E1 | B4E10 | L9EQ 44
2E1 | 23E11 | 69E12 33
1E1 | 13813 | 37E14 35
SE2 | B7E-16 | 26E-16 33 92 72 13
6 6 SE1 | 7258 | GOEB 12
4E1 | L7EM1 | 14E11 12
3E1 | 40E14 | 33E14 12 41 30 14
6 @aZ) | SE1 | 7258 | 20510 | 360
4E1 | 17E11 | 13E12 13
3E1 | 40E14 | 39E15 10 41 30 14
66 | (3333 | SE1 | 7258 | 39510 | 185
4E1 | L7E11 | 60E13 28
3E1 | 40E14 | 23E15 17 41 30 14
99 ©9 SE1 | 1568 1358 12
4E1 | 97E-14 | 83E14 12 48 32 15
99 ©66) | SE1 | IS8 | 5312 | 28%0
4E1 | 97E-14 | 40E15 24 48 30 16
PL 66 ©6 5E1 | 195 | LB5E5 13
41 | 36E7 | 21E7 17
3E1 | 11E9 | 86E10 13 57 41 14
6 @a#) | SE1 | 195 | 4256 75
4E1 | 36E7 | 52E8 6.9
3E1 | 11E9 | 24E10 46 57 44 13
88 CE) 6E1 | 2453 | 2953 08
SE1 | 10E6 | B82E7 12
461 | 46E9 | 37E9Q 12 66 48 14
88 | (G444 | 6EL | 24E3 | 204 2
SE1 | 10E6 | 91E8 1
4E1 | 46E9 | 39E10 12 66 55 12
72 66 ©6 161 | 11E4 | B83E5 13
9E2 | 50E6 | 39E6 13
8E2 | 37E7 | 29E7 13
7E2 | 2568 | 20E8 13
6E2 | 14E9 L1E-9 13
5E2 | 53E11 | 40E11 13 44 31 14
66 @aA | 1E1 | LIE4 T7E7 647
9E2 | 50E6 | 27E8 185
8E2 | 37E7 | 38E9 97
7E2 | 25E8 | 44E-10 57
6E2 | 14E9 | 41E11 34
5E2 | 53E11 | 29E12 18 44 35 13
66 | (3333 | IE1 | 11E4 | 5458 | 2037
9E2 | 50E6 | 96E9 521
8E2 | 37E7 15E-9 247
7E2 | 2568 | 19E10 132
6E2 | 14E9 | 21E11 67
SE2 | 53E11 | 43E12 12 44 41 11
88 CE) TE1 | 1955 T6E5 12
9E2 | 44E7 | 36E7 12
8E2 | 17E8 L4E-8 12
7E2 | 57E10 | 46E-10 12
6E2 | 15E-11 | 12E11 12 56 39 14
88 | (4444 | IEL | 1955 TIE9 | 17273
9E2 | 44E7 | 1310 | 3385
8E2 | 17E8 | 17E11 | 1000
7E2 | 57E10 | 55E12 | 104
6E2 | 15611 | 40E12 37 56 49 11
99 ©9 TET | B5E6 | 7OEG 12
9E2 | 14E7 LIE7 13
8E2 | 3789 | 31E9 12
7E2 | BOE1L | 73E1L 12
6E2 | 16E12 | 14E12 11 75 52 14
99 ©66) | 1E1 | B5E6 T8E0 | 472
9E2 | 1487 | 15810 | 933
8E2 | 37E9 | 11E11 | 33
7E2 | B9E1l | 15E12 59
6E2 | 16612 | 10E12 16 75 57 13
73 66 ©6 SE1 | 2054 T6E4 13
4E1 | 147 LIE7 13
3E1 | 42610 | 32E10 13
261 | 24813 | 18E13 13 31 22 14
6 @a%) | SE1 | 2054 TIE7 1818
41 | 14E7 | 21E9 67
3E1 | 42610 | 16E11 26
261 | 24613 | 25E14 96 31 24 13
66 | (3333 | SEL | 2054 | 2958 | 6897
4E1 | 14E7 | 71E10 197
3E1 | 42610 | 70E12 60
261 | 24813 | 33E14 73 31 26 12
88 CE) SE1 | 2655 | 21E5 12
4E1 | 54E9 | 44E9 12
3E1 | 37612 | 30E12 12 32 23 14
88 | (4444 | SEI | 26E5 | 76510 | 3421
461 | 54E9 | 79E12 | 684
3E1 | 37612 | 51E14 73 32 25 13
99 ©9 5E1 | LOE5 | B2E6 12
461 | 11E9 | 92E10 12
3E1 | 35613 | 29E13 12 39 27 14
99 ©66) | 551 | LOES T6E9 | 16250
4E1 | 11E9 | 7iE12 | 761
3E1 | 35613 | 14E14 | 264 39 29 13
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Table 6: Multistep Versus One-Step Methods.



