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1.3. Simplification and extension of the
�����������

Constraint

by Pierre Schaus, Yves Deville, Pierre Dupont and Jean-Charles Régin.

Many constraint satisfaction problems like the Balanced Academic Curriculum

Problem (BACP, problem 30 of CSPLib) require the solution to be balanced. The

goal of BACP is to assign periods to courses such that the academic load of each

period is balanced, i.e., as similar as possible. The most balanced solution will depend

on the chosen criterion. Given a set of variables X = {x1, ..., xn}, a first criterion

used in [BRA 02] to solve BACP is to minimize the largest deviation from the mean:

maxx∈X |x−µ|. An alternative one is to minimize the sum of square deviations from

the mean:
∑

x∈X(x − µ)2. The minimization of one criterion does not imply the

minimization of the second one. Nevertheless, the sum of square deviations probably

corresponds better to the intuitive notion of balance measure and is commonly used in

statistics.
�����������

recently introduced by Pesant and Régin [GIL 05] constraints the

mean and the sum of square deviations of a set of variables. The particular case of
�����������

with a fixed mean is considered here. Given a set of finite-domain (discrete)

variables X = {x1, ..., xn}, one value µ and one interval variable π,
�����������

(X, µ, π)
holds if n.µ =

∑n

i=1 xi and π =
∑n

i=1(xi − µ)2. For the constraint to be consistent,

n.µ must be an integer. As a consequence n2.π is also an integer. Pesant and Régin

[GIL 05] propose a filtering algorithm of π from X and µ, and of X from πmax. We

extend these results and describe a simpler filtering algorithm on X with the same

O(n2) complexity achieving bound-consistency with respect to πmax and µ.

Section 1.3.1 recall the filtering of π [GIL 05] and Section 1.3.2 describes the

filtering on X .

1.3.1. Filtering of π

Let define Sµ the set of tuples x satisfying the following constraints:

n
∑

i=1

xi = n.µ [1.1]

xmin
i ≤ xi ≤ xmax

i , ∀i ∈ [1, .., n] [1.2]

The filtering of π is based on the optimal values π = min{
∑n

i=1(xi−µ)2 : x ∈ Sµ}
and π = max{

∑n

i=1(xi − µ)2 : x ∈ Sµ}. Computing π can be shown to be NP-

hard. Instead of the exact value, an upper bound π↑ can be used to make filtering.

An upper bound obtained from the relaxed problem without the mean constraint [1.1]

is π↑ =
∑n

i=1

(

max
(

|xmax
i − µ|, |xmin

i − µ|
))2

. The filtering on the domain of π is

Dom(π)←− Dom(π) ∩ [π, π↑].
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The rest of this section describes the algorithmic solution from Pesant and Régin

[GIL 05] to compute π.

An optimal tuple in the problem of finding π has the property to be a v-centered

assignment on each variable: xi := xmax
i if xmax

i ≤ v, xi := xmin
i if xmin

i ≥ v and

xi := v otherwise. The optimization problem is now reduced to finding a value v such

that the v-centered assignment on every variable x ∈ X respects the constraint [1.1].

The value v can be anywhere in [minX xmin, maxX xmax]. A splitting of this inter-

val into a set of O(n) contiguous intervals I(X) = {[Imin
1 , Imax

1 ], [Imin
2 , Imax

2 ], ...}
permits us to find v by iterating once over this set. The construction of this set is

described below.

Let B(X) be the sorted sequence of bounds of the variables of X , in non-decreasing

order and with duplicates removed. Define I(X) as the set of intervals defined by a

pair of two consecutive elements of B(X). The kth interval of I(X) is denoted by

Ik. For an interval Ik, prev(Ik) = Ik−1 (k > 1) and succ(Ik) = Ik+1. For ex-

ample, let X = {x1, x2, x3} with x1 ∈ [1, 3], x2 ∈ [2, 6] and x3 ∈ [3, 9] then

I(X) = {I1, I2, I3, I4} with I1 = [1, 2], I2 = [2, 3], I3 = [3, 6], I4 = [6, 9] and

prev(I3) = I2, succ(I3) = I4.

Let assume that the value v of the optimal solution lies in the interval I ∈ I(X).
Sets R(I) and L(I) are defined as R(I) = {x|xmin ≥ max(I)} and L(I) =
{x|xmax ≤ min(I)}. The optimal solution is a v-centered assignment, hence all

variables x ∈ L(I) take their value xmax and all variables in R(I) their value xmin.

It remains to assign the variables subsuming I denoted by M(I) = {x|I ⊆ ID(x)}
and the cardinality of this set by m = |M(I)|. In a v-centered assignment with v ∈ I ,

the variables in M(I) must take a common value v. The sum constraint [1.1] can

be reformulated with the introduced notations as
∑

x∈R(I) xmin +
∑

x∈L(I) xmax +
∑

x∈M(I) v = n.µ or more simply as v∗ = (n.µ − ES(I))/m where ES(I) =
∑

x∈R(I) xmin +
∑

x∈L(I) xmax. The value v∗ is admissible only if v∗ ∈ I . This

constraint is satisfied if n.µ ∈ V (I) = [ES(I) + min(I).m,ES(I) + max(I).m].
For two consecutive intervals Ik, Ik+1 ∈ I(X), intervals V (Ik) and V (Ik+1) are also

contiguous: min(V (Ik+1)) = max(V (Ik)). As a consequence, for every consistent

value µ, there exists one interval I ∈ I(X) such that n.µ ∈ V (I). The procedure to

find π can be easily described and can be computed in linear time given I(X) and the

xi’s sorted according to their bounds [GIL 05].

1) Find I ∈ I(X) such that n.µ ∈ V (I). This interval is denoted Iµ.

2) Compute v = (n.µ− ES(Iµ))/m.

3) The optimal solution is the v-centered assignment uniquely defined by v.
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1.3.2. Filtering of X

Let define Sµπ the set of tuples x satisfying the following constraints:

n
∑

i=1

xi = n.µ

n
∑

j=1

(xj − µ)2 ≤ πmax

xmin
i ≤ xi ≤ xmax

i , ∀i ∈ [1, .., n]

The filtering on X is based on the optimal values xi = max{x[i] : x ∈ Sµπ} and

xi = min{x[i] : x ∈ Sµπ}. Finding xi and xi are symmetrical problems with respect

to µ, hence only the former is considered here. The optimal value xi can be found by

shifting all the domain of xi until the minimization of the sum of square deviations

gives π = πmax. More formally, the maximization problem can be transformed into

an equivalent problem by renaming xi = xmin
i + di. The objective of this equivalent

problem is di = max(di) with 0 ≤ di ≤ xmax
i − xmin

i . The algorithm shown on

Figure 1.1 computes di in O(n).

The procedure starts from the optimal value π. The problem of finding π is then

modified by increasing all values from the domain of variable xi by a non negative

value di. Let denote the variable with modified domain by x′
i, the modified set of

variables by X ′ and the corresponding quantities by ES′(Iµ) and V ′(Iµ). For a

variable xi ∈ R(Iµ) ∪M(Iµ), the new optimal value π′ increases quadratically with

di. The procedure of modifying the domain of xi is repeated at mostO(n) times until

π′ = πmax.

Assume first that xi ∈ R(Iµ). After a shift of di, ES′(Iµ) = ES(Iµ) + di

and V ′(Iµ) = V (Iµ) + di. If di ≤ ∆ = n.µ − min(V (Iµ)), the value v′ of the v-

centered assignment remains in Iµ but becomes v′ = v−di/m. Consequently, the new

optimal value becomes π′ =
(

∑

xj∈L(Iµ)(x
max
j )2

)

+
(

∑

xj∈R(Iµ)(x
min
j )2

)

+ d2
i +

2.di.x
min
i +

(

∑

xj∈M(Iµ)(v −
dj

m
)2

)

−n.µ2 = π+d2
i +2.di.x

min
i +m

(

d2

i

m2 − 2di

m
v
)

.

Recall that the problem is to find di such that π′ = πmax. Hence, d
∗

i is the positive

solution of the second degree equation a.d2
i + 2.b.di + c = 0, where a = (1 + 1

m
),

b = xmin
i − v and c = π− πmax. We have di = d

∗

i only if d
∗

i ≤ ∆ because otherwise

the v-centered assignment does not remain in Iµ. If d
∗

i > ∆ then xi can be shifted

by ∆ so that the value of the v-centered assignment lies in prev(Iµ), and repeat the

procedure on the new problem. The process stops when I1 is reached or if d
∗

i ≤ ∆.
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Algorithm: FindDMax(xi, I
µ)

Data: xi ∈ R(Iµ); Iµ ∈ I; n.µ ∈ V (Iµ);
Result: di such that π′ = πmax with x′ = x + di

if M(Iq) = φ then
return FindDMax(xi, prev(Iµ))

end

∆ = n.µ−min(V (Iµ))

d
∗
i = −b+

√
b2−ac

a
/* values a, b, c are defined in the text */

if d
∗
i ≤ ∆ then

return d
∗
i

else

if Iµ = I1 then
return ∆

else
return ∆+FindDMax(xi + ∆, prev(Iµ))

end

end

Figure 1.1. Algorithm to find di when xi ∈ R(Iµ).

Complete algorithm is shown on Figure 1.1 and runs in O(n) since there are at most

|I(X )| < n recursive calls and that the body executes in constant time.

Finding di for xi ∈ M(Iµ) reduces easily to the previous case. When xi is in-

creased by di, the optimal assignment does not change while di ≤ v − xmin
i . For

di = v−xmin
i two new intervals are created replacing Iµ. These are Ij = [min(Iµ), v]

and Ik = [v, max(Iµ)] with n.µ = max(V ′(Ij)) = min(V ′(Ik)). For this new con-

figuration, the optimal assignment is the same but now n.µ ∈ V ′(Ij) and x′
i ∈ R(Ij).

Hence di = v − xmin
i + FindDMax(x′

i, Ij) where x′
i = xi + v − xmin

i .

1.3.3. Conclusion

� ���������
is a balancing constraint for the criterion of sum of square deviations from

the mean. Filtering algorithms associated with it have been proposed by [GIL 05]. We

have shown that simpler filtering algorithms with the same efficiency can be designed

when the mean is fixed. We currently work on an implementation of
�����������

.
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