
Generic Adaptive Heuristics for Large
Neighborhood Search

Jean-Baptiste Mairy1, Pierre Schaus2, and Yves Deville1

1 Université Catholique de Louvain, Belgium
2 Dynadec Europe, Belgium

Abstract. The Large Neighborhood Search (LNS) approach for solving
Constrained Optimization Problems has been proved to be effective on a
wide range of problems. LNS is a local search metaheuristic that uses a
complete search method (such as CP) to explore a large neighborhood.
At each step, the neighborhood is defined by relaxing a subset, called
fragment, of the variables in the current solution. Despite the success of
LNS, no general principle has emerged on how to choose the fragment
from one restart to the other. Practitioners often prefer to relax randomly
the solution to favor diversification. This work focuses on the design of
generic adaptive heuristics for choosing automatically the fragment in
LNS, improving the standard random choice. The defined heuristics are
tested on the Car Sequencing problem for which we introduce a new
original relaxation. From those experiments, we conclude that all our
heuristics except one are performing better than a random fragment
selection. We also show that our mean dynamic impact proximity and
min/max dynamic impact proximity heuristics are significantly better
than all the others.

1 Introduction

Finding optimal solutions to hard combinatorial optimization problems is one of
the major challenges in computer sciences. Large Neighborhood Search (LNS)
has been proved to be effective on many problems at quickly finding good so-
lutions (see for instance [1, 6, 3–5]). The LNS approach takes advantage of the
expressiveness of Constraint Programming (CP) and the speed of Local Search
(LS). Its working principle is to maintain a candidate solution through the search
that is not violating any constraint but that may not be optimal (or not known
to be). The successive solutions are obtained by repeating the two following
operations until a stopping criterion is met.

1. neighborhood definition: this step consists of choosing the set of variables
(fragment) that will be relaxed to their original domains while fixing the
other variables to their value in the current best solution. The domain of the
relaxed variables defines the neighborhood of the current solution that will
be explored with CP at the next step.

2. neighborhood exploration: this step consists of using CP to explore the re-
stricted problem defined by the relaxation of the fragment. When an im-
proved solution is found, the current best solution is replaced. A limit in
time or in number of failures is specified to avoid spending too much time
in exploring the neighborhood.

Although the LNS framework is really simple, its parameters (the size of the
fragments, the fragments selection procedure and the limit on the CP exploration
step) must be carefully chosen. No general principle has emerged yet on how to
choose the fragment from one restart to the other. Practitioners often prefer to
relax randomly the solution to favor diversification.

A self-adapting LNS for scheduling problems has been proposed in [8]. Three
strategies are proposed for the selection of the fragment. At each step, a strategy
is chosen depending of its efficiency in the previous LNS steps. The efficiency
measure of the chosen strategy is then adapted depending on the quality of the
improvement made by this LNS step on the best solution. This approach thus
combines LNS with a portfolio of fragment selection algorithms. The strategies
of the portfolio are specific to scheduling problems.

Generic heuristics for the fragment selection were introduced by Perron et
al. [1]. The authors define two adaptive procedures. The first one starts from
the original CSP (where the domains of the variables are their initial ones) and
successively selects the variables that will be bound in the next LNS step. When
a variable is selected, it is bound to its value in the current best solution. The
propagation of this new binding is then realized. The next variable to be selected
is the variable whose domain has been the most reduced by the propagation. The
second heuristic selects the variables to be relaxed in order to define fragments
with close variables. The closeness relation between variables is based on the
mean amount of propagation that occurred when fixing the non-fragment vari-
ables in the LNS procedure.

In the context of Weighted CSP (WCSP), where the constraints can be vio-
lated at a certain cost, the objective is to minimize the total cost of the violations.
The analogy for LNS in this context is the Variable Neighborhood Search (VNS).
Levasseur et al. propose in [2] different methods, based on the constraint network
and on the violation cost of the constraints, to choose the fragment of variables.

This paper pursues the work of Perron et al. bringing the following contri-
butions:

– New generic adaptive heuristics dedicated to the choice of the fragments,
– An original relaxation and a CP model for the Car Sequencing problem

taking advantage of softglobal constraints, and
– Experimental results showing the effectiveness of our heuristics on the Car

Sequencing problem.

Outline. Section 2 introduces fragment selection strategies based on impact
based quality measures of variables. The objective is to automatically discover
fragments with a high potential improvement of the objective function. Section
3 experiments the strategies on a new relaxation of the car sequencing problem.

2

2 Generic Adaptive Heuristics for LNS

This section focuses on the different heuristics developed in the context of this
work. We start by presenting the concepts and measures used for defining the
heuristics. Next, we present simple heuristics using a single measure. Finally,
combined heuristics, using more than one measure are presented.

2.1 Concepts and Measurements

Dynamic Impact. The dynamic impact of a variable tries to capture the impact
that the variable would have on the objective if it is relaxed. Let S be a solution
to the problem. The impact of a value v for a variable xi is defined as the
difference that is induced on the objective by setting xi to v rather than to its
value in S. While evaluating this impact, the variables other than xi are kept
fixed to their values in S and the constraints are ignored. That is, for an objective
O, the impact of v for xi on O with respect to S is

I(xi, v, S) = O
(
S(x1), . . . , S(xi−1), v, S(xi+1), . . . , S(xn)

)
−O
(
S(x1), . . . , S(xn)

)
(1)

where S(xk) is the value of the variable xk in the solution S.

The impact of a variable xi for a solution S is the aggregation of I(xi, v, S)
for all the values v ∈ D0(xi) (initial domain of xi) except for S(xi). Our dynamic
impact is separated into two different measures corresponding to two different
aggregations: the mean dynamic impact and the min/max dynamic impact.

Mean Dynamic Impact. Let xi be a variable, O be the objective function of
the problem and S be a solution. The mean dynamic impact Imean of variable
xi with respect to S is defined as

Imean(xi, S) =
1

|D0(xi)| − 1

∑
v∈D0(xi)\{S(xi)}

I(xi, v, S) (2)

A variable that improves the objective on average when changing only its
value has a positive Imean if the problem is a maximization and a negative one
if the problem is a minimization.

Max Dynamic Impact. For maximization problems, the max dynamic impact
takes as impact for a variable xi, the maximum value of I(xi, v, S) for v ∈ D0(xi)
different from S(xi). It corresponds to the best improvement that the variable
may induce on the objective by only changing its value. For a variable xi and a
solution S, the max dynamic impact is thus

Imax(xi, S) = max
v∈D0(xi)\{S(xi)}

I(xi, v, S) (3)

This impact measure is handled analogously for minimization problems.

3

Adaptive Impact. The Adaptive Impact measure tries to capture the concept
of the impact of a variable by recording information each time a variable is
bound in the LNS process. The goal is to reflect the intrinsic importance of the
variables for the objective, independently from the current solution.

The adaptive impact measures the influence that the bindings of the variables
have on the bounds of the objective through propagation. For a maximization
problem, the bounds that are monitored are the upper bounds. For a minimiza-
tion, the monitored bounds are the lower bounds. The Adaptive Impact of a
variable xi is defined as the average change in the bound of interest through the
bindings of xi since the beginning of the whole LNS search. Suppose the LNS
search is at a point of advancement p and that SumImpact(xi, p) is the sum
of the changes in the bound of interest that occurred while binding xi until p
and that NumTimesBound(xi, p) represents the number of times xi has been
bound until p. The adaptive impact of xi is then:

Iadaptive(xi, p) =
SumImpact(xi, p)

NumTimesBound(xi, p)
(4)

The different definitions of the impact of the variables handle each variable
independently of the others. Further definitions may include variable interac-
tions.

Variability. During the LNS search process, when a variable is relaxed, the CP
search may reassign it to the same value as in the current best solution. This
means that including this variable in the fragment was pointless. The concept
of variability is defined as the likelihood of a variable to change value in an
improving solution if it is relaxed.

The measure of the variability is based on the successive solutions exhibited
during the search. It is defined as the ratio between the number of different values
that a variable has taken in the solutions found and the number of times the
variable has been relaxed. Suppose the LNS search is at a certain point p where
S(p) is the set of solutions found until p and NumRelax(xi, p) is the number of
times xi has been relaxed until p. The variability of xi at point p is

var(xi, p) =

∣∣{v | ∃s ∈ S(p) : s(xi) = v}
∣∣

NumRelax(xi, p)
, (5)

where |{. . . }| is the cardinality of the set {. . . }.

Proximity. The proximity is dealing with the relationships between variables
and was inspired by the closeness measure defined in [1]. It is defined in terms
of the global links that the entire constraint network induces between pairs of
variables. The measure is made by inspecting the propagation occurring when
variables are bound. Practically, the proximity between variables xi and xj is
computed as the average number of values that are removed from D(xj) when

4

xi is bound. The only subtlety is that this average is computed only over the
bindings of xi where xj is not bound. Otherwise, the computation would include
cases where there is no propagation only because xj is bound.

Suppose the LNS search is at a point p, where Propag(xi, xj , p) is the total
number of values removed from D(xj) through all the bindings of xi until p. Let
NumBinds(xi, xj , p) be the number of times xi has been bound while xj was
not bound until p. The proximity between xi and xj is then

Proximity(xi, xj , p) =
Propag(xi, xj , p)

NumBinds(xi, xj , p)
(6)

If two variables have a large proximity, relaxing the second one and not the
first one would directly prune a large number of values in the relaxed variable
domain. This would lead to few opportunities for the relaxed variable to change
value. Note that the proximity relation is not symmetric.

The proximity measure is based on the same intuition as the closeness relation
defined in [1]: the relations between variables can be revealed by the propagation.
However, the proximity is updated each time a variable is bound. This includes
the fragment freezing and the CP solving steps. The closeness relation defined
in [1] is only updated during the freezing of the fragments. Moreover, as we will
see, we only use the proximity in addition to other heuristics, which is not the
case in [1].

2.2 Simple Heuristics

This section presents heuristics built from one of the measures previously pre-
sented.

Impact Based Heuristics. These heuristics aimed at finding a fragment com-
posed of variables with large impacts on the objective. Some randomization is
also introduced for the sake of diversification. This randomization is provided
by selecting variables to relax among the best impact variables.

The pseudo-code algorithm 1.1 shows the fragment selection process. In this
code, X refers to the set of variables of the problem, d refers to the desired
fragment size, Iλ is the chosen impact measure, ⊕ and 	 are respectively the
addition and removal of an element from a list. The selection of a variable is a
random selection where the probability for a variable to be selected is propor-
tional to its impact value Iλ.

Variability Based Heuristic. When the variability measure is used to select
the fragment, the goal is to select variables that have a large variability since
a large variability indicates that the variable is likely to change value in an
improving solution. The diversification is increased by the same mechanism as
the one used in the impact based heuristics. Pseudo-code algorithm 1.2 shows
the selection of a fragment based on the variability.

5

fragment = {}
varSet = X
while (|fragment| < d) do

Select variable x in varSet according to Iλ

fragment⊕ x
varSet	 x

end while

Algorithm 1.1 : Fragment selection procedure for impact based heuristics

fragment = {}
varSet = X
while (|fragment| < d) do

Select variable x among maximum var in varSet
fragment⊕ x
varSet	 x

end while

Algorithm 1.2 : Fragment selection procedure for variability based heuristics

2.3 Combined Heuristics

This section proposes combined heuristics. The combination is made by combin-
ing an impact measure with either the variability or the proximity measure.

Impact + Variability. Combining an impact measure with the variability
measure aims at selecting fragments containing important variables that are
likely to change values in an improving solution. The two measures are here
considered as equally pertinent. Since the variability of any variable lies between
0 and 1, the impacts measures are normalized to lie between 0 and 1 as well.
This expression depends on the impact measure as well as the type of problem
(minimization or maximization).

– When the chosen impact measure Iλ is the mean dynamic impact or the
min/max dynamic impact and the problem is a maximization, the normalized
impacts are:

Îλ(xi) =


max

(
Iλ(xi)

maxxk (Iλ(xk))
, 0
)

if maxxk(Iλ(xk)) > 0

0 otherwise
(7)

6

– For the same impact measures Iλ but for a minimization problem, the nor-
malized impacts are:

Îλ(xi) =


max

(
Iλ(xi)

minxk (Iλ(xk))
, 0
)

if minxk(Iλ(xk)) < 0

0 otherwise
(8)

– When the chosen impact measure is the adaptive impact, then, regardless of
the type of problem, the normalized impacts are:

Îadaptive(xi) =


Iadaptive(xi)

maxxk (Iadaptive(xk)) if maxxk(Iadaptive(xk)) > 0

0 otherwise
(9)

Those normalizations correspond to the ratio between the impact of the
variable and the best impact.

The values that are used by the impact-variability heuristics to select the
variables in the fragment are the sums of the normalized impacts and the vari-
abilities. For a variable xi, the value IVλ(xi) used by the heuristics based on
impact measure Iλ is defined as:

IVλ(xi) = Îλ(xi) + var(xi) (10)

The procedure for selecting the fragment based on IVλ is the same as the
procedure shown in algorithm 1.1 but using IVλ instead of Iλ. The goal of the
selection is to include variables with large values of IVλ in the fragment.

Another combination of those two measures would use a product instead of
a sum. This aggregation would force the selected variables to have good values
for both measures. However, this aggregation is not explored in this paper.

Impact and Proximity. When combining an impact measure with the prox-
imity one, the fragment is treated as being composed of two parts with distinct
functionality. The proposed heuristics try to select fragments composed of im-
portant variables together with variables that are linked with the important ones.
This second part of the fragment allows important variables to change values and
improve the current solution.

The impact and the proximity are here treated as equally relevant. Each part
of the fragment thus receives half of the total number of variables in the fragment.
The second half of the fragment is selected in order to contain variables linked
with a large number of variables from the first half. To determine if a variable is
linked or not with another one, a threshold on the proximity is used. A variable
xi is considered as linked with another variable xj if proximity(xi, xj) is greater
than the threshold. Since the proximity is not symmetric, it is considered both
ways. For a variable xi, a first half fragment F1 and a threshold T , its inclusion
in the second half of the fragment is based on the number of variables from F1

to which xi is linked plus the number of variables from F1 that are linked to xi:

7

NL(xi, F1, T) =
∣∣{xj ∈ F1 | proximity(xi, xj) > T}

∣∣
+
∣∣{xj ∈ F1 | proximity(xj , xi) > T}

∣∣ (11)

The pseudo-code algorithm 1.3 shows how the fragment is selected by the
heuristics of this section. In this code, Iλ is the chosen impact measure. The
selection of the first half F1 is the same as the one presented for impact based
heuristics except for the number of selected variables. The diversification is pro-
vided in both fragment parts by the same randomization mechanism as for the
previous heuristics.

F1 = {}
varSet = X
while (|F1| < d/2) do

Select variable x in varSet according to Iλ
F1 ⊕ x
varSet	 x

end while
F2 = {}
while (|F2| < d/2) do

Select variable x in varSet among large NL(x, F1, T)
F2 ⊕ x
varSet	 x

end while
fragment = F1 ∪ F2

Algorithm 1.3 : Fragment selection procedure for impact-proximity heuristics

3 Experimental Results

3.1 The Car Sequencing as an Optimization Problem

The Car Sequencing (CS) problem consists of sequencing cars on a production
line. A set of demands for each configuration of cars to be produced is specified.
A configuration is composed of specific options (e.g. sunroof, air-conditioning,
etc.). Each option o is installed by a capacited station: at most mo out of no
consecutive cars can have it. The goal of this problem is to arrange the cars in
a sequence such that the station capacities are not exceeded.

Since the car sequencing is a feasibility problem and that LNS is intended for
optimization problem, we relax it: multiple cars from the same configuration can
be located on the same slot. The objective of the relaxed problem becomes to
maximize the number of slots used. A feasible solution to the original problem
is found when the number of slots used is equal to the number of cars. This
relaxation differs from the usual relaxation (which minimizes the number of

8

violations of the capacity constraints) because the LNS only considers satisfying
solutions.

The Comet model for the relaxation is presented on Figure 1. The data of the
problem are demand, the number of cars for each configuration to place, m[o] and
n[o] the capacity constraints of each option o, configOfOption is the array con-
taining for each option, the set of configurations requiring it, carsWithConfig
is an array containing for each configuration, the set of cars with that configu-
ration. The decision variables are placeOfCar, the slot where each car is placed.
The variables configOfCar represent the configuration coming in each slot. This
is another viewpoint introduced only to post the sequence constraint. The two
viewpoints (variables placeOfCar and configOfCar) are linked with element
constraints. Note that as multiple cars are allowed on a slot, when two cars are
on the same slot, they are treated as being one car. Note also that an empty
slot (i.e. a slot not present in placeOfCars) can contain any car configuration
that is compatible with the surrounding slots. This constraint allows the search
tree to be further pruned. We thus think that this relaxation is stronger than
the one proposed in [1]. In this relaxation, additional slots and additional virtual
cars requiring no option are introduced. The objective is then to minimize the
last slot with a real car. Our relaxation also make use of the soft global con-
straint atLeastNValue [7] which is a soft version of the well known allDifferent
constraint. This constraint links globally the objective (the number of different
slots with a car) and the decision variables allowing a strong filtering. Another
advantage is that we can use the maximal matching maintained by the filter-
ing of atLeastNValue as a value heuristic to assign the cars to the slots. This is
achieved in the using block in the left alternative. The drawback of this model
is that it introduces symmetries between cars of the same configuration. These
symmetries are broken dynamically during the search in the right alternative of
a choicepoint: when entering the right alternative, it is proved that a slot is not
possible for the car, so this slot is also removed from all the not yet assigned cars
of the same configuration. Whenever the limit on the number of fails is reached,
the onRestart block is executed, a fragment is chosen and variables not in this
fragment are fixed to their value in the current best solution.

3.2 Experimental settings for comparing fragment selection
strategies

The instances used for the tests are instances of the CSPLIB1. We have chosen
to use the instances of the second set proposed in CSPLIB. All those instances
are satisfiable, which means for each one that there exists a solution for which
the number of nonempty slots equals the number of cars.

The test procedure has been designed to evaluate the fragment selection
heuristics independently of the other LNS parameters. It is based on the com-
parison of the results of the strategies over one LNS step to reduce the influence
of the other LNS parameters. In order to be as independent as possible from

1 http://www.csplib.org/

9

1 //Data o f the problem
2 range Opt ions ; range Con f i g s ; range S l o t s ; range Cars ;
3 i n t m[Opt ions] ; i n t n [Opt ions] ; // c a p a c i t y m[o] out o f n [o] f o r op t i on o
4 i n t r e q u i r e s [Con f i g s , Opt ions] ; //1 i f c o n f i g r e q u i r e s opt ion , 0 o t h e rw i s e
5 i n t demand [Con f i g s] ; //demand f o r each c o n f i g u r a t i o n c
6 i n t c o n f i g [Cars] ; // c o n f i g u r a t i o n f o r each ca r
7 s e t{ i n t } con f i g sO fOp t i on [Opt ions] ; // s e t o f c a r s w i th op t i on
8 s e t{ i n t } ca r sWi thCon f i g [Con f i g s] ; // s e t o f c a r s w i th c o n f i g
9

10
11 So lver<CP> cp () ;
12 var<CP>{ i n t } con f i gO fCa r [S l o t s] (cp , Con f i g s) ; // c o n f i g o f the ca r i n the s l o t
13 var<CP>{ i n t } p laceOfCar [Cars] (cp , S l o t s) ; // s l o t o f the ca r
14 var<CP>{ i n t } a tL e a s t (cp , Cars) ; //number o f s l o t s w i th a ca r
15
16 AtLeastNValue<CP> atLeas tCons ;
17
18 cp . l n sOnFa i l u r e (3 200) ; //LNS L im i t
19
20 maximize<cp>
21 a tL e a s t
22 s ub j e c t to{
23 f o r a l l (o i n Opt ions)
24 cp . pos t (sequence (con f igOfCar , demand ,m[o] , n [o] , c on f i g sO fOp t i on [o])) ;
25 f o r a l l (c i n Cars)
26 cp . pos t (con f i gO fCa r [p l aceOfCar [c]]== con f i g [c]) ;
27 atLeas tCons = atLeas tNVa lue (p laceOfCar , a t L e a s t) ;
28 cp . pos t (a tLeas tCons) ;
29 }
30 us ing{ // Search H e u r i s t i c
31 wh i l e (! bound (p laceOfCar))
32 se l ec tMin (c i n Cars : ! p l aceOfCar [c] . bound ()) (p l aceOfCar [c] . g e t S i z e ()){
33 i n t v a l = p laceOfCar [c] . getMin () ;
34 i f (a tLeas tCons . ha sVa l I nBes tAs s i gnment (c))
35 v a l = atLeas tCons . g e tVa l I nBe s tAs s i gnment (c) ;
36 t r y<cp>{
37 cp . pos t (p l aceOfCar [c]==va l) ;
38 }|{
39 f o r a l l (c i n ca r sWi thCon f i g [c o n f i g [c]] : ! p l aceOfCar [c] . bound ())
40 cp . pos t (p l aceOfCar [c] != v a l) ;
41 }
42 }
43 }onResta r t{ //LNS Re l a x a t i o n
44 s e t{ i n t } r e l a x e dCa r s () ;
45 // . . f ragment d e f i n i t i o n . .
46 So l u t i on s o l = s . g e t S o l u t i o n () ;
47 f o r a l l (c i n Cars : ! r e l a x e dCa r s . c o n t a i n s (c))
48 s . po s t (p l aceOfCar [c] == placeOfCar [c] . ge tSnapshot (s o l)) ;
49 }

Fig. 1. Model of the relaxed Car Sequencing problem

10

these parameters, each heuristic has been tested with its best parameters. The
test procedure can be summarized as follows

1. For each instance, compute five starting solutions by running the strategies
for a fixed number of steps (the same number for all the solutions). Those
solutions, in addition to the values of the variables, contain all the quantities
that are needed by the adaptive measures.

2. Based on the starting solutions, evaluate, for each strategy, the optimal frag-
ment size and failure limit parameters.

3. From each starting solution, run multiple times each strategy with the opti-
mal parameters for a unique LNS step.

For the optimal parameters evaluation, fragment sizes of 25, 20, 15, 10, 5, 2
percents of the total number of variables are tested with a limit of 3200 back-
tracks for the CP solving step (this parameter can be fixed a priory since the
comparison is based on one LNS step). The optimal fragment size for a strat-
egy is the one leading to the largest number of improvements when running the
process 10 times for each starting solution.

The evaluation of the strategies is done by running them for one LNS step
from the starting solutions with the optimal fragment size. Each strategy is run
30 times per instance (6 times from each starting solution). The comparison of
the different strategies is based on the following collected statistics:

– the number of improvements
– the average improvement
– the average execution time

These are reported for each strategy/instance, except the average execution
time which is reported per strategy.

3.3 Computational Results

In the car sequencing problem, one can show that the mean dynamic impact and
the max dynamic impact lead to the same fragment selections. The objective to
be maximized is the number of different values and the variables represent the
slot assigned to each vehicle. Hence the max dynamic impact is proportional to
the mean dynamic impact.

The starting solutions were obtained with a limit of 35 LNS steps. Table
1 shows the optimal fragment sizes obtained with the test procedure. Table 2
presents the number of improvements and Table 3, the average improvements.
In the last two tables, the best results are highlighted in bold. The mapping
between the strategies and the names of the columns is the following:

– rand → random neighborhood
– AI → adaptive impact
– AIP → adaptive impact + proximity
– AIV → adaptive impact + variability

11

– MDI → mean dynamic impact
– MDIP → mean dynamic impact + proximity
– MDIV → mean dynamic impact + variability
– Var → variability

Heuristic rand AI AIP AIV MDI MDIP MDIV Var

Fragment size (%) 15 10 15 10 15 15 10 15

Table 1. Optimal fragment sizes in percentage of the number of variables

instance rand AI AIP AIV MDI MDIP MDIV Var

bench 65 01 4 11 8 9 12 13 13 7

bench 65 03 11 14 10 8 24 19 14 9

bench 70 01 1 5 6 0 4 12 7 2

bench 70 03 3 4 5 4 12 10 3 5

bench 70 04 6 16 13 6 18 24 9 10

bench 75 01 3 10 5 9 6 6 6 5

bench 75 02 8 9 13 9 12 15 12 4

bench 75 03 8 13 13 6 6 24 10 9

bench 75 04 7 10 6 4 24 23 12 4

bench 80 01 8 19 13 3 6 19 11 5

bench 80 02 9 10 10 9 23 18 16 12

bench 80 03 6 11 11 5 18 19 8 6

bench 80 04 2 5 14 0 8 12 2 4

bench 85 01 6 6 7 4 13 11 13 4

bench 85 02 11 15 12 11 15 17 11 8

bench 85 04 8 21 7 6 18 8 14 9

bench 90 01 4 17 7 2 26 21 16 13

bench 90 02 2 10 7 2 21 17 8 5

bench 90 03 4 5 11 1 19 17 3 7

sum 111 211 178 98 285 305 188 128

Table 2. Number of improvements on the Car Sequencing problem

From those Tables, the first conclusion is that our heuristics outperform the
random neighborhood heuristic, except for the adaptive impact + variability
(AIV). The random approach introduces probably too much diversification.

The best heuristics on this problem are the mean dynamic impact + proxim-
ity (MDIP) followed by the mean dynamic impact (MDI). This can be justified
by the right level of diversification induced by MDI. Indeed, it is more opti-
mistic than the others, leading to a better diversification of the solutions. The

12

instance rand AI AIP AIV MDI MDIP MDIV Var

bench 65 01 0.2 0.5 0.4 0.3 1.2 1.5 0.5 0.3

bench 65 03 0.4 0.8 0.5 0.3 1.6 1.5 0.6 0.4

bench 70 01 0.0 0.3 0.3 0.0 0.3 0.9 0.2 0.1

bench 70 03 0.1 0.2 0.2 0.1 0.6 0.9 0.1 0.2

bench 70 04 0.2 0.6 0.6 0.2 1.0 1.6 0.3 0.3

bench 75 01 0.1 0.5 0.2 0.3 0.4 0.4 0.2 0.2

bench 75 02 0.4 0.5 0.6 0.5 1.2 1.1 0.6 0.2

bench 75 03 0.4 1.0 0.7 0.3 0.8 2.0 0.6 0.4

bench 75 04 0.2 0.4 0.2 0.2 1.4 1.2 0.4 0.1

bench 80 01 0.3 0.7 0.5 0.1 0.2 0.9 0.5 0.2

bench 80 02 0.3 0.4 0.4 0.3 1.0 1.6 0.7 0.5

bench 80 03 0.3 0.4 0.4 0.2 1.1 2.0 0.3 0.3

bench 80 04 0.1 0.2 0.8 0.0 0.3 0.4 0.1 0.1

bench 85 01 0.2 0.3 0.3 0.1 0.7 0.6 0.6 0.2

bench 85 02 0.4 0.9 0.6 0.5 1.6 1.5 0.6 0.4

bench 85 04 0.3 1.0 0.3 0.3 0.9 0.3 0.7 0.3

bench 90 01 0.2 1.0 0.4 0.1 2.5 1.7 0.7 0.6

bench 90 02 0.1 0.5 0.3 0.1 1.4 1.0 0.4 0.2

bench 90 03 0.3 0.3 0.6 0.0 1.2 1.4 0.1 0.3

global avg 0.2 0.6 0.4 0.2 1.0 1.2 0.4 0.3

Table 3. Average improvements on the Car Sequencing problem

addition of the proximity to this heuristic seems to help the combined heuristic
to define more structured fragments. The addition of the variability information
to this heuristic is deteriorating its performances. This is justified by the poor
performance of the variability heuristic, because of its lack of diversification.

From those experiments, we can also see that the adaptive impact (AI) is
the third best performing heuristic. We think that this is due to the LNS step
limit for the starting solutions. Indeed, after 35 LNS steps, the information of the
adaptive impacts of the variables is quite accurate. The addition of the proximity
to this heuristic is decreasing the performances of the strategy. This may be
due to the fact that some structure is already present in the fragments defined
by the adaptive impact. Indeed, the variables with large adaptive impacts are
linked through the objective function. The performances of the adaptive impact +
variability (AIV) heuristic could be explained by the fact that the variables with
large variability values are different from the ones with large adaptive impacts.
Since the combination takes the two measures as equally relevant, the fragment
consists of variables with mean adaptive impacts and mean variabilities. Those
measures seem incompatible.

The mean execution times in seconds for the strategies are provided in Table
4. Those are the averages over each run of the total times taken by the heuristics
to compute the fragment, fix the variables and explore the neighborhood. Those
times are all similar. The mean execution time for one run of the random neigh-

13

borhood heuristic is rather high and may appear counter-intuitive. One could
think that without information to compute, the random heuristic will be effi-
cient. However, the computation times for one run depend on the shape of the
neighborhood. The neighborhoods defined by our heuristics are more structured,
allowing a fast exploration because of the propagation they imply. This fast ex-
ploration counterbalances the time spent to compute the information needed by
our heuristics.

Heuristic rand AI AIP AIV MDI MDIP MDIV Var

Mean time 2.0 2.0 2.3 2.0 2.3 2.1 1.9 2.0

Table 4. Average execution times in seconds on the Car Sequencing problem

4 Conclusion

This work presented various adaptive heuristics to choose the fragments of vari-
ables to be relaxed in Large Neighborhood Search. The mean dynamic impact,
min/max dynamic impact and adaptive impact measures are trying to approxi-
mate the impact of a variable on the value of the objective function. The variabil-
ity measure is linked with the probability of a variable to vary in an improving
solution. The last measure - the proximity - estimates the link that exist be-
tween variables. The heuristics based on these measures are grouped into two
categories : simple heuristics which use a single measure to choose the fragments
and combined heuristics that combine two measures to perform their task. The
simple category counts four heuristics: the mean dynamic impact, the min/max
dynamic impact, the adaptive impact and the variability heuristics. There are
six combined heuristics that are obtained by combining one of the three impact
measures with either the variability or the proximity.

All these heuristics have been experimented on a new relaxation of the Car
Sequencing problem. The results were obtained by the application of a one step
LNS comparison from particular starting solutions. The measured total num-
ber of improvements and their quality showed that all our heuristics (except
the adaptive impact variability) outperform the standard random heuristic. A
comparison between our heuristics reveals that the mean dynamic impact +
proximity and the min/max dynamic impact + proximity heuristics lead to the
same fragment choices and are significantly better than the others. These results
were explained by the combination of an optimistic measure of the importance
of the variables (the mean dynamic impact – min/max dynamic impact) which
provides a good diversification with an accurate measure of the links that the
constraint network induces between the variables (the proximity).

The average times for computing the fragment, fixing the variables and
searching the neighborhood are comparable for our heuristics and for the random

14

heuristic. It seems that the structure of the neighborhoods defined by our heuris-
tics makes their exploration faster, reducing thus the overhead of the fragment
selection.

Future work includes the testing of our heuristics on other problems to assess
their performances in general. It also includes an extended comparison of our
heuristics with state of the art domain dependent and independent LNS strate-
gies as well as other incomplete approaches. Those comparisons should be based
on time limited runs. Finally, we would like to compare our Car Sequencing
relaxation with the one proposed in [1].

Acknowledgment We thank the reviewers for their constructive comments.
This research is partially supported by the Interuniversity Attraction Poles Pro-
gramme (Belgian State, Belgian Science Policy) and the FRFC project 2.4504.10
of the Belgian FNRS (National Fund for Scientific Research).

References

1. Laurent Perron, Paul Shaw and Vincent Furnon. Propagation Guided Large Neigh-
borhood Search. CP 2004, LNCS 3258 (2004) 468–481.

2. Nicolas Levasseur, Patrice Boizumault and Samir Loudni. Boosting VNS with
Neighborhood Heuristics for Solving Constraint Optimization Problems. LNCS 5296
(2008) 131–145

3. Daniel Godard, Philippe Laborie and Wim Nuijten. Randomized Large Neighbor-
hood Search for Cumulative Scheduling. AAAI 2005.

4. Guy Desaulniers, Eric Prescott-Gagnon and Louis-Martin Rousseau. A Large Neigh-
borhood Search Algorithm for the Vehicle Routing Problem with Time Windows.
MIC 2007.

5. Emilie Danna and Laurent Perron. Structured vs. Unstructured Large Neighbor-
hood Search : A Case Study on Job-Shop Scheduling Problems with Earliness and
Tardiness Costs. CP 2003, LNCS 2833 (2003) 817–821.

6. Paul Shaw. Using Constraint Programming and Local Search Methods to Solve
Vehicle Routing Problems CP 1998, LNCS 1520 (1998) 417–431.

7. T. Petit, J.-C. Régin, and C. Bessière. Specific Filtering Algorithms for Over-
Constrained Problems. CP 2001, LNCS 2239 (2001) 451–463.

8. Philippe Laborie and Daniel Godard. Self-Adapting Large Neighborhood Search:
Application to single-mode scheduling problems. Proceedings MISTA-07, Paris,
2007, 276-284.

15

