
Logic Program Schemas, Constraints and
Semi-Uni�cation

Eric Chasseur and Yves Deville

Universit�e catholique de Louvain,
Department of Computing Science and Engineering,

Place Sainte-Barbe,
1348 Louvain-la-Neuve, Belgium

fec,ydeg@info.ucl.ac.be

Abstract. Program schemas are known to be useful in di�erent appli-
cations such as program synthesis, transformation, analysis, debugging,
teaching : : :This paper tackles two complementary aspects of program
schemas. We �rst propose a language for the description of program
schemas. It is based on a subset of second-order logic, enhanced with
constraints and speci�c features of program schemas. One of the ba-
sic operations on schemas is the semi-uni�cation of a schema with a
program. We then express the semi-uni�cation process over schemas as
rewriting and reduction rules, using CLP techniques, where constraints
are used to guide the semi-uni�cation process.

1 Introduction

In logic programming, the use of program schemas is a very promising tech-
nique. In program synthesis, program schemas can formalize particular resolution
methods (divide-and-conquer, generate-and-test approaches...), as investigated
by Flener [3]. Program transformations can advantageously be performed on
schemas rather than on their instances (i.e. programs). See Fuchs, Fromherz [6],
Vasconcelos, Fuchs [22, 23], Flener, Deville [4], Richardson, Fuchs [20], B�uy�u-
ky�ld�z, Flener [1]. In fact, the distinction between transformation and synthesis
is not de�nitive, as said in Deville, Lau [2].

In this introduction, we �rst describe the di�erent ways of representing pro-
gram schemas. We justify our choice of second-order objects for schema represen-
tation. Related works are then presented. We �nally make precise the objectives
and contributions of this paper.

1.1 Representing Schemas

A schema is an object representing a set of programs. Various representations
can be used for the description of a schema. We do not aim at presenting here
an exhaustive survey.

First-Order Representation. First-order representations of schemas (for ex-
ample [1]) use �rst-order place-holders. In the following example (schema S):

Example 1. Schema S:

r(X,Y) minimal(X),
solve(X,Y).

r(X,Y) nonminimal(X),
decompose(X,Head,Tail),
r(Tail,Transf),
compose(Head,Transf,Compl),
Y=Compl.

the �rst-order template predicates of the schema S (in italic in the schema)
must be replaced by instance (non-place holders) predicates. For example, we
obtain the program P from S by replacing the corresponding place-holders by
\reverse", \emptylist", \declist" and \addatend" (and switching some of their
parameters):

Example 2. Program P :

reverse(X,Y) emptylist(X),
emptylist(Y).

reverse(X,Y) nonempty(X),
declist(X,H,T),
reverse(T,T2),
addatend(T2,H,Y2),
Y=Y2.

The main characteristics of this approach are the following :

1. There is no clear distinction between place-holder and non place-holder pred-
icates.

2. It is not easy to introduce place-holders for constants (e.g. empty list). For
this purpose, extra predicates could be added.

3. Considering our semi-uni�cation objective, there is no easy formalization of
the matching process between schemas and programs.

Other �rst-order representations are possible, such as the representation ad-
vocated by Flener, Lau, Ornaghi [5] where the concept of open program is used.
In this framework, a schema can be seen as a program where some of its pred-
icates are open (their implementation is not known, but they ful�ll some given
axiomatic properties).

Second-Order Representation. Higher-order terms are normally di�cult to
deal with, since higher-order uni�cation is undecidable [11] and there is no most
general uni�er. To handle these di�culties we can either use \standard" or \spe-
ci�c" second-order logic.

Using \Standard" Second-Order Logic. One can accept the previous di�culties
and use, for instance, the pre-uni�cation procedure of Huet [13]. This procedure
performs a systematic search for determining the existence of uni�ers.

Using \standard" second-order logic has a major drawback: the lack of ex-
pressiveness if one generalizes too much, for instance, by allowing second-order
variables to represent entire clauses.

Using \Speci�c" Second-Order Logic. One can also restrict oneself to a subset
of higher-order terms which is tractable. Higher-order patterns form such a sub-
set of higher-order terms which was investigated among others by Nipkow [19].
Higher-order patterns uni�cation is decidable and there exists a most general
uni�er of uni�able terms. Another alternative is to use decidable subcases of
higher-order uni�cation without changing the language (for instance second-
order matching [14]) if the problem permits it.

Using \speci�c" second-order logic does not necessarily mean using a subset
of second-order logic. One can also extend second-order logic by introducing new
features.

Our choice. In this paper, schemas are formalized using a second-order logic.
The basis of the language is a subset of classical second-order logic. We also
extend the language by �rst introducing speci�c features of program schemas,
and by introducing constraints in the language.

The resulting language, described in the next sections, o�ers a powerful for-
malization of program schemas. The introduction of constraints enhances the
expressiveness of the language and guides the semi-uni�cation process.

In this language, the schema S of example 1 would be written as schema S0:

Example 3. Schema S0:

R(E,Y) Min(E),
Solve(Y).

R(N,Y) NMin(N),
Decompose(N, Head, Tail),
R(Tail, Tail2),
Compose(Tail2, Head, Res),
Y= Res.

The substitution �, solution of S0� = P , is:
f R/reverse, Solve/emptylist, E/X, N/X, Min/emptylist, NMin/nonempty,
Decompose/declist, Head/H, Tail/T, Tail2/T2, Compose/concat, Res/Y2 g.
See Sects. 2 and 3 for details.

We now give a more elaborated example illustrating various aspects of such
schemas.

Example 4.

P ([];&1) G1.
P ([Hj T];&2) � Q(H)�, P (T;&3), G2.

In this schema, &1, &2 and &3 denote three sequences of terms, G1 and G2

denote an atom and the annotation�� means that Q(H) is optional. Possible
global constraints on this schema are:

1. length eq(&1; L) ^ length eq(&2; L) ^ length eq(&3; L), which means that
the instances of &1, &2 and &3 must have the same length,

2. variable(H) ^ variable(T): H and T instances are �rst-order variables.

1.2 Related Work

Miller, Nadathur [17] present �Prolog which is a higher-order extension of Pro-
log manipulating objects such as function and predicate variables, formulas and
programs. Uni�cation in �Prolog is based on second-order uni�cation. The pre-
uni�cation procedure of Huet is used to handle the second-order uni�cation un-
decidability.

There is a major di�erence between �Prolog and our schema language. Their
goals are di�erent. �Prolog is a logic programming language in the same way
Prolog is. It is aimed at computing some results from some program. Our purpose
is not to execute program schemas, but to provide a powerful and expressive
representation language for program schemas.

Kraan et al. [16] synthesize logic programs as a by-product of the planning
of their veri�cation proofs. This is achieved by using higher-order meta-variables
at the proof planning level, which become instantiated in the course of planning.
These higher-order variables can represent functions and predicates applied to
bound variables. The formulas containing them are higher-order patterns.

Hannan, Miller [12] present source-to-source program transformers as meta-
programs that manipulate programs as objects. They show how simple trans-
formers can be used to specify more sophisticated transformers. They use the
pre-uni�cation algorithm of Huet.

Gegg-Harrison [8] proposes a hierarchy of fourteen logic program schemas
which are second-order logic expressions and generalize classes of programs in
the most speci�c generalization (msg) sense. In [9], he de�nes logic program
schemas with the help of �Prolog to avoid using any meta-language. In [10],
he extends these �Prolog program schemas by applying standard programming
techniques, introducing additional arguments and combining existing schemas.

Flener, Deville [4] show that some logic program generalization techniques
can be pre-compiled at the program schema level so that the corresponding
transformation can be fully automated. They also use second-order matching

implicitly.
Flener [3] de�nes a logic algorithm schema as: 8X1:::8Xn R(X1:::Xn) , F .

This is a second-order form of Kraan's speci�cation [16]: 8args:prog(args) $

spec(args). The author presents semantic constraints on instances of place-
holders. In particular, he details constraints on the divide-and-conquer schema.
For the instantiation of the latter to result in valid divide-and-conquer logic
algorithms, constraints are expressed on the induction parameter, for example.

Huet, Lang [15] describe a program transformation method based on rewrit-
ing rules composed of second-order schemas. Fuchs, Fromherz [6] and Vascon-
celos, Fuchs [22, 23] present schema-based transformation formalisms and tech-
niques. Implicit second-order matching is used in these papers [15, 6, 22, 23].

The formalism of schemas, as de�ned in Vasconcelos, Fuchs [22, 23], allows
one schema to describe a class of logic programs in a suitable Horn-clause no-
tation. Vasconcelos, Fuchs introduce features adding expressiveness to schemas:
predicate and function symbol variables, possibly empty sequences of goals or
terms. They also introduce constraints over schemas: argument positions, argu-
ment optionality, recursive or non-recursive predicates. In [22], constraints are
part of schemas and take part of the expressiveness augmentation.

In the paper, the formalismdescribing schemas is a variant of that of Vascon-
celos, Fuchs [22, 23]. But here constraints are separated from �rst- and second-
order objects.

1.3 Objectives

Due to the extensive use of program schemas in various domains, there is a need
for a powerful language for the description of schemas, and for operations (such as
semi-uni�cation) manipulating such schemas. The objective of the paper is �rst
to provide a description language for schemas, where constraints are integrated,
then to propose a semi-uni�cation process over schemas.

Coming from Vasconcelos, Fuchs' work, this paper obviously stands in the
�eld of program transformation, where semi-uni�cation is useful to match second-
order schemas and programs. That is the reason why we focus ourselves onto
the semi-uni�cation problem.

Let S be a schema, and c be the initial constraint set associated to S. Let P
be the program with which S has to be semi-uni�ed.

The starting pair hS = P ; ci is transformed via successive rewriting rules to
h; ; c0i. During the whole process, the successive versions of the constraint set
remain consistent. At the end, there is a substitution � 2 c0 such that � satis�es
c in S and S� = P .

1.4 Contributions

The main contributions of the paper are the following:

1. De�nition of a description language for program schemas, where constraints
are explicitly integrated. The introduction of constraints increases the ex-
pressive power of the language. It allows schemas to contain more knowledge.
It also o�ers a guided search in the semi-uni�cation process.

2. De�nition of an extensible �rst-order constraint language over schemas,

3. Expression of the semi-uni�cation process over schemas as rewriting and
reduction rules,

4. Presentation of two semantics: one based on program instances, and the
other on rewriting rules.

1.5 Structure of the Paper

Section 2 gives the syntax of schemas. It de�nes �rst- and second-order objects.
Section 3 presents needed features of schemas and the �rst-order language of
constraints. We make the distinction between global and local constraints. The
fourth section gives the meaning of schemas relating to their instances (semantics
1). It also de�nes substitution pairs. Section 5 presents the general form and
spirit of the rewriting rules. It also presents the rewriting semantics of schemas
(semantics 2). Finally, we conclude in Section 6 and give further research steps.
Appendix A presents a subset of rewriting rules. Appendix B gives an example.

2 Syntax of Schemas

A schema contains second-order and �rst-order objects. In order to simplify the
presentation, the number of clauses in a schema will be �xed, although some
interesting schemas have a variable number of clauses. The technical results can
easily be extended to remove this restriction.

In our framework, no variable can represent an entire clause, but only atoms
and sequences of atoms in a clause. This is a compromise between expressiveness
and e�ciency of the semi-uni�cation process. We thus choose a subset of full
second-order logic.

2.1 Basic components

Basic components of programs and of schemas are �rst-order and second-order
objects. First-order objects are present in schemas and in programs. Second-order
objects only appear in schemas.

De�nition1. A �rst-order object (FObject) is either a term (term), in partic-
ular constant or variable, an atom (atom), a function symbol (fs), a predicate
symbol (ps), a sequence of terms (seqterm) or a sequence of atoms (seqatom).

Constants are denoted by a, b, c : : : , variables by X, Y , Z : : : , function symbols
by f , g, h : : :or particular symbols like � (list function symbol) and predicate
symbols by p, q, r : : :

De�nition2. A second-order variable (SObject), also called place-holder, is ei-
ther a term variable (Vterm), an atom variable (Vatom), a function symbol
variable (Vfs), a predicate symbol variable (Vps), a sequence of terms variable
(Vseqterm) or a sequence of atoms variable (Vseqatom).

In next sections, two other place-holders, length variable (Vlength) and po-
sition variable (Vpos), will be introduced and their meanings explained.

In the following, term variables are denoted by X, Y , Z : : : (note the under-

score), atom variables by P1, P2, P3 : : : , function symbol variables by F , G, H
: : : , predicate symbol variables by P , Q, R : : : , sequence of terms variables by
&1, &2, &3 : : :and sequence of atoms variables by G1, G2, G3 : : :Vlength are
denoted by L, L1, L2, L3 : : :and Vpos by p, p1, p2, p3 : : :

2.2 Grammar of Schema

All place-holders are implicitly universally quanti�ed. It means that all second-
order variables are global to the schema. Thus there is a di�erence between
schemas and programs in which �rst-order variables are local to clauses.

De�nition3. A second-order schema is de�ned by the grammar:

Schema ::= SOrdCl j SOrdCl Schema
SOrdCl ::= SOrdP j SOrdP SOrdBody
SOrdBody ::= SOrdP j SOrdP, SOrdBody
SOrdP ::= Vseqatom j Vatom j Vps j Vps(SOrdArg) j atom j ps(SOrdArg)
SOrdArg ::= SOrdT j SOrdT, SOrdArg
SOrdT ::= Vseqterm j Vterm j Vfs j Vfs(SOrdArg) j term j fs(SOrdArg)

All terminal symbols have been de�ned in Section 2.1. In the remaining of
the paper, SOrdP is called second-order predicate and SOrdT second-order term.
Characteristics of the syntax are described next.

In a program schema (and in a logic program), a comma separating two atoms
has the same meaning as the logic and (^) but constrains the order of atoms.
A comma separating two terms is an argument separator which also constrains
the order of the parameters.

In a schema, �rst-order objects may co-exist with second-order objects. This
is viewed as a partially instantiated schema. For instance: in the one-clause
schema

p(X) Q(Y):

p is a predicate symbol, Q a predicate symbol variable, Y a �rst-order term (a
�rst-order variable) and X a second-order term variable.

De�nition4. A program is a schema without second-order variables. More pre-
cisely, we de�ne Program (resp. FOrdBody, FOrdCl, FOrdP and FOrdT) as
being Schema (resp. SOrdBody, SOrdCl, SOrdP and SOrdT) without second-
order variables.

Programs are thus classical Horn clause programs (without extra logical fea-
tures such as cuts). Schemas and programs do not contain negations in the body
of clauses. This syntactical restriction can easily be removed without a�ecting
the complexity of our results.

Example 5. Complete example.
Let the schema S be:

P ([];&1) G1.
P ([Hj T];&2) G2, P (T;&3), G3.

where

1. P is a predicate symbol variable (Vps)
2. &1, &2 and &3 are variables of sequence of terms (Vseqterm)
3. G1, G2 and G3 are variables of sequence of atoms (Vseqatom)
4. H and T are term variables (Vterm)

Let the program Prog be:

sum([],0).
sum([XjXs]; S) sum(Xs; SXs), S is X + SXs.

S is semi-uni�ed with Prog (S:� = Prog) if �=f P/sum, &1/0, &2/S, &3/SXs,
H=X, T=Xs, G1=;, G2=;, G3=S is X + SXs g

3 Constraints Language

In our framework, a schema is not a classical second-order object. It needs in-
corporating features essential to the objectives of program representation and
manipulation.

1. Term positions among arguments of predicates and functions,
2. Representation of possibly empty sequences of atoms,
3. Representation of possibly empty sequences of terms,
4. Argument length constraints,
5. Instantiation form constraints (constant, ground, var : : :),
6. Optional atoms and terms,
7. Interchangeability of predicate and function parameters.

Most of these features are already present in [22, 23].

Restrictions.

1. Although the above characteristics are syntactical, semantic constraints on
place-holders, such as de�ned in [3], could also be considered. Such con-
straints are useful to instantiate schemas into valid programs. However we
do not consider such constraints in this paper. These could easily be included
in the framework.

2. Interchangeability of clauses and predicates in bodies of clauses is not con-
sidered here. Such a reordering can be performed at the program level, as in
the Mercury language [21].

In order to express such constraints on program schema, a �rst-order con-
straint language is now de�ned. It is necessary and useful in the context of
program schema and program synthesis/transformation. Constraints are de�ned
on schema place-holders. Some are global to the whole schema and others are
local to occurrences of place-holders. Constraints on a schema will restrict the
possible instantiations of the schemas to instances satisfying the constraints. The
following set of constraints are extensible.

3.1 Global Constraints

Global constraints handle forms and lengths of instances of second-order vari-
ables. In our framework, an instantiation of a second-order variable is also a
global constraint.

1. Form Constraints.Term variable instances can be constrained to be constant,
variable or ground, and atom variable instances to be ground. Possible form
constraint predicates are: constant(X), ground(X) and var(X) for terms
and ground(Pk) for atoms.

2. Length Constraints. Global constraints can also apply on the length of the
instances of sequence of terms (resp. atoms) variables, i.e. on the number of
terms (resp. atoms) in Vseqterm (resp. Vseqatom) instances. Length con-
straint predicates are: length eq (X, L), length geq (X, L) and length leq (X,
L). Length constraints include hard constraints (length is compared to an
integer) and soft constraints (length is compared to a variable). Variables
constraining the lengths of sequence of terms and atoms variable instances
are called Vlength variables and will have to be instantiated to integers.

3. Global Constraint Combinators. Form and length constraints can be linked
by constraint combinators: ^ (logic and), _ (logic or) and : (logic not).

Example 6. Term variable instance constrained to be either a constant or a
variable: constant(X) _ var(X) ; two Vseqterm variables instances con-
strained to have equal lengths: length eq(&1, L) ^ length eq(&2, L).

We choose an untyped second-order representation. Notice that types could
be introduced at the constraint level (global constraints).

3.2 Local Constraints

Local constraints relate to positions of parameters, interchangeability of groups
of parameters, and locally empty place-holder instances.

1. Position Constraint. The position constraint applies to second-order pred-
icates and terms, except sequence variables (Vseqatom and Vseqterm). A
position constraint is denoted by # followed by an integer (hard constraint)
or a position variable (soft constraint) which will have to be instantiated to
integers.

Example 7. In the partial schema \P (&1; X#p), Q(&2; Y;&3; Z#p;&4)",
the instances of X and Z must have the same positions among the param-
eters of P and Q predicate instances.

2. Interchangeability of Parameters. Interchangeability constraints are de�ned
via unordered groups, denoted by �(: : :). This introduces the commutativity
of predicate and function parameters in schemas. Inside unordered groups,
only second-order terms may appear. In such groups, second-order terms
order is not �xed. It is only at the instance level that the parameters have
�xed positions.

Example 8. According to the schema part \P (�(&1; X;&2))", any instance
of �(&1; X;&2) in P will be a permutation of instances of &1, X and &2.

3. Optional Objects. Optional arguments and atoms are denoted by: � X �.
Option constraints apply to second-order predicates and terms.

Example 9. According to the schema part \P (&1;� X �;&2)", the in-
stance of � X � in P is either the instance of X itself or ;.

Example 10. Complete example.
Over the following schema:

P ([];&1) G1.
P ([Hj T];&2) � Q(H)�, P (T;&3), G2.

a local constraint (optional object) is de�ned: � Q(H) �. Other global con-
straints could be de�ned:

1. length eq(&1; L) ^ length eq(&2; L) ^ length eq(&3; L) which means that
all &i (1 � i � 3) instances must be of same length,

2. variable(H) ^ variable(T): H and T instances are �rst-order variables,

3. length eq(G1; 0) which means that G1 instance must be of length equal to 0.

We can easily extend the set of constraints by adding new constraint predi-
cates. For example, we could use the following predicate to mean that G2 does
not contain predicate P : not in(G2; P).

From the examples of this section, one can easily see the expressiveness of
the proposed constraint language. It allows the description of schemas to contain
knowledge. It also allows a single schema to represent what would require several
schemas using other representation schemes. The extensibility of the constraint
part of the language is an advantage. One can add new constraints depending
of the speci�c use of the schemas (program transformation, program synthesis
: : :).

4 Meaning of Schemas

In this section, we introduce the semantics of schemas. The semantics of program
schemas can be de�ned in di�erent ways. The �rst semantics de�nes the meaning
of a schema as the set of all its possible instances which respect the constraints.
This is close to the idea that a schema \represents" a class of programs. With
this representational semantics of schemas, one can then choose any semantics
at the program level. A second, constructive, semantics will be presented in
Section 5.5.

De�nition5. A schema is a pair hS; ci, where S is a program schema annotated
with local constraints, and c is a set of global constraints.

4.1 Substitutions

De�nition6. A substitution pair (SP) is a pair SObject/FObject of type:
Vterm/term, Vfs/fs, Vseqterm/seqterm, Vatom/atom, Vps/ps, Vseqatom/ se-
qatom, Vlength/integer or Vpos/integer. Since sequence of terms and atom vari-
ables may instantiate to the empty sequence (denoted ;), the pairs Vseqterm/;
and Vseqatom/; are allowed.

In our approach, substitution pairs themselves are viewed as global con-
straints on schema place-holders.

De�nition7. A substitution is a �nite set of substitution pairs si=pi, i.e. �=f
si=pi j 1 � i � ng with the property that 8i; j � n : si = sj) i = j.

Example 11.

Vterm/term: X=sum(X;Y; Z),
Vseqterm/seqterm: &1=f(X); g(Y),
Vfs/fs: F=sum,
Vseqatom/seqatom:G1=father(X;Y); husband(X;Z),
Vps/ps: P=father.

De�nition8. The application of a substitution �=f si=pi j 1 � i � ng to
a schema S, denoted S�, is obtained by the simultaneous replacement of all
occurrences of si by pi in S.

4.2 Satisfaction of Constraints

Let us �rst make precise the concept of a substitution � satisfying a global cons-
traint c. We consider the di�erent form of the constraint c :

1. constant(X) is true i� X� is a constant,
2. ground(X) is true i� X� is ground,
3. var(X) is true i� X� is a variable,

4. length eq(X, L) (length geq(X, L), length leq(X, L)) is true i�X� has length
equal (greater than or equal, less than or equal) to L.

This extends easily to constraint combinators.
The satisfaction of the local position constraint is now de�ned. Let X#p

be a position constraint occurring in a subformula F (: : : X#p : : :) of a schema
S. A substitution � satis�es this position constraint in S i�, in S�, the above
subformula is instantiated to f(e1; : : : ; ek�1; t#k; ek+1; : : : ; en) for some terms
e1; : : : ; en , and some predicate or function symbol f (X is instantiated to some
term t, and p to the integer k).

The de�nitions of satisfaction for the other local constraints can be de�ned
similarly.

De�nition9. Let hS; ci be a schema and � a substitution. � satis�es the con-

straints of hS; ci i� � satis�es c, and � satis�es the local constraints in S.

4.3 Schema Instances

We are now in position to de�ne the �rst semantics. The semantics of the schema
hS; ci, denoted by [[S; c]]1, is de�ned by means of all its possible program in-
stances.

De�nition10. P is an instance of schema hS; ci, denoted by P 2 [[S; c]]1, i�
there exists a substitution � such that P ' S�, and � satis�es the constraints of
hS; ci.

P ' S� means P = S� after elimination in S� of the syntactic constructs
attached to schemas by the local constraints (�(), # and ��).

Example 12. Schema S: Q(X#1;� Y �) with c = ; ; program P : q(X;Y).
Then the substitution � is: �=f Q=q, X=X, Y=Y g. We have P = q(X;Y) '
q(X#1;� Y �) = S�.

The semi-uni�cation process is not deterministic. If P 2 [[S; c]]1, there could
exist di�erent substitutions �1 and �2 such that P ' S�1 and P ' S�2.

Example 13.

Schema S: P (X) G1; Q(X); G2 with c = ;
Program P : p(X) q1(X); q2(X)
The two substitutions �1=f P=p, X=X, G1=q1(X), Q=q2, G2=; g and �2=f P=p,
X=X, G1=;, Q=q1, G2=q2(X) g are such that P ' S�1 and P ' S�2.

5 Rewriting Rules

We present here a more constructive semantics, based on rewriting rules. This
semantics will allow an implementation of a semi-uni�cation algorithm.

5.1 Form of Equations

An equation Eq appearing in a rewriting rule is an equation (or a set of equa-
tions) of type �=� where:

1. � and � are respectively second-order (Schema, SOrdBody, SOrCl, SOrdP,
SOrdT) and �rst-order (Program, FOrdBody, FOrCl, FOrdP, FOrdT) ex-
pressions: for example, P ([Hj T]);&2) = islist([T jQ]),

2. or � is a [sequence of atoms] variable (Vseqatom) and � is a sequence of
second-order predicates without Vseqatom: for example, G1 = P1; P2; P3,

3. or � is a [sequence of terms] variable (Vseqterm) and � is a sequence of
second-order terms without Vseqterm: for example, &1 = T1; T2; T3.

5.2 Starting Point

Let hS; ci be a schema to semi-unify with a program P . The associated constraint
set is c. It is composed of global constraints and substitutions considered as global
constraints in this framework.

The starting point is: hEq ; ci with equation Eq � S = P .

5.3 Form of Rewriting Rules

Rewriting rules handle the semi-uni�cation process as well as constraint satis-
faction. During the process, global constraints can be deleted from and added
to the constraint set c. Substitutions, considered as global constraints, are also
added to c.

Rewriting rules are of two di�erent forms:

Applicability condition
hEq ; ci 7�! failure

Applicability condition
hEq ; ci 7�! hEq0 ; c0i

We also keep the invariant that, in a pair hEq; ci, c is satis�able inEq. Otherwise,
this leads to failure. We thus have the rewriting rule:

unsatis�able(Eq, c)
hEq ; ci 7�! failure

In addition to the applicability condition of each rewriting rule, it is assumed
that the following invariant holds:

satis�able(Eq, c)
hEq ; ci 7�! hEq0 ; c0i

Finally, in the following, \[eq1], [eq2] : : : [eqi] � Eq" means \the set of equations
composed of Eq [f eq1; eq2 : : : eqi g".

Appendix A presents some representative rewriting rules.

5.4 Final Point

The process can fail or succeed:

1. failure: hS = P ; ci 7�!� failure

2. success: hS = P ; ci 7�!� h; ; c0i

where 7�!� is the transitive closure of 7�!, the rewriting symbol.

5.5 Rewriting Semantics

Now we de�ne the semantics of a schema according to the rewriting rules. The
semantics of a schema hS; ci, denoted by [[S; c]]2, is de�ned as follows.

De�nition11. P is an instance of schema hS; ci, denoted by P 2 [[S; c]]2, i�
there exists a constraint set c0 such that hS = P ; ci 7�!� h; ; c0i.

Obviously, the semantics [[S; c]]1 and [[S; c]]2 should be equivalent. The formal
proof will not be developed in this paper. Let S be a schema, P a program.

De�nition12. Existence of substitution:

if hS = P ; ci 7�!� h; ; c0i
and � is the set of all substitution pairs of c0

then � is a substitution.

� is called the complete substitution of c0.

Conjecture 13. Soundness of [[S, c]]2 wrt. [[S, c]]1:

if hS = P ; ci 7�!� h; ; c0i
and � is the complete substitution of c0

then S� ' P and � satis�es hS; ci.

Conjecture 14. Completeness of [[S, c]]2 wrt. [[S, c]]1:

if P 2 [[S, c]]1
then P 2 [[S, c]]2.

As the semi-uni�cation process is not deterministic, some of the rewriting
rules are non-deterministic (see Appendix A). In general, the semi-uni�cation
process in second-order logic is known to be decidable, but NP-complete [7].
Although our language is a subset of second-order logic (with some extensions),
the potential exponential complexity is still present. However, the active use
of constraints in the semi-uni�cation o�ers a more e�cient search for a correct
solution.

6 Conclusion

In this paper, we proposed a language for the description of program schemas.
This language is based on a subset of second-order logic enhanced with con-
straints and speci�c features of program schemas. The constraint language is
extensible and permits the possible introduction of domain knowledge for the
schemas. We then expressed the semi-uni�cation process over schemas as rewrit-
ing and reduction rules, using CLP techniques, where constraints are used to
guide the semi-uni�cation process. Appendix A shows some of these rewriting
and reduction rules. Two semantics were also presented. The �rst semantics is
based on program instances and the second on the rewriting rules.

Further Research Steps. A �rst step will be the theoretical and practical analysis
of the complexity of the semi-uni�cation algorithm. We are also interested in
the use of schemas in program synthesis. Starting from a schema and a set
of constraints on its schema place-holders, the objective is the synthesis of a
program. The synthesis is guided by successive additions of constraints. The
initial schema becomes more and more instantiated until the program level is
reached. The constraints used to instantiate the successive schema versions come
from heuristics, speci�cations and user demands. This will require the extension
of syntactical constraints to semantic constraints.

This problem does not handle equations as de�ned in the paper, but only
partially instantiated schemas (left-side of current equations). Let S be the initial
schema, c the associated constraint set. We construct the program P by means
of a derivation:
hS ; ci 7�! hS1 ; c1i 7�! hS2 ; c2i 7�! : : : 7�! hP ; cni.
At each step i of this derivation, new constraints can be added to the resulting

set of constraints ci (0 < i < n) to guide the synthesis process.

Acknowledgements

This research is supported by the subvention Actions de recherche concert�ees of
the Direction g�en�erale de la Recherche Scienti�que - Communaut�e Fran�caise de
Belgique. We also acknowledge the reviewers for helping us to improve this paper.
Special thanks to Pierre Flener for our fruitful and constructive discussions.

References

1. H. B�uy�uky�ld�z and P. Flener, Generalized logic program transformation schemas,
In: N.E. Fuchs (ed.), Proc. of LOPSTR'97 (this volume)

2. Y. Deville and K.-K. Lau, Logic program synthesis: A survey, Journal of Logic
Programming, 19-20:321-350, May/July 1994

3. P. Flener, Logic Program Synthesis From Incomplete Information, Kluwer Aca-
demic Publishers, 1995

4. P. Flener and Y. Deville, Logic program transformation through generalization

schemata, In: M. Proietti (ed.), Proc. of LOPSTR'95, Springer-Verlag, 1996

5. P. Flener, K.-K. Lau and M. Ornaghi, On Correct Program Schemas, In: N.E. Fuchs
(ed.), Proc. of LOPSTR'97 (this volume)

6. N.E. Fuchs and M.P.J. Fromherz, Schema-Based Transformations of Logic Pro-

grams, In: T.P. Clement, K.-K. Lau (eds.), Proc. of LOPSTR'91, Springer-Verlag,
1992

7. M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to the The-

ory of NP-completeness, W.H. Freeman and Company, 1979
8. T.S. Gegg-Harrison, Learning Prolog in a Schema-Based Environment, Instruc-

tional Science, 20:173-192, 1991

9. T.S. Gegg-Harrison, Representing Logic Program Schemata in �Prolog, In:
L. Sterling (ed.), Proc. of the 12th International Conference on Logic Program-
ming, Japan, pp. 467-481, The MIT Press, 1995

10. T.S. Gegg-Harrison, Extensible Logic Program Schemata, In: J. Gallagher (ed.),
Proc. of the 6th International Workshop on Logic Program Synthesis and Trans-
formation, Stockholm, Sweden, pp. 256-274, Springer-Verlag, 1996

11. W.D. Goldfarb, The Undecidability of the second-order uni�cation problem, Theo-
retical Computer Science, 13:225-230, 1981

12. J. Hannan and D. Miller, Uses Of Higher-Order Uni�cation For Implementing

Program Transformers, In: A. Kowalski, K.A. Bowen (eds.), Proc. of ICLP'88,
The MIT Press, 1988

13. G. Huet, A uni�cation algorithm for lambda calculus, Theoretical Computer Sci-
ence, 1:27-57, 1975

14. G. Huet, R�esolution d' �Equations dans les langages d'ordre 1, 2... !, PhD thesis,
Universit�e Paris VII, 1976

15. G. Huet and B. Lang, Proving and Applying Program Transformations Expressed

with Second-Order Patterns, Acta Informatica 11 (1978), 31-55

16. I. Kraan, D. Basin and A. Bundy, Middle-Out Reasoning for Logic Program Syn-

thesis, In: D.S. Warren (ed.), Proc. of ICLP'93, The MIT Press, 1993

17. D. Miller and G. Nadathur, A logic programming approach to manipulating formu-

las and programs, Proc. of the IEEE Fourth Symposium on Logic Programming,
IEEE Press, 1987

18. A. Martelli and U. Montanari, An E�cient Uni�cation Algorithm, ACM Transac-
tions on Programming Languages and Systems, Vol. 4, No. 2, April 1982, pp.258-
282

19. T. Nipkow, Higher-order critical pairs, In: Proc. 6th IEEE Symp. Logic in Com-
puter Science, pp. 342-349, 1991

20. J. Richardson and N.E. Fuchs, Development of correct transformation schemata

for Prolog programs, In: N.E. Fuchs (e.), Proc. of LOPSTR'97 (this volume).
21. Z. Somogyi, F. Henderson and T. Conway, The execution algorithm of Mercury:

an e�cient purely declarative logic programming language, Journal of Logic Pro-
gramming, 29(1-3):17-64, October-December 1996

22. W.W. Vasconcelos and N.E. Fuchs, Enhanced Schema-Based Transformations for
Logic Programs and their Opportunistic Usage in Program Analysis and Optimi-

sation, technical report, Institut f�ur Informatik, Universit�at Z�urich, 1995

23. W.W. Vasconcelos and N.E. Fuchs, An Opportunistic Approach for Logic Program

Analysis and Optimisation Using Enhanced Schema-Based Transformations, In:
M. Proietti (ed.), Proc. of LOPSTR'95, Springer-Verlag, 1996

A Rewriting Rules Examples

We only present here a subset of the rewriting rules. We focus on the most
signi�cant ones. The set of rewriting rules contains the classical rules for �rst-
order uni�cation [18].

A.1 Constraints

Interchangeability of Parameters Rule (Non-Deterministic).

X1 : : :Xn 2 SOrdT, X is one of the n! permutations of X1 : : :Xn, t 2 seqterm,
A and B are sequences of SOrdT

h[A;�(X1 : : :Xn); B = t] �Eq ; �i 7�! h[A;X;B = t] �Eq ; �i

Length Constraints Rules.

Hard Length Constraints Rule. Hard length constraint rewriting rules are pre-
sented for the length eq predicate constraint. The �rst rule is about constraint
on Vseqatom , and the second, on Vseqterm.

Gk 2 Vseqatom, i 2 IN

hEq ; � [flength eq(Gk; i)gi 7�! h[Gk = P1 : : :Pi] �EqfGk=P1 : : : Pig ; �i
where P1 : : :Pi are brand-new Vatom variables

&k 2 Vseqterm, i 2 IN

hEq ; � [flength eq(&k; i)gi 7�! h[&k = T1 : : : Ti] �Eqf&k= T1 : : : Tig ; �i
where T1 : : : Ti are brand-new Vterm variables

Soft Length Constraints Rule (Non-Deterministic). Soft length constraint rewri-
ting rules are presented for the length eq predicate constraint on Vseqatom. The
Vseqterm case is similarly expressed. The rule is non-deterministic because j
can be chosen between 0 and n (if j = 0, Gk = ;).

Gk 2 Vseqatom, p1 : : : pn 2 atom, L 2 Vlength, 0 � j � n,
A and B are sequences of SOrdP
h[A;Gk; B = p1 : : : pn] �Eq ; � [flength eq(Gk; L)gi
7�! h[Gk = P1 : : :Pj]; [A;P1 : : :Pj; B = p1 : : : pn] �EqfGk=P1 : : :Pjg ;

�fL=jgi
where P1 : : :Pj are brand-new Vatom variables

Hard Position Constraint Rules.

X 2 SOrdP, X1 : : :Xj , Y1 : : :Yk 2 SOrdP, p1 : : : pn 2 atom, 1 � i � n

h[X1 : : :Xj ; X#i; Y1 : : : Yk = p1 : : : pn] �Eq ; �i
7�! h[X1 : : :Xj = p1 : : : pi�1]; [X = pi]; [Y1 : : : Yk = pi+1 : : : pn] �Eq ; �i

X 2 SOrdP, X1 : : :Xj , Y1 : : :Yk 2 SOrdP, p1 : : : pn 2 atom, i � 0 or i > n

h[X1 : : :Xj ; X#i; Y1 : : :Yk = p1 : : : pn] �Eq ; �i 7�! failure

Similar rules are for SOrdT.

Optional Objects Rule (Non-Deterministic).

X 2 SOrdP (resp. SOrdT), x 2 seqatom (resp. seqterm),
A and B are sequences of SOrdP (resp. SOrdT)
h[A;�X �; B = x] �Eq ; �i 7�! h[A;X;B = x] �Eq ; �i

X 2 SOrdP (resp. SOrdT), x 2 seqatom (resp. seqterm),
A and B are sequences of SOrdP (resp. SOrdT)
h[A;�X �; B = x] �Eq ; �i 7�! h[A;B = x] �Eq ; �i

A.2 Others

Vseqatom Rewriting Rule (Non-Deterministic).
Here we show the rewriting rules for the case of unconstrained Vseqatom.

Gk 2 Vseqatom, p1 : : : pn 2 atom, 0 � j � n, A and B are sequences of SOrdP
h[A;Gk; B = p1 : : : pn] �Eq ; �i
7�! h[Gk = P1 : : :Pj]; [A;P1 : : :Pj; B = p1 : : : pn] �EqfGk=P1 : : : Pjg ; �i
where P1 : : : Pj are brand-new Vatom variables

A Decomposition Rule.

Here is an example of a decomposition rule applying on terms. Another similar
rule applies on atoms. Failure rules are also needed if the numbers of the left-side
and right-side arguments are not the same.

T1 : : :Tn 2 SOrdT and T1 without option and position constraint,
t1 : : : tm 2 term,
h[T1 : : :Tn = t1 : : : tm] �Eq ; �i
7�! h[T1 = t1]; [T2 : : : Tn = t2 : : : tm] �Eq ; �i

T1 : : :Tn 2 SOrdT and T1 without option and position constraint
h[T1 : : :Tn = ;] �Eq ; �i 7�! failure

t1 : : : tm 2 term
h[; = t1 : : : tm] �Eq ; �i 7�! failure

Second-Order Substitution Rule.

X 2 SObject, x 2 FObject [f ; g
h[X = x] �Eq ; �i 7�! hEqfX=xg ; � [fX=xgi

First-Order Checking Rules.

x 2 FObject [f ; g
h[x = x] �Eq ; �i 7�! hEq ; �i

x1, x2 2 FObject [f ; g, x1 6= x2
h[x1 = x2] �Eq ; �i 7�! failure

B Working Example

Let the following schema hS; ci, with

Schema S: P ([];&1) G1.
P ([Hj T];&2) G2, P (T;&3), G3.

and global constraints

c=f length eq(&1; L), length eq(&2; L), length eq(&3; L) g

be semi-uni�ed with the program P :

Program P : islist([]).
islist([T jQ]) islist(Q).

As a �rst step, starting from hS = P; ci, a previously undescribed rewriting rule
derives the following set of equations:
h P ([];&1) = islist([]),
G1 = ;,
P ([Hj T];&2) = islist([T jQ]),
G2, P (T;&3), G3 = islist(Q),
c
i

For clarity, we will handle the four equations separately now:

1. First equation: P ([];&1) = islist([])

! by an undescribed rewriting rule instantiating predicate symbol variable
P to predicate symbol islist:
h [], &1 = [],
f P/islist, length eq(&1,L), length eq(&2,L), length eq(&3,L) g i
! by the non-deterministic rule A.1 (soft length constraint rule):
h &1 = ;,
[], ; = [],
f P/islist, length eq(&2,0), length eq(&3,0) g i

Remark: if another branch of this non-deterministic rule is followed, the pro-
cess fails. For example: h &1= T1 ; [], T1 = [] ; f P/islist, length eq(&2,1),
length eq(&3,1) g i ! by rule A.2 (decomposition rule): h &1 = T1, [] =
[], T1 = ;, f P/islist, length eq(&2,1), length eq(&3,1) g i ! by rule A.2

again: failure due to T1 = ;. In the remaining of the example, we shall
follow success branches only.
! by rule A.2 (second-order substitution):
h [], ; = [],
f P/islist, length eq(&2,0), length eq(&3,0), &1/; g i
! by rule A.2 (decomposition rule):
h [] = [],
; = ;,
f P/islist, length eq(&2,0), length eq(&3,0), &1/; g i
! by rule A.2 (�rst-order checking): success
h ;,
f P/islist, length eq(&2,0), length eq(&3,0), &1/; g i

2. Second equation: G1 = ;

! from the result of the �rst equation and by rule A.2 (second-order sub-
stitution): success
h ;,
f P/islist, length eq(&2,0), length eq(&3,0), &1/;, G1/; g i

3. Third equation: P ([Hj T];&2) = islist([T jQ])

! from the result of the previous equations:
h islist([Hj T], &2) = islist([T jQ]),
f P/islist, length eq(&2,0), length eq(&3,0), &1/;, G1/; g i
! by an undescribed rewriting rule checking predicate symbols (islist):
h [Hj T], &2 = [T jQ],
f P/islist, length eq(&2,0), length eq(&3,0), &1/;, G1/; g i
! by the rule A.1 (hard length constraint rule):
h &2=;,
[Hj T] = [T jQ],
f P/islist, length eq(&3,0), &1/;, G1/; g i
! by a variant of rule A.2 (second-order substitution): success
h ;,
f P/islist, length eq(&3,0), &1/;, G1/;, &2/;, H=T , T=Q g i

4. Fourth equation: G2, P (T;&3), G3 = islist(Q)

! from the result of the previous equations:
h G2, islist(Q;&3), G3 = islist(Q),
f P/islist, length eq(&3,0), &1/;, G1/;, &2/;, H=T , T=Q g i
! by the non-deterministic rule A.2 (Vseqatom rewriting rule):
h G2 = ;,
G3 = ;,
islist(Q;&3) = islist(Q),
f P/islist, length eq(&3,0), &1/;, G1/;, &2/;, H=T , T=Q g i
! by rule A.2 (second-order substitution):

h islist(Q;&3) = islist(Q),
f P/islist, length eq(&3,0), &1/;, G1/;, &2/;, H=T , T=Q,
G2/;, G3/; g i
! by an undescribed rule checking predicate symbols:
h Q, &3 = Q,
f P/islist, length eq(&3,0), &1/;, G1/;, &2/;, H=T , T=Q,
G2/;, G3/; g i
! by same rewriting rules as before: success
h ;,
f P/islist, &1/;, G1/;, &2/;, &3/;, H=T , T=Q, G2/;, G3/; g i

At the end of the resolution we have: h;;�i, with �=f P/islist, &1/;, &2/;,
&3/;, H=T , T=Q, G1/;, G2/;, G3/; g. From this constraint set, we derive the
complete substitution which is � itself. We have that S � ' P .

In this complete example, 14 rewriting rules have been applied to �nd the
substitution. For failure branches of the non-deterministic rules to be explored
until failure, 10 extra rewriting rules have also to be applied.

This article was processed using the LaTEX macro package with LLNCS style

