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Abstract

Initial value problems for parametric ordinary differential equations (ODEs) arise in many areas of
science and engineering. Since some of the data is uncertain, traditional numerical methods do not apply.
This paper considers a constraint satisfaction approach that enhances traditional interval methods with a
pruning component which uses a relaxation of the ODE and Hermite interpolation polynomials. It solves
the main theoretical and practical open issue left in this approach: the choice of an optimal evaluation time
for the relaxation. As a consequence, the constraint satisfaction approach is shown to provide a quadratic
(asymptotical) improvement in accuracy over the best interval methods, while improving their running
times. Experimental results on standard benchmarks confirm the theoretical results.

1 Introduction

Initial value problems (IVPs) for ordinary differential equations (ODEs) arise naturally in many applications
in science and engineering, including chemistry, physics, molecular biology, and mechanics to name only a
few. An ordinary differential equationO is a system of the form

u1
0(t) = f1(t; u1(t); : : : ; un(t))

: : :
un

0(t) = fn(t; u1(t); : : : ; un(t))

often denoted in vector notation by u 0(t) = f(t; u(t)) or u0 = f(t; u). An initial value problem is an ODE
with an initial condition u(t0) = u0. In addition, in practice, it is often the case that the parameters and/or the
initial values are not known with certainty but are given as intervals. Hence traditional methods do not apply
to the resulting parametric ordinary differential equations since they would have to solve infinitely many
systems. Interval methods, pioneered by Moore [Moo66], provide an approach to tackle parametric ODEs.
These methods return enclosures of the exact solution at different points in time, i.e., they are guaranteed
to return intervals containing the exact solution. In addition, they accommodate easily uncertainty in the
parameters or initial values by using intervals instead of floating-point numbers. Interval methods typically
apply a one-step Taylor interval method and make extensive use of automatic differentiation to obtain the
Taylor coefficients [Eij81, Kru69, Moo66, Moo79]. Their major problem however is the explosion of the size
of the boxes at successive points as they often accumulate errors from point to point and lose accuracy by
enclosing the solution by a box (this is called the wrapping effect). Lohner’s AWA system [Loh87] was an
important step in interval methods which features efficient coordinate transformations to tackle the wrapping
effect. More recently, Nedialkov and Jackson’s IHO method [NJ99] improved on AWA by extending a
Hermite-Obreschkoff’s approach (which can be viewed as a generalized Taylor method) to intervals (see also
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[Ber98]). Note that interval methods inherently accommodate uncertain data. Hence, in this paper, we talk
about ODEs to denote both traditional and parametric ODEs.

This research takes a constraint satisfaction approach to ODEs. Its basic idea [DJVH98, JDVH99,
JVHD01] is to view the solving of ODEs as the iteration of three processes: (1) a bounding box process
that computes bounding boxes for the current step and proves (numerically) the existence and uniqueness
of the solution, (2) a predictor process that computes initial enclosures at given times from enclosures at
previous times and bounding boxes and (3) a pruning process that reduces the initial enclosures without re-
moving solutions. The real novelty in our approach is the pruning component. Pruning in ODEs however
generates significant challenges since ODEs contain unknown functions. The main contribution of our re-
search is to show that an effective pruning technique can be derived from a relaxation of the ODE, importing
a fundamental principle from constraint satisfaction into the field of differential equations. Four main steps
are necessary to derive an effective pruning algorithm. The first step consists in obtaining a relaxation of
the ODE by safely approximating its solution using, e.g., Hermite interpolation polynomials. The second
step consists in using the mean-value form of this relaxation to solve the relaxation accurately and efficiently.
Unfortunately, these two steps, which were skeched in [JDVH99], are not sufficient and the resulting pruning
algorithm still suffers from traditional problems of interval methods. The third fundamental step, which was
presented in [JVHD01], consists in globalizing the pruning by considering several successive relaxations to-
gether. This idea of generating a global constraint from a set of more primitive constraints is also at the heart
of constraint satisfaction. It makes it possible, in this new context, to address the problem of dependencies
and the wrapping effect simultaneously.1 The fourth step, which is the main contribution of this paper, con-
sists of choosing an evaluation time for the relaxation that maximizes pruning. Indeed, the global constraint
generated in the third step, being a relaxation of the ODE itself, is parametrized by an evaluation time. In
[JVHD01], the evaluation time was chosen heuristically and its choice was left as the main open issue in the
constraint satisfaction approach to parametric ODEs.

The main contribution of this paper is to close this last open problem and to show that, for global filters
based on Hermite interpolation polynomials, the optimal evaluation time is independent from the ODE itself
and can be precomputed before starting the integration steps at negligible cost. This result has fundamental
theoretical and practical consequences. From a theoretical standpoint, it can be shown that the constraint
satisfaction approach provides a quadratic improvement in accuracy (asymptotically) over the best interval
methods we know of while decreasing their computation costs as well. This result also implies that our ap-
proach should be significantly faster when the function f is very complex. Experimental results confirm the
theory. They show that the constraint satisfaction approach often produces many orders of magnitude im-
provements in accuracy over existing methods while decreasing computation times. Alternatively, at similar
accuracy, other approaches are significantly slower. The rest of the paper is organized as follows. Section 2
introduces the main definitions and notations. Section 3 gives a high-level overview of the constraint satisfac-
tion approach to parametric ODEs. Section 4 is the core of the paper. It describes how to choose an evaluation
time to maximize pruning. Sections 5 and 6 report the theoretical and experimental analyses and Section 7
concludes the paper. The appendix contains the proofs of the main results. A comprehensive presentation of
all results, including detailed algorithms, is available in the technical report version of this paper.

2 Background and Definitions

Small letters denote real values, vectors and functions of real values. Capital letters denote matrices, sets,
intervals, vectors and functions of intervals. IR denotes the set of all closed intervals � R. A vector of
intervals D 2 IR

n is called a box. If r 2 R, then r denotes the smallest interval I 2 IR such that r 2 I .
1Global constraints in ordinary differential equations have also been found useful in [CB99]. The problem and the techniques in

[CB99] are however fundamentally different.
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If r 2 R
n , then r = (r1; : : : ; rn). We often use r instead of r for simplicity. If A � R

n , then 2A denotes
the smallest box D 2 IR

n such that A � D and g(A) denotes the set fg(x) j x 2 Ag. We also assume
that a, b, ti, te and t are reals, Ii 2 IR, ui is in Rn , and Di and Bi are in IRn (i 2 N). We use m(D) to
denote the midpoint of D and s(D) to denote D�m(D). Observe that m(D) + s(D) = D. We use Dxg to
denote the Jacobian of g wrt x and !(D) to denote the width of a box. More precisely, !([a; b]) = b� a and
!((I1; : : : ; In)) = (!(I1); : : : ; !(In)).

Notation 1 Let A be a set and ai 2 A where i 2 N. We use the following bold face notations.

a = (a0; : : : ; ak) 2 Ak+1

ai = (aik ; : : : ; a(i+1)k�1) 2 Ak

ai::i+j = (ai; : : : ; ai+j) 2 Aj+1
(1)

Observe that a0 = (a0; : : : ; ak�1), a1 = (ak; : : : ; a2k�1), and a = (a0; : : : ; ak). In the theoretical parts,
we assume that the underlying interval arithmetic is exact. As traditional, we restrict attention to ODEs that
have a unique solution for a given initial value and where f 2 C1. Techniques to verify this hypothesis
numerically are well-known [Moo79, DJVH98]. Moreover, in practice, the objective is to produce (an ap-
proximation of) the values of the solution ofO at different points t 0; t1; : : : ; tm. This motivates the following
definition of solutions and its generalization to multistep solutions.

Definition 1 (Solution of an ODE) The solution of an ODE O on I 2 IR is the function s : R �R
n �R !

R
n such that 8t 2 I : @s

@t
(t0; u0; t) = f(t; s(t0; u0; t)) for an initial condition s(t0; u0; t0) = u0.

Definition 2 (Multistep solution of an ODE) The multistep solution of an ODE O is the partial function
ms : A � R

k+1 � (Rn )k+1 � R ! R
n defined as ms(t;u; t) = s(t0 ; u0 ; t) if ui = s(t0 ; u0 ; ti) (1 �

i � k) where s is the solution of O and is undefined otherwise.

Since multistep solutions are partial functions, we generalize interval extensions to partial functions.

Definition 3 (Interval Extension of a Partial Function) The interval function G : IRn ! IR
m is an inter-

val extension of the partial function g : E � R
n ! R

m if 8D 2 IR
n : g(E \D) � G(D):

Finally, we generalize the concept of bounding boxes to multistep methods. Intuitively, a bounding box
encloses all solutions of an ODE going through certain boxes at given times over a given time interval.
Bounding boxes are often used to approximate error terms in ODEs.

Definition 4 (Bounding Box) Let O be an ODE system, ms be the multistep solution of O, and
ft0; : : : ; tkg � T 2 IR. A boxB is a bounding box ofO over T wrt (t,D) if, for all t 2 T , ms(t;D; t) � B .

3 The Constraint Satisfaction Approach

The constraint satisfaction approach followed in this paper was first presented in [DJVH98]. It consists
of a generic algorithm for ODEs that iterates three processes: (1) a bounding box process that computes
bounding boxes for the current step and proves (numerically) the existence and uniqueness of the solution,
(2) a predictor process that computes initial enclosures at given times from enclosures at previous times and
bounding boxes and (3) a pruning process that reduces the initial enclosures without removing solutions. The
bounding box and predictor components are standard in interval methods for ODEs. This paper thus focuses
on the pruning process, the main novelty of the approach. Our pruning component is based on relaxations of
the ODE. To our knowledge, no other approach uses relaxations of the ODE to derive pruning operators and
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the only other approaches using a pruning component [NJ99, Rih98] were developed independently. Note
also that, in the following, predicted boxes are generally superscripted with the symbol � (e.g., D �

1 ), while
pruned boxes are generally superscripted with the symbol � (e.g., D �

1).
The pruning component uses safe approximations of the ODE to shrink the boxes computed by the predic-

tor process. To understand this idea, it is useful to contrast the constraint satisfaction approach to nonlinear
programming [VHMD97] and to ordinary differential equations. In nonlinear programming, a constraint
c(x1; : : : ; xn) can be used almost directly for pruning the search space (i.e., the Cartesian product of the
intervals Ii associated with the variables xi). It suffices to take an interval extension C(X1; : : : ; Xn) of
the constraint. Now if C(I 01; : : : ; I

0
n) does not hold, it follows, by definition of interval extensions, that no

solution of c lies in I 01 � : : :� I 0n. The interval extension can be seen as a filter that can be used for pruning
the search space in many ways. For instance, Numerica uses box(k)-consistency on these interval constraints
[VHMD97]. Ordinary differential equations raise new challenges. In an ODE 8 t : u 0 = f(t; u); functions u
and u’ are, of course, unknown. Hence it is not obvious how to obtain a filter to prune boxes.

One of the main contributions of our approach is to show how to derive effective pruning operators for
parametric ODEs. The first step consists in rewriting the ODE in terms of its multistep solution ms to obtain

8 t : @ms
@t

(t;u; t) = f(t;ms(t;u; t)):

Let us denote this formula 8 t : fl(t;u; t): This rewriting may not appear useful since ms is still an unknown
function. However it suggests a way to approximate the ODE. Indeed, we show in Section 3.3 how to obtain
interval extensions of ms and @ms

@t
by using polynomial interpolations together with their error terms. This

simply requires a bounding box for the considered time interval and safe approximations of ms at successive
times, both of which are available from the bounding box and predictor processes. Once these interval
extensions are available, it is possible to obtain an interval formula of the form

8 t : FL(t;D; t)

which approximates the original ODE. The above formula is still not ready to be used as a filter because t
is universally quantified. The solution here is simpler and consists of restricting attention to a finite set T of
times (possibly a singleton) to obtain the relation

8 t 2 T : FL(t;D; t)

which produces a computable filter. Indeed, if the relation FL(t;D; t) does not hold for a time t, it follows
that no solution of u0 = f(t; u) can go through boxes D0; : : : ; Dk at times t0; : : : ; tk. The following
definition and proposition capture these concepts more formally.

Definition 5 (Multistep Filter) Let O be an ODE and s its solution. A multistep filter for O is an interval
relation FL : Rk+1 � (IRn)k+1 � R ! Bool satisfying

ui 2 Di

s(t0; u0; ti) = ui (0 � i � k)

�
) 8t : FL(t;D; t):

How can we use this filter to obtain tighter enclosures of the solution? A simple technique consists of
pruning the last box computed by the predictor process. Assume that D �

i is a box enclosing the solution at
time ti (0 � i < k) and that we are interested in pruning the last predicted box D�

k . A subbox D � D�
k can

be pruned away if the condition FL(t; (D�
0 ; : : : ; D

�
k�1; D); te) does not hold for some evaluation point te.

Let us explain briefly the geometric intuition behind this formula by considering what we call natural filters.
Given interval extensions MS and DMS of ms and @ms

@t
, it is possible to approximate the ODE u0 = f(t; u)

by the formula

DMS (t;D; t) = F (t;MS (t;D; t)):
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In this formula, the left-hand side of the equation represents the approximation of the slope of u while the
right-hand represents the slope of the approximation of u. Since the approximations are conservative, these
two sides must intersect on boxes containing a solution. Hence an empty intersection means that the boxes
used in the formula do not contain the solution to the ODE system. Traditional consistency techniques and
algorithms based on this filter can now be applied. For instance, one may be interested in updating the last box
computed by the predictor process using the operator D �

k = 2fr 2 D�
k j FL(t; (D�

0 ; : : : ; D
�
k�1; r); te)g:

Observe that this operator uses an evaluation time te and the main result of this paper consists in showing
that te can be chosen optimally to maximize pruning. The following definition is a novel notion of consistency
for ODEs to capture pruning of the last r boxes.

Definition 6 (Backward Consistency of Multistep Filters) A multistep filter FL(t;D; e) is backward-
consistent in (t;D) for time e ifD = 2 fuk 2 Dk j 9u0 2 D0 : FL(t;u; e)g : A system of r successive mul-
tistep filters fFLi(ti::k+i;Di::k+i; ei)g0�i<r is backward(r)-consistent in (t0::k+r�1;D0::k+r�1) for times
ei (0 � i < r) if

Dk::k+r�1 = 2 fuk::k+r�1 2 Dk::k+r�1 j 9u0 2 D0 : 8 0 � i < r : FLi(ti::k+i;ui::k+i; ei)g :

3.1 Multistep Filters

Filters rely on interval extensions of the multistep solution and of its derivative wrt t. These extensions are, in
general, based on decomposing the (unknown) multistep solution into the sum of a computable approximation
p and an (unknown) error term e, i.e., ms(t;u; t) = p(t;u; t) + e(t;u; t): There exist standard techniques to
build p and @p

@t
and to bound e and @e

@t
. Section 3.3 reviews how they can be derived from Hermite interpolation

polynomials. Here we simply assume that they are available and we show how to use them to build filters. The
presentation so far showed how natural multistep filters can be obtained by simply replacing the multistep
solution and its derivative wrt t by their interval extensions to obtain DMS(t;D; t) = F (t;MS (t;D; t)):
It is not easy however to enforce backward consistency on a natural filter since the variables may occur in
complex nonlinear expressions. This problem is addressed by mean-value filters that we now briefly explain.

Mean-value forms (MVFs) play a fundamental role in interval computations and are derived from the
mean-value theorem. They correspond to problem linearizations around a point and result in filters that
are systems of linear equations with interval coefficients and whose solutions can be enclosed reasonably
efficiently. Mean-value forms are effective when the sizes of the boxes are sufficiently small, which is the
case in ODEs. In addition, being linear equations, they allow for an easier treatment of the so-called wrapping
effect, a crucial problem in interval methods for ODEs. As a consequence, mean-value forms are especially
appropriate in our context and will produce filters which are efficiently amenable to backward consistency.
The rest of this section describes how to obtain mean-value filters. Mean-value filters are presented in detail
in [JVHD01] and in the technical report version of this paper. For the purpose of this paper, it is sufficient
to observe that they lead to a system of linear equations with interval coefficients. More precisely, let D� 2
IR

n(k+1) be the predicted box of variable u and define X as D �m(D�). A mean-value filter is a system
of equations of the form

Pk

i=0 Ai(t)Xi = K(t) where Ai(t) 2 R
n�n , i = 0; : : : ; k and K(t) 2 IR

n. In
general, for initial value problems, we will be interested in pruning the last predicted box D �

k . Hence it is
convenient to derive a mean-value filter which is explicit in Dk by isolating Xk to obtain

Xk = Ak(t)
�1K(t)�

k�1X
i=0

�
Ak(t)

�1Ai(t)
�
Xi: (2)

which is an explicit mean-value filter (Ak(t)
�1 denotes an enclosure of the inverse of Ak(t)). It is easy to

use an explicit mean-value filter to prune the predicted boxD�
k at time tk given the boxesD�

0 ,: : : ,D�
k�1 from
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Figure 1: Intuition of the Globalization Process (k = 3).

the previous integration steps, since Xk (and thus Dk) has been isolated. The filter simply becomes

Dk = m(D�
k ) +Ak(t)

�1K(t)�

k�1X
i=0

�
Ak(t)

�1Ai(t)
�
(D�

i �m(D�
i ))

and the pruned box D�
k at time tk is given by D�

k = Dk \D
�
k : It follows directly that the explicit mean-value

filter is backward-consistent in D�.

3.2 Global Filters

Mean-value filters may produce significant pruning of the boxes computed by the predictor process. However,
they suffer from two limitations: the wrapping effect which is inherent in interval analysis and a variable
dependency problem since the same boxes are used indirectly several times in a multistep method, possibly
inducing a significant loss of precision. These two problems were addressed in [JVHD01] through global
filters. The main idea underlying global filters is to cluster several mean-value filters together so that they do
not overlap. The intuition is illustrated in Figure 1 for k = 3. It can be seen that the global filter prunes the
3 predicted boxes D�

3 , D�
4 , and D�

5 for times t3, t4, and t5 using the boxes D�
0 , D�

1 , and D�
2 computed for

times t0, t1, and t2. Observe also that global filters do not overlap, i.e., the boxes D �
0 , D�

1 , and D�
2 will not

be used in subsequent filters. More precisely, a global filter is a system of k successive explicit mean-value
filters. It can be transformed into an explicit form X1 = C(e0)X0 + R(e0) where C(e0) 2 IR

nk�nk and
R(e0) 2 IR

nk. An interesting property of global filters is that each pruned box at times t 3, t4, or t5 can
be computed only in terms of the predicted boxes and the boxes at times t 0, t1, and t2 by using Gaussian
elimination. The resulting filter is backward(k)-consistent with respect to the resulting boxes. Finally, observe
that global filters not only remove the variable dependency problem by globalizing the pruning process. They
also produce square systems which makes it possible to apply standard techniques from one-step methods
(e.g., local coordinate transformations and QR factorizations [Loh87]) to address the wrapping effect.

3.3 Hermite Filters

So far, we assumed the existence of interval extensions of p and @p=@t and bounds on the error terms e and
@e=@t. We now show how to use Hermite interpolation polynomials for this purpose. Informally speaking,
a Hermite interpolation polynomial approximates a continuously differentiable function f which is known
implicitly by its values and the values of its successive derivatives at various points. A Hermite interpolation
polynomial is specified by imposing that its values and the values of its successive derivatives at some given
points be equal to the values of f and of its derivatives at the same points. Note that the number of conditions
(i.e., the number of successive derivatives that are considered) may vary at the different points.

Definition 7 (Hermite(�) Interpolation Polynomial) Consider the ODE u 0 = f(t; u) and let � =

(�0; : : : ; �k) 2 N
k+1 and �i 6= 0 (0 � i � k). Let �s =

Pk

i=0 �i, u
(0)
i = ui, and u(j)i = f (j�1)(ti; ui)

(0 � i � k & 0 � j � �i � 1). The Hermite(�) interpolation polynomial wrt f and (t;u) is the unique

polynomial q of degree � �s � 1 satisfying q(j)(ti) = u
(j)
i (0 � j � �i � 1 & 0 � i � k):
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Proposition 1 (Hermite Interpolation Polynomial) The polynomial q satisfying conditions of definition 7
is given by

q(t) =

kX
i=0

�i�1X
j=0

u
(j)
i Lij(t) (3)

where

Li;�i�1(t) = li;�i�1(t); i = 0; : : : ; k

Lij(t) = lij(t)�
P�i�1

�=j+1 l
(�)
ij (ti)Li�(t); i = 0; : : : ; k; j = 0; : : : ; �i � 2

lij(t) = (t�ti)
j

j!

Qk
�=0
� 6=i

�
t�t�
ti�t�

���
; i = 0; : : : ; k; j = 0; : : : ; �i � 1

(4)

It is easy to take interval extensions of a Hermite interpolation polynomial and of its derivatives. The only
remaining issue is to bound the error terms. The following standard theorem (e.g., [SB80], [Atk88]) provides
the necessary theoretical basis.

Proposition 2 (Hermite Error Term) Let p(t;u; t) be the Hermite(�) interpolation polynomial in t wrt f
and (t;u). Let u(t) � ms(t;u; t), T = 2ft0; : : : ; tk; tg, �s =

Pk
i=0 �i and w(t) =

Qk
i=0 (t � ti)

�i . We
have (1 � i � n)
� 9 �i 2 T : ei(t;u; t) =

1
�s!

f
(�s�1)
i (�i; u(�i))w(t);

� 9 �1;i; �2;i 2 T : @ei
@t

(t;u; t) = 1
�s!

f
(�s�1)
i (�1;i; u(�1;i))w

0(t) + 1
(�s+1)!f

(�s)
i (�2;i; u(�2;i))w(t).

How to use this proposition to bound the error terms? It suffices to take interval extensions of the formula
given in the proposition and to replace � i; �1;i; �2;i by T and u(�i); u(�1;i); u(�2;i) by a bounding box for
the ODE over T . As a consequence, we can compute an effective relaxation of the ODE by specializing
global filters with a Hermite interpolation and its error bound. In the following, filters based on Hermite(�)
interpolation are called Hermite(�) filters and a global Hermite(�) filter is denoted by GHF(�).

4 Optimal Pruning in Hermite Filters

Let us summary what we have achieved so far. The basic idea of our approach is to approximate the ODE
8 t : u0 = f(t; u) by a filter 8 t : FL(t;D; t): We have shown that a global filter prunes the last k boxes
by using k successive mean-value filters and it addresses the wrapping effect and the variable dependency
problem. We have also shown that a global filter can be obtained by using Hermite interpolation polynomials
together with their error bounds. As a consequence, we obtain a filter 8 e 0 : GHF (�)(t;D; e0) which
can be used to prune the last k predicted boxes. The main remaining issue is to find an evaluation time
vector e0 which maximizes pruning or, alternatively, which miminizes the sizes of the solution boxes in
GHF (�)(t;D; e0): More precisely, our main goal in choosing an evaluation time vector is to minimize the
local error of the filter, i.e., the sizes of the boxes produced by the filter.

Definition 8 (Local Error of a Filter) Let FL be a filter for ODE u 0 = f(t; u). The local error of FL wrt
(t0;u0; t) is defined as eloc(FL; t0;u0; t) = ! (2fuk 2 R

n j FL(t;u; t)g) :

Observe that a global filter is obtained from several mean-value filters. Hence minimizing its local error
amounts to minimizing the local error of individual mean-value filters. Moreover, since the local error is
defined by evaluating the filter on real numbers, we can restrict attention, without loss of generality, to natural
Hermite filters and do not need to consider their mean-value forms. To find an optimal evaluation time, we
first derive the local error (Section 4.1). From the local error, we can then characterize the optimal evaluation
time (Section 4.2). Two of the main results of this section are as follows:
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1. For a sufficiently small stepsize h = tk � t0, the relative distance between the optimal evaluation
time and the point tk in a natural or mean-value Hermite filter depends only on the relative distances
between the interpolation points t0; : : : ; tk and on �. It does not depend on the ODE itself.

2. From a practical standpoint, the optimal evaluation time can be precomputed once for all for a given
step size and �. This computation does not induce any overhead of the method.

The third main result is concerned with the order of a natural Hermite filter which is shown to be O(h �s+1)

where �s =
Pk

i=0 �i when the evaluation point is chosen carefully (but not necessarily optimally!).

4.1 Local Error of a Natural Hermite Filter

To analyze the local error and determine the optimal evaluation time, we use standard asymptotical notations.

Notation 2 (Asymptotical Notations) Consider two functions f; g : R ! R and let h > 0. We use the
following standard notations

� f(h) = O(g(h)) if 9c > 0; 9" > 0 : h � ") jf(h)j � cjg(h)j;

� f(h) = 
(g(h)) if 9c > 0; 9" > 0 : h � ") jf(h)j � cjg(h)j;

� f(h) = �(g(h)) if f(h) = O(g(h)) and f(h) = 
(g(h)).

The notations extend component-wise for vectors and matrices of functions.

Note that these notations characterize the behaviour of a function when h is sufficiently small. Asymptotic
notations in computer science characterize, in general, the behaviour of algorithms when the size n of the
problem becomes larger. These notations are simply obtained by substituting h by 1=n. We also make a
number of assumptions in this section. (Additional, more technical, assumptions are given in the appendix.)
We assume that the step size h is given by tk�t0 and that the integration times are increasing, i.e., t0 < : : : <
tk. Moreover, we assume that the multistep solution ms is defined at (t0;u0) or, in other words, that O has
a solution going through u0; : : : ; uk�1 at times t0; : : : ; tk�1. We also use the notations � = (�0; : : : ; �k),
�s =

Pk

i=0 �i, and w(t) =
Qk

i=0(t� ti)
�i . To characterize the local error of a natural Hermite filter, we first

need a technical lemma which characterizes the behavior of the derivatives of the filter.

Lemma 1 Consider an ODE u0 = f(t; u), let p(t;u; t) be the Hermite(�) interpolation polynomial in t wrt
f and (t;u) and let �(t) = Duk

@p
@t
(t;u; t) � Duf(t; p(t;u; t) + e)Dukp(t;u; t), e 2 R

n . Then, when
t� tk = O(h) and h is sufficiently small, we have

1. �(t) � I�(t); 2. �(t) = �(h�1) if �(t) 6= 0; 3. �(t) 6= 0 for tk�1 < t < tk

where �(t) is defined by the formula

�(t) =
��P�k�2

j=0 �j+1
(t�tk)

j

j!

�
+
�P�k�1

j=0 �j
(t�tk)

j

j!

�Pk�1
�=0

��
tk�t�

�
�(t);

�0 = 1; �j = ��(j)(tk); j = 1; : : : ; �k � 1;

�(t) =
Qk�1

�=0

�
t�t�
tk�t�

���
:

(5)

This lemma shows that �(t) is a �(h�1) almost diagonal matrix for tk�1 < t < tk. Its proof is given in the
appendix. We are now in position to characterize the local error of a natural Hermite filter.

Theorem 1 (Local Error of a Natural Hermite Filter) Let FL be a natural Hermite(�) filter for u 0 =
f(t; u) and assume that t� tk = O(h). With the notations of Lemma 1, we have
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1. if �(t) is not singular, then eloc(FL; t0;u0; t) = j��1(t)j (�(h)jw(t)j +�(h)jw0(t)j);

2. if �(t) is not singular, then �(t) = �(h�1);

3. if tk�1 < t < tk and if h is sufficiently small, then �(t) is not singular;

We are now ready to show how to find an optimal evaluation time for natural Hermite filters.

4.2 Optimal Evaluation Time for a Natural Hermite Filter

Our first result is fundamental and characterizes the order of a natural Hermite filter. It also hints on how to
obtain an optimal evaluation time. Recall that the order of a method is the order of the local error minus 1.

Theorem 2 (Order of a Natural Hermite Filter) Assume that t � tk = O(h) and let FL be a natural
Hermite(�) filter. With the notations of Lemma 1, we have

1. There exists t such that tk�1 < t < tk and w0(t) = 0;

2. If tk�1 < t < tk, w0(t) = 0, and h is sufficiently small, then eloc(FL; t0;u0; t) = O(h�s+2);

3. If w0(t) 6= 0 and �(t) is not singular, then eloc(FL; t0;u0; t) = �(h�s+1).

Observe that the above theorem indicates that the zeros of w 0 are evaluation times which lead to a method of
a higher order for natural and mean-value Hermite filters (provided that the matrix �(t) be non-singular at
these points). This is the basis of our next result which describes a necessary condition for optimality.

Theorem 3 (Necessary Condition for Optimal Natural Hermite Filters) Let FL be a natural Hermite(�)
filter and let te 2 R be such that eloc(FL; t0;u0; te) = mint�tk=O(h)feloc(FL; t0;u0; t)g. We have that,

for h sufficiently small, te is a zero of the function 
(t) =
Pk

i=0
�i
t�ti

Our next result specifies the number of zeros of the function 
 as well as their locations.

Theorem 4 The function 
 in Theorem 3 has exactly k zeros s0; : : : ; sk�1 satisfying ti < si < ti+1.

We are now ready to characterize precisely the optimal evaluation time for a natural Hermite filter.

Theorem 5 (Optimal Evaluation Time) Let FL be a natural Hermite(�) filter, let te 2 R be such that
eloc(FL; t0;u0; te) = mint�tk=O(h)feloc(FL; t0;u0; t)g, let � and 
 be the functions defined in Lemma 1
and Theorem 3 respectively, and let s0; : : : ; sk�1 be the zeros of 
. Then, for h sufficiently small,

j(w=�)(te)j = min
s2fs0;::: ;sk�1g

fj(w=�)(s)jg (6)

It is important to discuss the consequences of Theorem 3 in some detail. First observe that the relative
distance between the optimal evaluation time te and the point tk depends only on the relative distances
between the interpolation points t0; : : : ; tk and on the vector �. In particular, it is independent from the ODE
itself. For instance, for k = 1, we have 
(t) = �0

t�t0
+ �1

t�t1
and 
 has a single zero given by te = �1t0+�0t1

�0+�1
.

In addition, if �0 = : : : = �k , then the zeros of 
 are independent from �. In particular, for k = 1, we have
te = (t0 + t1)=2. As a consequence, for a given � and step size h, the relative distance between t k and an
optimal evaluation time te can be computed once at the beginning of the integration. In addition, since it does
not depend on the ODE itself, this relative distance can be precomputed and stored for a variety of step sizes
and vectors �. The overhead of choosing an optimal evaluation time is thus negligible. Finally, it is worth
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k 1 2 3 4 5 6
(te � tk)=h �0:5000 �0:2113 �0:1273 �0:0889 �0:0673 �0:0537

Table 1: Relative Distance between the Rightmost Zero te of 
 and tk when �0 = : : : = �k.
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Figure 2: The functions 
; w;w 0; � and w=� for the case k = 4; � = (2; 2; 2; 2; 2).
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Figure 3: Local Error of Global Hermite Filters as a Function of the Evaluation Time for the Lorentz System.
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stressing that any zero of function 
 in Theorem 3 gives an O(h�s+1) order for the Hermite filter (provided
that the matrix �(t) be non-singular at that zero). Hence any such zero is in fact an appropriate evaluation
time, although it is not necessarily optimal. In our experiments, the right-most zero was always the optimal
evaluation time, although we have not been able to prove this result theoretically.

We now illustrate the theoretical results experimentally. Table 4.2 gives approximative values of the
relative distance between the rightmost zero of the function 
 and the point t k (1 � k � 6), for �0 =
: : : = �k, and h = tk � t0. Observe that, for two interpolation points, te is in the middle of t0 and t1. It
then moves closer and closer to tk for larger values of k. Figure 2 illustrates the functions 
, w, w 0, �, and
w=� for k = 4; � = (2; 2; 2; 2; 2) and their sometimes complex interactions. The top-left figure shows the
function w0 and 
, as well as the zeros of 
. The top-right figure shows the function w with the zeros of 
 in
superposition. The bottom-left figure shows function � with the zeros of 
 in superposition. The bottom-right
picture shows the functionw=� and the zeros of 
. It can be seen that the right-most zero minimizes the local
error in this example. Figure 3 illustrates our theoretical results experimentally on a specific ODE. It plots the
local error of several global Hermite filters (GHF) as a function of the evaluation time for the Lorenz system
(e.g., [HNW87]). It is assumed that ti+1 � ti is constant (0 � i � 2k � 2). In addition, we assume that,
in each mean-value filter composing the GHF, the distance between the evaluation time and the rightmost
interpolation point is constant. In the graphs, [t0; tk] = [0; 0:01] and h = tk � t0 = 0:01. The figure also
shows the rightmost zero of the function 
 as obtained from Table 4.2. As we can see, the rightmost zero of

 is a very good approximation of the optimal evaluation time of the filter for all the cases displayed.

5 Theoretical Analysis

We analyze the cost of our algorithm based on the global Hermite filter method GHF(�) and compare it to
Nedialkov’s IHO(p; q) method [NJ99], the best interval method we know of. Nedialkov shows that the IHO
method outperforms interval Taylor series methods (e.g. Lohner’s AWA [Loh87]). The step size is given by
h = tk�t0 and we use the same step size in GHF(�) and IHO(p; q). Let �m = max(�) and �s = �0+: : :+�k.
At each step i, we use the following assumptions when comparing GHF(�) and IHO(p; q):

1. The bounding box process uses a Taylor series method ([CR96], [NJC99]) of order � s. Moreover,
we assume that Bik = : : : = B(i+1)k�1, i.e., the function computes a single bounding box over
[tik�1; t(i+1)k�1];

2. The predictor process uses Moore’s Taylor method [Moo66] of order q+1 (same order as the predictor
used in IHO(p; q)) to compute the boxes D�

i ;

3. We choose the rightmost zero of function 
 (see Section 4.2 and Table 4.2) as an evaluation time in the
Hermite filters. Consequently, the GHF(�) method is of order �s + 1.

For simplicity of the analysis, we assume that (the natural encoding of) function f contains only arithmetic
operations. We denote by N1 the number of �; = operations in f , by N2 the number of � operations, and by
N the sum N1+N2. We also assume that the cost of evaluatingDuf

(r) is n times the cost of evaluating f (r).
We report separately interval arithmetic operations involved in (1) products of a real and an interval matrix
which arise in the pruning step (Cost-1) and (2) the generation of Jacobians (Cost-2). Note that Cost-1 is a
fixed cost in the sense that it is independent from the ODE. Cost-2 is a variable cost which increases as the
expression of f becomes more complex.

Methods of the Same Order We first compare the costs of the GHF(�) and IHO(p; q) methods when
we assume that p + q = �s and q 2 fp; p + 1g. The methods GHF and IHO are thus of the same order
(�s + 1). Table 2 reports the main cost of a step in the IHO method and our GHF method. It also shows
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Cost-1 Cost-2

IHO � 2d�s2 e
2nN1 +O(�snN2)

GHF 7k3n3 ((�m � 1)2 + 1)knN1 + �mknN2

GHF-1 � (b�s�12 c2 + 1)nN1 +O(�snN2)
GHF-2 ( 78�s �

21
4 )�

2
sn

3 (�s � 2)nN

Table 2: Cost Analysis : Methods of the Same Order.

Cost-2

IHO 2b�s�12 c2nN1 +O(�snN2)

GHF-1 (b�s�12 c2 + 1)nN1 +O(�snN2)

Table 3: Cost Analysis : Methods of Different Orders.

the complexity of two particular cases of GHF. The first case (GHF-1) corresponds to a polynomial with
only two interpolation points (k = 1) and j�1 � �0j � 1, while the second case (GHF-2) corresponds to
a polynomial imposing two conditions on every interpolation points (� 0 = : : : = �k = 2). The first main
result is that GHF-1 is always cheaper than IHO, which means that our method can always be made to run
faster by choosing only two interpolation points. (The next section will show that improvement in accuracy
is also obtained in this case). GHF-2 is more expensive than GHF-1 and IHO when f is simple because in
this case the Jacobians are cheap to compute and the fixed cost Cost-1 becomes large wrt Cost-2. However,
when f contains many operations (which is the case in many practical applications), GHF-2 can become
substantially faster because Cost-1 in GHF-2 is independent of f and Cost-2 is substantially smaller in GHF-
2 than in GHF-1 and IHO. It also shows the versatility of the approach that can be taylored to the application
at hand.

One-Step Methods of Different Orders We now show that our approach can be made both asymptotically
more precise and faster. Consider the costs of the IHO(p; q) and GHF(� 0; �1) methods when we assume that
j�1 � �0j � 1, p+ q = �s � 2 and q 2 fp; p+1g. Under these conditions, IHO is a method of order � s � 1,
while GHF is a method of order �s + 1. Table 3 reports the main cost of a step in IHO and GHF. As can
be seen from the table, GHF is always cheaper than IHO. The GHF method is thus both asymptotically more
precise (by two orders of magnitude) and faster than the IHO method.

6 Experimental Analysis

We now report experimental results of a C++ implementation of our approach on a Sun Ultra 10 workstation
with a 333 MHz UltraSparc CPU. The underlying interval arithmetic and automatic differentiation packages
are PROFIL/BIAS [Knu94] and FADBAD/TADIFF [BS96, BS97] respectively. Many of the tested examples
are classical benchmarks for ODE solvers. These problems are taken from various domains, including chem-
istry, biology, mechanics, physics and electricity. The equation, initial conditions and interval of integration
for each initial value problem are given in Appendix B. Note that, although we could use interval initial
conditions, we consider only point initial conditions to compare the different methods. The “full Brusselator”
(BRUS) and the “Oregonator” (OREG), a stiff problem, model famous chemical reactions, the Lorenz system
(LOR) is an example of the so-called “strange attractors”, the Two-Body problem (2BP) comes from mechan-
ics, and the van der Pol (VDP) equation describes an electrical circuit. All these problems are described in
detail in [HNW87]. We also consider a problem from molecular biology (BIO), the Stiff DETEST problem
D1 [Enr75], and another stiff problem (GRI) from [Gri72]. Finally, we consider four problems (LIEN, P1,
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Figure 4: Experimental Comparison of the Methods IHO(p; p), GHF(p; p) and GHF(p+ 1; p+ 1).

P2, P3) where the ODE has a more complex expression (i.e. the function f contains many operations). They
are taken from [Per00]. The experimental results follow the same assumptions as in the theoretical analy-
sis section and we make three types of comparisons: (1) one-step methods of the same order; (2) one-step
methods of different orders, but of similar cost; and (3) multistep versus one-step methods of the same order.
The figures report the global excess (where the global excess at point t i is given by the infinite norm of the
width of the enclosure Di at ti, i.e., the quantity k!(Di)k1) at the end of the interval of integration of the
compared IHO and GHF methods. These figures are based on the tables given in Appendix C where we
report the global excess, the excess ratio (an excess ratio higher than 1 means that GHF is more precise), the
execution time of both methods (in seconds) and the time ratio (a time ratio higher than 1 means that GHF is
faster).

One-Step Methods Figure 4 plots the excess as a function of the execution time in the methods IHO(p; p),
GHF(p; p) and GHF(p + 1; p + 1) for the problems of Tables 4 and 5. We take p = 8 for GRI and D1
and p = 3 for the other problems. As we can see from the figure, the curve of IHO is always above the
curves of the GHF methods, showing that IHO is less precise than the GHF methods for a given execution
time or, alternatively, IHO is slower than the GHF methods for a given precision. Thus, although GHF(p; p)
may sometimes be less precise than IHO(p; p) for a given step size in the stiff problems OREG, GRI and D1,
GHF(p; p) still performs better than IHO(p; p) because the cost of a step is less in GHF(p; p) than in IHO(p; p).
The figure also shows that GHF(p+ 1; p+ 1) performs better than GHF(p; p) in all cases. Furthermore, our
results confirm that IHO(p; p) and GHF(p; p) are methods of the same order, and that GHF(p+ 1; p+ 1) is a
method of higher order.
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Figure 5: Experimental Comparison of Multistep and One-Step Methods.

Multistep Versus One-Step Methods We now compare multistep GHF methods versus IHO and one-step
GHF methods of the same order in problems where the ODE has a more complex expression (i.e., f contains
many operations). Figure 5 plots the excess as a function of the execution time in several methods for the
problems of Table 6. Again, the curve of IHO is always above the curves of the GHF methods, showing that
the latter perform better on these problems. Furthermore, we observe that the curves of the one-step GHF
methods are above those of the multistep GHF methods. Multistep GHF methods perform thus better in these
cases.

Summary The results indicate that our method produces orders of magnitude improvements in accuracy
and runs faster than the best known method. The theoretical results are also confirmed by the experiments.
When f contains many operations, using many interpolation points is particularly effective. For very complex
functions, the gain in computation time could become substantial. When f is simple, using few interpolation
points becomes more interesting.

7 Conclusion

This paper considered a constraint satisfaction approach to initial value problems for parametric ordinary
differential equations introduced in [DJVH98, JDVH99, JVHD01]. It solved the main theoretical and prac-
tical open issue in this approach: the choice of an optimal evaluation time for the filters. In particular, it
showed that the optimal evaluation time for a filter is independent of the ODE itself and can be precomputed,
thus inducing no overhead for the method. This result has important theoretical and practical consequences.
The theoretical results show that the constraint satisfaction approach provides a quadratic improvement in
accuracy over the best interval methods, while improving their running times. The experimental results on
standard benchmarks confirm the theoretical results.
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A Proof of the Main Results.
The following assumptions are used in the proofs. We assume that the step size h is given by tk � t0 and that the
integration times are increasing, i.e., t0 < : : : < tk. We assume that the interval extension F of f is sufficiently precise,
i.e.,

F (t;D) � f(t;D)

when !(D) is sufficiently small. We also assume (see [Ned99]) that

!

�
1

(j + 1)!
F (j)(T;B(T ))

�
= �(h)

where B(T ) is a bounding box of u0 = f(t; u) over T with respect to a given (t;D). Finally, we assume that the
multistep solution ms is defined at (t0;u0) or, in other words, that O has a solution going through u0; : : : ; uk�1 at
times t0; : : : ; tk�1. We also use the notations introduced in Theorem 2. In particular, we assume that � = (�0; : : : ; �k),
�s =

Pk
i=0 �i, and w(t) =

Qk
i=0(t� ti)

�i . Finally, if x = (x1; : : : ; xn) and g = (g1; : : : ; gn), then Dxg denotes the
matrix 2

4
@g1
@x1

: : : @g1
@xn

: : : : : : : : :
@gn
@x1

: : : @gn
@xn

3
5

We first prove the following lemma.

Lemma 2 Consider an ODE u0 = f(t; u), let p(t;u; t) be the Hermite(�) interpolation polynomial in t wrt f and (t;u)
and let �(t) = Duk

@p

@t
(uk; t) � Duf(t; p(uk; t))Dukp(uk; t). If tk�1 < t < tk, then (Duk

@pi
@t

(uk; t))i = �(h�1)
for i = 1; : : : ; n.

Proof Assume that t � tk = O(h). Let te 2 ]tk�1; tk[, i 2 1::n and q(t) = Dukpi(uk; t). Observe that q(j)i (t) =

O(h�j) or hjq(j)i (t) = O(1), for all j � 0. By definition of p, for l = 0; : : : ; k and j = 1; : : : ; �i � 1, we
have �(j�1)(tl) = 0 and thus q

(j)
i (tl) = O(h1�j) or hjq(j)i (tl) = O(h). Furthermore, for l = 0; : : : ; k � 1,

qi(tl) = 0 = O(h) and qi(tk) = O(1).
By continuity and by Rolle’s Theorem, for h sufficiently small, if hjq(j)i has at least nj distinct O(h) values at

�1; : : : ; �nj , then hj+1q
(j+1)
i has at least nj � 1 distinct zeros �1; : : : ; �nj�1, with �1 < �1 < �2 < : : : < �nj�1 <

�nj�1 < �nj . Thus, �1; : : : ; �nj�1 are distinct from tl if �(j)(tl) = 0 (since �(j)(tl) = 0 ) �(j�1)(tl) = 0),
l = 0; : : : ; k.

Let rj be the minimum number of O(h) values of hjq(j)i at distinct interpolation points and nj the minimum number
of O(h) values of hjq(j)i at distinct points. We can write :

nj = nj�1 � 1 + rj
= nj�2 � 2 + rj�1 + rj
= nj�3 � 3 + rj�2 + rj�1 + rj
...
= n1 � (j � 1) +

Pj
�=2 r�

(7)

Let us assume that hq0i(te) = 0. Since the n0 � 1 distinct zeros of hq0i arising from the n0 distinct zeros of qi are strictly
smaller than tk�1, they are distinct from te > tk�1. Thus, we have n1 = n0 � 1 + 1 + r1 = r0 + r1. In particular,
n�s�1 = r0 + r1 � (�s � 2) +

P�s�1
�=2 r� = 2� �s +

P�s�1
�=0 r� . We can easily verify that

P�s�1
�=0 r� = �s � 1. We

obtain n�s�1 = 1.
However, since q

(�s�1)
i (t) 6= 0, i.e. q

(�s�1)
i has no zeros, and n�s�1 = 0, we have a contradiction. As a

consequence, for h sufficiently small, we must have q0i(te) 6= 0. 2

We are now in position to prove Lemma 1.

16



Lemma 1 Consider an ODE u0 = f(t; u), let p(t;u; t) be the Hermite(�) interpolation polynomial in t wrt f and (t;u)
and let �(t) = Duk

@p

@t
(t;u; t) � Duf(t; p(t;u; t) + e)Dukp(t;u; t), e 2 R

n . Then, when t � tk = O(h) and h is
sufficiently small, we have

1. �(t) � I�(t); 2. �(t) = �(h�1) if �(t) 6= 0; 3. �(t) 6= 0 for tk�1 < t < tk

where �(t) is defined by the formula

�(t) =
��P�k�2

j=0 �j+1
(t�tk)

j

j!

�
+
�P�k�1

j=0 �j
(t�tk)

j

j!

�Pk�1
�=0

��
tk�t�

�
�(t);

�0 = 1; �j = ��(j)(tk); j = 1; : : : ; �k � 1;

�(t) =
Qk�1

�=0

�
t�t�
tk�t�

���
:

(8)

Proof Let i 2 1::n and q(t) = Dukpi(t;u; t). From the definition of Hermite interpolation polynomials (see Proposition
1), we can rewrite q(t) and q0(t) as follows

q(t) =
P�k�1

j=0 cjLkj(t)

=
P�k�1

j=0 cj
P�k�1

�=j ��j lk�(t)

=
P�k�1

j=0 dj lkj(t)

=
�P�k�1

j=0 dj
(t�tk)

j

j!

�
�(t)

q0(t) =
��P�k�2

j=0 dj+1
(t�tk)

j

j!

�
+
�P�k�1

j=0 dj
(t�tk)

j

j!

�Pk�1
�=0

��
tk�t�

�
�(t)

(9)

where ��j 2 R; cj ; dj 2 Rn are independent of t. From Proposition 1 and by definition of q(t), it follows that

dj = c0�j +O(h1�j) = ei�j +O(h1�j) (10)

where �j = �(h�j) (since t0 < : : : < tk) and ei is the i-th canonical vector. Let � = (�T1 ; : : : ; �
T
n )

T . As t� tk =
O(h),

�i(t) = q0(t)�Dufi(t; p(t;u; t) + e) Dukp(t;u; t)
= q0(t)�O(1)O(1)

(11)

For h sufficiently small, we can write

dj � ei�j (12)

and

�i(t) � q0(t) � ei�(t) (13)

We have �(t) = �(h�1) if �(t) 6= 0 and, by Lemma 2, for tk�1 < t < tk and h sufficiently small, �(t) 6= 0. 2

Theorem 1 (Local Error of a Natural Hermite Filter) Let FL be a natural Hermite(�) filter for u0 = f(t; u) and
assume that t� tk = O(h). With the notations of Lemma 1, we have

1. if �(t) is not singular, then eloc(FL; t0;u0; t) = j��1(t)j (�(h)jw(t)j+�(h)jw0(t)j);

2. if �(t) is not singular, then �(t) = �(h�1);

3. if tk�1 < t < tk and if h is sufficiently small, then �(t) is not singular;

Proof Consider the relation

r(t; (u0; v); t), 9e 2 E(t);9de 2 DE(t) : Æ(t; (u0; v); e; de; t) = 0 (14)
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where

Æ(t; (u0; v); e; de; t) =
@p

@t
(t; (u0; v); t) + de� f(t; p(t; (u0; v); t) + e);

E(t) = B1(t)w(t);
DE(t) = B1(t)w

0(t) +B2(t)w(t);

B1(t) =
1
�s!

F (�s�1)(T; B(T ));

B2(t) =
1

(�s+1)!
F (�s)(T;B(T ));

B(T ) is a bounding box of u0 = f(t; u) over T = 2ft0; : : : ; tk; tg wrt (t0;u0);
p(t; (u0; v); t) is the Hermite(�) interpolation polynomial in t wrt f and (t; (u0; v)):

(15)

Since t�tk = O(h), it follows that, for h sufficiently small, F (t; p(t; (u0; v); t)+E(t)) � f(t; p(t; (u0; v); t)+E(t)).
The set fv 2 Rn j r(t; (u0; v); t)g is thus a good approximation of the set fv 2 Rn j FL(t; (u0; v); t)g provided that
B(T ) is the bounding box used in FL. Consider now two arbitrary vectors v1; v2 2 Rn such that

Æ(t; (u0; v1); e1; de1; t) = Æ(t; (u0; v2); e; de; t) = 0 (16)

for some e1; e 2 E(t) and de1; de 2 DE(t). By Taylor’s Theorem, Æ(t; (u0; v2); e; de; t) is equal to

Æ(t; (u0; v1); e1; de1; t) + �(t)(v2 � v1) + 	(t)(e1 � e) + de� de1 +O(kv2 � v1k
2 + ke� e1k

2) (17)

where

�(t) = Dv
@p
@t
(t; (u0; v1); t)�Duf(t; p(t; (u0; v1); t) + e1)Dvp(t; (u0; v1); t)

	(t) = Duf(t; p(t; (u0; v1); t) + e1)
(18)

Since t� tk = O(h), we have, for h sufficiently small, that

�(t)(v2 � v1) + 	(t)(e1 � e) + de� de1 � 0 (19)

When the matrix �(t) is non singular, we can write

v1 � v2 � ��1(t) (	(t)(e1 � e) + de� de1) : (20)

Since the two vectors are chosen arbitrarily, it follows that

eloc(FL; t0;u0; t) � j��1(t)j (j	(t)j!(E(t)) + !(DE(t)))
� j��1(t)j ((j	(t)jd1(t) + d2(t))jw(t)j+ d1(t)jw

0(t)j)
(21)

where d1(t) = !(B1(t)) and d2(t) = !(B2(t)). Since, by hypothesis, d1(t); d2(t) = �(h), t � tk = O(h), and
	(t) = O(1), we have

eloc(FL; t0;u0; t) = j��1(t)j
�
�(h)jw(t)j+�(h)jw0(t)j

�
(22)

which proves Point 1. Points 2 and 3 are now direct consequences of Point 1 and of Lemma 1. 2

Theorem 2 (Order of a Natural Hermite Filter) Assume that t�tk = O(h) and let FL be a natural Hermite(�) filter.
With the notations of Lemma 1, we have

1. There exists t such that tk�1 < t < tk and w0(t) = 0;

2. If tk�1 < t < tk, w0(t) = 0, and h is sufficiently small, then eloc(FL; t0;u0; t) = O(h�s+2);

3. If w0(t) 6= 0 and �(t) is not singular, then eloc(FL; t0;u0; t) = �(h�s+1).

Proof Consider an evaluation time t such that t � tk = O(h) with h sufficiently small. We have w(t) = O(h�s) and
w0(t) = O(h�s�1). First assume that tk�1 < t < tk and w0(t) = 0. By Rolle’s Theorem, since w(tk�1) = w(tk) = 0,
there exists such an evaluation time t. By Theorem 1, eloc(FL; t0;u0; t) = O(h�s+2): Now assume that w0(t) 6= 0 and
�(t) is not singular. By Theorem 1, eloc(FL; t0;u0; t) = �(h�s+1). 2
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Theorem 3 (Necessary Condition for Optimal Natural Hermite Filters) Let FL be a natural Hermite(�) filter and
let te 2 R be such that eloc(FL; t0;u0; te) = mint�tk=O(h)feloc(FL; t0;u0; t)g. We have that, for h sufficiently
small, te is a zero of the function


(t) =
kX

i=0

�i
t� ti

(23)

Proof Assume that t � tk = O(h) and that h is sufficiently small. By Theorem 2, w0(te) must be zero to minimize
the local error. Note that �(ti) is singular if w0(ti) = 0 (0 � i � k). Thus te =2 ft0; : : : ; tkg and w(te) 6= 0. Since
w0(t) = w(t)
(t), we conclude that 
(te) = 0. 2

Theorem 4 The function 
 in Theorem 3 has exactly k zeros s0; : : : ; sk�1 such that ti < si < ti+1 (0 � i < k).

Proof We have w0(t) = w(t)
(t). By Rolle’s Theorem, as w(ti) = w(ti+1) = 0, w0 has a root si with ti < si < ti+1

and w(si) 6= 0 (0 � i < k). Futhermore, we can verify that 
 has at most k zeros. 2

Theorem 5 (Optimal Evaluation Time) Let FL be a natural Hermite(�) filter, let te 2 R be such that
eloc(FL; t0;u0; te) = mint�tk=O(h)feloc(FL; t0;u0; t)g, let


(t) =
kX

i=0

�i
t� ti

; (24)

and let s0; : : : ; sk�1 be the zeros of 
. Then, for h sufficiently small,

j(w=�)(te)j = min
s2fs0;::: ;sk�1g

fj(w=�)(s)jg (25)

where the function � is defined in Lemma 1.

Proof By definition, w0(si) = w(si)
(si) = 0, for i = 0; : : : ; k � 1. From Theorem 1 and Lemma 1,
eloc(FL; t0;u0; si) � j(w=�)(si)j. 2

B The Benchmarks.
� The full Brusselator (BRUS)

u01 = 1 + u21u2 � (u3 + 1)u1
u02 = u1u3 � u21u2
u03 = �u1u3 + �

� = 1; [t0; tf ] = [0; 14]; u(t0) = (1; 2; 1)

(26)

� The Lorentz system (LOR)

u01 = �(u2 � u1)
u02 = �u1u3 + �u1 � u2
u03 = u1u2 � �u3

� = 10; � = 28; � = 8=3; [t0; tf ] = [0; 10]; u(t0) = (15; 15; 36)

(27)
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� The Two-Body problem (2BP)

u01 = u3
u02 = u4
u03 = � u1

(u2
1
+u2

2
)3=2

u04 = � u2
(u2
1
+u2

2
)3=2

[t0; tf ] = [0; 20]; u(t0) = (1; 0; 0; 1)

(28)

� The van der Pol equation (VDP)

u01 = u2
u02 = �(1� u21)u2 � u1

� = 5; [t0; tf ] = [0; 20]; u(t0) = (2; 0)

(29)

� Molecular biology problem (BIO)

u01 = vi� vd u3u1=(kd+ u1)� kds u1
u02 = (v1 u1=(kc+ u1))((1� u2)=(k1 + 1� u2))� v2 u2(k2 + u2)
u03 = u2v3(1� u3)=(k3 + 1� u3)� v4 u3=(k4 + u3)

vi = 0:025; vd = 0:25; kd = 0:02; kds = 0:01;
k1 = 0:005; k2 = 0:005; k3 = 0:005; k4 = 0:005;
v1 = 3; v2 = 1:5; v3 = 1; v4 = 0:5; kc = 0:5
[t0; tf ] = [0; 3]; u(t0) = (0:01; 0:01; 0:01)

(30)

� The Oregonator (OREG)

u01 = 77:27(u2 + u1(1� 8:375 � 10�6u1 � u2))
u02 =

1
77:27

(u3 � (1 + u1)u2)
u03 = 0:161(u1 � u3)

[t0; tf ] = [0; 15]; u(t0) = (1; 2; 3)

(31)

� Grigorieff stiff problem (GRI)

u01 = �50:5u1 + 49:5u2
u02 = 49:5u1 � 50:5u2

[t0; tf ] = [0; 10]; u(t0) = (3; 1)

(32)

� The Stiff DETEST Problem D1

u01 = 0:2(u2 � u1)
u02 = 10u1 � (60� 0:125u3)u2 + 0:125u3
u03 = 1

[t0; tf ] = [0; 20]; u(t0) = (0; 0; 0)

(33)

� The Lienard system (LIEN)

u01 = u2 � (a1u0 + a2u
2
0 + : : :+ aru

r
0)

u02 = �u1

r = 21; a0 = : : : = ar = 1; [t0; tf ] = [0; 20]; u(t0) = (0:2; 0:1)

(34)
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� Problem P1

u01 = �u2 � u1u
2
2 + u23 � u31

u02 = u1 + u33 � u32
u03 = �u1u3 � u3u

2
1 � u2u

2
3 � u53

[t0; tf ] = [0; 100]; u(t0) = (0:4; 0:1; 0:2)

(35)

� Problem P2

u01 = �2u2 + u2u3 � u31
u02 = u1 � u1u3 � u32
u03 = u1u2 � u33

[t0; tf ] = [0; 20]; u(t0) = (1:5; 1:2; 1)

(36)

� Problem P3

u01 = u21u
2
2 � u41 + �u1u

2
2 + �u31 � u42

u02 = u1u
3
2 � u31u2 + �u32 + �u21u2

� = �1; � = 1; [t0; tf ] = [0; 50]; u(t0) = (0:2; 0:6)

(37)

C Experimental Results
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IVP IHO GHF h Excess Time
p; q � IHO GHF Ratio IHO GHF Ratio

BRUS 3,3 (3,3) 1E-1 2.3E-3 1.2E-3 1.9
7.5E-2 4.5E-5 2.4E-5 1.9
5E-2 9.7E-7 4.9E-7 2.0

2.5E-2 5.2E-9 2.7E-9 1.9
1.25E-2 3.2E-11 1.7E-11 1.9

1E-2 6.5E-12 3.5E-12 1.9 5.1 3.9 1.3
4,4 (4,4) 1E-1 1.7E-4 9.9E-5 1.7

7.5E-2 2.0E-6 1.1E-6 1.8
5E-2 1.0E-8 5.0E-9 2.0

2.5E-2 7.4E-12 3.2E-12 2.3 2.8 2.0 1.4
5,5 (5,5) 1E-1 2.4E-5 1.6E-5 1.5

7.5E-2 1.2E-7 7.6E-8 1.6
5E-2 1.6E-10 9.4E-11 1.7 1.9 1.3 1.5

7,7 (7,7) 1E-1 7.6E-7 5.2E-7 1.5
7.5E-2 6.6E-10 4.7E-10 1.4 1.9 1.3 1.5

8,8 (8,8) 1E-1 1.5E-7 1.1E-7 1.4
7.5E-2 5.4E-11 4.0E-11 1.4 2.2 1.5 1.5

LOR 3,3 (3,3) 1.25E-2 4.8E-1 3.2E-1 1.5
1E-2 6.7E-2 4.5E-2 1.5

7.5E-3 7.7E-3 4.9E-3 1.6
5E-3 4.3E-4 2.6E-4 1.7

2.5E-3 3.1E-6 2.0E-6 1.6 11 8 1.4
4,4 (4,4) 2E-2 1.5E-1 1.0E-1 1.5

1.75E-2 2.7E-2 1.8E-2 1.5
1.5E-2 5.0E-3 3.0E-3 1.7
1.25E-2 8.0E-4 4.6E-4 1.7

1E-2 9.0E-5 5.0E-5 1.8
7.5E-3 6.0E-6 3.1E-6 1.9 4.7 3.6 1.3

7,7 (7,7) 3E-2 3.0E-3 2.4E-3 1.2
2.75E-2 4.5E-4 3.6E-4 1.2
2.5E-2 6.6E-5 5.3E-5 1.2
2.25E-2 7.7E-6 6.2E-6 1.2 3.0 2.2 1.4

2BP 3,3 (3,3) 1E-1 4.5E-3 7.6E-4 6.0
7.5E-2 1.1E-4 3.7E-5 3.0
5E-2 3.3E-6 1.2E-6 2.7

2.5E-2 1.5E-8 4.5E-9 3.3 3.6 2.6 1.4
4,4 (4,4) 1.25E-1 2.9E-4 7.4E-5 3.9

1E-1 1.2E-5 3.0E-6 4.0
7.5E-2 3.4E-7 8.5E-8 4.0
5E-2 3.4E-9 9.2E-10 3.7 2.5 1.7 1.5

7,7 (7,7) 1.5E-1 1.1E-6 5.6E-7 2.0
1.25E-1 2.3E-9 9.7E-10 2.4 2.0 1.4 1.4

VDP 3,3 (3,3) 4E-2 1.5E-2 5.8E-3 2.6
3E-2 5.9E-5 3.8E-5 1.6
2E-2 1.7E-6 9.6E-7 1.8
1E-2 1.0E-8 5.3E-9 1.9
5E-3 7.4E-11 3.8E-11 1.9

2.5E-3 4.7E-13 2.6E-13 1.8 14 12 1.2
4,4 (4,4) 4E-2 4.7E-5 4.0E-5 1.2

3E-2 8.4E-7 5.1E-7 1.6
2E-2 9.0E-9 4.5E-9 2.0
1E-2 1.1E-11 4.7E-12 2.3 4.5 3.7 1.2

5,5 (5,5) 4E-2 2.6E-6 2.1E-6 1.2
3E-2 2.3E-8 1.6E-8 1.4
2E-2 6.7E-11 3.9E-11 1.7 2.9 2.3 1.3

BIO 3,3 (3,3) 7.5E-3 4.6E-6 2.0E-6 2.3
5E-3 8.2E-9 3.4E-9 2.4

2.5E-3 2.2E-11 9.2E-12 2.4 7.0 5.1 1.4
4,4 (4,4) 7.5E-3 1.3E-6 7.6E-7 1.7

5E-3 2.9E-10 1.3E-10 2.2
2.5E-3 9.7E-14 3.3E-14 2.9 10 7.1 1.4

OREG 3,3 (3,3) 1.5E-2 1.5E-4 2.2E-4 0.7
1E-2 8.0E-6 1.1E-5 0.7

7.5E-3 1.0E-6 1.4E-6 0.7
5E-3 6.0E-8 7.9E-8 0.8 9.6 7.6 1.3

4,4 (4,4) 2.5E-2 2.4E-4 3.4E-4 0.7
2E-2 1.2E-5 1.6E-5 0.7

1.5E-2 6.1E-7 7.6E-7 0.8
1E-2 1.5E-8 1.9E-8 0.8

7.5E-3 1.1E-9 1.4E-9 0.8 8.2 6.4 1.3
GRI 6,6 (6,6) 4E-2 1.8E-7 2.1E-7 0.9

3E-2 1.8E-9 2.2E-9 0.9
2E-2 4.6E-12 5.4E-12 0.9
1E-2 3.1E-16 3.8E-16 0.8 2.4 2.0 1.2

8,8 (8,8) 6E-2 3.5E-7 4.0E-7 0.9
5E-2 5.5E-9 6.2E-9 0.9
4E-2 5.4E-11 6.1E-11 0.9
3E-2 1.9E-13 2.1E-13 0.9
2E-2 1.2E-16 1.5E-16 0.8 1.5 1.3 1.2

D1 8,8 (8,8) 1.1E-1 1.1E-6 1.3E-6 0.8
1E-1 1.3E-7 1.4E-7 0.9
9E-2 1.5E-8 1.7E-8 0.9
8E-2 1.5E-9 1.7E-9 0.9
7E-2 1.3E-10 1.4E-10 0.9
6E-2 7.3E-12 8.3E-12 0.9
5E-2 2.8E-13 3.1E-13 0.9
4E-2 7.1E-15 8.3E-15 0.9 3.0 2.5 1.2

Table 4: One-Step Methods of the Same Order.
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IVP IHO GHF h Excess Time
p; q � IHO GHF Ratio IHO GHF Ratio

BRUS 3,3 (4,4) 1E-1 2.3E-3 1.0E-3 2.3
7.5E-2 4.5E-5 1.3E-5 3.5
5E-2 9.7E-7 1.2E-7 8.1

2.5E-2 5.2E-9 9.5E-11 55
1.25E-2 3.2E-11 2.0E-13 160 4.0 3.6 1.1

4,4 (5,5) 1E-1 1.7E-4 1.0E-4 1.7
7.5E-2 2.0E-6 9.9E-7 2.0
5E-2 1.0E-8 3.2E-9 3.1

2.5E-2 7.4E-12 6.4E-13 12 2.8 2.4 1.2
LOR 3,3 (4,4) 1.25E-2 4.8E-1 1.3E-2 1.5

1E-2 6.7E-2 1.2E-3 56
7.5E-3 7.7E-3 5.7E-5 135
5E-3 4.3E-4 9.7E-7 443 5.4 4.9 1.1

4,4 (5,5) 2E-2 1.5E-1 6.2E-2 2.4
1.75E-2 2.7E-2 9.0E-3 3.0
1.5E-2 5.0E-3 1.2E-3 4.2

1.25E-2 8.0E-4 1.2E-4 6.7
1E-2 9.0E-5 7.2E-6 13

7.5E-3 6.0E-6 2.6E-7 23 4.7 4.1 1.1
2BP 3,3 (4,4) 1E-1 4.5E-3 2.5E-5 180

7.5E-2 1.1E-4 7.6E-7 145
5E-2 3.3E-6 8.9E-9 371

2.5E-2 1.5E-8 4.1E-11 366 3.6 3.0 1.2
4,4 (5,5) 1.25E-1 2.9E-4 1.1E-5 26

1E-1 1.2E-5 3.6E-7 33
7.5E-2 3.4E-7 5.6E-9 61
5E-2 3.4E-9 5.5E-11 62 2.5 2.0 1.3

VDP 3,3 (4,4) 4E-2 1.5E-2 2.5E-3 6.0
3E-2 5.9E-5 9.7E-6 6.1
2E-2 1.7E-6 8.8E-8 19
1E-2 1.0E-8 6.2E-11 161
5E-3 7.4E-11 9.0E-14 822 7.4 7.2 1.0

4,4 (5,5) 4E-2 4.7E-5 3.6E-5 1.3
3E-2 8.4E-7 3.6E-7 2.3
2E-2 9.0E-9 1.6E-9 5.6
1E-2 1.1E-11 2.8E-13 39 4.5 4.2 1.1

BIO 3,3 (4,4) 7.5E-3 4.6E-6 1.7E-6 2.7
5E-3 8.2E-9 1.2E-9 6.8

2.5E-3 2.2E-11 4.8E-13 46 7.0 6.2 1.1
4,4 (5,5) 7.5E-3 1.3E-6 7.7E-7 1.7

5E-3 2.9E-10 9.3E-11 3.1
2.5E-3 9.7E-14 1.0E-14 9.7 10 8.4 1.2

OREG 3,3 (4,4) 2E-2 2.6E-3 7.0E-5 37
1.5E-2 1.5E-4 1.1E-6 136
1E-2 8.0E-6 2.2E-8 364

7.5E-3 1.0E-6 1.5E-9 667
5E-3 6.0E-8 4.6E-11 1304 9.6 8.6 1.1

4,4 (5,5) 2.5E-2 2.4E-4 1.4E-4 1.7
2E-2 1.2E-5 3.9E-6 3.1

1.5E-2 6.1E-7 1.6E-8 38
1E-2 1.5E-8 6.3E-11 238 6.2 5.3 1.2

GRI 6,6 (7,7) 5E-2 2.1E-2 4.1E-7 51220
4E-2 1.8E-7 4.0E-9 45
3E-2 1.8E-9 2.4E-11 75
2E-2 4.6E-12 2.7E-14 170 1.2 1.1 1.1

8,8 (9,9) 7E-2 1.8E+5 1.9E-6 9.5E+10
6E-2 3.5E-7 1.0E-8 35
5E-2 5.5E-9 1.2E-10 46
4E-2 5.4E-11 7.4E-13 73
3E-2 1.9E-13 1.5E-15 127 1.0 0.9 1.1

D1 8,8 (9,9) 1.1E-1 1.1E-6 3.9E-8 28
1E-1 1.3E-7 3.6E-9 36
9E-2 1.5E-8 3.5E-10 43
8E-2 1.5E-9 2.9E-11 53
7E-2 1.3E-10 1.8E-12 72
6E-2 7.3E-12 7.8E-14 94 2.0 1.8 1.1

Table 5: One-Step Methods of Different Orders.
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IVP IHO GHF h Excess Time
p; q � IHO GHF Ratio IHO GHF Ratio

LIEN 3,3 (3,3) 4E-1 1.4E-8 1.1E-8 1.3
3E-1 8.4E-10 4.7E-9 0.2
2E-1 2.3E-11 5.4E-11 0.4
1E-1 1.3E-13 1.3E-13 1.0
5E-2 8.7E-16 8.8E-16 1.0 9.2 7.2 1.3

3,3 (2,2,2) 4E-1 1.4E-8 3.0E-9 4.7
3E-1 8.4E-10 1.9E-9 4.4
2E-1 2.3E-11 6.9E-12 3.3
1E-1 1.3E-13 3.7E-14 3.5
5E-2 8.7E-16 2.6E-16 3.3 9.2 7.2 1.3

6,6 (6,6) 5E-1 7.2E-8 6.0E-8 1.2
4E-1 1.7E-11 1.4E-11 1.2
3E-1 4.0E-14 3.3E-14 1.2 4.1 3.0 1.4

6,6 (4,4,4) 5E-1 7.2E-8 2.0E-10 360
4E-1 1.7E-11 1.3E-12 13
3E-1 4.0E-14 3.9E-15 10 4.1 3.0 1.4

6,6 (3,3,3,3) 5E-1 7.2E-8 3.9E-10 185
4E-1 1.7E-11 6.0E-13 28
3E-1 4.0E-14 2.3E-15 17 4.1 3.0 1.4

9,9 (9,9) 5E-1 1.5E-8 1.3E-8 1.2
4E-1 9.7E-14 8.3E-14 1.2 4.8 3.2 1.5

9,9 (6,6,6) 5E-1 1.5E-8 5.3E-12 2830
4E-1 9.7E-14 4.0E-15 24 4.8 3.0 1.6

P1 6,6 (6,6) 5E-1 1.9E-5 1.5E-5 1.3
4E-1 3.6E-7 2.1E-7 1.7
3E-1 1.1E-9 8.6E-10 1.3 5.7 4.1 1.4

6,6 (4,4,4) 5E-1 1.9E-5 4.2E-6 4.5
4E-1 3.6E-7 5.2E-8 6.9
3E-1 1.1E-9 2.4E-10 4.6 5.7 4.4 1.3

8,8 (8,8) 6E-1 2.4E-3 2.9E-3 0.8
5E-1 1.0E-6 8.2E-7 1.2
4E-1 4.6E-9 3.7E-9 1.2 6.6 4.8 1.4

8,8 (4,4,4,4) 6E-1 2.4E-3 2.0E-4 12
5E-1 1.0E-6 9.1E-8 11
4E-1 4.6E-9 3.9E-10 12 6.6 5.5 1.2

P2 6,6 (6,6) 1E-1 1.1E-4 8.3E-5 1.3
9E-2 5.0E-6 3.9E-6 1.3
8E-2 3.7E-7 2.9E-7 1.3
7E-2 2.5E-8 2.0E-8 1.3
6E-2 1.4E-9 1.1E-9 1.3
5E-2 5.3E-11 4.0E-11 1.3 4.4 3.1 1.4

6,6 (4,4,4) 1E-1 1.1E-4 1.7E-7 647
9E-2 5.0E-6 2.7E-8 185
8E-2 3.7E-7 3.8E-9 97
7E-2 2.5E-8 4.4E-10 57
6E-2 1.4E-9 4.1E-11 34
5E-2 5.3E-11 2.9E-12 18 4.4 3.5 1.3

6,6 (3,3,3,3) 1E-1 1.1E-4 5.4E-8 2037
9E-2 5.0E-6 9.6E-9 521
8E-2 3.7E-7 1.5E-9 247
7E-2 2.5E-8 1.9E-10 132
6E-2 1.4E-9 2.1E-11 67
5E-2 5.3E-11 4.3E-12 12 4.4 4.1 1.1

8,8 (8,8) 1E-1 1.9E-5 1.6E-5 1.2
9E-2 4.4E-7 3.6E-7 1.2
8E-2 1.7E-8 1.4E-8 1.2
7E-2 5.7E-10 4.6E-10 1.2
6E-2 1.5E-11 1.2E-11 1.2 5.6 3.9 1.4

8,8 (4,4,4,4) 1E-1 1.9E-5 1.1E-9 17273
9E-2 4.4E-7 1.3E-10 3385
8E-2 1.7E-8 1.7E-11 1000
7E-2 5.7E-10 5.5E-12 104
6E-2 1.5E-11 4.0E-12 3.7 5.6 4.9 1.1

9,9 (9,9) 1E-1 8.5E-6 7.0E-6 1.2
9E-2 1.4E-7 1.1E-7 1.3
8E-2 3.7E-9 3.1E-9 1.2
7E-2 8.9E-11 7.3E-11 1.2
6E-2 1.6E-12 1.4E-12 1.1 7.5 5.2 1.4

9,9 (6,6,6) 1E-1 8.5E-6 1.8E-9 4722
9E-2 1.4E-7 1.5E-10 933
8E-2 3.7E-9 1.1E-11 336
7E-2 8.9E-11 1.5E-12 59
6E-2 1.6E-12 1.0E-12 1.6 7.5 5.7 1.3

P3 6,6 (6,6) 5E-1 2.0E-4 1.6E-4 1.3
4E-1 1.4E-7 1.1E-7 1.3
3E-1 4.2E-10 3.2E-10 1.3
2E-1 2.4E-13 1.8E-13 1.3 3.1 2.2 1.4

6,6 (4,4,4) 5E-1 2.0E-4 1.1E-7 1818
4E-1 1.4E-7 2.1E-9 67
3E-1 4.2E-10 1.6E-11 26
2E-1 2.4E-13 2.5E-14 9.6 3.1 2.4 1.3

6,6 (3,3,3,3) 5E-1 2.0E-4 2.9E-8 6897
4E-1 1.4E-7 7.1E-10 197
3E-1 4.2E-10 7.0E-12 60
2E-1 2.4E-13 3.3E-14 7.3 3.1 2.6 1.2

8,8 (8,8) 5E-1 2.6E-5 2.1E-5 1.2
4E-1 5.4E-9 4.4E-9 1.2
3E-1 3.7E-12 3.0E-12 1.2 3.2 2.3 1.4

8,8 (4,4,4,4) 5E-1 2.6E-5 7.6E-10 34211
4E-1 5.4E-9 7.9E-12 684
3E-1 3.7E-12 5.1E-14 73 3.2 2.5 1.3

9,9 (9,9) 5E-1 1.0E-5 8.2E-6 1.2
4E-1 1.1E-9 9.2E-10 1.2
3E-1 3.5E-13 2.9E-13 1.2 3.9 2.7 1.4

9,9 (6,6,6) 5E-1 1.0E-5 1.6E-9 16250
4E-1 1.1E-9 7.1E-12 761
3E-1 3.5E-13 1.4E-14 264 3.9 2.9 1.3

Table 6: Multistep Versus One-Step Methods.
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