
Approximate Constrained Subgraph Matching ?

Stéphane Zampelli, Yves Deville, and Pierre Dupont

Université Catholique de Louvain,
Department of Computing Science and Engineering,

2, Place Sainte-Barbe
1348 Louvain-la-Neuve (Belgium)

{sz, yde, pdupont}@info.ucl.ac.be

1 Introduction

Our goal is to build a declarative framework for approximate graph matching where
various constraints can be stated upon the pattern graph, enabling approximate con-
strained subgraph matching, extending models and constraints proposed by Rudolf [1]
and Valiente et al. [2]. In the present work, we propose a CSP approach for approximate
subgraph matching where the potential approximation is declaratively stated in the pat-
tern graph as mandatory/optional nodes/edges. Forbidden edges, that is edges that may
not be included in the matching, can be declared on the pattern graph. We also want to
declare properties between pairs of nodes in the pattern graph, such as distance prop-
erties, that can be either stated by the user, or automatically inferred by the system. In
the former case, such properties can define new approximate patterns. In the latter case,
these redundant constraints enhance the pruning.

2 Approximate Subgraph Matching

2.1 Problem Definition

A subgraph monomorphism between a pattern graph Gp = (Np, Ep) and a target
graph Gt = (Nt, Et) is an injective function f : Np → Nt respecting (u, v) ∈ Ep ⇒
(f(u), f(v)) ∈ Et. A constraint model to solve the exact subgraph matching problem
has been proposed by several authors [2] [1]. This model focuses on monomorphism and
will form our basic monomorphism constraints. The variables X = {x1, ..., xn} are the
nodes of the pattern graph and their respective domain D(xi) is the set of target nodes.
The assignment must respect two conditions: all variables have a different value and the
structure of the pattern must be kept (monomorphism condition). In a CSP framework,
the first condition is implemented with the classical Alldiff (x1, ..., xn) constraint [3] [4].
The second condition is translated into a monomorphism constraint.

A useful extension of subgraph matching is approximate subgraph matching, where
the pattern graph and the found subgraph in the target graph may differ with respect to
their structure.

Optional nodes In our framework, the approximation is declared upon the pattern
graph. Some nodes are declared optional, i.e. nodes that may not be in the matching.
Specifying optional edges in a monomorphism problem is useless as it is equivalent to
omitting the edge in the pattern. The status of the edges depends on the optional state of
their endpoints. An edge having an optional node as one of its endpoints is optional. An

? Acknowledgments : This research is supported by the Walloon Region, project BioMaze (WIST
315432). Thanks also to the EC/FP6 Evergrow project for their computing support.

2 Zampelli Stéphane et al.

optional edge is not considered in the matching if one of its endpoints is not part of the
matching. Otherwise, the edge must also be a part of the matching.

Forbidden edges Edges may also be declared as forbidden between their two end-
points (u, v), meaning that if u and v are in the domain of f , then (u, v) must not exist in
the target graph. A pattern graph with all its complementary edges declared as forbidden
induces a subgraph isomorphism instead of a subgraph monomorphism.

A pattern graph with optional nodes and forbidden edges forms an approximate pat-
tern graph.

Definition 1 An approximate pattern graph is a tuple (Np, Op, Ep, Fp) where (Np, Ep)
is a graph, Op ⊆ NP is the set of optional nodes and Fp ⊆ Np × Np is the set of for-
bidden edges, with Ep ∩ Fp = ∅.

The corresponding matching is called an approximate subgraph matching.

Definition 2 An approximate subgraph matching between an approximate pattern graph
Gp = (Np, Op, Ep, Fp) and a target graph Gt = (Nt, Et) is a partial function f :
Np → Nt such that :

1. Np \ Op ⊆ dom(f)
2. ∀ i, j ∈ dom(f) : i 6= j ⇒ f(i) 6= f(j)
3. ∀ i, j ∈ dom(f) : (i, j) ∈ Ep ⇒ (f(i), f(j)) ∈ Et

4. ∀ i, j ∈ dom(f) : (i, j) ∈ Fp ⇒ (f(i), f(j)) /∈ Et

The notation dom(f) represents the domain of f . Elements of dom(f) are called the
selected nodes of the matching. This means that dom(f) can be represented by a finite
set variable. Its lower bound flb consists of all selected nodes, and its upper bound fglb

consists of selected nodes and nodes that could be selected.

3 Constraints for Approximate Subgraph Matching

Alldiff Constraint The Alldiff constraint must be adapted to variables that may not be
assigned. One solution is to create symbolic values e1, ..., en and put ei in the initial
domain of xi. In a solution, xi = ei if xi is not assigned to any target node. Using these
n symbolic values, a global Alldiff constraint can still be posted as in the exact case.

Morphism Constraint The basic morphism condition forcing the matching to respect
the pattern structure (see [2]) has been generalized to handle more general morphism
conditions as well as optional nodes :

MC(x1, ..., xn, A, B) ≡
∧

i,j

(i, j) ∈ A ∧ i, j ∈ dom(f) ⇒ (xi, xj) ∈ B

The former constraint states that a morphism relation between two pattern nodes xi

and xj must be forced if and only if they are present in the domain of f . The MC con-
straint can be rewritten as:

∀ i ∈ Np ∀ a ∈ Nt : (|D(xi) ∩ Vt(a)| = 0

∧ i ∈ dom(f)) ⇒ a /∈ D(xj) ∀ j ∈ Vp(i) .

The proposed propagator keeps track of relations between all the target nodes and
the domain D(xi) in a structure S(i, a) = |D(xi) ∩ Vt(a)| representing the number of
relations between a target node a and D(xi). Whenever the neighbors of a target node a

Approximate Constrained Subgraph Matching 3

have no relation with D(xi), that is when S(i, a) = 0, node a is pruned from all neigh-
bors of xi. It has a O(NDd) amortized time complexity, and the structure S(i, a) has
O(ND) spatial complexity [2]. The preprocessing to compute S(i, a) costs O(NDd).
The global MC constraint is thus algorithmically global as it achieves the same consis-
tency than the original conjunction of constraints, but more efficiently.

The additional condition i ∈ dom(f) states that only selected nodes should propa-
gate under the morphism condition. The propagation of the morphism constraint of an
optional i is computed but performed only when i is in the domain of f . As depicted in
Figure 1, all selected nodes propagate in their neighborhood but optional nodes propa-
gate only when they are selected.

Fig. 1. Pruning method for the approximate morphism condition

Forbidden Edges Constraint A constraint for the forbidden edges (condition 4 in the
matching) can be obtained by parameterizing MC with Et = {(a, b) /∈ Et}:

MC(x1, ..., xn, Fp, Et) .

The constraints for the approximate subgraph isomorphism problem are then :

alldiff(x1, ..., xn) ∧ MC(x1, ..., xn, Ep, Et) ∧ MC(x1, ..., xn, Fp, Et) .

However a single propagator MCPA handling the last two constraints was imple-
mented, using the relation |D(xi) ∩ V t(a)| = 0 ⇔ |D(xi) ∩ Vt(a)| = |D(xi)|.

Local Alldiff Constraint A local alldiff redundant LA+ constraint checks if there are
enough candidate target nodes for xi neighborhood if xi is assigned to a target node
a. If it not the case, a can be pruned from D(xi). Note that the xi neighborhood is re-
stricted to the variables representing selected nodes, noted as V +

p (i). The LA constraint
is expressed as:

LA+(xi, A, B) ≡ | ∪j∈V
+

p (i,A) D(xj) ∩ Vt(xi, B)| ≥ |V +
p (i, A)|

LA+(x1, ..., xn, A, B) ≡
∧

i

LA+(xi, A, B) .

Constraint LA+ plays a pruning role. It can be implemented by maintaining the neigh-
borhood variable, with an O(d) time complexity, whenever the domain of xi is pruned.
The structure R+(i, a) = |{ j ∈ V +

p (i) | a ∈ D(xj) }| depends not only on the domain
of the neighborhood of xi but also on the neighborhood variable. Whenever the lower
bound of V +

p (i) changes, the structure R+(i, ·) must be updated in O(D), resulting in
a O(ND2) amortized complexity. Moreover, R+(i, a) may be incremented from zero
to one, resulting in an increment of CT +(i, a) = | ∪j∈V

+
p (i) D(xj) ∩ Vt(a)|, which is

not monotone. Nevertheless, when condition CT +(i, a) < |V +
p (i)| is fulfilled, a can be

safely pruned from xi, because if there is not enough candidates for a subgroup of the

4 Zampelli Stéphane et al.

Table 1. Comparison over GraphBase directed graphs.

One solution 5 min.
solved unsol total time mean time

vflib C++ 80,5% 19,5% 8.89 min. 0.02 min.
ozvflib 78,5% 21,5% 17.67 min. 0.04 min.
CSP 87% 13% 36.64 min. 0.09 min.

All solutions 5 min.
solved unsol total time mean time

vflib C++ 63,7% 36,3% 12.01 min. 0.02 min.
ozvflib 59,8% 40,2% 11.52 min. 0.02 min.
CSP 68,7% 31,3% 31.4 min. 0.07 min.

neighborhood, node i cannot be mapped to node a, even if the condition still holds for
the group.
Distance Constraints Thanks to the parameters A and B, former MC and LA con-
straints can be used to create redudant constraints such as shortest path constraint MCdist,
generalizing other works on shortest path distance [5]. If dist(a, b) denotes the shortest-
path distance between node a and b, then the MCdist constraint can be formulated as:

MCdist(x1, ..., xn, k) ≡
∧

i,j dist(i, j) = k ⇒ dist(xi, xj) ≤ k.
Suppose Ek

p = {(i, j) | dist(i, j) = k} and Ek
t = {(a, b) | dist(a, b) ≤ k}. Then

MCdist is equivalent to :
MCdist(x1, ..., xn, k) ≡ MC(x1, .., xn, Ek

p , Ek
t).

4 Experiments

Our CSP model for approximate subgraph matching has been implemented inside the
CSP framework of Oz/Mozart (www.mozart-oz.org). Parametric propagators were
implemented.Various transformations of Ep and Et were automated to instantiate prop-
agators for the forbidden edges and the distance constraints. We also included facility
constraints to declare distance constraints between specific pattern nodes.

First part of the experimental tests aims at comparing the CSP approach with a
dedicated algorithm for subgraph matching. The selected algorithm is an improvement
of Ullmann’s algorithm [6] called vflib, described into [7]. The C++ implementation
provided by the authors is used. We have also reimplemented the vflib algorithm in
Oz/Mozart.

Two distinct sets of graphs were selected. The first set comes from [8]. The graphs
are characterized by their probability η (eta = 0.01 is noted r001 in Table 1) that an
edge is present between two distinct node n and n′. Those graphs were used to evaluate
vflib algorithm performance [7]. In our experiments, pattern graph size is 20% of the
target graph size, target graph size ranges from 20 to 200, and all solutions are searched.
The second set contains graphs having different topological structures as explained in
[2]. These graphs were generated using the Stanford GraphBase [9] and are all graphs
tested in [2], consisting of 406 directed instances and 1225 undirected instances.

Experiments show that CSP approach for subgraph matching solves more problem
within a time limit against C++ specialized checking-based methods [7]. Table 1 and 2
show the percentage of instances solved within a time limit of 5 minutes, for directed and
undirected instances. Single specialized propagator MCPA for forbidden edges is more
efficient than the version with two propagators. Table 3 supports this assertion. Prelim-
inary results show that matching with 40% of optional nodes and few (≤ 5) additional
distance constraints is tractable.

Approximate Constrained Subgraph Matching 5

Table 2. Comparison over GraphBase undirected graphs.

One solution 5 min.
solved unsol total time mean time

vflib C++ 64,4% 35,6% 8.14 min. 0.006 min.
ozvflib 58,2% 41,8% 8.6 min. 0.04 min.
CSP 64,4% 35,6% 18.24 min. 0.01 min.

All solutions 5 min.
solved unsol total time mean time

vflib C++ 48,3% 51,7% 9.31 min. 0.007 min.
ozvflib 39,5% 60,5% 4.43 min. 0.003 min.
CSP 57,7% 42,3% 11.39 min. 0.009 min.

Table 3. MC and MC versus MCFA

CSP MCp and MCfa 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
100 100 0 100 0 96 4
200 79 21 62 38 10 90

CSP MCFA 5 min.
r001 r005 r01

solved unsol solved unsol solved unsol
100 100 0 100 0 99 1
200 83 17 80 20 34 66

5 Perspectives
The proposed framework for declarative approximate subgraph matching open various
research directions. Better heuristics could be developed when searching for an approx-
imate matching. Our algorithm for exact matching could also be compared with other
algorithms dedicated to the largest common subgraph problem. We also intend to apply
our approximate matching algorithm for the analysis of biochemical networks. Exten-
sive expirements should highlight the benefits of distance constraints. Finally, as the
(approximate) matching is expressed as a combination of (parameterized) constraints,
subgraph matching could be integrated in a constraint language handling graph vari-
ables, such as CP(Graph) [10] [11].

References

1. Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern matching.
In Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: TAGT. Volume 1764 of Lecture
Notes in Computer Science., Springer (1998) 238–251

2. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern matching. Math-
ematical. Structures in Comp. Sci. 12(4) (2002) 403–422

3. Regin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proc. 12th
Conf. American Assoc. Artificial Intelligence. Volume 1., Amer. Assoc. Artificial Intelligence
(1994) 362–367

4. van Hoeve, W.J.: The alldifferent constraint: A survey. CoRR cs.PL/0105015 (2001)
5. Sorlin, S., Solnon, C.: A global constraint for graph isomorphism problems. In Régin, J.C.,

Rueher, M., eds.: CPAIOR. Volume 3011 of Lecture Notes in Computer Science., Springer
(2004) 287–302

6. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1) (1976) 31–42
7. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance evaluation of the vf graph

matching algorithm. In: ICIAP, IEEE Computer Society (1999) 1172–1177
8. Foggia, P., Sansone, C., Vento, M.: A database of graphs for isomorphism and sub-graph

isomorphism benchmarcking. CoRR cs.PL/0105015 (2001)
9. Knuth, D.E.: The Stanford GraphBase. A Platform for Combinatorial Computing. acm, ny

(1993)
10. Dooms, G.: Cp(graph): Introducing a graph computation domain in constraint programming

(accepted paper). CP2005 (2005)
11. Deville, Y., Dooms, G., Zampelli, S., Dupont, P.: Cp(graph+map) for approximate graph

matching. 1st International Workshop on Constraint Programming Beyond Finite Integer
Domains, CP2005 (submitted paper) (2005)

