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Abstract. In the constraint programming framework, state-of-the-art
static and dynamic decomposition techniques are hard to apply to prob-
lems with complete initial constraint graphs. For such problems, we pro-
pose a hybrid approach of these techniques in the presence of global
constraints. In particular, we solve the subgraph isomorphism problem.
Further we design specific heuristics for this hard problem, exploiting its
special structure to achieve decomposition. The underlying idea is to pre-
compute a static heuristic on a subset of its constraint network, to follow
this static ordering until a first problem decomposition is available, and
to switch afterwards to a fully propagated, dynamically decomposing
search. Experimental results show that, for sparse graphs, our decom-
position method solves more instances than dedicated, state-of-the-art
matching algorithms or standard constraint programming approaches.

1 Introduction

Graph pattern matching is a central application in many fields [1] and can be suc-
cessfully modeled using constraint programming [12,17,19]. Here, we stress how
to apply decomposition techniques to solve the Subgraph Isomorphism Problem
(SIP) in order to outperform the dedicated state-of-the-art algorithm.
Decomposition techniques are an instantiation of the divide and conquer
paradigm to overcome redundant work for independent partial problems. A con-
straint problem (CSP) can be associated with its constraint network, which
represents the active constraints together with their relationship. During search,
the constraint network looses structure as variables are instantiated and con-
straints entailed by domain propagation. The constraint network can possibly
consist of two or more independent components, leading to redundant work due
to the repeated computation and combination of the corresponding independent
partial solutions. The key to solve this is decomposition that consists of two
steps. The first step detects the possible problem decompositions, by examin-
ing the underlying constraint network for independent components. The second



step exploits these independent components by solving the corresponding par-
tial CSPs independently, and combines their solutions without redundant work.
Decomposition can occur at any node of the search tree, i.e. at the root node
or dynamically during search. In constraint programming, decomposition tech-
niques have been studied through the concept of AND/OR search [15]. AND/OR
search is sensitive to problem decomposition, introducing search subtree com-
bining AND nodes as an extension to classical OR search nodes. The size of the
minimal AND/OR search tree is exponential in the tree width while the size of
the minimal OR search tree is exponential in the path width, and is never worse
than the size of the OR tree search.

The check for decomposition is usually done in one of two ways. Either, only
the initial constraint network is statically analysized, resulting in a so called
pseudo-tree. This structure encodes both, the static search heuristic and the
information when a subproblem is decomposable [5]. Another possibility is to
consider the dynamic changes of the constraint network by analyzing it at each
node during the search [3]. Such a dynamic approach is better suited if a strong
constraint propagation (e.g. by AC) is present but obviously to the cost of ad-
ditional computations.

A major problem of decomposition techniques are their problem specificity.
Without good heuristics, decomposition may occure seldom or very late such
that the computational overhead for checking etc. is too high for an efficient
application. Nevertheless, some approaches have been shown to be more general
by applying dedicated algorithms, e.g. graph separators or cycle cutset condi-
tioning [10,15,16].

However, those (usually static) algorithms fail to compute good heuristics
on problems with global constraints, which have an initially complete constraint
graph. Indeed, such algorithms presuppose a sparse constraint graph. In the sub-
graph isomorphism problem (SIP), for example, the initial constraint graph is
complete due to the presence of a global alldiff-constraint. This prevents cycle
cutset and graph separator algorithms to be applied. A further drawback of a
static analysis is the non-predictable decomposability of the constraint network
achieved by constraint entailment through propagation. To exploit this, a dy-
namic analysis of the problem structure during the search is necessary. This is
of high importance for SAT- [13] and CSP-solving [3]. Unfortunately, a dynamic
analysis requires significant additional work that slows down the search process
once more.

In this paper we show how to overcome those shortcomings by combining
static and dynamic decomposition approaches to take advantage of decomposi-
tion for the hard problem of SIP. A combination yields a balance between the
fast static analysis and the needed full propagation exploited by dynamic search
strategies in the presence of global constraints. The underlying idea is to follow
the static ordering until a first problem decomposition is available (or likely) and
to switch afterwards to a full propagated decomposing search. For the later, we
consider only a binary constraint representation inside the constraint network
in order to compute a good decomposition-enforcing heuristic. As shown in the



experiments, this idea is a key point for an efficient application of a decomposing
search (as AND/OR) for the SIP.

To face the problem of graph pattern matching [1] many different types of
algorithms have been proposed, ranging from general methods to specific algo-
rithms for particular types of graphs. The state-of-the-art approach is the dedi-
cated VF-algorithm, freely available in the C++ v£1ib library [2]. In constraint
programming, several authors [12,17] have shown that graph matching can be
formulated as a CSP problem, and argued that constraint programming could
be a powerful tool to handle its combinatorial complexity. Our modeling [19] is
based on these works. In [19], we showed that a CSP approach is competitive
with dedicated algorithms over a graph database representing graphs with vari-
ous topologies. Regarding decomposition, Valiente and al. [18] have shown how
to use decomposition techniques in order to speed up subgraph homeomorphism.
[18] states that, if the initial pattern graph is made of several disconnected com-
ponents, then matching each component separately is equivalent to matching all
of them together. Specific algorithms are also demonstrated. Our work can be
seen as an extension to this work. We consider the subgraph isomorphism prob-
lem instead of the subgraph homeomorphism problem. The latter case is easier
as the constraint graph is made only of the initial pattern graph. Moreover, we
apply the decomposition dynamically when [18] decomposes only statically on
the initial pattern graph.

Objectives and results - In this paper we study the limits of the direct
application of state-of-the-art (static and dynamic) decomposition techniques
for problems with global constraints; we show that such a direct application
is useless for SIP. We develop a hybrid decomposition approach for such prob-
lems and design specific search heuristics for SIP, exploiting the structure of the
problem to achieve decomposition. We show that the CP approach using the
proposed decomposition techniques outperforms the state-of-the-art algorithms,
and solves more instances on some classes of problems (sparse instances with
many solutions).

The paper is structured as follows. Section 2 introduces a decomposition
method able to detect decomposition at any stage during the search. In Section
3, the proposed decomposition method is applied and specialized to SIP. Exper-
imental results assessing the efficiency of our approach are presented in Section
4. Section 5 concludes the paper.

2 Decomposition

In this section we show how to define and detect decomposition during search.
Sections 2.1 and 2.2 define a decomposition method able to detect decomposi-
tion at any state during search, considering that we do not know a priori when
decomposition occurs. Section 2.3 shows that our method is able to compute
the same decompositions than the AND/OR search framework [15], where the
search is precomputed on a graph representation of the constraint network, and
decomposition events are known in advance. The AND/OR search method has



shown to be very attractive for a large classes of constraint networks. But as we
will see in Section 3, our method is suited for the SIP while the AND/OR method
is not applicable because the decomposition events cannot be precomputed.

2.1 Preliminary

A Constraint Satisfaction Problem (CSP) P is a triple (X,D,C) where X =
{z1,...,x,} is a set of variables, D = {Dy,...,D,} is a set of domains (i.e. a
finite set of values), each variable z; is associated with a domain D;, and C'is a
finite set of constraints with scope(c) C X for all ¢ € C, where scope(c) is the
set of variables involved in the constraint c¢. A constraint ¢ over a set of variables
defines a relation between the variables. A solution of the CSP is an assignment
of each variable in X to one value in its associated domain so that no constraint
¢ € C is violated. We denote Sol(P) the set of solutions of a CSP P.

A partial CSP P of a CSP P = (X,D,C) is a CSP (X,ﬁ,é) where X C X,
VD; € D: Dy, C Dy, and C C C. Note that since P is a CSP, we have scope(é) C
X forall ée C.

2.2 Decomposing CSPs and graphs

This subsection defines the notion of decomposition for a CSP. A CSP is de-
composable into partial CSPs if the CSP and its decomposition have the same
solutions.

Definition 1. A CSP P is decomposable in partial CSPs Py, ..., P, iff :

—VseSol(P):3s1,...,5; € Sol(P1),...,S0l(Pr) : s = U1 18
= Vs1,...,8, € S0l(Py),...,80l(Py):3s € Sol(P):s=Ucpn,isi-

This general definition of decomposition can be instantiated to two practical
cases. The first definition corresponds to the direct intuition of a decomposition:
a CSP is decomposable if it can be split into disjoint partial CSPs. It is called
0-decomposability as no variable are shared between the partial CSPs.

Definition 2. A CSP P = (X, D, C) is 0-decomposable in partial CSPs Py, ..., P,
with P; = (Xi,Di,Ci) ffvV1i<i<ji<n:X; ﬂXj = @, Uie[l,k]Xi =X,
Uie,;Di = D, Uienn iCi = C.

The second definition finds more decompositions by allowing the partial CSPs
to have instantiated variables in common. It is called 1-decomposability as vari-
ables shared between the partial CSPs have a domain of size 1.

Definition 3. A CSP P = (X, D, () is 1-decomposable in partial CSPs Py, ..., Py
Ui, i Xs = X, Uiepi)Di = D, Uiep i Ci = C.

The relationship with the general definition is direct. If a CSP P is 0-
decomposable or 1-decomposable in partial CSPs P, ..., Pg, then P is decom-
posable in partial CSPs Py, ..., P;. From Definitions 2 and 3, it follows further :



Property 1. If a CSP P = (X, D, C) is 0-decomposable in P,..., Py, then P is
1-decomposable in P, ..., P;. Further P might be 1-decomposable in P, ..., P},
with k' > k via overlapping partial problems P;.

Redundant computation during CSP-solving is performed whenever a CSP is
0- or 1-decomposable into k partial CSPs P4, ..., Px. For instance, if the solutions
of P; are computed first, then for each solution of P; repeatedly all solutions of
Py, ..., P, are computed. Therefore, Py, ..., Py are solved |Sol(P;)| times and
this overhead can be exponential in the size of the CSP. This can be avoided
by solving the partial problems independently. The necessary detection of the
CSP-decomposition into independent partial CSPs can be performed through
the concept of constraint graphs.

A graph G = (V, E) consists of a vertex/node set V and an edge set E C
V' x V, where an edge (u,v) is a pair of nodes. The vertices u and v are the
endpoints of the edge (u,v). We consider directed and undirected graphs. A
subgraph of a graph G = (V, E) is a graph G’ = (V/,E’) with V' C V and
E' C E such that V(, )ep : u,v € V'. A graph G is said to be singly connected
if and only if there is at most one simple path between any two nodes in G.

Definition 4. The constraint graph of a (partial) CSP P = (X,D,C) is an
undirected graph G¥ = (V,E) where V. = X and E = {(z;,z;) | 3 c € C :
x;,xj € scope(c)}.

Note that all variables in the scope of one constraint form a clique in G .
This constraint graph is also called the primal graph [4]. There is a standard
syntactic way of decomposing a CSP, based on its constraint graph.

Definition 5. A graph G = (V, E) is decomposable into k subgraphs G1,...,Gy
iff Vicicj<k : VinV; =0, Uicp Vi =V, and Uiy B = E.

Property 2 shows that one has to compute disjoint components of the con-
straint graph to detect independent CSPs. This can be done in linear time.

Property 2. Given a CSP P = (X, D, () with its constraint graph G, for all
k > 1, the constraint graph G of P is decomposable in G1,...,Gy, iff P is
0-decomposable in Py, ..., Py iff P is 1-decomposable in P|,..., P/ with m > k.

Proof - The first iff is straightforward. For the second iff, we can construct a
1-decomposition Py, ..., P, of P from a decomposition G1,...,Gy of G, with
m > k. The construction is described for the case k = 1 (i.e. P, = P), and
can be easily generalized. Let G = (V, E) be the graph constraint of P. Let
Vs ={x € V| |D,| = 1}. Transform G into G’ where G’ is the graph G without
variables with a singleton domain. More formally, G’ = (V', E') with V' = V\ V
and E' = (V' x V')N E. Suppose G’ is decomposable into G1,...,G., (m > 1).
Then, nodes associated to variables with a singleton domain and their associated
edges are added to the G/, giving G} = (V;}, E}). More formally G} = (V!, E})
where V;!' = V/ UV, and E! = (V;' x V;') N E. The graphs G},...,G., are the
constraint graphs of the partial CSPs P; of the 1-decomposition of P. B



The above property is especially useful when k& = 1. In this case, the 0-
decomposition does not decompose the CSP, while 1-decomposition may decom-
pose it.

2.3 Relationship with AND/OR search tree

Another approach to define decomposable CSPs is to use the concept of AND/OR
search spaces defined with pseudo-trees [15].

Definition 6. Given an undirected graph G = (V,E), a directed rooted tree
T = (V,E') defined on all its nodes is called pseudo-tree of G if any arc of
E which is not included in E' is a back-arc, namely it connects a node to an
ancestor in T

Definition 7. Given a CSP P = (X,D,C), its constraint graph G* and a
pseudo-tree T of G, the associated AND/OR search tree has alternating levels
of OR nodes and AND nodes. The OR nodes are labeled x; and correspond to
variables. The AND nodes are labeled < xz;, v, > and correspond to assignment
of the values vy, in the domains of the variables. The root of the AND/OR search
tree is an OR node, labeled with the root of the pseudo-tree T . The children of
an OR node z; are AND nodes labeled with assignments < x;,vi >, consistent
along the path from the root. The children of an AND node < x;,vx > are OR
nodes labeled with the children of variable z; in TT.

Semantically, the OR states represent alternative solutions, whereas the AND
nodes represent the problem decompositions into independent partial problems,
all of which need to be solved. When the pseudo-tree is a chain, the AND/OR
search tree coincides with the regular OR search tree.

Following the ordering induced by the given a pseudo-tree TF of the con-
straint graph of a CSP P, the notion of 1-decomposability coincides with the
decompositions induced by an AND/OR search.

Property 3. Given a CSP P = (X,D,(C), a pseudo tree T* over the constraint
graph of P and a path p of length [ (I > 1) from the root node of TF to an
AND node p;, the CSP P where all variables in the path p are assigned is 1-
decomposable into Py, ..., P, where k is the number of OR successors in T of
the end node p;.

Proof - Let y1,...,yx (k > 1) be the OR successor nodes of the end node p,
in TP. We note tree(y;) the tree rooted at y; in TT. Let X, = {v € X|v € p}.
Then build the partial CSPs P; = (X;,D;,C;) (i € [1,k]):

X, =X;U{veX|véetree(y:)}
C; ={ce C| scope(c) C X;}.

It is clear that U;c ) C; = C since there exists no constraint between two
different tree(y;) in TY, by definition of a pseudo tree. B



As will be explained in the next section, neither static nor dynamic AND/OR
search is suited for our particular problem. In SIP, the constraint graph is com-
plete, and thus the pseudo tree is a chain, leading to an AND/OR search tree
equivalent to an OR search tree. However the CSP P becomes 1-decomposable
during search and a dynamic framework is needed in order to check decomposi-
tion on any state during the search. But this is computationally very expensive
as we will show in Section 4.

3 Applying decomposition to SIP

3.1 Subgraph Isomorphism Problem Definition

A subgraph isomorphism problem between a pattern graph G, = (V,, E,) and
a target graph G; = (V;, E;) consists in deciding whether G, is isomorphic
to some subgraph of G;. More precisely, one should find an injective function
f:V, — V, such that Y(u,v) € E, : (f(u), f(v)) € E;. This NP-Hard problem
is also called subgraph monomorphism problem or subgraph matching in the
literature. The function f is called a subgraph matching function. We assume the
graphs are directed. Undirected graphs are a particular case where undirected
arcs are replaced by two directed arcs.

The CSP model P = (X,D,C) of subgraph isomorphism should repre-
sent a total function f : V, — V;. This total function can be modeled with
X =x1,...,x, with 2; a FD variable corresponding to the i** node of G, and
D(z;) = V;. The injective condition is modeled with an alldiff(zq,...,x,)
global constraint. The isomorphism condition is translated into a set of n k-
ary constraints MC; = (x;,x;) € E; for all z; € V,. Given the above mod-
elling, the constraint graph of the CSP, called the SIP constraint graph, is the
graph GF = (VP EF) where VP = X and E¥ = E, U E,. Note, E, is rep-
resenting all propagations of the MC}; constraints while £ depicts the global
alldiff-constraints, i.e. a clique (Ex =V, x V},). Therefore, the SIP-CSP con-
sists of global constraints only that would prevent decomposition using a static
AND/OR search. Implementation, comparison with dedicated algorithms, and
extension to subgraph isomorphism and to graph and function computation do-
mains can be found in [19].

3.2 Decomposing SIP

This subsection explains how to decompose the SIP problem. We first show why
static AND/OR search fails by studying the SIP constraint graph.

Static AND/OR Search: Because of the alldiff-constraint, the SIP con-
straint graph corresponds to the complete graph Ky, |. The pseudo-tree com-
puted on the constraint graph of any SIP instance is a chain, detecting no decom-
position at all. Moreover, the initial SIP constraint graph is not 1-decomposable.
Therefore a static analysis of the SIP-CSP yields no decomposition at all and is
not applicable.



Decomposition seems difficult to achieve. However, as variables are assigned
during search, 1-decomposition may occur at some nodes of the search tree. A
dynamic detection of 1-decomposition at different nodes of the search tree gives
a first way of detecting decomposition for the SIP.

Dynamic AND/OR Search: A dynamic analysis of the SIP constraint graph,
as done for dynamic AND/OR search, takes care of possible constraint entail-
ments and propagation results. It is therefore very usefull for a strongly propa-
gated CSP. The main drawback is the slow down due to the additional propa-
gation and dynamic decomposition checks. Further, the SIP constraint graph is
still a complete one and does not allow for decomposition.

Our 1-decomposition removes assigned variables in the decomposition pro-
cess. One could also remove entailed constraints, leading thus to more decompo-
sition. This can easily be done for the alldiff-constraint by removing an edge
(zi,7;) € ET representing z; # x; when D; N D; = (0 (i # j). In the following,
we redefine the constraint graph of a SIP as a constraint graph for the morphism
constraints together with a dynamic constraint graph of the alldiff-constraint.

Definition 8. Given the CSP P = (X,D,C) of a SIP instance, its SIP con-
straint graph is the undirected graph G = (V,EMY U E7), where V. = X,
EMC = {(2;,2;) € By | wi,x; € X} and B = {(i,j) € X x X | D; N D; = 0}.

Given the particular structure of a SIP constraint graph, it is possible to
specialize and simplify the detection of 1-decomposition.

Property 4. Let P = (X,D,C) be a CSP model of a SIP instance, and let
G = (V,EM® U E7) be its SIP constraint graph. Let M = (V' E’) be the
constraint graph without assigned variables, i.e. with V' = {z € X | |D,| > 1}
and B/ = (V' x V)N EMY_ Then P is 1-decomposable into Pi,..., P, iff M is
decomposable into Mj, ..., M,, and D(M;) N D(M;) =0 (1 <i < j < m) with
D(M;) the union of the domains of the variables associated to the nodes of M.

The above property states that the decomposition of M is a necessary con-
dition. We can therefore design heuristics leading to the decomposition of M,
hence in some cases in the decomposition of P.

A direct approach consists in detecting 1-decomposition at each node of the
search tree. When the CSP becomes 1-decomposable in partial CSPs, those are
computed separately in AND nodes. As show in the experimental section, this
strategy proves to be much slower than a standard OR search tree. The reason
is twofold:

1. Decomposition is tested at every node of the search tree. Starting from the
root node is useless, as a lot of computation time is lost.
2. There is no guarantee that a decomposition will occur.

Based on this observation, we present a hybrid approach combining the best
of the static and dynamic strategy.



The Hybrid Approach: As stated before, even a dedicated dynamic AND/OR
search, checking for decomposition on the reduced constraint graph only, is not
fast enough to compete with state-of-the-art SIP-solvers as implemented in the
vElib library. Therefore, we suggest a hybrid approach in order to fix this. The
idea is as follows:

1. calculate a static pseudotree heuristic on the reduced constraint graph

2. apply a forward checking search following the pseudotree up to the first
branching or until a fixed number of variables is assigned

3. switch the strategy to dynamic AND/OR search with full AC-propagation

This ensures, that the expensive dynamic approach is first used when a de-
composition is available or at least likely after full propagation. Up to that mo-
ment, a cheap forward checking approach is used for a fast inconsistency check
and a strong reduction of the reduced constraint graph.

In the following, we will give two dedicated heuristics we have applied in the
preliminary forward checking procedure.

3.3 Heuristics

We now present two heuristics based on Property 4 aiming at reducing the num-
ber of decomposition tests, and favoring decomposition. The general idea is to
first detect a subset of variables disconnecting the morphism constraint graph
into disjoint components as it is a necessary condition for 1-decomposability.
The search process will first distribute over these variables. The test of 1-
decomposition is performed when all these variables are instantiated. It is also
performed at the subsequent nodes of the search tree.

The cycle heuristic (h1) The objective of the cycle heuristic is to find a set of
nodes S in the morphism graph CGM¢ = (X, EMY) (see Def. 8) such that the
graph without those nodes is simply connected. When the variables associated to
S are assigned, any subsequent assignment will decompose the morphism graph.
Finding the minimal set of nodes is known as the minimal cycle cutset problem
and is a NP-Hard problem [6]. We propose here a simple linear approximation
that returns the nodes of the cycles of the graph. Algorithm 1 runs in O(|V,]).
The effectiveness of such a procedure on different classes of problems is shown
in the experimental section. One of the main advantage is its simplicity.

Using graph partitioning (h2) Graph partitioning is a well-known technique
that allows hard graph problems to be handled by a divide and conquer approach.
In our context, it can be used to separate the morphism constraint graph into
two graphs of equal size.

Definition 9. Given a graph G = (V, E), a k-graph partitioning of G is a par-
tition of V in k subsets, Vi,..., Vi, such that V; N V; =0 fori # j, U;V, =V,
and the number of edges of E whose incident vertices belong to different subsets
is minimized (called the edgecut).



input : G = (X, E) the CGM¢

output: The nodes of the cycles of G

All — X

T 0

while (3n € X | Degree(n) ==1) do
T—TU{n}

remove node n from G
end

return AL\ T
Algorithm 1: Selection of the body variables.

Based on the edgecut of the morphism constraint graph, we can easily deduce
a subset variables.

Definition 10. Given a 2-graph partitioning of G, a nodecut is a set of nodes
containing one node of each edge in the cutset.

Finding a minimum edgecut is a NP-Hard problem for k£ > 3, but can be
solved in polynomial time for & = 2 by matching (see [8], page 209). However we
use a fast local search approximation [11], as the exact minimum subset is not
needed.

4 Experiments

Goals - The objective of our experiments is to compare our decomposition
method on different classes of SIP with standard CSP models as well as vflib,
the standard and reference algorithm for subgraph isomorphism [2]. We also
compare our decomposition method with standard direct decomposition. The
different heuristics presented in Section 3.5 are also tested.

Instances - The instances are taken from the vf1lib graph database described
in [7]. There are several classes of randomly generated graph, random graphs,
bounded graphs and meshes graphs. The target graphs has a size n and the
relative size of the pattern is noted «. For random graphs, the target graph has
a fixed number of nodes n and there is a directed arc between two nodes with
a probability 7. The pattern graph is also generated with the same probabil-
ity m, but its number of nodes is an. If the generated graph is not connected,
further edges are added until the graph is connected. For random graphs, n
takes a value in [20, 40, 80, 100, 200, 400, 800, 1000], n in [0.01,0.05,0.1], and « in
[20%,40%, 60%]. There are thus 69 classes of randomly connected graphs. In a
class of instances denoted as si2-r001-m200, we have o = 20%, n = 0.01, and
n = 200 nodes.

Mesh-k-connected graphs are graphs where each node is connected with its
k neighborhood nodes. Irregular mesh-k-connected graphs are made of a regular

10



mesh with the addition of random edges uniformly distributed. The number of
added branches is pn. For random graphs, n can take a value in [16,...,1096], k
in [2,3,4], and pin [0.2,0.4, 0.6]. In an irregular mesh-connected class of instances
denoted as si2-m4Dr6-m625, we have a = 20%, k = 4, p = 0.6 and n = 625
nodes.

One hundred graphs are generated for each class of instances. For random
graphs, we also generated 100 additional instances where the target graph has
1600 nodes, for each possible value of 7 and a. We used the generator freely
available from the graph database, following the methodology described in [7].

Models - Several models were considered for the experiments. First of all, we use
the available implementation of v£1ib. Then classical CP models are used, called
CPFC and CPAC. The model CPFC is a model where all the constraints use forward
checking and the variable selection selects the first variable which is involved in
the maximum number of constraints (called maxcstr) using minimal domain size
as tiebreaker. The model CPAC is similar except it uses an arc consistent version
of the MC constraint.

The model CP+Dec waits for 30% of the variables to be instantiated following
a variable selection policy, called minsize), selecting the (uninstanciated) vari-
able with the smallest domain. It then tests at each node of the search tree if
decomposition occurs using a maxcstr variable selection. The model CP+Dec+h1
uses the cycle heuristics; once the nodes belonging to the cycles of the pattern
graph are instantiated using a minsize variable selection policy (up to 30% of
the size of the pattern), decomposition is tested at each node of the search tree
and follows a maxcstr variable selection. The model CP+Dec+h2 uses the graph
partitioning heuristics; once the variables belonging to the nodecut set are in-
stantiated (up to 30% of the size of the pattern), decomposition is tested at each
node of the search tree and follows a maxcstr variable selection.

Setup - All experiments were performed on a cluster of 16 machines (AMD
Opteron(tm) 875 2.2Ghz with 2Gb of RAM) using the implementation of [14].
All runs are limited to a time bound of 10 minutes. In each experiment, we
search for all solutions. Experiments searching for one solution have also been
done but are not reported here for lack of space. These experiments lead to the
same conclusions.

Description of the tables - Table 1 shows the results for random graphs and
Table 2 for irregular mesh-connected graphs. Each line describes the execution
of 100 instances from a particular class. The column N indicates the mean
number of solutions among the solved instances. The column % indicates the
number of instances that were solved within the time bound of 10 minutes. The
column g indicates the mean time over the solved instances and the column
o indicates the corresponding standard deviation. The column D indicates the
number of instances that used decomposition among the solved instances. The
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Table 1. Randomly connected graphs, searching for all solutions.

Bench vilib CPAC CPFC
N (% p o|% p o|% p o
$i2-r001-m200 |61E+6|72 74 115/83 56 109|85 41 76
si2-r001-m400 |17E+8| 2 248 118/ 10 106 156| 7 288 177
$i2-r001-m800 [28E+7| 0 - - |11 220 136| 1 153 -
si2-r001-m1600| 2500 | 16 203 202| 30 227 146| 0 - -
si6-r01-m200 1 100 2 3 (100 9 11 |100 12 17
$16-r01-m400 1 66 99 13389 156 116|50 190 137
8i6-r01-m800 1 7 235153 0 - - 5 389 125
$16-r01-m1600 1 0O - -10 - - 139499 51
Bench CP+Dec CP+Dec+hl CP+Dec+h2
N (% p o D #D | % pu o D #D S|% pu o D#D S
$12-r001-m200 |61E+6(|94 49 100 91 9244 |98 6 40 98 1834 0.2/ 87 23 48 71 909 0.2
si2-r001-m400 [17E4+8|15 160 177 15 35655| 75 68 125 75 2268 0.4| 29 212 218 22 196 0.3
8i2-r001-m&800 [28E+7(0 - - 0 12 4 227 254 4 21 0.6/12 256239 8 0 0.6
si2-r001-m1600| 2500 |0 - - 0 O 7 165199 1 0 080 - - 0 0 09
$16-101-m200 1 [941481530 0 [100 0 O 0 0 1]100 0 0 0 0 1
$16-r01-m400 1 21792200 0 (100 2 1 O O 1{100 4 6 0 0 1
$16-r01-m800 1 |0 - - 0 0 |100 46 35 0 0 1]100 46 39 0 0 1
$16-r01-m1600 1 0 - - 0 0 |74479 71 0 0 1|54 435 79 0 0 1

column #D indicates the mean number of decomposition that occurred over all
solved instances. The column S indicates the mean size of the initial variable
set computed by the heuristics h1 or h2. Table 3 gives the mean degree and its
variance for the different instances classes. For each class of instances in Tables
1 and 2, the results of the best algorithms are in bold.

Analysis - We start the analysis by looking at random graphs (see Table 1). We
compare first the vflib with the CP models CPFC and CPAC. For si2-r001-*
instances, the CPAC model is the best in mean time and % of the solved instances.
When the level of consistency is higher for the MC constraint, the search space size
diminishes, and all solutions are quickly found. For si6-r01-* instances, CPAC
is the best model for m200 and m400 instances, while CPFC is the best model
for m800 and m1600 instances. As shown in Table 3, the mean degree increases
with the size of the generated graph. The effect of propagation is modified. The
MC forward checking propagator is more efficient with denser graphs than an arc
consistent one. With sparse graphs, an arc consistent MC is cheap and propagates
a lot, while with denser graphs it is more efficient to wait for instantiation to
propagate.

We now look at the use of decomposition for random graphs (second table
in Table 1). The first model CP+Dec, which corresponds to a decomposition
approach that uses the whole constraint graph only, fails. This model cannot
take into account the structure of the problem. This can be measured through
the quality of the decomposition.
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Table 2. Irregular meshes, searching for all solutions.

Bench

vilib CPAC

CPFC

N %

w o ol|% p o|%

uw o

si2-m4Dr6-m625

88E+5| 89

23 50|94 21 38|95

6 27

si2-m4Dr6-m1296

17E+7| 16

135 137] 33 178 123| 38

107 154

8i6-m4Dr6-m625

3.31{100

7 43100 29 4

100 9

4

si6-m4Dr6-m1296

10.38

100 13 55

100 233 30

100 113 65

Bench

CP+Dec

CP+Dec+hl

CP+Dec+h2

N |% nu

o D #D

% u o D#D S

% w o D#D S

si2-m4Dr6-m625

88E+5

35223 151 35 0.7

100 6 22 96 5.4 0.5

94 6 21 88 5.5 0.3

si2-m4Dr6-m1296

17E+7]3 120 36 3 0.

1163 6710963 4 0.5

49 163 170 49 3.9 0.5

$i6-m4Dr6-m625

3.3/8 105 32 0 O

100 7 3 6 0.1 08

100 22 26 6 0.1 0.7

s16-m4Dr6-m1296

10.3| 0 0 0

100 65 20 41 0.6 0.7

77 22316129 0.4 0.7

Table 3. Mean degree for the tested graph set.

Bench degree
I o

$i2-r001-m200 2.30 0.14
$12-r001-m400 2.89 0.14
$i2-r001-m800 3.99 0.18
si2-r001-m1600 | 6.80 0.19
$16-r01-m200 3.29 0.14
si6-r01-m400 5.27 0.16
s16-r01-m800 9.76 0.15
$16-r01-m1600 19.20 0.17
si2-m4Dr6-m625 | 3.51 0.26
si2-m4Dr6-m1296| 3.53 0.20
si6-m4Dr6-m625 | 5.12 0.16
si6-m4Dr6-m1296| 5.19 0.14

First, we will focus on the si2-r001-* classes. The models CP+Dec+h1 and
CP+Dec+h2 achieve better decompositions than the CP+Dec model. Even though
CP+Dec tends to induce more decompositions, the number of instances using de-
composition (see column D) is higher for CP+Dec+hl and CP+Dec+h2 than for
CP+Dec. This visualizes the computational overhead of a pure dynamic decom-
position approach. However, the number of instances using decomposition tends
to be zero for m1600 instances. This is due to the fact that the graphs have higher
degrees as their size increases (see Table 3). This can be observed by looking at
the column S: the size of the initial subset of variable to instantiate becomes
closer to 100% as size increases. For this reason our decomposition method is
beaten by the CPAC model for si2-r001-m1600.

We now focus on the si6-r01-* classes. As stressed earlier, those instances
have denser graphs. The initial set of variables to instantiate is the whole set
of pattern nodes for CP+Dec+h1 and CP+Dec+h2. No decomposition occurs. Why
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then CP+Dec+h* models outperform all other methods in those classes? Because
CP+Dec+h* models use a minsize variable selection policy instead of maxcstr for
CPFC. In the class si6-r01-*, the CP+Dec+h1 approach reduces thus to a CPFC
with a minsize variable selection policy.

For random graphs, the decomposition method with heuristics is especially
useful for sparse graphs with many solutions, while a CPFC model using a minsize
variable selection policy seems the best choice for denser graphs and there are
few solutions. The vf1ib is clearly outperformed on all these classes of instances.
Experiments on the other classes of random graphs, not reported here for lack
of space, confirmed this analysis.

We now analyze irregular mesh-connected graphs. We observe in Table 3 that
the mean degree of the si2-m4Dr6-* classes is higher than for the si6-m4Dr6-*
classes. We first compare the vflib and CP models without decomposition.
For sparser si2-m4Dr6-* classes, CPFC is the best method, while for denser
si6-m4Dr6-* classes, vf1ib is the best. We have no particular explanation for
this behavior and this is an open question. Regarding decomposition methods,
the same remarks than for random graphs apply. The CP+Dec model tends to
produce less decomposition than the CP+Dec+h* models. Moreover, CP+Dec+hx*
models are the best models for sparser instances with many solutions. As the
mean degree of the instances increase (see Table 3), the decomposition methods
become less efficient. Indeed, for si6-m4Dr6-m1296, the best method is vflib,
but our decomposition approach also solves all the instances and helps CP at
diminishing the mean time.

Summary - The application of standard direct decomposition methods CP+Dec
lead to performances worse than the direct application of standard CP models
(CPFC, CPAC) and vflib. On most classes, the cycle heuristic (h1) is better than
the graph partitioning heuristic (h2). On sparse randomly connected graphs
with many solutions, and on sparse irregular meshes, our decomposition method
outperforms standard CP approaches as well as vf1lib. For denser connected
graphs, CP models (CPAC or CPFC with a minsize policy) outperforms v£1lib. For
denser irregular meshes, vf1lib, the standard CP models and our decomposition
method solve all the instances, but v£1ib is more efficient.

5 Conclusion

Our initial question was to investigate the application of decomposition tech-
niques as AND/OR search for problems with global constraints, in particular
for the SIP. We showed that it is indeed possible using a hybrid approach of
static and dynamic techniques and a dedicated problem structure analysis. For
the SIP, one can derive a decomposition enforcing static heuristic that is used
by a cheap forward checking approach. As soon as the problem gets (likely) de-
composable, the search process is switched to a fully propagated, dynamically
decomposed search. This exploits the non-predictable reduction of the constraint
graph structure via constraint propagation and entailment but reduces the huge
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computational effort of a completely propagated search. We showed that our hy-
brid decomposition approach is able to beat the state-of-the-art VF-algorithm
for sparse graphs with high solution numbers. As future work, we would like
to investigate more heuristics for SIP as it influences the quality of decomposi-
tion. Moreover, we intend to investigate the use of our decomposition method
for motif discovery where solving SIP is used as an enumeration tool [9].
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