
Finding Patterns in Biochemical Networks

A Constraint Programming Approach

Stéphane Zampelli, Yves Deville, Pierre Dupont

Department of Computing Science and Engineering
Université catholique de Louvain

B-1348 Louvain-la-Neuve - Belgium
{sz,yde,pdupont}@info.ucl.ac.be

Abstract

Graph pattern matching is a central problem in many application �elds, and may be
associated with problems in bioinformatics, such as �nding patterns in biochemical net-
works. This problem can be view as a particular case of labelled subgraph isomorphism
(SGI). In this paper, we focus on a constraint programming approach. Two new con-
straints are introduced to solve this problem. We consider labelled graphs, especially
suited for representing biochemical networks, and we propose a constraint exploiting
this information. Another constraint considers neighbors within k steps, generalizing
the simple neighbor constraint. Experimental results show the potential bene�t of the
constraints when integrated in a backtracking-based constraint system.

1 Introduction

Bioinformatics is facing a new challenge in analyzing the functioning of biochemical networks.
Many e�orts focused on the decoding of complete genomes and the assignment of functions to
genes and proteins. The huge amount of data about genes and proteins and the availability
of complete genomes o�er the possibility to study more globally the interactions between bio-
entities cooperating in complex cellular processes. The focus can shift now from molecular
functions of genes and proteins to cellular functions. Informations about cellular processes
have already been digitalized and stored in databases, and models for such a knowledge
have already been designed. The complexity and scale of molecular interactions in cellular
processes is such that new computational tools to perform analysis are needed. This article
is part of the interdisciplinary BioMaze project which aims to provide tools for analyzing
biochemical networks in cellular processes. The BioMaze project covers the building of
databases about cellular process knowledge, visualization tools, and computational tools
to analyze cellular networks.

This paper presents an algorithm using constraint programming techniques, extending the
work of Larrosa and Valiente [1], for �nding patterns in biochemical networks. This algorithm
�nds each occurrence of a pattern network in a large cellular network. The pattern network
may have general properties de�ned on its biochemical entities, ranging from general to
speci�c properties about a single entity. This contribution is a �rst step towards a more
general objective: the ability to �nd approximate pattern networks or to discover recurrent
motifs in biochemical networks.

There are various applications of pattern �nding tools for biochemical network analy-
sis. One can compare biochemical pathways from di�erent tissues, or at di�erent stages of
annotation. One can highlight common features and di�erences. One can predict missing
elements for reconstruction. One can compile repertories of recurrent network motifs (topo-
logical patterns) at di�erent resolution levels. A very concrete application aims at �nding,

1

among a library of biochemical networks of bacteria, the closest process producing a given
protein involved in a human cellular process.

Basic biochemical network analysis were developed in projects such as aMaze [2], Kegg
[3], BioCyc [4, 5], Um-BBD [6] , EMP [7], PathDB [8], but these analysis concern pathways
instead of patterns. The concept of network motifs has already been studied for regulatory
biochemical networks [9].

Objectives The primary objective of this work is the development of a pattern �nding
procedure in biochemical networks. Pattern �nding can be viewed as a particular instance of
a subgraph isomorphism problem. We propose an approach relying on Constraint Program-
ming (CP) techniques [10] to tackle this problem. The second objective of this work is to
demonstrate the feasibility and advantages of this approach.

Results In the CP framework, this paper extends the work of Larrosa and Valiente [1].
Two new global constraints are presented here. We discuss their design and implementation.
Preliminary experiments on random graphs are described here. They illustrate the relative
performances of the various constraints considered. They show the bene�ts of considering
the new constraints for labelled graphs as in biochemical networks.

Outline Section 2 brie�y describes the data models used to represent and analyze biochem-
ical networks and the CP paradigm. Related works are also discussed. Section 3 focuses on
constraints for pattern �nding. Section 4 details our experimental results. Section 5 summa-
rizes the contributions of this work and presents current research directions.

2 Background

In this section a model of biochemical networks is presented and the constraint programming
paradigm is introduced. Related works are also discussed.

2.1 Biochemical Networks

Biochemical networks are networks of interactions between biochemical entities within the
cell. Various models have been developed for the analysis of biochemical networks [11]. The
object-oriented model developed in the aMaze project is especially suitable for our analysis
purposes [2].

Bio-entities are composed of genes (segments of DNA involved in the production of
polypeptide chains), polypeptides (proteins), complexes (composed of several proteins), and
compounds (such as ATP, ADP, water,. . .). These bio-entities form the basic elements in-
teracting with each other in cellular processes. An interaction may be a transformation or a
control. A reaction is a transformation occurring between bio-entities within the cell. The ex-
pression of a gene into a protein is a typical transformation. An assembly is a transformation
that forms a complex from polypeptides. A catalysis is a control where an enzyme controls a
reaction. A regulation is a control that regulates the expression of a gene. These interactions
between bio-entities form biochemical networks. These interactions and bio-entities can be
conceptually considered as objects structured in a hierarchy (see Figure 1). This hierarchy
is a data model to represent biochemical networks.

2

Protein

Interaction

Entity
Biochemical

Gene Compound Complex

Transformation Control

CatalysisReaction

Figure 1: Object hierarchy of bio-entities and transformations.

Di�erent kind of networks are usually distinguished. A metabolic network represents a
series of reactions, controlled by enzymes, starting from speci�c substrates and leading to
speci�c products. A regulatory network is a network focusing on the regulation of the enzyme
activity or the stimulation of the enzyme expression. A signal transduction network focuses
on the transport of information, generally from membrane to genes.

The hierarchical object-oriented model integrates three di�erent types of networks. From
this model one can derive oriented or non oriented graphs representing the interactions. Bio-
entities and transformations are nodes of such a graph, and arcs represent relations between
these concepts. Nodes and arcs can be labelled with types and attributes relevant to speci�c
analysis. Figure 2 shows a graphical view of a biochemical network integrating the three
kinds of networks described. In this example, there are two transformations, one reaction
and one assembly. Two controls are represented, a catalysis and an inhibitor on the catalysis
itself.

Figure 2: Graphical view of a biochemical network.

A pattern in a biochemical network can be de�ned as a speci�c subgraph of the general
graph representing the whole network. Pattern �nding can thus be viewed as a particular
type of subgraph isomorphism.

Nodes with labels allow for complex biochemical network analysis as several properties
can be used to constrain the matching between nodes. A node in the pattern graph can be
labelled as a transformation or a reaction, a control or an inhibitor, a polypeptide with at
least 16 amino acids, etc.

2.2 Constraint Programming

Many interesting problems can be modeled and solved using constraint programming [10]. In
this paradigm, one chooses relevant variables from the problem, the domain of these variables
(the possible values taken by the variables), and states constraints on acceptable solutions. A
constraint de�nes a relation on (a subset of) variables. The solutions of the problem are found
by search in a space of candidate solutions and constraint propagation. The search procedure
browses through values of the variables, and backtracks if the domain of any variable is not
consistent with the constraints. The constraint propagation uses the constraints in order
to reduce the domains of the variables, keeping them consistent. A Constraint Satisfaction
Problem (CSP) can be formally de�ned as follows.

De�nition 1 A �nite CSP (Constraint Satisfaction Problem) P = (X, D, C) is de�ned as
a set of n variables X = {x1, ..., xn}, a set of �nite domains D = {D1, ..., Dn} where Di

3

is the set of possible values for variable xi and a set of constraints between variables C =
{C1, ..., Cm}.

A constraint Ci is de�ned on a set of variables {xi1 , ..., xip} ⊆ X as a subset of the
Cartesian product Di1 × ... × Dip . A solution is an assignment of values to all variables
which satis�es all the constraints.

De�nition 2 A variable xi ∈ X with domain Di is consistent with a given n-ary constraint
Cj i� there exists a tuple in D1 × ...×Di−1 × {ai}×Di+1 × ...×Dn with ai ∈ Di such that
the constraint Cj is satis�ed.

A CSP P = (X, D, C) is arc-consistent i� ∀ xi ∈ X, ∀ai ∈ Di, ∀ CS ∈ C constraining
xi, the value ai is consistent with CS.

2.3 Related work

Related to our subject is the comparison of metabolic pathways performed in [12], and
the analysis of transcriptional regulation networks of Escherichia coli in order to uncover its
underlying structural design, by means of the discovery of network motifs [13, 9]. In this work,
a network motif is a pattern of interconnections occurring in networks with a signi�cantly
higher frequency than what would be expected in random networks. This analysis relies on
sophisticated algorithms for the generation of random networks, and has been applied to
other networks in neurobiology, ecology and engineering.

Finding pattern in a graph is often referred to as the subgraph isomorphism problem.
There exist many speci�c methods including backtracking, the clique approach, the relational
approach and constraint satisfaction. This work extends the constraint approach proposed
in [14]. A global constraint for graph isomorphism is proposed in [15], where an extension to
subgraph isomorphism is also sketched.

3 Finding patterns in biochemical networks

In this section, the pattern �nding problem is speci�ed and modeled as a CSP problem.
Constraints are described, based on the work of Larrosa and Valiente [1], and our new global
constraints are presented.

3.1 Problem speci�cation

Suppose we have a labelled pattern graph and a labelled target graph, with bio-entities and
transformations associated to nodes in these graphs. The problem consists in �nding one or
all subgraphs of the target graph corresponding to the pattern graph. Pattern �nding is thus
a classical subgraph isomorphism (SGI) problem:

Problem speci�cation 1 SGI

A pattern graph is a graph Gp = (Np, Ap). The target graph is a graph G=(N,A). We have
|Np| ≤ |N |. The problem is to �nd a function f : Np → N such that:

A. f is injective

B. ∀n1, n2 : (n1, n2) ∈ Ap ⇒ (f(n1), f(n2)) ∈ A

The SGI problem must be extended in order to handle labelled nodes in the pattern and
in the target graphs, as in biochemical networks.

Problem speci�cation 2 Labelled SGI

This problem extends the SGI problem with an additional label compatibility constraint:

C. ∀n : n ∈ Np ⇒ the label of n is compatible with the label of f(n).

4

Compatibility between labels depends on the speci�c analysis to be performed.
We argue that constraint programming is particularly relevant for solving the labelled SGI

problem in the context of biochemical analysis. The subgraph isomorphism problem is NP-
complete. The CSP paradigm was initially developed to tackle hard computational problems
in arti�cial intelligence. Provided relevant constraints are available, the search space can often
be very e�ciently reduced. As detailed in section 3.2, the subgraph isomorphism problem can
be directly modeled in the CSP paradigm. Besides, several systems for analyzing biochemical
networks rely on ad-hoc algorithms. These algorithms are often di�cult to combine or extend
to new analysis without requiring signi�cant programming e�orts. In our present problem,
the addition of custom constraints on the labeling of nodes in the graphs is a direct extension
of the proposed technique.

3.2 Subgraph Isomorphism as a CSP

The SGI problem has a direct translation into the CSP paradigm [16]. It is represented by
the following CSP P =< X, D, C >, with |X | = |Np| = n (one variable per node in the
pattern graph), Di = N (domains are the nodes in the target graph), and C is the set of
constraints. We note d = |A|.

In this section, i, j, ... will denote nodes in the pattern graph; a, b, ... will denote nodes in
the target graph; xi, xj ... will denote the variables in the pattern graph corresponding to its
i, j, ... nodes.

The set of constraints must now be described; conditions A, B, and C of the problem
speci�cations have thus to be translated into constraints. The SGI problem in CSP was
already studied in [17, 1]. We follow here Larrosa and Valiente's methodology, and extend
it. We �rst consider the condition A (C1) and the condition B (C2) from the problem
speci�cation. Condition C on label compatibility will be held later.

3.3 C1 constraint

This �rst constraint states that the matching function f is injective, that is all variable values
in the solution must be distinct. A naive model relies on n2 local constraints:

∀ (xi, xj) ∈ X × X : xi �= xj (C1)

These constraints prune very ine�ciently the search space since constraint propagation
is performed only when one variable is set to a single value. Better pruning can be achieved
by global constraints, such as the AllDi� constraint proposed by Régin [18]. This global
constraint has a O(n2d2) time complexity and O(nd) space complexity.

3.4 C2 constraint

The C2 constraint states that the structure of Gp must respect the structure of G: (i, j) ∈
Ap ⇒ (f(i), f(j)) ∈ A. This is a necessary condition which may be expressed as follows. If a
variable node of the pattern graph xi is assigned to a node a in the target graph, a test must
check if there is at least one value d for a neighbor xj of xi such that (a, d) ∈ A. If there is
a neighbor of xi not respecting this condition, a can be pruned from Di.

5

Figure 3: C2 constraint example.

Figure 3 illustrates this constraint. If the domain of a variable xj with j ∈ Gp has an
empty intersection with the neighbors of a node a ∈ G, then value a can be pruned from all the
neighbors j in Gp. In this example constraint C2 is veri�ed for xj since {c, d, e} ∩ {b, c, d} =
{c, d}.

For each j ∈ neigh(Gp, i) and for each a ∈ Di, the C2 constraint can be formulated as
follows :

Dj ∩ neigh(G, a) �= ∅ (C2)

where neigh(G, a) is the set of neighbors of a in the target graph G. An implementation
of this constraint was proposed in [1]. It has a O(nd2) time complexity and O(nd) space
complexity. This implementation is more e�cient than the classical arc consistency algorithm
for C2 while providing the same pruning.

Constraints C1 and C2 are su�cient for solving the SGI problem. For solving the labelled
SGI problem, condition (C) must be modeled by the addition of n compatibility constraints
of the form compatible(i, xi). These constraints depend on the analysis and may require to
access properties of the nodes.

3.5 A redundant constraint

C1 and C2 constraints are necessary constraints. Larossa and Valiente [1] de�ne a redundant
constraint on the possibility of matching xi ∈ Gp with a ∈ G. The C3 constraint states that,
if we try to assign xi ∈ Gp to a ∈ G, the number of possible values for the neighborhood of
xi must be greater or equal to the number of variables around xi:

| ∪j∈neigh(Gp,i) Dj ∩ neigh(G, a)| ≥ |neigh(Gp, i)| (C3)

The value a can be pruned from Di if there are more neighbors than candidate values for
these neighbors. The C2 constraint only considers candidates for one neighbor of xi at a time
while C3 considers all neighbors. Constraint C3 provides more pruning than C2. Assume for
example that all variables have a single identical candidate that is a neighbor of a. None of
them has an empty intersection with the neighbors of a, but there are not enough candidates
that could be assigned.

Figure 4 illustrates the C3 constraint. Details about this constraint are given in [1]. This
constraint has a O(nd2) time complexity and O(nd) space complexity.

6

Figure 4: C3 constraint states that a can be pruned from Di if there are more neighbors than
candidate values. Here xi may be matched to a, since |D∩neigh(G, a)| = 3 ≥ |neigh(Gp, i)| =
3, with D = Dj ∪ Dk ∪ Dl.

The redundant constraint C3 can be used for the SGI problem as well as for the labelled
SGI problem.

3.6 A new redundant constraint for labelled SGI

We propose here a new global redundant constraint, called C4, generalizing constraints C2
and C3. The C2 constraint considers only one neighbor around a node i ∈ Gp. The C3
constraint considers all neighbors around a node i ∈ Gp. The general case states that each
group of k variables around a node i ∈ Gp must have at least k distinct candidates. C2 and
C3 can be both satis�ed while the C4 constraint would prune since there may be enough
candidates for each individual variable and for all variables around i ∈ Gp, but not enough
for a subset of the variables around i. Figure 5 illustrates this new constraint.

Figure 5: In this example, the C2 constraint is satis�ed (each variable has at least one
candidate), and C3 is also satis�ed (there are three candidates for all three variables xj ,
xk, xl), but C4 is not satis�ed. The group formed by the variables xj and xk has only one
candidate {b}. Here, D = Dj ∪ Dk.

The formulation of the C3 constraint may be generalized to the new C4 constraint. A
group g around a variable xi is a subset of neigh(Gp, i). Let neigh(Gp, i, g) denote the list
of neighbors of i ∈ Gp belonging to the subset g. For a given group g around xi ∈ Gp, the
following inequality must be satis�ed:

| ∪j∈neigh(Gp,i,g) Dj ∩ neigh(G, a)| ≥ |neigh(Gp, i, g)| (C4)

7

The data structures R(i, b) and CT (i, a), described in Valiente's implementation of the
C3 constraint, can be extended to take the group g into account:

R(i, b, g) = |{j ∈ neigh(Gp, i, g) | b ∈ Dj}|
CT (i, a, g) = | ∪j∈neigh(Gp,i,g) Dj ∩ neigh(G, a)|

= |{b ∈ neigh(G, a) | R(i, b, g) > 0}|
R(i, b, g) denotes the number of b in the domains Dj of the variables associated to the nodes
in g. CT (i, a, g) is the left member of inequality (C4).

While the additional pruning provided by C4 is interesting, the time complexity of this
new constraint is an issue. Considering q subsets of variables around xi ∈ Gp, the criterion
must be checked for each of them. The space complexity of C4 is then O(2qnd) = O(qnd)
and its time complexity O(qnd2). The exponential number of such new constraints, if all
subsets around xi were considered, claims for a careful selection of the subsets which will be
actually considered. In any case, q must be kept small, typically in O(n), in order to limit
the overall complexity of the C4 constraints to O(n2d2).

In the typed case, a particular instance of labelled SGI, the subsets of variables will be
chosen according to their types, creating groups of variables with disjoint domains. In the
following, Group(i) will denote the set of C4 groups around i, with i ∈ Gp.

De�nition 3 Groups around a node i ∈ Gp form a partition with disjoint domains i� :

• ∪g∈Group(i) neigh(Gp, i, g) = neigh(Gp, i) and neigh(Gp, i, g) �= ∅.
• ∀ g1, g2 ∈ Group(i), j1 ∈ neigh(Gp, i, g1), j2 ∈ neigh(Gp, i, g2), g1 �= g2 :

Dj1 ∩ Dj2 = ∅
In that case, C3 is useless as its potential pruning will also be deduced by constraint C4.

Moreover, its time complexity is O(qnd2), where q is the number of types, with q << n.

Theorem 1 If C4 groups form a partition with disjoint domains, then C4 is stronger than
C3.
Proof.
Figure 5 shows an example where C4 provides more pruning than C3. We have to prove that
whenever C3 prunes, C4 prunes also.

Suppose C3 prunes a out of Di. By de�nition of C3,

| ∪j∈neigh(Gp ,i) Dj ∩ neigh(G, a)| < |neigh(Gp, i)| (I)

The two parts of the inequality (I) can be rewritten in term of C4 groups :

• |neigh(Gp, i)| =
∑

g∈Group(i) |neigh(Gp, i, g)|
• | ∪j∈neigh(Gp ,i) Dj ∩ neigh(G, a)| =

∑
g∈Group(i) | ∪j∈neigh(GP ,i,g) Dj ∩ neigh(G, a)|

Those equalities are true because the C4 groups form a partition with disjoint domains.
Inequality (I) can be rewritten :

∑
g∈Group(i) | ∪j∈neigh(Gp ,i,g) Dj ∩ neigh(G, a)| <

∑
g∈Group(i) |neigh(Gp, i, g)|

and imposes that :

∃ l ∈ Group(i) : | ∪j∈neigh(Gp ,i,l) Dj ∩ neigh(G, a)| < |neigh(Gp, i, l)|
and thus C4 prunes a out of Di.

✷

This theorem shows that, in the typed case, a more general version of C3 having the same
time complexity can be used. Experiments will enforce this fact.

8

3.7 Generalizing C3 to path

Constraint C3 considers the direct neighbors of a node. This can be extended by considering
the neighbors within k steps. If there is a path of length at most k from node a to node b
in the graph G, then node b belongs to the set neighk(G, a). In the following de�nition, we
focus on the neighbors within 2 steps.

| ∪j∈neigh2(Gp,i) Dj ∩ neigh2(G, a)| ≥ |neigh2(Gp, i)| (C5)

Figure 6: C5 constraint states that a can be pruned from Di if there are more neighbors
connected to i by a path of length k than candidate values connected to a by a path of length k.
Here a must be pruned from Di, since k = 2 and |D∩neigh2(G, a)| = 5 < |neigh2(Gp, i)| = 6.

The new constraint C5 can be used for the SGI problem as well as for the labelled SGI
problem.

4 Experiments

Experiments described here consist in �nding one subgraph isomorphism of a random undi-
rected graph with n nodes into a random undirected graph with d nodes (n < d), and with
various average degree values. The graphs were generated with the freely available Stan-
ford GraphBase software [19] as in [1]. This software has the advantage of being machine-
independent.

The objective of our experiments is to assess the relative performances of the C2, C3 and
C4 constraints. We report here results from sets of random target graphs and random pattern
graphs with di�erent average degrees. Speci�cally, we consider the matching of 15 nodes
pattern graphs into 50 nodes target graphs (15-50 problems), and 20 nodes pattern graphs
into 100 nodes target graphs (20-100 problems), which corresponds to di�cult problems. For
the 15-50 problems, 6 average degrees have been chosen for the target graph (from 2 to 42),
and up to 13 average degrees for the target graph (from 2 to 14). A total of 62 pairs have
been considered. A similar approach has been used for the 20-100 problems. For a given
pair of average degrees, 5 problem instances were randomly generated. Experiments reported
here represent 620 problem instances.

As we are mostly interested in the labelled SGI problem because of its biological relevance,
types are randomly assigned to graph nodes. Three types were used, corresponding to the
three main classes in biochemical networks (bioentities, transformation and control). In these
experiments each type has the same probability to be assigned to a node. These types are
used in the C4 constraint, where a constraint applies to a group of neighbors sharing the
same type, provided the group has at least three nodes.

For each problem instance, three combinations of constraints were considered. Algorithm
C2 uses only C1 and C2, the necessary constraints. Algorithm C3 uses C3 as well, and

9

algorithm C4 uses constraints C1, C2, and C4. The algorithms tend to �nd a solution
rapidly in most cases. In several cases however they may last for hours or days, illustrating
the computational hardness of the problem. Following [1], we put a time limit of 5 minutes
on any given run resulting in three possible outcomes. The run succeeds if at least one
algorithm found a pattern match in the target graph. The run fails if at least one algorithm
demonstrated that no such match exists. The result of a run is unknown if the time limit
was exceeded for all tested algorithms. For the 15-50 problems, no unknown were observed.

The average running times are reported separately for the success and fail runs. When
a run is a success but a given algorithm did not �nd a solution in the prescribed time, its
reported time was set to the time limit (5 minutes). The same methodology was used for the
fail runs. The experiments were performed on a Intel Xeon 2.66GHz processor.

Figure 8 details the observed results for the 15-50 problems. The left column corresponds
to the succeed runs, and the right column to the fail runs. The top plots show the most
e�ective algorithms. Each point indicates the fastest algorithm on average over the problem
instances. The next �gures show individual lines of the previous plots, giving the average
running time for each algorithm for a particular average degree of the target graph.

We observe that for the fail runs, algorithm C4 outperforms C3, and also outperforms C2
in most cases. When C2 is better than C4, the overhead of C4 is small. For the succeed runs,
algorithm C2 outperforms C3 and C4. However in the simple cases (when the average pattern
degree is low) all the execution times are almost identical. For more di�cult problems, C4
outperforms C3. The same observations can be made on the 20-100 problems (plots not
shown here).

As pointed out in [1], �when solving non-trivial problems using a backtracking algorithm,
most of the computational e�ort is spent proving unsolvability after making wrong assign-
ments, in order to recover from the error�. The authors show that, within a time limit, C3
proves the solvability or the unsolvability of more problems than C2. As our experiments
show that C4 outperforms C3, one can argue that C4 would also outperform C2 and C3 in
such tests on labelled graphs.

We also performed tests to verify Theorem 1. Larrosa and Valiente [1] proposed a bench-
mark composed of di�erent types of graphs. We use here the same graphs, except that graphs
are typed (using the above mentioned method). We use the same methodology reported in
[1]. Searches are bounded to �ve minutes. A problem is said unsolvable if there is no sub-
graph isomorphism. Some problems, which exceed the time limit of 5 minutes, are said to
be not solved.

C2 C3 C4
Proved Unsolvable 957 959 967
Solution Found 219 218 223
Not Solved 49 48 35

Mean Running T ime
C2 2.58 sec.
C3 3.18 sec.
C4 3.21 sec.

Figure 7: Problems solved by C2, C3, C4 and the mean running time.

Figure 7 shows the results. The new C4 constraint outperforms C3 constraint by 27% in
the typed case, asserting from an experimental point of view the theoretical facts explained
in Theorem 1. Even if C4 has solved more problems than C3, its running time is very close
from C3, verifying the theoretical claim about C4 time complexity in Section 3.6.

These results are encouraging for a useful integration of C4 into a constraint-based system.

10

Figure 8: Plots of most e�ective algorithms for 15-50 problem (top), and average running
time for selected target graph average degrees.

11

5 Conclusion and future works

Graph pattern matching is a central problem in many application �elds, and may be asso-
ciated with problems in bioinformatics, namely the analysis of biochemical networks. This
problem can be view as a particular case of labelled subgraph isomorphism (SGI). In this
paper, we focus on a CSP solution and we introduce two new constraints to solve this prob-
lem. We extend here the work of Larrosa and Valiente [1] in two ways. We consider labelled
graphs, especially suited for biochemical networks, and we propose a constraint exploiting
this information. Experimental results show the potential bene�t of the constraints when
integrated in a backtracking-based constraint system.

Future works include additional experiments, allowing a deeper comparison between var-
ious combination, especially for di�cult problem instances. Our objective is to build a
query language based on constraint programming techniques and allowing broad analysis
of biochemical networks. An important extension will consider inexact matching, a type of
subgraph isomorphism even more revelant to the analysis in biochemical networks.

References

[1] J. Larossa and G. Valiente. Constraint satisfaction algorithms for graph pattern match-
ing. Math. Struct. Comput. Sci., 12(4):403�422, 2000.

[2] J. van Helden, A. Naim, R. Mancuso, M. Eldridge, L. Wernisch, D. Gilbert, and S.J.
Wodak. Representing and analyzing molecular and cellular function using the computer.
Biol. Chem., 381(9-10):921�35, 2000.

[3] K. Minoru, G. Susumu, K. Shuichi, and N. Akihiro. The KEGG databases at
GenomeNet. Nucleic Acids Research, 30(1):42�46, 2002.

[4] P.D. Karp, M. Riley, M.H. Saier Jr, I.T. Paulsen, J. Collado-Vides, S.M. Paley,
A. Pelligrini-Toole, C. Bonavides, and S. Gama-Castro. The EcoCyc database. Nu-
cleic Acids Research,, 30(1):56�8, 2002.

[5] P.D. Karp, S. Paley, and P. Romero. The pathway tools software. Bioinformatics,
18(1):S225�S232, 2002.

[6] L.B.M. Ellis, B. Kyeng Hou, W. Kang, and L.P. Wackett. The University of Mine-
sota Biocatalysis/Biodegradation Database : post-genomic data mining. Nucleic Acids
Research, 31(1):262�265, 2003.

[7] EMP Project. Informations about EMP can be found at : http://www.empproject.com/.

[8] PathDB : a pathway database. http://www.ncgr.org/pathdb.

[9] S. Shen-Orr, R Milo, S Mangan, and U Alon. Network motifs in the transcriptional
regulation network of escherichia coli. Nature Genetics, 31:64�68, 2002.

[10] Kim Marriott and Peter J. Stuckey. Programming with Constraints: an Introduction.
MIT Press, 1998.

[11] Y. Deville, D. Gilbert, J. van Helden, and S. Wodak. An Overview of Data Models for
the Analysis of Biochemical Networks. Brie�ngs in Bioinformatics, 4(3):246�259, 2003.

[12] C. V. Forst and K. Schulten. Evolution of metabolisms: a new method for the comparison
of metabolic pathways. In Proceedings of the third annual international conference on
Computational molecular biology (RECOMB99), pages 174�181. ACM Press, 1999.

[13] R. Milo, S. Sen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network
motifs: Simple building blocks of complex networks. Science, 298:824�827, 2002.

12

[14] J. Larrosa and G. Valiente. Graph pattern matching using constraint satisfaction. In
Proc. Joint APPLIGRAPH/GETGRATS Worksh. Graph Transformation Systems, to
appear in LNCS series, pages 189�196, 2000.

[15] Sébastien Sorlin and Christine Solnon. A global constraint for graph isomorphism prob-
lems. In CP-AI-OR 2004. Springer Verlag, 2000.

[16] M. Rudolf. Utilizing Constraint Satisfaction Techniques for E�cient Graph Pattern
Matching. In 6th International Workshop on Theory and Application of Graph Trans-
formations 98, LNCS series vol.1764:238-251.

[17] J.R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM, 23, Issue
1:31�42, 1976.

[18] J.C. Régin. A �ltering algorithm for constraints of di�erence in CSPs. In Proc. 12th
Conf. American Assoc. Arti�cial Intelligence, volume 1, pages 362�367, 1994.

[19] Knuth D.E. The Standford GraphBase: A Platform for Combinatorial Computing. ACM
Press, 1993.

13

